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1. Introduction. One of the useful tools for analyzing a linear operator
T in a Banach space X, if available, is a functional calculus. In general, no
reasonable functional calculus may exist. If it is known that 7' is a closed op-
erator then there is available a restricted functional calculus for T based on
functions which are holomorphic in a neighbourhood of the spectrum o(T),
of T, and have a limit at infinity, [4; Ch. VII]. To admit a richer functional
calculus it would be expected that T should satisfy some additional properties.
For 0<a <, define the open cone S,={2=C\{0}; |arg(2)| <a}. A closed
operator T in X is said to be of type o [12], where 0<w <, if o(T)S S, (the
bar denotes closure and, by definition, S;=[0, >]) and, for 0< &< (r—w)
there is a positive constant ¢, such that

IRV D<M, AE&ESue-

Here R(\; T') denotes the resolvent operator of 7 at A. We remark that
—T, for the case 0<w<x/2, is the infinitesimal generator of a holomorphic
semigroup [12; Theorems 3.3.1 and 3.3.2].

In the case when X is a Hilbert space and T is of type o there are results
of A. Yagi [13] and- more recently, of A. McIntosh [10], which give conditions
equivalent to the existence of a functional calculus for T based on the algebra
H*=(S,+¢), for every 0<€<(wr—w). For example, this is the case if the purely
imaginary powers 7% u&R, exist as bounded operators in X or if T satisfies
certain square function estimates. However, these results are specific to Hil-
bert space. The situation in Banach spaces, even reflexive ones, is less clear
and more complex; some positive results in this setting can be found in [2].

Perhaps one of the simplest examples to consider is the Laplace operator
L=—d%dx* in L*(R) for 1<p<<co. In this case, it turns out that L is of
type =0 and, as indicated in Section 2, L has an H>(S,)-functional calculus
for every £>0. Another algebra of functions acting on L is the space BV(R*)
of functions on [0, o) which are of bounded variation. We note that these

* This paper is dedicated to the late Professor N. Dunford.
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algebras are distinct. Indeed, the function z—2‘ belongs to H>(S,) for every
0<€<z but its restriction to [0, o) is surely not of bounded variation. It
is just as easy to exhibit elements of BV(R*) which are not the restriction to
[0, o0) of any element of H*(S,) for any £€>0; the characteristic function X,
of any interval JC[0, oo), other than [0, oo) itself, will do.

The most desirable functional calculus is one admitting the largest possible
class of functions defined on o(L)=[0, o). If p=2, then L is self-adjoint and
hence it is possible to form a continuous linear operator (L) for every bounded
Borel function 4 on [0, o0). The question arises of whether this is still the
case for p==2, that is, whether L is a scalar-type spectral operator in the sense
of N. Dunford [5]? As noted above an operator (L) exists whenever y»=X;
for some interval J <[0, o). Since such sets generate the Borel subsets of [0, o)
one might be hopeful of a positive answer. Unfortunately, the main aim of
this note is to show that L is not a scalar-type spectral operator in Dunford’s
sense if p+2; see Theorem 1 below.

2. Some functional calculi for L. Unless stated otherwise it is as-
sumed that pe(1, ). Consider the closed operator L in L?(R) given by L=
—d?|dx*. 'The domain of L is taken to be the dense subspace of L?(R) specified
by

DL) = {feL)(R); f'€AC(R), f” L*(R)}

where AC(R) is the space of functions on R which are absolutely continuous
on bounded intervals. Then o(L)=[0, o) and —L is the infinitesimal generator
of a strongly continuous Cj-semigroup of contractions, namely the Gauss-
Weierstrass semigroup given by

GHw) = 5 ey | flu—w)e e, fELAR),
for each >0 [7; §21.4]. It is known that
(1) IR DI<Y[nlsin® (L argn)),  rep(L) = C\[D, <),

[8; IX § 1.8], from which it follows that L is of type w=0. Let D=—id/dx

denote the differentiation operator with domain
YD) — {fELR); fEAC(R), f ELAR)}.

Then D is closed, densely defined and o(D)=R.

For ease of presentation we now assume that p&(1,2). Then it is possible
to reformulate the domains of L and D in terms of the Fourier transform mapp-
ing *: L*(R)—L"(R) where ¢ is the conjugate index to p. Indeed,
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D(L) = {fELXR); Ef(£) = 4(E) for some g& LH(R)}

and, for each f€9(L), it turns out that Lf=g where g& L*(R) satisfies g(§)=
g4 [7;§21.4]. Similarly,

D(D) = {fELXR); Ef(E) = 4(%) for some ge LA(R)}

and, for each fe9(D), it is the case that Df=g where g&L?(R) satisfies
2E)=Ef(®).

Let the bounded measurable function m: R—C be a p-multiplier [11; IV
§3]. Then there exists a bounded operator in L?(R), say T,, such that

(Tuf) &) =mEFE), fEL(R)NLIYR).

Observing that (Df)" (£)=EAE), for each f € (D), it is natural to define m(D)
to be the operator 7,,. If y: C—C is the function (2)=2?% then y(D)=D*=L
where D?is defined in the usual way for positive integral powers of an unbounded
operator. So, if m is a bounded measurable function on [0, o) such that mo7y:
R—C is a p-multiplier, then we can define an operator m(L) by

(2) m(L) = (mov)(D) .

Since the linear space of bounded measurable functions m: [0, c0)—C
such that moy: R— C is a p-multiplier forms an algebra under pointwise multi-
plication it follows that the action of such functions 7 on L as specified by (2)
is multiplicative. It is the formula (2) which will imply that H=(S,) acts on L
for each £>0.

The following result on multipliers will be needed. It is essentially Theo-
rem 3 of [11; p. 96]. An examination of its proof shows that the constant A4,
specified there has the form of the right-hand-side of (3) for some universal
constant ¢,

Lemma 1. Let 1<p<oo. There exists a constant o, such that if m: R—C
is any C'-function in R\{0} for which both m and & Em'(E), £=0, are bounded,
then m is a p-multiplier and the associated operator T,,, considered in L*(R), satisfies

(3) I Tall = (D)l < oty max{{|ml|.., ||Em'(E)l]} -

Now, fix 0<&é<z and let y€H"(S,). Then yroyeH=(C,,) where, for
any 0< p</2, C, is the open double cone S,U(—S,) and —S,={—=z; z&S,}.
Furthermore, the norm |[Jroy|l.=sup{|y(2*)|; 2 ECy,} of Yoy € H*(Cyp)
coincides with the norm |[\r|l.=sup{[y/(w)|; wE S} of reH=(S,). If ¢ is
any element of H>(C,,), then it follows from the Cauchy integral formula that

l¢'(x)| <ll¢pll/|x[sin(e/2),  xER\{0},
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and hence
(4) [(Yroy) (2) | <IWpro¥llw/| x| sin(E/2) = |Irll/ | %] sin(€/2)

for each xR\ {0}. Defining (yro)(0) to be zero, say, it follows from Lemma 1
that the restriction to R of +Jro9, again denoted by +roy, is a p-multiplier and
hence the bounded operator 4r(L)=(yroy)(D) certainly exists. Noting that
1/sin(€/2)>1 it follows from (4) that

max {|roy|le, WYY (€)lle} = lWrovllo/sin(€/2) = |lWl|/sin (€/2)

and hence, (3) implies the continuity of the mapping > (L)=(yrov)(D)
from H=(S,) into the space of bounded linear operators on L?(R) equipped
with the uniform operator topology. Accordingly, L admits a H=(.S,) functional
calculus.

It is worth noting that this functional calculus includes the resolvent opera-
tors of L. Indeed, if w&C\[0, o), then there exists u& C\R such that #w*=w.
Of course, the other square root of w is then —u. Let R,(2)=(z—w)™" for
z#+w. Let €€(0, z) be any number such that R, & H>(S,) in which case
R,oyeH>(Cy,). It follows from the definition that R,(L)=(R,°v)(D) since
R, (x*)=(x*—w)™, xR, is a p-multiplier. But, R, (x*)=nr,(x)—r,(x) for each
xE R, where n(x)=[2u(x—u)]"", xER, and r(x)=[2u(x+u)""], xER.
Lemma 1 implies that both +f, and +r, are p-multipliers and so R,(L)=(R,°¥)(D)
=+Jr(D)—+ry(D). But, noting that u and —u are in the resolvent set of D, it is
easily checked from the definition of D in terms of the Fourier transform that
V(D) = (2u)"(D—ul)™" and (D)= (2u)"(D+ul)™". Since D is a closed
operator it follows, for each A€ p(D), that the range of D—AI on (D) is all of
L*(R), [7; Theorem 2.16.3], and hence, that the operator (D—xI)™" is every-
where defined. Accordingly, (D—AI)™*=R(); D) and so the resolvent identities
for D imply that

(D)D) = R(u; DR(—u; D) = (D—u) (D+u)™
= (D*—v*)"' = (L—w)™.

But, L is also a closed operator and hence (L—w)'=R(w; L). It follows that
R,(L)=(R,o7)(D)=R(w; L).

We remark that if Yr(2)=f(2)/g(2) where f and g are polynomials such that
deg(f)<deg(g) and the zeros of g are in the resolvent set C\[0, o) of L, then
it is natural to define a bounded operator (L) by

P(L=3 3]

aq;R(w,; LY = ”:21 ]:2: Qyj [(L—w,)™")

My

k
where w(z)=21 >} a,i(z—w,)™’ is the partial fraction decomposition of 4. Here

=0
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{w,, --+, w;} are the zeros of g and, for each 1<n<k, the multiplicity of the zero
w, is m,. Now if €€(0, ) is any number such that {w,}5.1NS, =@, then
Y€ H=(S,) and hence there is also the operator y+(L) defined via (2). It is clear
from the previous paragraph that the operators y+(L) and (L) coincide.

We now outline, briefly, the action of BV(R*) on L. If f: R—C is any
function, then V(f) denotes the total variation of f. The linear space BV(R)
consists of all C-valued functinos on R which have finite total variation. It is
a Banach algebra with respect to pointwise multiplication and norm defined by

fllew = Ifll+V(f), fEBV(R).

Fix 1<p<oo. Then each m& BV (R) is a p-multiplier and the mapping
m—>m(D), mBV(R), is a continuous algebra homomorphism for the uniform
operator topology [1; pp. 208-209]. Define BV(R™) to be the closed subalgebra
of BV (R) consisting of those functions f such that f=0 in (—oo, 0). Then,
for each f&BV(R"), the function fory: x— f(x?), xR, belongs to BV(R) and
V(fov)<2V(f). Accordingly, the map

m+— m(L) = (moy)(D), meBV(RY),

is a functional calculus for L. We remark that if w& p(L)=C\[0, ), then the
restriction to [0, o) of R,(2)=(z—w)”!, 23w, belongs to BV (R*) since its
derivative is an element of L'([0, o)). As noted previously, the operator R, (L),
defined to be (R,07)(D), agrees with the resolvent operator R(w; L)=(L—wI)™".

3. The non-spectrality of L. At this stage it is natural to inquire
whether L admits a functional calculus based on some richer family of functions.
Indeed, this is the case for p=2. Suppose that J [0, o) is an interval. Then
X oy € BV(R™) is the characteristic function of the set {#*; t& J} U {—¢"*;t<J}
which, with obvious notation, is the union of the two intervals J¥* and — J¥2.
Accordingly, X oy =Xp/24X_j/2—X;(0)X( and so the operator X;(L) defined
via (2) is just X j1/2(D)+X_ j1/2(D); it is a projection commuting with L. Further-
more, the family of projections {X;(L); J an interval in [0, c0)} is uniformly
bounded in L?(R), [11; p. 100]. For the case p=2 this family of projections
can be extended so that a projection is assigned to each Borel subset of [0, o)
and the so extended family forms the resolution of the identity for the self-
adjoint operator L. However, if p==2, then the state of affairs is quite different
as seen by the following

Lemma 2. Let R* denote the algebra of subsets of (0, oo) generated by all
intervals in [0, o), in which case the additive set function J—X;(L) has a unique
extension from the semi-algebra of all intervals in [0, o) to R*. If pE(l, o),
but p=2, then the family of projections {Xz(L); EE R*} is not uniformly bounded
in L*(R).
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Proof. We proceed by contradiction. Suppose then that
(5) sup {|[IXg(L)ll,: EE RY} <oo

where ||+||, denotes the operator norm considered with respect to the Banach
space L?(R). Let R denote the algebra of subsets of R generated by the intervals
in R and let R={F€R; F=—F}. If FEQR,, then it is clear that F?= {¢*;
teF} is an element of R*. The discussion prior to Lemma 2 together with the
finite additivity of E—Xz(D), E€R and E—Xy(L), E€ R* implies that
Xp(L)=Xp(D). It follows from (5) that

(6) sup {l[Xz(D)ll,; F & Ro} <oo.

Let FEQR. Then F_=F N(—oo, 0) is a finite disjoint union of intervals
in (—oo, 0)and F,=F N[0, o) is a finite disjoint union of intervals in [0, o).
Define F(1)=F_U(—F_.) and F(2)=F,U(—F,). Since both F(1) and F(2)
are elements of R,, it follows from (6), the identities Xp_=Xr)X (-0, Xr,=
Xr@ X1, and Xp=Xy, +Xr_ and the finite additivity of X(.,(D) that

sup {||Xz(D)|l,; FER} <oo.

That this is not the case is well known.

Lemma 2 implies that the family of projections {Xz(L); E€ R*} cannot
be enlarged to form a spectral measure in L*(R), [5; XVII Lemma 3.3 and
Corollary 3.10]. This point suggests that L ought not to be a scalar-type
spectral operator. However, to make a precise argument along these lines
would require showing that if there were some spectral measure in L?(R), say
P, a priori having no connection what-so-ever with the projectors X;(L), for

which L:S AdP()), then necessarily P arises by extension of the set function
0

J—X;(L), with domain all intervals J in [0, o), to the collection of all Borel
sets in [0, c0). That is, it would have to be established that P(J)=X;(L) for
each such interval J. Rather than pursuing this approach directly we prefer
a slightly different argument to establish the following result.

Theorem 1. If 1<p<<oco and p=2, then L is not a scalar-type spectral
operator in L*(R).

Before indicating a proof we recall more precisely the notion of a scalar-type
spectral operator, briefly, a scalar operator. So, let X be a Banach space and
L(X) be the space of all continuous linear operators from X into itself. By a
spectral measure in X is meant a set function P: Z—L(X), where X is a o-
algebra of subsets of some set Q, such that Piis multiplicative (i.e. P(ENF)=
P(E)P(F) for every E€X and F€3X), P(Q) is the identity operator I in X and
P is countably additive for the strong operator topology in L(X). Given a
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C-valued, = -measurable function on Q, say , it is possible to define a closed,
densely defined operator P(4r) in X as follows: the domain @(P(+r)) of P(+r)
consists of those elements x&X such that +r is integrable with respect to the
X-valued measure P(-)x: E—~P(E)x, EEZ (in the usual sense [9]), in which

case P(r)x is defined to be the element S Yr(w)dP(w)x, denoted briefly by
o

S JrdPx. It turns out that P(yr)€ L(X) if and only if +r is P-essentially

Q

bounded on Q. A linear operator 7" in X is said to be a scalar operator if there
exists a spectral measure P: 5—L(X) and a 3-measurable function  such that
T=P(yr). This is the case if and only if there exists a spectral measure Q in X
defined on the Borel sets B(a(T')) of o(T") such that T=Q(\). Here A denotes
the identity function in C. All of the above definitions and statements concern-
ing scalar operators can be found in [3] and [5].

The idea of the proof of Theorem 1 is as follows. Since iD is the infini-
tesimal generator of the translation group in L?(R) given by T,f=f(t+-), tER,
that is, 7,=¢'*?, t€R, it follows from [6; Theorem 2] and [5; XVIII Theo-
rem 2.17] that D and hence, also D, is not a scalar operator if p==2. Now, if
L were a scalar-operator, then it ought to follow from L=D? that D=L"? and
hence, D would also be a scalar operator [5; XVIII Theorem 2.17] which is a
contradiction. Although this is not quite correct (if it were, then o(D)=o(L"?)
would be [0, o0)!) it is the spirit in which the proof will proceed. The difficulty
is that D is “not quite” a function of L (see (7)). So, it is necessary to identify
the positive square root L2, of L, more precisely.

Suppose again that p(1,2). Let H e L(L?(R)) denote the Hilbert trans-
form. That is, H is the operator corresponding to the p-multiplier £+ sgn(§),
£€R. Then H?=I and so o(H)={—1, 1}. Define a closed operator S in
L*(R) with dense domain

D(S) = {fELXR); |E| f(E) = 4(E)  for some g LA(R)}

by Sf=g, f€D(S), where g L?(R) satisfies g(§)= |£|f(§). To see that S
is actually closed and densely defined we observe that —S is the infinitesimal
generator of a strongly continuous Cg-semigroup, namely the Poisson semigroup
given by

(Pf@) =t | fa—w)Etw) du,  fELAB),

for each t>0; see [7; § 21.4], for example. It is clear from the definition of
L in terms of the Fourier transform that S is the natural candidate to be called
the positive square root of L. Indeed, S?=L and, in addition, o(S)=[0, o).
To see this, we note that if f €.9)(S), then



406 W.J. RICKER

(S—ADf) &) = (1El—Vf®), reC.

Since &—(|&| —\)7}, EER, is a p-multiplier whenever A€ [0, o) (cf. Lemma 1),
it is clear that the corresponding operator is the resolvent operator of S at A.
This shows that ¢(S)S[0, o) and it is not difficult to show equality. If fisa
“nice function”, then a direct computation shows that

(Df)" (&) = EF(E) = |E| f(£) sgn (§) = (SHf)"(€) = (HSf)"(8),

a formula which suggests the known equality D=SH=HS [7; § 22.5], written
more suggestively as

(7) D = HLV* = [V*H .

It is this identity, the correct version of “D=L"?”, which will lead to a proof
of Theorem 1.

So, suppose that L is a scalar operator. The first aim is to show that S is
then also a scalar operator for which the following result is needed. The proof
is immediate from the fact that o(L)=[0, o0) and the estimates (1).

Lemma 3. If A=—L, then R(\; A) exists for Re(\)>0 and
sup {|Re(A)| +[IR(\; A)ll; Re(n)>0} <oo.

It follows from Lemma 3 that

(8) —nsin(am) | AOILDIfAN,  fE D),
0

is defined for each 0<a<1 [14; Ch. IX, §11 ATheorem 3]. In the notation
of § 11 of Chapter IX in [14] with A=—L, if A, is the infinitesimal generator
of the holomorphic semigroup T, ,=1T, defined there, then for each f € D(4)=
gA)(L) the value A,f is equal to (8); see [14; (3) and (4), p- 260]. Noting that

/}1,2 is precisely the generator of the Poisson semigroup [14; p. 268], that is,
A,,=—38, it follows from (8) with @=1/2 that

(9) Sf= —(—8f) = n‘IS:X“Ilz(),I—}-L)“lLfd?\ , f€e9L).
In particular, Y(L)< 9)(S).

Now, by assumption, L=r udV(p)=V(u) for some spectral measure
0

V: B([0, o0))—L(L*(R)). Accordingly, if f9(L), then the functional calculus
for scalar operators implies that

W +L) ' If — S:p(h—{—u)“ldV(,u,) 7, A>0.
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Substituting this expression into (9) and using Fubini’s theorem gives
(10) §f =7 [Tu( | 2t anay (uy =
0 0

= [ wlanavf = | wiavinf,

for each feP(L). To justify the use of Fubini’s theorem it must be established
that the function > u'?, >0, is V(- )f-integrable whenever f € 9(L). But, if
fE€DL)=9D(V(u)), then by definition of the operator V(x) the identity function
w on [0, o) is V(-)f-integrable and hence, so is ur> p'*Xp «)(p), £=>0; see
[9; Ch. II, § 3 Theorem 1]. Since pr>p*X(o (1), =0, is bounded on [0, <o)
it is also V{(-)f-integrable [9; Ch. II §3 Lemma 1] and the desired conclusion
follows.

Now, define a set function P: B([0, c0))— L(L*(R)) by P(E)=V ({p=>0;
p2€E}) for each Borel set EC[0, o). Then P is a spectral measure and

S~=P(h)=gm AdP()\) is a scalar operator such that
0

an  Sf={"aPour =" wtavwy,  fEDEM) = 2W);

see [5; XVIII Theorem 2.17). In particular, (S)=[0, o), [5; XVIII Lemma
2.25). The argument used above to justify the use of Fubini’s theorem in (10)
shows that 9(L)< 9(S).

The claim is that S=S. The formulae (10) and (11) show that

(12) Sf=5f, fedl).

Since ¢(S)=[0, 0)=0(S), the resolvent sets p(.S) and p(S) also coincide. If A
belongs to this common resolvent set, then it follows from (12) that

(S—M)f=(S—ADf,  fed(L).
Operate on the left with the bounded resolvent operator R(n; S) gives
R\ S)S—ADf=f,  fed(L).

But, f=R(\; S)(S—AI)f whenever f€ D(L)< D(S) and it follows that
R(\; S)g=R(n; S)g for all g in the range of the operator (S—\I) restricted to
9(L). Assume for the moment that the space of all such functions g is dense in
L*(R) whenever A<<0. Then R(\; S)=R(n; S) for all A<0. Both S and §
are closed operators and so R(A; S)=(S—AI)™! and R(\; S)=(S—AI)™? for
each A€p(S)=p(S). Accordingly, the equality R(x; S)=R(\; S), valid for
each A<<0, implies that

9(S) = Range(S—AI)™! = Range(S—AI)™ = 9)(S).
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Fix A<0. If f€D(S)=9(S), then
(S—AL) Y (S—AL)f = f = (S—AI)H(S—NI)f = (S—AL)(S—AI)f

from which Sf=Sf follows by injectivity of (S—aI)™'. Accordingly, S=3S.
So, it remains to establish the following

Lemma 4. Let A<<0. Then the space of functions {(S—AI)f; f€D(L)}
is dense in L*(R).

Proof. The aim is to show that the stated space of functions contains the
set D(S—rI)=9)(S) and hence, it will be dense in L*(R). So, if he D(S—I),
then it is to be shown that A=(S—\I)f for some fE€9(L).

By deﬁPition of P(S—nI) there is g& L(R) such that (|£] —A\)Ah(E)=2(&)
and hence, A(E)—=(1E] —0)'#(E)=(|E]| —A)(1E] —\)*4(E). Since E(|E] —1)*
is a p-multiplier (cf. Lemma 1) there is f € L*(R) such that (|&| —A)"23(£)=f).
In particular, A(&)=(|£| —x)f(£) and so it remains to show that fe9D(L). But,
Ef(E)=E"(1E| —\)*4(E). Since £ E¥(|E|—A)* is also a p-multiplier (by
Lemma 1 again) there is Y»& L?(R) such that £%(|&| —\)2g(&)=+(§) and hence
g2f(£)=+r(£). 'This shows that f € 9(L) and completes the proof of the lemma.

So, we are at the stage of having established that Szgzrde(h) is a
0

scalar operator if L is a scalar operator.

Now, the Hilbert transform H is equal to Q,—Q, where Q, is the projection
corresponding to the p-multiplier X, .., and Q, is the projection corresponding to
the p-multipler X(_.. . In particular, 0,0,=0= 0,0, and O,+0,=1. If we
define Q(E)=Xz(1)0,+Xz(—1)Q, for each E€B(C), then Q is a spectral

measure in L?(R) such that H :S wdQ(p). Since H and S commute, it follows
c

that HP(E)=P(E)H for each E € 3([0, )), [5; XVIII Corollary 2.4]. But, H
is also a scalar operator, with Q its resolution of the identity, and hence Q;P(E)=
P(E)Q; for each j= {1, 2} and E € B([0, o)), [5; XV Corollary 3.7].

Let Q=[0, o0)X {—1, 1} and let = denote the Borel subsets of Q. Define
a set function A: 3—L(L?(R)) by

AU) = Q,P({t=0; (¢, )eU})+0,P({t=0; (¢, —1)eU}), Uex.

Then it is routine to check that A is a spectral measure which may be considered
as being defined on all of B(C) with Q as its support. Let 4r: Q—C be the
>-measurable function defined by (A, u)—>au for each (A, p)€Q. The corres-
ponding scalar operator A(vy) that is so induced has domain given by

D(A(W)) = {fL(R); v is A(+)f-integrable}.

Since, for each U €%, we have the identity
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AU)f = O\P({t=0; (¢, )€U+ Q,P({t=0; (¢, —1)€U})f

whenever f&L’(R), it is clear that + is A(:)f-integrable if and only if the
identity function A, on [0, o), is P(-)f-integrable. Accordingly,

D(AMW)) = {fEL*(R); N is P(+)f-integrable} = 9(S),

where we have used the fact that S=P()\). But, (7) implies that 9(S)=9)(D).
Hence, if f € D(A(Y))=9D(D), then

Aw)f = | wwdnen, wf = 0, [T 2P0, [T raPovs =

= O\Sf—0.8f = HSf = Df
which shows that D=A(«r). Accordingly, D is a scalar operator. This is the
desired contradiction and completes the proof of Theorem 1 for the case when
I<p<?.

For 2<p<{oo we proceed via duality. Indeed, noting that the dual op-
erator L*, of L (when L is considered in L?(R)), is just L in L*(R), it sufficies
to establish the fact that in a reflexive Banach space X the dual operator T* of a
scalar operator T is a scalar operator in X*. But, if T=P(y) whete P: 35—
L(X) is a spectral measure and +r is a 3-measurable function, then it is an
easy consequence of the reflexivity of X and the Orlicz-Pettis lemma that the set
function P*: 5—L(X*) defined by P*(E)=P(E)*, E €3, is a spectral measure
and hence P*(vr) is a scalar operator in X*. It remains only to verify the identity
T*=P*(+r). But, this follows from the reflexivity of X and [5; XVIII Theo-
rem 2.11 (i)]. The proof of Theorem 1 is thereby complete.
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