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1. Introduction

In this paper, we shall deal with the behaviour of boundary values of a family
of singularly perturbed equations as the parameter tends to zero. Let n=3.
Let P, and P, be elliptic operators on R" with constant coefficients of order 2u
and 2» with p>w, respectively and every b;(D), j=O0, -+, 2u—1, be a normal
boundary operator of order j. Let jj, ++,ju be a series of integers with

(1.1) 0=5<-<ju=2p—1.
We shall introduce the notion of “reducibility”’ for the following one-pa-
rameter family of boundary value problems:
(&-P(D)+PyD)u=0, in R}, 0<&EL];
{ bj(Dyulsyso=bss k=1, p.
Here Ri={x=R"; x,>0} and ¢,, k=1, -+, u belong to S(R*™*). We shall

deal with a distributional solution #,, which is prolongable to x, <0 as a distri-
bution. Then we define a canonical extension [u,]* of a solution u, with support

(1.2)

in R:. We know that the canonical extension is unique, the boundary values

Hm b (D)l s, j= 0, 26— 1, in D(R™™)
v

are uniquely determined, and that

-,

lai{?' bl‘.(D)u!|31=8 = ¢k ’ k = 1) Hh) v, in Q’(R”—l) M

Assume that there exists a prolongable distribution %, in @’ (R%) such that
lim [u,]*=u, in D'(R}). Since P, and P, act continuously on 9’'(R%), we have
240

lim (8Py(D)+Py(D)yty = (lim &)+ Py(D)- (lim u,)+Py(D) (lim u) = Po(D)ety -
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Therefore u, satisfies the reduced equation
(1.3) P,(Dyu, = 0 in R},
and the boundary values of %, in @'(R"™")
£i‘rglbj(D)u0|x1=8: ]= O, e 2v—1

are uniquely determined. See [7].
In the previous works [1]-[5] and [8], they studied only the case when

u,—>u, in HWYRY).
In this case, the continuity of the trace operator implies that for 0<j<j,

lim (lim b;(D)tte | 1,=5) = 151?01 b;(D)(lim u,) | , =5 -
240

ey0 8y0

Then u, satisfies the following boundary value problem:

P(Dp=0, in R%;
(1.4) { ()

bl'k(D)leﬁo = ‘bk ’ k= 17 V.

Here we assume that (1.4) has a unique solution v. But this does not necessarily
hold if the convergence u,—> u, does not take place in H»** (R?%).

Why does u#, happen to satisfy the first » boundary conditions? Does u,
satisfy a different set of » boundary conditions in a different topology which
does not ensure the continuity of the trace operator? We are going to give an
affirmative example to this question and a detailed analysis of a framework, called
reducibility of (1.2), by use of methods different from those of [1]-[5] and [8].

DerINITION 1.1. A one-parameter family of the boundary value problems
(1.2) is said to be reducible if (1.2) satisfies the following four conditions:
(1) Every boundary value problem (1.2) has a prolongable solution %, in 9'(R%)
such that the canonical extension [u,]* bleongs to S'(R").
(2) There exists a prolongable solution #, of (1.3) such that

lim u, = u, in 9'(RY).
240

(3) There exists a series (&, -, k) such that
ISk <-<k=p; 055, < <jp,=2v—1;
and u, satisfies the following boundary conditions:

(1.5) bfkl(D)u0|31%0= ¢k,’ l=1’ AR A
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(4) The reduced boundary value problem (1.3) with (1.5) is uniquely solvable.
In particular, if k,=1, /=1, -+, v then the family (1.2) is said to be normally
reducible. 'The family (1.2) is said to be abnormally reducible if the family (1.2)
is reducible but not normally reducible.
Our main theme is to look for conditions for reducibility and study an ex-
ample of the abnormally reducible family such that the limit %, of the solution
u, of (1.2) in L*(R%) satisfies the boundary conditions:

(16) bi,,(D)uOIzﬁo = ¢k ) k= l’ °* V_'ly D—l—l .

The main results are given in §4. As a preliminary, we shall study in § 2
asymptotic behaviour of determinants appearing in the expression of solutions
of the boundary value problems. In §3 we shall examine necessary properties
of the characteristic roots of the perturbed equations which were assumed in § 2.

The writer would like to express his sincere gratitude to Professor Youjirou
Hasegawa for his encouragement and helpful suggestions.

2. The order calculus of determinants
Let jy, +*+, ju be a series of integers with
(2.1) 0=j<-<ju=2p—1.
Let by(r, &), j=j1» ***, ju be polynomials of (7, £") as
(2:2) b(r, &) = P+ 3k biuE ) j=Gn e
which are denoted by b;(r) when regarded as polynomials of = with polynomial
coeflicients.

NoTaTION 2.1.
For polynomials b;(7), j=1, «--, u and for complex numbers or functions

7; and @;, j=1, -, s,

by(71) =+ by(7w)
Mat D, = MatDo(‘Tl, cooy T by "‘,bp.): : : ’
bu(Ty) *+* bu(Tu)

Mat Dk = Mat Dh(Tl) *tty Tws bl) **% bl") b1 vty ()bl'-)
Iibl(_'rl) bx('{'k—l) 4}1 bl (7:le+l) bl g”'ﬂ'):l
b»&”'l)“' bl"(’;’k—l) ¢;# b,;('; k1) *° bni’f )
where k=1, -, .
0:

For ]=j'v+1+"°+jlba A={j‘u+1) ".;jl"}, §=eXP 2 2”12 ’ and ®=CXP 21!’

w—2v 2u—
where 00 <27,
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1 e 1
Mat Vu(g;jb '":jn) = g.’l g.jn ’
(20 KEEN (<0) e
det Mat Vn(g;jli ""jn) = Vn(g;jl’ '"’jn) ’
Mat Vi_y,o = Mat Vi_y(§; jvt1 =+ Ju) -
For 1Zk=pu—v,
]l,c =jv+k—1
Mat Vy._y"k = Mat VI&—\I(C;]‘V+D "‘)].v+k—1,].l(n j'M+le+1) "'!jl‘-)
T, = (jv+1‘(gk—l)j;""wk,l(fl), "',jM'(gh—l)j;"”‘ﬁﬂ,l(f’))
Mat aD,, = Mat Dk(l, t, °cy gl-‘—v—l; 'ij*'l, tty 'Ti"‘; Tk) .
For F—=(zvrz, e, T8),

Mat Doy = Mat D(£®, -+, £"1@; F).

For v12<5k=us,

Mat Dy = Mat Dy(®, ¢8, -+, #7728, £*7@, -, £*7'8; F) .
Bu_y = 231 (biw,,.l(fl)’ Vv +0Dy) .

We shall abbreviate the determinant of Mat D as D, where Mat D is any of
the matrices abbrevitated as above.

Our purpose of this section is to calculate

. D; .
lim 24, =1, .

Lemma 2.2.
DO(@v g, -, 9(#—\:—1; ij“’ ) 'Tj"') =@/ V#—v,o .

Vi-vo=0 if and only if there exist two integers k and | in A={jy41,"**, Ju}
such that

k=Il(mod 2p—2v), k1.
Proof. Put
a; = (1, €)v+i, woe, (" NYors), 1<i<p—v.
Then
det {(@v+1ay, ++, @k a,_,) = O/ det {(ay, *+, au_y) -

Since we can rewrite a; as
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a; = (1, (é‘ivﬂ')’ oo, (é‘jvﬁ)“'”_l) , lgléﬂr‘—v )
we have
det *(ay, =+, au_y) = det(*ay, *+, *au_y) = Vi_o(§; Jusr == Ju) = Viovyo -

Since ¢ is a primitive root of 1 of order 2p—2v, *=¢' holds if and only if
k=1 (mod 2p—2v»). Recalling that V,_, is the difference product of iv+1, .-, </
we have the conclusion. [Q.E.D.]

REMARK. rank Mat Vyu_, o=p—v, if and only if every pair (I, L) with /,</,
and [, ,e A satisfies [, 1, (mod 2p—2v).

rank Mat Vyu_, y=p—v—1, if and only if there exists only one pair (I}, 1,)
with /,<l, and [, ,E A such that [, =1, (mod 2p—2v).

rank Mat Vi_, oSp—v—2, if and only if there exists two different pairs
(L, ) and (11, 13) with 1,<<], and l{<l} and [, 1,, I{, I5€ A such that [,=1, and
1=1l; (mod 2p—2v).

Assume that there exists only one pair (/,, },) with [;<</, and [, [, A such
that [;=/, (mod 2u—2v), and put ,=j,4 and Lb=j,.s, Then

B._, = b11,1' Vﬂ-—v,k1+blg,1' V#—v,kz+6Dk1+ath .

AssUMPTION 2.3.

i\, £'), j=1, +++, u are continuous functions of (A, &') in {A>1} X R
satisfying the following asymptotic properties: there exist continuous functions
ai(£), j=1, -+, v of £’ in R""! such that

(2.3) limry(x, £) = o),  1SjSv,
(2.4) imry(h, E)A =710, vr1Sjsp,

uniformly on every compact subset K of R ™.

We shall calculate the coefficients of the leading terms with respect to A
of the asymptotic expansions of D;, j=0, ++-, .

Lemma 2.4. Let Assumption 2.3 be satisfied. Then
(2.5) '1\1{2 Dy(ry, +++y s by +o2, b5, )N
= Dy(ay, ***, av3 bjyy *++, 5j.) O Vs
For k=1, -+, v
(2.6) lim Dy(ry, =+, 73 by -+, B biy -y )N
= Dy(oy, **+, 0y} 1,1.1, e, ij; qgl, ., qﬁv).@!.]’/“__mo ,
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and for k=v+1, -+, p
2.7) lim Dy(ry, =+, 75 iy =, by s o0, )N = 0.
Here the convergences are uniform on every compact subset K of R*™".

Proof. Let K be a compact subset of R*!and ¢’ €K. With a new vari-
able A, we replace 7;(\, '), j=v+1, -, u by Xer;(A, E')/N in Dy, k=0, =+, p
and denote the result by D,. If we put A=J, then we have D,=D,. Since D,
is a polynomial in A, we can rewrite D, as

(2.8) Dy = .od, (0, E')-377 .

First we prove (2.5). Recalling the definition of the determinant, the
terms of d,,\/ are contained in the sum of the products of

(2.9) (sgn p)b,-pm(ﬁ(x, EN) - b;p(v)(-r,,(x, &)
and
(2.10) b;pmn(i.-'rwl()u, ENN) - bjpm)(i.-m(x, ENN),

where p runs over all the permutations of u letters satisfying

(2.11) 1=p(j)=v, for 1=j=<v
and
(2.12) v+1Zp()=u, for »+1<j=p.

Denote the symmetric group of order m by &,. Then there exist p’eS, and
P’ €8u_y such that p(j)=p'(j) in (2.11) and p(j)—v=p"(j—v) in (2.12). Since
(sgn p)=(sgn p’)(sgn p”), (2.9) X (2.10) can be represented as
(580 P")bsp (715 Ny €)=+ B (TN, E))
X (580 "B, Trasor EYN) o+ By (oruhs EYN)

Therefore dy (N, £') is the product of

v+p//(1)

(2.13) 3 (En (s ) b (s )

and

(2.14) 33 (sgn p”) (ryaa(N, EN)N) e en (zu(N, ET)NYvreraow
o’ESp_y

When A § oo, we have (2.13)— Dy(ay, **+, a; bj,, **+, bj,) and (2.14)— Dy(8, 6F,
ees, @EFY1; 2hvan e 778), Then Lemma 2.2 shows (2.5).
Next we prove (2.6). By the definition of the determinant, we have
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(2‘15) Dk(Tl) Tty Tws bip ) bi,..,; 931’ R ‘ﬁl-")
zpez&x(sgn p)b"pcn(’-l) b"pc:e-x)(T"")'(ﬁ’(") 'bjpc»+1>(7"+l) bjp(u>(7'“) :

Since ¢,, -, $u are bounded on K, we can use the same argument as in the
proof of (2.5). If we replace (2.9) by

(2.16) (sgn P)bip(l)("'l) bip(k_ l)(TI:—l).é;F(k)'bip(k+1)(7k+l) bip(v)(""v) >

then we have (2.6).
Finally we prove (2.7). (2.15) shows that the formal highest term of D,

with respect to A is contained in the sum of
17)  (sgn )by (a0 £) - by (700 E)
Xbj ., (eru(hy EYN) o by, (Rempa(hy DN
X B Dineps oM o Ny ENN) 00 by (RN, E)/N)

Since the formal highest order of (2.17) with respect to A is J—jy4;, which is
obtained by putting p(k)=v+-1, we have

(2.18) dii(n, E) =0,

for 0=</=<j,,,—1. Since jy+,>>j,=0, we have d:0=0. This impilies (2.7).
[Q.E.D.]

When Vy_,,=0, we need more assumptions on 7;(n, £'), j=1, -, u to

calculate the leading terms of D;, j=0, -+, u.

ASSUMPTION 2.5.
Let 8 be a positive number and [NV be the greatest integer satisfying N6=<1.

7,7, E), j=1, «=+, p satisfy the following asymptotic properties: for j=1, -+, »
(219) (A, ') = g (E)F M AT e (BN ANTEI e e (N, E),

and for j=v+1, =, p

(2.20) 7i(A ENA = TV TOANT 7 (E) NN, E)

Here 7; 45(£’) and 7;,(£') are continuous in R and 7;,(y+ps(N, £') and 7, ,(N, E')
remain bounded on K when A { oo, where K is an arbitrary compact subset

of R**,

With a new variable X, we put for j=1, --+, »
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(2.21) T; = 0;(E)F 0 A7Rer o(E) XNV s, EY)
and for j=v+1, -, p
(2.22) Ti = XG0+ (B A om0, E)

If we substitute (2.21) and (2.22) for 7;(\, &), j=1, +*+, p in Dy, k=0, -,
and denote the result by D,, we have asymptotic expansions of D, with respect
to X as

(2.23) Dy = dyo(£)- N+ 20y dy jo(B") - N0y (0, E') N o (R 7Y
Put
(8" = 1}:{}, dia(M, E'),
and A=X. Then asymptotic expansions of D, are
(2.24) Dy = dyo(E") N+t dy, o) N T H-diy(E) N T oM 7Y

Here even when N8=1, we deal with d, y; and d,, separately.

We have already calculated the leading terms d, o(£") in Lemma 2.4, that
is, dy,0=(2.5), dp,=(2.6) for k=1, +-+, v, and d, (=(2.7) for k=v-+1, =-, u. We
shall calculate the leading terms of (2.24) when Vy_, (=0.

Lemma 2.6. Let Assumption 2.5 be satisfied. Assume that Vyu_,,=0.
Then) 2?’-1 d,,,,-a(ij')-)\,f'fs:O, k:O’ eeey IJ"

Furthermore, when j,;—jy=2,

(2.25) doy = Dy(ay, *++, oy bjy, =+, b5,) O/ 1By, .

For k=1, «--,»

(2.26) dpy = Doy, *+, 043 bjy +++, by, s 4‘,1, . qﬁv).@J-l.B“_v .
For k=v+1, «+, u

(2.27) de1=0.

When jy,—jv=1,
(2.28) dyy = Dy(ay, *++, oy bjy, oo+, 05,) OB,
+Do(°'v ***y Oy bfp ) ij_l; b )'@J—I.Vﬂ._y'l .
For k=1, <+, v

Jy+1

(2,29) dyy = Di(ay, ++, 0,3 bjl o bfv; ¢‘,l, -, (i;,,)'@]—l'Bl'*—v
+Dy(ay, **+5 o3 bip o0y b biwl; 961» °t $y_1, ¢;v+1)'®]—1’VI"—V,1 .

v-1’
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For k=v—+1, -+, u there are two cases as follows.
When v=1 and j,=0, it may be assumed that b; =b,=1 and b;,=b,=§,+
by (). Then

(2.30) @iy = (— 1" ¥(b— (o, +by,,(E"))br) - Dy -
When v=2 or jy=1,
(2.31) dp,=0.

Proof. By the same argument as in Lemma 2.4, dy oA/ and dp ;A "%,
j=1, --+, N are contained in the sum of the products of

(2:32) (s $by (F) = By (7
and
(2.33) (sgn p/)(Fypy) v +e@r oo (Fy)veor vy,

Put +/=¢""1'@,j=v+1,++, u. Then, by the binomial theorem, for k=
Jvip = Jwand j=v41, -+ p

(234) (1) = (H54 R 1 () F O = 7 f Aol () +O(RY).
Hence every term of (2.33) can be expanded as (2.35)+(2.36):

(2.35) (Sgn p//)(T;_H)jvarp//(l) eos (’Tﬂ)’i\“FP”(!‘-—V)

(236) (Sgn P’/).E"':l (T;+1jv+pn(1)) eee (T1I;+k-1)j"+p“(”‘1)

XA forpray (T\/:+k)i;w(k)711+k,l(§ )]
X (T ppan) v 071> oe (ph)vrea-w L O(X7?)

Here j;=j,—1. Since Vy_, =0 implies that (2.35)=0, we have (2.33)=0(1™").
Hence (2.33) X A7 787, 5=0O(X"'77%). Put A=2, then

S dip(E)N =0, k=0, p.

This implies that when we calculate d,,(&'), k=0, -:*, u, we can ignore the
terms 7, ;5(€"), I=1, =+, », j=1, «-, N under the condition that Vyu_,,=0. Put
71,;8(")=0, I=1, -+, », j=1, ---, N, then for k=0, -, p

dio(E') = }\I:E Jk.o(h, £,
(2.37) dp(§) = 11&{}} (A di (N, E)—dio(E))+dia(N, E)) -

When jy.,—jy=2, we prove (2.25) first. Since the product of (2.13) and
the sum of (2.35) is d (&), we have
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(2.38) ligg Mo, f(Ns E')—doo(E)= Dy(oy, **+, av; bjy, +++, bj,) -7~ SUZIOD, .

Since every b;(t) is represented as (2.2), the coefficient of A/~! in (2.10) is

(239) 2‘;:}‘ (Ty.,.l)jf‘(""‘l) eee (7v+k—1)ip(v+"_l)

X bip(k).x(f \(r v+k)j£(")(7 V) POHEHD) oo (Tﬁ)j"“" D

Hence

(240)  Limdy,(n, £) = Do, v; by, -+, b,) @7 TN by (E) Vi

V+k,1

Recalling (2.37), we have (2.25) by (2.38) and (2.40).

Now we prove (2.26). By a similar method substituting (2.16) for (2.9) in
Lemma 2.4, and Dy(oy, -+, 0v; bsyy *+, b3 by o+, ) for Dyfary, =+, a; by, =+,
bj,), we have (2.26). Since jy4;—jy=2, (2.18) implies (2.27).

When j,,,—jy=1, we must consider the following extra terms:

(2.41) (sgn P)bj,  (ri(Ns E7)) o bs, s (Ty—a(Ns 7))
(s E) i s E)N)
(e Tusas YN wo0 by (Ao ulX, E)N)

ij

PCV+1)

X b

’p(v+2) Tocuy

where p satisfies (2.11) and (2.12). By substituting b;  for b;, in Lemma
2.4, we can apply Lemma 2.4 to (2.41). Then the sum of (2.41) is expanded as

(2.42) a1 D0 (sgn P

Xbj o (T E) 2 By (Tva(N ENDS e, o (Tol(N, E))

X (sgn p")(mvar(Ny )NV Ao (mysp(N, EN) M) Voo

X oo (Tu(N, E)N)vrew-w ORI 72) ,
where p’ is a permutation of 1, -+, »—1, »41 and p” is of 0, 2, -, u—v». Put-
ting A=>x and dividing (2.42) by A/}, we have, when A oo,

(242) = Dyfoy, -+, 033 biy -0, by, by, )+ O Vi,
Adding this extra term to (2.25), we have (2.28).

If we substitute bj,.. for b;, and ¢y, for ¢, in Lemma 2.4, we can prove
(2.29) similarly.

Now we prove (2.30). Denote the transposition of ¢ and j by (7, j) and put
p=np, for k=2 and

p=(23) (k—2, k—1)k—1,K)p, for k=3.
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Then »=1 and j,=0 implies that (2.17) becomes

(2.43) (—1)*(sgn pbjz_(m(h, ENs,
AeraA W) = bjz, (MmN, EN)

(7\' Trr(Xy E)N) ;5;:,,,)(7\-'7#(7\', ENN).

X b’ pC3)

P(k+ 1

Therefore (2.30) can be calculated by the same method as in Lemma 2.4 with
v=k=2. The order of X of the leading term of (2.43) is J—j,=J—1. The
term of order J—1 is the sum of

(244) (—1)*%(sgn p)bjz, (o2(E")bico

pC1)

X (T5)F e «es (T,,_l)’pcn(—r,,“)'pcun oo (ThYFw
where p satisfies (2.11) and (2.12) with »=2. Hence
(2-4‘5) dk.l = ("1)k_2D2(¢71(§’)’ a; 1, biz; 4;1’ $2)'D(k) .

By the definition, we have

(2.46) Dy, 5 1, bjy; ‘f’n 4;2) = ‘ﬁz*(¢1+b1,1(§'))‘£1 .
Therefore (2.45) and (2.46) imply (2.30).
Since jy4;,—1=j,=1, (2.18) implies (2.31). [Q.E.D.]

Lemma 2.7. If rank Mat Viu_, oS pu—v—2, then

(2:47) @) =dis(§) =0,  for k=0, p

Proof. Put L=jyia, b=Jvis, l1=jvss; and lf=jy4y. Since Mat Vi_y,
and Mat 8D,, k=1, .-, u—v are different from Mat V._,, by the kth row,
either the &, th row and the k,th row, or the k] th row and the k;th row remains
equal. This implies that Vu_, ;=0 and 8D,= 0, k=1, -+, ug—». Hence
Bu_,=0 by the definition. Recalling that D, is one of the minors of order
p—v—1 of Mat D(®, +++, @5*~¥~1; 7%y, ... ir), which is zero by Lemma 2.2, we
have Dy=0. Therefore Lemma 2.6 implies that d;,(£')=0, k=0, -+, n

[Q.E.D.]

RemArk. This lemma shows us that we need to calculate d,, ; for k=0, -+, p
and /=2, when rank Mat Vi_, (S pu—v—2.

3. The properties of the characteristic roots

Let n=3. Assume that P,(D) and P,(D) are elliptic linear operators with
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constant coefficients of order 2u and 2v with p>w, respectively, such that
(3.1) Py(E) = eI+ 203, py, j(EET,
(3-2) Py(E) = —(exp i)~ '+ L1 p (€ NEP

Here p, ;(¢) and p, ;(£') are polynomials of £’ with their orders not higher than
J» and @ satisfies 0<6<27.

We shall deal with the following polynomial with a large positive parameter
Al

(3.3) P(E) NP PyE) = 0.

Denote the characteristic roots of (3.3) with respect to & by =;(n, &), j=
1, -+, 2u and those of

(3.4) Py&) =0
with respect to &, by o;(§'), j=1, -+, 2v, respectively.

AssumPTION 3.1.
The characteristic roots of (3.4) are simple for all £’.
There exists a positive number C such that

P(E)+ N PyE)*#0,  for A=Cand |E|ZC.

Since P, is elliptic, we may assume that o;(§’), j=1, ---, » have positive
imaginary parts for |£'| =C.

Lemma 3.2. Let Assumption 3.1 be satisfied. If the suffixes {j} of the
characteristic roots T;(\, £'), j=1, «-+, 2u are properly chosen, then there exists a
positive number Ay for every positive number R with R>C such that if N>\,
then ;(\, £'), j=1, «-+, v have positive imaginary parts for |E'|>C and satisfy
(2.19) for =1 and 7;(\, E'), j=v+1, :-+, u have positive imaginary parts for all
&’ and satisfy (2.20).

Proof. First we deal with
(3.5) £EL SV g, 24 —exp (10)P+ 202, b2 = 0.

Denote the roots of (3.5) by ¢;=t;(a, b), where j=1, +-+, 2, a=(ay, ***, ayu), and
b=(b,, -+, b,). They every t;(0, 0) satisfies

(3.6) 1% —exp (i0)* = 0.

The roots of (3.6) are 0 and ®%7%, j=1, +--,2u—2» and the roots of (3.6) with
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positive imaginary parts are @'}, j=1, ---, u—v». Since the roots of #* %=
exp(if) are simple, there exists a positive number » such that t;(a, b), j=2v+1,
-+, 2p are simple for |a| <<y and |b|<y. Then every t,(a, b), j=2v+1, .-+, 2
is analytic in |a| <y and |b|<x. Hence every ¢;(a, b), j=2v-+1, -+-, 2x has its
power series representation with centre 0:

3.7) ti(a, b) = Xut; . (a, b)”,
where (a, B)"=(@)"se+(ape) (551 -+ (b)
We may assume that
£0,0) =0, j=1,,20; £(0,0) =0, j=2v+1, 2.
Then for j=2v+1, -+, 2p
(3.8) t(a, B) = O 14 Shosnt; o (a, B
If we divide (3.3) by A** and put £;/A=t and

(3'9) O"_I'Pl,n R 7\'_2I“'P1,2M, 7\4-1‘?2,1: R 7"_2”'?2,2») = (a, b) s

then we have (3.5). For » and R, there exists a positive number A% with
A¥>C such that A>\% implies that |a|<7% and |b|<<y. Substitute (3.9)
for (a, b) and put 7;(n, £')=n-2;(a, b) in (3.8). Thus we have representations
as (2.20).

Next we deal with

(3.10) F S by = 0.

Denote the roots of (3.10) by s;=s;(b), where j=1, -+, 2v and b=(b,, ---, by,).
Put by=(—exp(—1i6): p,,(£"), -, —exp(—i0)+p,,(E')). Then Assumption 3.1
implies that s;(b))=0;(£’), j=1, ---, 2v are simple. Hence there exists a positive
continuous function »(§’) such that s;(b), j=1, ---, 2v are simple and analytic
of b in [b—by(E")|<n(€’) and s;(b), j=1, ---,» have positive imaginary parts
in |b—>by(E")| <n(&') for |E'|>C. Denote

5% (=70, £7) = Ou(7, M, E),
21’=221¢+1 ((7/7\')—(71'(7\‘) E’)/K)) = QZ(T’ A E)s
A= {(m, 275 E); 7] <NR[2, MTI<NETY |ET| <R},
and
A, = {74 ) ATI<NETY |E| <R}

Then we can write

(3.11) ATCEMP(7, E )+ Py(r, E') = 01X 0, .
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Since )l\im [7;(n ENN=1, j=2v+1, -+, 2p, there exists a positive number
*”

A: with A&Z>A% such that 0,%0 in 4. Then Q, is a polynomial of 7 with

analytic coefficients of (A7, &) in 4, and 1/Q, is analytic in 4;,. Hence

(A~@-™P,+ P,)|O, has a power series representation of (7, A7}, ') in 4, and O,

is a polynomial of = with analytic coefficients b;,(A 7%, £’) in 4, as

QI(T) 7\') El) = 72v+2i2:l j(x—l, El)"'zv—j .
Since }\im O,=—exp(—16)-P,, there exists a positive number Ap with Ap>A%
1@
such that if A>X\g, then [b(A7Y, £')—b,| <7(E'). Hence the characteristic roots
(A E), j=1, -, 20 of Q, are analytic of (A7}, £') in {74 £'); ATI<AR,
|&'| <R}. Thus 7;(, '), j=1, +++, 2v can be expanded as (2.19).

By renumbering the suffixes {j} properly, we have the conclusion.

[Q.E.D.]

4. The reducibility of the one-parameter family
If we divide the equation of (1.2) by é=A"**%* then we have
(P(D)FA™ PP Dju(x) =0  in Ri;

*D by DY) | so = bale), k=1, 00my .

Here we require Assumption 3.1 and that every symbol of b;,(D) is represented
as (2.2). We shall consider the one-parameter family (4.1) with A>1 instead
of (1.2) and study the behaviour when A 1 co. We denote by %, the limit of
the canonical extension [%,]* of a solution u, of (4.1). We know that [#]" is
uniquely determined when the boundary conditions of (4.1) are coercive.

We can define the reducibility of (4.1) by replacing u,, %, and lelirol by u,, 4.,

and lim, respectively, in the definition of the reducibility of (1.2).
f@

We shall consider the solutions of (4.1) solved by the partial Fourier trans-
formation with respect to x’. We denote by A the partial Fourier transforma-
tion with respect to x’ and by ! the inverse partial Fourier transformation
with respect to £’. The partial Fourier transform of (4.1) is

(PyDy, E')HN"PPy(Dy, E')Yl(xy, E') = 05

4.2 J
( ) bih(Dl» E,)ﬁl(xla El)lxﬁo = ¢k(5') ) k= 1’ .

This is an ordinary differential equation subjected to parameters (A, £'). We
shall consider only the solution #(x,, £’) of (4.2) represented by

(4.3) U(xy, ') = Y(x))+ 221 Co(\, E')(exp imi(N, E')ay) .
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Here Y(x;) is the Heaviside function. The partial Fourier transforms of the
boundary conditions in (4.2) are represented as

(4-4) k10 (m%, £), ENCUN E) = (), I=1,-, .
If Dy==0, then C, can be obtained uniquely by Cramer’s formula as
(4.5) Cy(\, E') = D,/D,, k=1, u.

For the definitions of D, and D, see Notation 2.1.

AssuMPTION 4.1.
There exist positive numbers J, C, and M independent of A>1 and &’ in
R*! such that

(4.6) [(Do/A) T = C<EDM,
and every cofactor D, , ; of Dy, k, [=1, -, u satisfies
(4.7) [ Do,ii | SCNICEDM .
Here <€">=(1+1&"|%)"~.

RemMARK. Since Assumption 4.1 assures the commutation of the limit A 1 oo
and the inverse Fourier transformation, we have only to calculate the pointwise
limit of (4.3). It is difficult to check (4.6) when the data of (4.1) belong to
S(R™*"). But if we restrict the data of (4.1) from S(R*™') to FY(C5(K)),

where K is a compact set of R, then (4.6) follows the estimate of lim D,.
Agoo

NOTATION 4.2.

Dy() = Dy(ry, ***, Tu} bjy =+, bj,)
Dy() = Dy(ry, +++, u; bjy =+, bi,,,; J’n 0 qu.)
Dy(c) = Dy(oy, *++, ov; bjp *tty b:\.)
Dy(o) = Dy(ay, *+, oy; bh’ e, biﬁ 951, e, 9‘5”)

Dya; v) = Dyay, **, oy bjy, =+, b5, b

v-1 v+1)
Dk(o'; y) = Dk(a'l’ **ty Oy bip °tty bi bi > ‘ﬁh °tty $v-1, $v+l)

v-1 v+

AssumPTION 4.3. For all &/ i R*Y,
(1) Dy(o)==0.
(2) Dila; v)+0.
(3) Dy(c)*Buy+Dy(c; 1)+ Viuo 1 0.

REMARK. Assumption 4.3 implies the unique solvability of the reduced



752 R. AsHINO

problem. This requirement is natural from the viewpoint of singular perturba-
tions. Recall that V,_, , is independent of &’.

Theorem 4.4. Let Assumption 3.1, 4.1 and 4.3 be satisfied. By restricting
the data ¢y, k=1, -+, u from S(R*™") to F~YC7(R*™")), Assumption 3.1 can be
removed.

(1) If rank Mat Viu_, y=p—v, then the family (4.1) is normally reducible. In
particular, if the boundary conditions are Dirichlet’s

(4.8) b;(D)=Di", k=1, p,

then the family (4.1) is normally reducible.

(2) Assume that rank Mat Vy_, ;=p—v—1.

(2-1) If jyyy—jv=2 and Bu_,=*0, then the family (4.1) is normally reducible.
(2-2) If jy1—jv=1, then there are three cases as follows.

(2-2-a) If Bu_y*0 and Vu_,,=0, then the family (4.1) is normally reducible.
(2-2-b) If Bu_,=0 and Vyu_,,=%0, then u.. satisfies the following boundary condi-
tions :

(4.10) b; (D)u(x)] ;.50 = ("), k=1, v—1,v+1.

In particular, the family (4.1) is abnormally reducible.
(2-2—<) If Bu_y=0 and Vyu_, %0, then the family (4.1) is not reducible.

Proof. Assumption 4.1 implies that there exists a unique solution u, of
(4.1) having representation (4.3).

Case (1). By Lemma 2.2, 2.4, Assumption 4.3-(1) and the condition
Vi-v,o=0 we have for k=1, -+, v

. ’ . Dy(r)IN
(4.11) lim C(r, &) = lim D“E‘% — Dy(o)/Da),

and for k=v+1, .-,
(4.12) l)\im C(n E)=0.
,@
Here the convergence is uniform in £’ on every compact subset of R*~*. Since

every 7;(A, £'), j=1, ++-,» has a positive imaginary part, it follows that for
every rapidly decreasing function y(£’) and for fixed x,,

(413)  lim (%1, §'), ¥Der = 2ok Y(,) - (exp io4(§")2,) Dy(0)[ Do), ¥ -

Thus u, converges to u,, satisfying (1.4). Therefore the family (4.1) is normally
reducible.
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If the boundary conditions are Dirichlet’s conditions, then A={v, -+, u—1}.
For every pair ([, I') of two different integers in A with /<</’, we have I'—/=
p—1—v<2u—2y. Hence it is impossible that /=1[" (mod 2p—2»). 'This
implies that the family (4.1) is normally reducible.

Case (2). We shall use the representation (2.24). Since Viu_, (=0, we have
for k=0, +-+, u, d;o(§')=0 by Lemma 2.4 and 33\ d; ;s(§")A//*=0 by Lemma
2.6. Hence

(#14)  lm G0, £) = lim DN _ jiy GralE) o) . dra(E))

Mo Dy(r) N M do(E)+o(1)  don(ET)
Case (2-1). Lemma 2.6 implies that for k=1, -+, »
(4.15) lim Cy(, £') = Dy(o)/Dyf<) ,
and that for A=v+1, <=+,
(4.16) ilg} C(n, E)=0.

By the same argument as in Case (1), (4.1) proves to be normally reducible.
Case (2-2). Since the imaginary part of every 7;(x, £') is positive, even
if =1 and j,=0, we have for k=v+1, -+, u

(4.17) }1&1 Ci(\, EN(exp iTi(N, E)xy) V(%) = 0.

By Lemma 2.6 we have for k=1, «--, »

(4.18) lim C,(n, §') = Dy(a)*Bu-v+Dy(a; v)* Vv,
et Do) Bast Do(a; 2)- Vaory

where the denominator is not equal to zero by Assumption 4.3—(3).
Case (2-2-a).

. n _ Dy(o)Bu_y — Dy(o)
(4.19) lim Gy, &) = Dy(@) Buy Dyo)

This implies that u., satisfies the following boundary conditions:

(4.20) b; (D)u(x)| ;00 = Pa(x'), k=1, v
Therefore the family (4.1) is normally reducible.

Case (2-2-b).
(4.21) lim Cy(n, ) = Dy(a; ) Vi-vy _ Dilos v)

Dy(o; v)*Vu-yy  Dy(o; )
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This implies that u,, satisfies (4.10) and that the family (4.1) is abnormally re-
ducible.

Case (2-2—). Since the right-hand side of (4.18) is different from that of
(4.19), the unique solvability of the reduced problem in Case (2-2-a) implies
that ., can not satisfy every of the boundary conditions of (4.20). As the right-
hand side of (4.18) does not contain ¢, k=v+2, :-+, u, u. can not satisfy any
of the following boundary conditions:

(4.22) biy(DYral sio = by, k=012, o i
If u., satisfies the boundary condition
bi\,ﬂ(D)u“ I 240 — ¢v+1 ,

then the unique solvability of the reduced problem in Case (2-2-b) implies
that the right-hand side of (4.18) is equal to the right-hand side of (4.21), which
is a contradiction. Therefore the family (4.1) is not reducible. Since the con-
vergence is locally uniform, Assumption 4.3 assures (4.8) for large A.

[Q.E.D.]
We give and study an example of the abnormally reducible family.

ExampLE 4.5. In (4.1) consider the following symbols:

(4.23) P\() = (EIH<ENEHLED),

(4.24) PyE) = (E1+<E"Y),

and

(4.25) bi(8) =1, bj(() =&, and b;(§) =&,

where <€">=(1+|&'|*)*2. Denote the boundary conditions with symbols (4.25)
by

(4.26) %] s00= Po, Dyt|ls0= ¢y, and Diul,.o = ¢s.

Then p=3, v=1, and 4={1, 5}. Obviously Assumption 3.1 is satisfied. Let
O@=exprif4, E=exprmi2=1i, a=KEV+A), and b=<ED/a.

Then the characteristic roots of P,-+A\*-P,=0 are

+i<E">, Ba, BOia, —BOa, and —Bia.
Let
"\ E)=0y(E)=1KED, TN\ E)=0a, and T4\, E')=0ia.

When {¢’>/A<1, the binomial expansion of a/ is
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aln = 1+%-(<§'>/x)‘—l—z‘.;".z (124)(45 DN

This implies that 7,,(&')=75,(£)=0 and therefore 9D,=0D,=0. Recalling
that &;, ,(¢')=b;, ,(£")=0, we have B;_,=0. A routine calculation gives
Vsco=10, Viu=i—1, Dya)=1 Dyo;1)=1«KED,
Dy()+Bs-y+Dyfa; 1)+ Vyoyy = —(1+0)<ED,
Dy = —8i(1—i)a*CEN1+bY), D, = —6(1—i)a¥(d+(ds/a"))
D, = —ia*(—OKE X1+b)dy+(0+b),+(@—b)(¢s/a*)) »
and
Dy = —Oa* (i ¢ X(14-b)do—(14-06°)h,—(1—Ob)($5/at)) -
Since |§|=1, 0<A<a, and 0<<b<1, it follows that
|Do| = /2 aXED(1+b) =/ 2aXE"D,
IDyl = VZa(Idi]+174dsl)
and

|Dy|, | Ds| <2a%(<KE"> ol 41yl +-17*|bs]) -

Since C,=D,/|D,, C,=D,/D,, and C;=D,/D,, Assumption 4.1 and 4.3 are
satisfied. Therefore we can apply Theorem 4.4 to this example.
We show that the convergence of [#,]* is in L*(R%). Let |- |, be the norm
of the Sobolev space H(R*™"). Then
| Cy exp(—<EDm) | SKEDTH (1 byl +-174 5] ) - exp (—av;) ,
| Cy exp iBax; |, |Cs exp(—Oax,)|
SV 72 <EDTHLED bol + by +174 s |) - exp(— /2 Ax,[2) .
Integrate |u,|% over R%. 'Then the partial Fourier transformation and the
formula

r exp(—ct)dt = —1—, for ¢>0,
0 ¢
imply that
lal Z2mny = 3(1 1) 278 s ] 20)+18+/2 A7 ([ ol 5+ [ by | 21+ 2% 5| 1)

This estimate shows that every u, belongs to L% R%),
By the same argument as above we have

lhy = —i +KEDT e yeexp (—<E D)
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and

1
Iuwli"(n’;)éflﬁlz—l .

This estimate implies that ., belongs to L{R%). Let D,=i<£’>D, and
D, = i<¢">Dy—Dy+y = —Oi(1—i)a<E X —<E" Y dy+dbsfa) .
Replacing %, by u,—u.. and C, by C,=D,/D, in the above estimates and using
[Dyllaz/2aEDZV2INLED,

we have
|Cy exp(—<EDx) | SACEDNED b+ I dsl)
and
[t g, 53N 34 | 5] 2)
H18v 2 NI ol 84 [ i |20 "8 5] -3) -

This estimate shows that [#,]* — [u.]t in L¥(R%).
If [u\]* — [4]" in H'(R?) then the continuity of the trace operator implies
that u.. must satisfy

(4.27) U] 00 = o -

But this is a contradiction. Therefore the convergence in L*(R?) is the strongest
among the Sobolev topologies of H*(R%), where s runs over all integers.
Replace the boundary conditions (4.26) by the Dirichlet’s conditions:

(4.28) ulxlw = ¢o» Dlulxﬁo = ¢,, and Diulxﬁo = ¢,.

Then the limit ., satisfies (4.27). Therefore the family with (4.28) becomes
normally reducible.

The family not with (4.26) but with (4.28) can be regarded as the perturba-
tion of (1.4) with (4.24) and (4.27). Thus the situation proves to be delicate
in perturbing the boundary conditions.
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