BASIC TRANSFORMATIONS OF SYMMETRIC R-SPACES

Dedicated to Professor Ichiro Satake on his sixtieth birthday

Masaru Takeuchi

(Received February 23, 1987)

Introduction

There is a class of compact symmetric spaces, the so-called irreducible symmetric R-spaces. Each irreducible symmetric R-space M has a big transformation group G, called the group of basic transformations, greater than the group of isometries of M. And every compact symmetric space with a big transformation group is essentially a symmetric R-space (Nagano [6]).

For example, the sphere is an irreducible symmetric R-space, and G is the group of conformal transformations. Also the projective space $P_{\boldsymbol{n}}(\boldsymbol{F})$ over $\boldsymbol{F}=$ $\boldsymbol{R}, \boldsymbol{C}$ or real quaternions \boldsymbol{H} and the Cayley projective plane are irreducible symmetric R-spaces, and G are the group of projective transformations of $P_{n}(\boldsymbol{F})$ and the connected simple Lie group of type EIV, respectively. Furthermore, an irreducible Hermitian symmetric space M of compact type is an irreducible symmetric R-space, and G is the group of holomorphic transformations and anti-holomorphic transformations of M.

In this paper, we want to characterize these big groups G in terms of Riemannian geometry of M, except for spheres.

A submanifold S of M is called a Helgason sphere if (1) S is a totally geodesic sphere with minimum radius; and (2) S has the maximum dimension among the submanifolds in (1). We define a distance $d(p, q)$ of $p, q \in M$, called the arithmetic distance, to be the minimum possible length of a chain of Helgason spheres connecting p and q. We prove the following theorem.

Theorem. (i) Let M be a compact rank one symmetric space other than spheres. Then the group G of basic transformations of M is identical with the group of diffeomorphisms which carry each Helgason sphere to a Helgason sphere.
(ii) Let M be an irreducible symmetric R-space of rank greater than one. Then the group G of basic transformations of M is identical with the group of diffeomorphisms which preserve the arithmetic distance d on M.

Our problem was originated by Chow. In Chow [1] he studied the transformations of certain homogeneous algebraic manifolds by purely algebraic
methods. When the ground field is the complex number field, these manifolds are the irreducible compact Hermitian symmetric spaces M of classical type, and his result may be stated as follows. With respect to a family \mathscr{H} of complex submanifolds of M, a distance d on M is defined in the above way. For example, for the complex Grassmann manifold M, \mathscr{H} is the family of projective lines lying on M, where M is regarded as a complex submanifold of a complex projective space by the Plücker imbedding. It is verified that for each space M \mathscr{H} is nothing but the family of Helgason spheres in our sense. He proved that then the group of holomorphic and anti-holomorphic transformations of M is identical with the group of isometric bijections of (M, d), except for complex projective spaces. So our Theorem (ii) may be thought of as a generalization of the theorem of Chow under differentiability.

Peterson [8] studied the arithmetic distance on irreducible compact symmetric spaces defined by means of Helgason spheres of dimension greater than one. His method is different from ours and to use the Radon duality in the sense of Nagano [7].

Our method is as follows. The spaces M in Theorem (i) are the projective spaces, and the Helgason spheres are the projective lines. Thus Theorem (i) follows from the fundamental theorem in projective geometry, along with a theorem of Springer [11]. For the proof of Theorem (ii), we make use of the characterization of G by Tanaka [17] as the automorphism $\operatorname{group} \operatorname{Aut}(P)$ of a G_{0}-structure P of M, G_{0} being a Lie subgroup of $G L(n, \boldsymbol{R}), n=\operatorname{dim} M$. We will prove that $\operatorname{Aut}(P)$ is equal to the isometric diffeomorphism group of (M, d).

The author would like to express his thanks to T. Nagano for his valuable advice during the preparation of this paper.

1. Symmetric R-spaces

In this section we give the definition of symmetric R-spaces and recall some properties of them (cf. Takeuchi [13], [15], Tanaka [17]).

Let

$$
\begin{equation*}
\mathcal{G}: \mathfrak{g}=\mathfrak{g}_{-1}+\mathfrak{g}_{0}+\mathfrak{g}_{1}, \quad\left[\mathfrak{g}_{p}, \mathfrak{g}_{q}\right] \subset \mathfrak{g}_{p+q} \tag{1.1}
\end{equation*}
$$

be a graded Lie algebra over \boldsymbol{R} with \mathfrak{g} real simple and $\mathfrak{g}_{-1} \neq\{0\}$, and $\boldsymbol{\tau}$ a Cartan involution of g with

$$
\begin{equation*}
\tau \mathrm{g}_{p}=\mathrm{g}_{-p} \quad(-1 \leq p \leq 1) \tag{1.2}
\end{equation*}
$$

Such a pair (\mathcal{G}, τ) is called a compact simple symmetric graded Lie algebra over \boldsymbol{R}. Two compact simple symmetric graded Lie algebras over $\boldsymbol{R}(\mathcal{G}, \tau)$ and $\left(\mathcal{G}^{\prime}, \tau^{\prime}\right)$ are said to be isomorphic to each other, if there is a Lie isomorphism $\varphi: \mathrm{g} \rightarrow \mathrm{g}^{\prime}$ with $\varphi \mathrm{g}_{p}=\mathrm{g}_{p}^{\prime}(-1 \leq \rho \leq 1)$ and $\varphi \circ \tau=\tau^{\prime} \circ \varphi$.

Let (\mathcal{G}, τ) be a compact simple symmetric graded Lie algebra over \boldsymbol{R}. Then, from (1.1) and the semi-simplicity of \mathfrak{g}, there is uniquely an element $E \in \mathrm{~g}_{0}$ with

$$
\begin{equation*}
\mathrm{g}_{p}=\{X \in \mathrm{~g} ;[E, X]=p X\} \quad(-1 \leq p \leq 1) \tag{1.3}
\end{equation*}
$$

which is called the characteristic element of \mathcal{G}. From (1.2) one has

$$
\begin{equation*}
\tau E=-E \tag{1.4}
\end{equation*}
$$

Now we define several subgroups of the automorphism group Aut(g) of g. Let $\overline{\mathfrak{g}}=\mathrm{g}^{c}$ denote the complexified Lie algebra of \mathfrak{g} and regard Aut (\mathfrak{g}) as a subgroup of $\operatorname{Aut}(\overline{\mathrm{g}})$. Denoting by $\operatorname{Inn}(\overline{\mathrm{g}})$ the group of inner automorphisms of $\overline{\mathfrak{g}}$, we define

$$
G^{\prime}=\operatorname{Aut}(\mathrm{g}) \cap \operatorname{Inn}(\overline{\mathrm{g}})
$$

which is an open normal subgroup of $\operatorname{Aut}(\mathrm{g})$. Let G_{0} denote the group of automorphisms of the graded Lie algebra \mathcal{G}, that is,

$$
G_{0}=\left\{a \in \operatorname{Aut}(\mathrm{~g}) ; a \mathrm{~g}_{p}=\mathrm{g}_{p}(-1 \leq p \leq 1)\right\}
$$

which is also described as

$$
G_{0}=\{a \in \operatorname{Aut}(\mathrm{~g}) ; a E=E\}
$$

in virtue of (1.3). Under the identification of \mathfrak{g} with Lie $\operatorname{Aut}(g)$, the Lie algebra of $\operatorname{Aut}(\mathrm{g})$, through the adjoint representation, we have $\operatorname{Lie} G_{0}=\mathrm{g}_{0}$. Note that G_{0} leaves $g_{ \pm 1}$ invariant. Next we define an open subgroup G of $\operatorname{Aut}(\mathrm{g})$, thus Lie $G=\mathrm{g}$, by

$$
G=G_{0} G^{\prime}
$$

Then G_{0} is a closed subgroup of G. Let

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{q}+\mathfrak{p} \tag{1.5}
\end{equation*}
$$

be the Cartan decomposition associated to τ. Note that from (1.4) one has $E \in \mathfrak{p}$. Since $\tau \mathrm{g}_{0}=\mathrm{g}_{0}$, (1.5) induces a Cartan decomposition of g_{0} :

$$
\mathfrak{g}_{0}=\mathfrak{f}_{0}+\mathfrak{p}_{0}, \quad \text { where } \mathfrak{f}_{0}=\mathfrak{l} \cap \mathfrak{g}_{0}, \quad \mathfrak{p}_{0}=\mathfrak{p} \cap \mathfrak{g}_{0}
$$

Extending $\boldsymbol{\tau}$ to a conjugate linear automorphism $\overline{\boldsymbol{\tau}}$ of $\overline{\mathfrak{g}}$, and denoting by (,) the Killing form of $\overline{\mathfrak{g}}$, we define a Hermitian inner product \langle,$\rangle on \overline{\mathfrak{g}}$ by

$$
\langle X, Y\rangle=-(X, \bar{\tau} Y) \quad \text { for } \quad X, Y \in \overline{\mathrm{~g}}
$$

which is invariant under the group

$$
\operatorname{Aut}(\overline{\mathfrak{g}}, \bar{\tau})=\{a \in \operatorname{Aut}(\overline{\mathfrak{g}}) ; a \bar{\tau}=\vec{\tau} a\}
$$

Its restriction <, $\rangle \mid \mathfrak{g} \times \mathfrak{g}$ to $\mathfrak{g} \times \mathfrak{g}$ is an inner product on \mathfrak{g} which is invariant under the group

$$
\operatorname{Aut}(\mathrm{g}, \tau)=\{a \in \operatorname{Aut}(\mathrm{~g}) ; a \tau=\tau a\}
$$

We define compact subgroups K and K_{0} of G with Lie $K=1$ and Lie $K_{0}=\mathfrak{f}_{0}$ by

$$
\begin{aligned}
& K=G \cap \operatorname{Aut}(\mathrm{~g}, \tau), \\
& K_{0}=G_{0} \cap \operatorname{Aut}(\mathrm{~g}, \tau)=G_{0} \cap K
\end{aligned}
$$

Then we have polar decompositions

$$
\begin{align*}
& G=K \exp \mathfrak{p} \tag{1.6}\\
& G_{0}=K_{0} \exp \mathfrak{p}_{0} \tag{1.7}
\end{align*}
$$

The second one is the polar decomposition of the self-adjoint (with respect to $\langle\rangle \mid, \mathfrak{g} \times \mathfrak{g})$ real algebraic group $G_{0} \subset G L(\mathfrak{g})$. Also the first one follows from the polar decomposition

$$
\operatorname{Aut}(\mathfrak{g})=\operatorname{Aut}(\mathfrak{g}, \tau) \exp \mathfrak{p}
$$

of the self-adjoint real algebraic group $\operatorname{Aut}(\mathrm{g}) \subset G L(\mathrm{~g})$. In particular, K is a maximal compact subgroup of G. Next we define a parabolic subalgebra \mathfrak{n} of g by

$$
\mathfrak{u}=\mathfrak{g}_{0}+\mathfrak{g}_{1}
$$

and a closed subgroup U of G with Lie $U=\mathfrak{u}$ by

$$
\begin{equation*}
U=G_{0} \exp \mathfrak{g}_{1} \tag{1.8}
\end{equation*}
$$

which is also described as

$$
\begin{equation*}
U=\{a \in \operatorname{Aut}(\mathfrak{g}) ; a \mathfrak{u}=\mathfrak{n}\} \tag{1.9}
\end{equation*}
$$

The homogeneous space

$$
\begin{equation*}
M=G / U \tag{1.10}
\end{equation*}
$$

is called the R-space associated to \mathcal{G}, which is known to be compact, connected and real projective algebraic. The group G acts on M effectively, so that it is identified with a subgroup of the diffeomorphism group $\operatorname{Diff}(M)$ of M. We call G the group of basic transformations of M. Furthermore it is shown that

$$
\begin{equation*}
G=K U, \quad K \cap U=K_{0} \tag{1.11}
\end{equation*}
$$

and hence we have a natural identification

$$
\begin{equation*}
M=K / K_{0} \tag{1.12}
\end{equation*}
$$

Our homogeneous space $M=G / U$ may be also described as a homogeneous space of the open normal subgroup G^{\prime} of G in the following way. We define $G_{0}^{\prime}=G^{\prime} \cap G_{0}, K^{\prime}=G^{\prime} \cap K, K_{0}^{\prime}=G^{\prime} \cap K_{0}, U^{\prime}=G^{\prime} \cap U$. Then $G_{0}^{\prime}, K^{\prime}, K_{0}^{\prime}, U^{\prime}$ are open normal subgroups of G_{0}, K, K_{0}, U respectively, and equalities (1.6) \sim (1.12) hold also for these groups, which will be denoted by the same numbers with primes. From these we have

$$
\begin{equation*}
G=K_{0} G^{\prime}, \quad G_{0}=K_{0} G_{0}^{\prime}, \quad U=K_{0} U^{\prime}, \quad K=K_{0} K^{\prime} \tag{1.13}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
G / G^{\prime} \simeq G_{0} / G_{0}^{\prime} \simeq U / U^{\prime} \simeq K / K^{\prime} \simeq K_{0} / K_{0}^{\prime} \tag{1.14}
\end{equation*}
$$

Note that our group G is given also by

$$
G=G_{0} \operatorname{Inn}(\mathrm{~g}),
$$

where $\operatorname{Inn}(g)$ denotes the group of inner automorphisms of \mathfrak{g}, since one has $G^{\prime}=G_{0}^{\prime} \operatorname{Inn}(\mathrm{g})$ (Takeuchi [12]).

Next we want to define a Riemannian metric on M. We define $\theta \in \operatorname{Aut}(\mathrm{g})$ with $\theta^{2}=1$ by

$$
\theta\left|g_{0}=1, \quad \theta\right|\left(g_{1}+g_{-1}\right)=-1
$$

where 1 designates the identity map. From $\theta \tau=\tau \theta$ and $\theta E=E$, it follows that $\theta \in G_{0} \cap \operatorname{Aut}(\mathrm{~g}, \tau)=K_{0}$ and hence $\theta G \theta^{-1}=G$. Thus an automorphism θ of G whose differential is $\theta \in \operatorname{Aut}(\mathrm{g})$, is defined by

$$
\theta(a)=\theta a \theta^{-1} \quad \text { for } a \in G
$$

It has the properties that $\theta(K)=K, \theta(k)=k$ for any $k \in K_{0}$, and $\mathfrak{f}_{0}=\{X \in \mathfrak{q} ; \theta X$ $=X\}$, whence $\left(K, K_{0}, \theta\right)$ is a compact symmetric pair. We define a K_{0}-invariant subspace \mathfrak{m} of \mathfrak{t} with $\mathfrak{t}=\mathfrak{t}_{0}+\mathfrak{m}$ by

$$
\mathfrak{m}=\{X \in \mathfrak{f} ; \theta X=-X\}=\left\{X \in \mathfrak{g}_{1}+\mathfrak{g}_{-1} ; \tau X=X\right\}
$$

which is identified with the tangent space $T_{o} M$ to M at the origin $o=U \in M$. Since $\langle\rangle \mid, \mathfrak{m} \times \mathfrak{m}$ is a K_{0}-invariant inner product, for any $c>0$ there is uniquely a K-invariant Riemannian metric g on $M=K / K_{0}$ such that $g_{0}=c\langle\rangle \mid, \mathfrak{m} \times \mathfrak{m}$. The Riemannian manifold (M, g) is a compact symmetric space with a cubic lattice in the sense that a maximal torus A_{M} of (M, g) has an expression

$$
A_{M}=\boldsymbol{R}^{r} / \Gamma_{M}, \quad r=\operatorname{rank}(M, g)
$$

by a lattice Γ_{M} generated by an orthogonal basis of \boldsymbol{R}^{r} of the same length. Furthermore (M, g) is irreducible in the sense that it is not a Riemannian product of compact symmetric spaces with cubic lattices. Conversely, any
irreducible (in the above sense) compact symmetric space (M, g) with a cubic lattice is obtained in this way from a compact simple symmetric graded Lie algebra (\mathcal{G}, τ) over \boldsymbol{R} (unique up to isomorphism) and a constant $c>0$ (Loos [5]). Our symmetric space (M, g) is called an irreducible symmetric R-space. In the following, for the simplicity we assume that $c=1$.

Remark 1.1. From the definition of g, it is obvious that K is a subgroup of the group $\mathrm{I}(M, g)$ of all isometries of (M, g). Actually, K is equal to $\mathrm{I}(M, g)$ (cf. Corollary 6.9).

Take a maximal abelian subalgebra \mathfrak{a} in \mathfrak{p} with $E \in \mathfrak{a}$, and extend it to a Cartan subalgebra $\mathfrak{G}=\mathfrak{b}+\mathfrak{a}$ of \mathfrak{g} with $\mathfrak{b} \subset \mathfrak{f}$. Then the complexification $\overline{\mathfrak{b}}=\mathfrak{b}^{c}$ is a Cartan subalgebra of $\overline{\mathfrak{g}}$. The real part $\mathfrak{G}_{\boldsymbol{R}}$ of $\overline{\mathfrak{G}}$ is given by $\mathfrak{G}_{\boldsymbol{R}}=\sqrt{-1} \mathfrak{b}+\mathfrak{a}$. We identify the root system $\bar{\Sigma}$ of $\overline{\mathfrak{g}}$ relative to $\overline{\mathfrak{g}}$ with a subset of $\mathfrak{h}_{\boldsymbol{R}}$ by means of the duality defined by (,), and set

$$
\bar{\Sigma}_{p}=\{\alpha \in \bar{\Sigma} ;(\alpha, E)=p\} \quad(-1 \leq p \leq 1)
$$

Let

$$
\overline{\mathfrak{g}}=\overline{\mathfrak{h}}+\sum_{\omega \in \overline{\mathfrak{\Sigma}}} \overline{\mathfrak{g}}^{\boldsymbol{a}}
$$

be the $\overline{\mathfrak{h}}$-root space decomposition of $\overline{\mathrm{g}}$. Then $\bar{\Sigma}=\bar{\Sigma}_{-1} \cup \bar{\Sigma}_{0} \cup \bar{\Sigma}_{1}$, and the complexifications $\overline{\mathrm{g}}_{p}=\mathrm{g}_{p}^{C}(-1 \leq p \leq 1)$ are given by

$$
\overline{\mathfrak{g}}_{0}=\overline{\mathfrak{h}}+\sum_{\alpha \in \overline{\mathfrak{z}}_{0}} \overline{\mathrm{~g}}^{\alpha}, \quad \overline{\mathrm{g}}_{ \pm 1}=\sum_{\alpha \in \overline{\bar{\Sigma}}_{ \pm 1}} \overline{\mathrm{~g}}^{\alpha}
$$

Denoting by $\pi_{\mathfrak{a}}: \mathfrak{h}_{\boldsymbol{R}} \rightarrow \mathfrak{a}$ the orthogonal projection, we set $\Sigma=\pi_{\mathfrak{a}}(\bar{\Sigma})-\{0\}$, which is the root system of g relative to a, and set

$$
\Sigma_{p}=\{\gamma \in \Sigma ;(\gamma, E)=p\} \quad(-1 \leq p \leq 1)
$$

Then Σ is an irreducible reduced root system in $\mathfrak{a}, \Sigma=\Sigma_{-1} \cup \Sigma_{0} \cup \Sigma_{1}$, and the \mathfrak{a}-root space decomposition of g is given by

$$
\mathfrak{g}=\mathfrak{g}^{0}+\sum_{\gamma \in \Sigma} \mathrm{g}^{\gamma}
$$

where

$$
\mathfrak{g}^{\lambda}=\{X \in \mathfrak{g} ;[H, X]=(\lambda, H) X \text { for each } H \in \mathfrak{a}\}
$$

Let $m(\gamma)=\operatorname{dim} \mathrm{g}^{\gamma}$ denote the multiplicity of $\gamma \in \Sigma$. Furthermore one has

$$
\mathfrak{g}_{0}=\mathfrak{g}^{0}+\sum_{\gamma \in \Sigma_{0}} \mathfrak{g}^{\gamma}, \quad g_{ \pm 1}=\sum_{\gamma \in \Sigma_{ \pm 1}} g^{\gamma}
$$

and thus Σ_{0} is the root system of \mathfrak{g}_{0} relative to \mathfrak{a}. Let σ denote the complex conjugation of $\overline{\mathfrak{g}}$ with respect to \mathfrak{g}. Choose a σ-order $>$ on $\mathfrak{G}_{\boldsymbol{R}}$ in the sense of

Satake [10] and denote by $\bar{\Sigma}^{+}$(resp. $\bar{\Sigma}^{-}$) the set of positive (resp. negative) roots in $\bar{\Sigma}$ (with respect to $>$). Let $\bar{\Pi} \subset \bar{\Sigma}^{+}$be the σ-fundamental system, $\bar{\Pi}^{0}=$ $\{\alpha \in \bar{\Pi} ; \sigma \alpha=-\alpha\}$, and $\hat{\sigma}$ the Satake involution of $\bar{\Pi}-\bar{\Pi}^{0}$. We define $\operatorname{Aut}(\bar{\Pi}, \sigma)$ to be the subgroup of the automorphism group $\operatorname{Aut}(\bar{\Pi})$ of $\bar{\Pi}$ consistng of all the $t \in \operatorname{Aut}(\bar{\Pi})$ such that $t \bar{\Pi}^{0}=\bar{\Pi}^{0}$ and $t \hat{\sigma}=\hat{\sigma} t$ on $\bar{\Pi}-\bar{\Pi}^{0}$. It is also identified as

$$
\begin{equation*}
\operatorname{Aut}(\bar{\Pi}, \sigma)=\left\{t \in G L\left(\mathfrak{h}_{R}\right) ; t \bar{\Sigma}=\bar{\Sigma}, t \bar{\Sigma}^{+}=\bar{\Sigma}^{+}, t \sigma=\sigma t\right\} \tag{1.15}
\end{equation*}
$$

It is known (Takeuchi [12]) that

$$
\begin{equation*}
\operatorname{Aut}(\mathrm{g}) / G^{\prime} \simeq \operatorname{Aut}(\bar{\Pi}, \sigma) \tag{1.16}
\end{equation*}
$$

in a natural way. We set $\Sigma^{ \pm}=\pi_{\mathfrak{a}}\left(\bar{\Sigma}^{ \pm}\right)-\{0\}$ and $\Pi=\pi_{\mathfrak{a}}(\bar{\Pi})-\{0\}$, and thus $\Pi \subset \Sigma^{+}$is a fundamental system of Σ. Now we choose a σ-order $>$ on \mathfrak{G}_{R} such that $(\alpha, E) \geq 0$ for any $\alpha \in \bar{\Sigma}^{+}$once and for all. Then one has $\bar{\Sigma}_{0}=\bar{\Sigma} \cap\left\{\bar{\Pi}_{0}\right\}_{\boldsymbol{Z}}$ for $\bar{\Pi}_{0}=\bar{\Pi} \cap \bar{\Sigma}_{0}$, where $\left\{\bar{\Pi}_{0}\right\}_{\boldsymbol{Z}}$ denotes the subgroup of $\mathfrak{h}_{\boldsymbol{R}}$ generated by $\bar{\Pi}_{0}$, and hence $\bar{\Pi}_{0}$ is a σ-fundamental system of $\bar{\Sigma}_{0}$. Furthermore one has $\bar{\Sigma}_{ \pm 1}=\bar{\Sigma}^{ \pm}-\bar{\Sigma}_{0}$. From these it follows that

$$
\begin{align*}
& \Sigma_{0}=\Sigma \cap\left\{\Pi_{0}\right\}_{z} \text { for } \Pi_{0}=\Pi \cap \Sigma_{0}, \tag{1.17}\\
& \Sigma_{ \pm 1}=\Sigma^{ \pm}-\Sigma_{0}
\end{align*}
$$

(1.19) $\left(\Pi, \Pi_{0}\right)$ is an irreducible symmetric pair in the sense that Π is irreducible and $\Pi-\Pi_{0}$ consists of only one root γ_{1}, called the distinguished root, such that the highest root $\delta \in \Sigma^{+}$has an expression

$$
\delta=\gamma_{1}+\sum_{\gamma \in \mathbb{I}_{0}} m_{\gamma} \gamma, \quad m_{\gamma} \in Z
$$

We define $\operatorname{Aut}\left(\bar{\Pi}, \bar{\Pi}_{0}, \sigma\right)$ to be the subgroup of $\operatorname{Aut}(\bar{\Pi}, \sigma)$ consisting of all the $t \in \operatorname{Aut}(\bar{\Pi}, \sigma)$ such that $t \bar{\Pi}_{0}=\bar{\Pi}_{0}$. Under the identification (1.15), it is also given by

$$
\begin{equation*}
\operatorname{Aut}\left(\bar{\Pi}, \bar{\Pi}_{0}, \sigma\right)=\{t \in \operatorname{Aut}(\bar{\Pi}, \sigma) ; t E=E\} \tag{1.20}
\end{equation*}
$$

Lemma 1.2. The quotient group G_{0} / G_{0}^{\prime} is isomorphic to $\operatorname{Aut}\left(\bar{\Pi}, \bar{\Pi}_{0}, \sigma\right)$ in a natural way. Therefore also G / G^{\prime} is isomorphic to $\operatorname{Aut}\left(\bar{\Pi}, \bar{\Pi}_{0}, \sigma\right)$.

Proof. In general, for subsets A, B, \cdots of $\overline{\mathfrak{g}}$, we denote by $\operatorname{Aut}(\mathrm{g}, A, B, \cdots)$ the group of all the $a \in \operatorname{Aut}(\mathrm{~g})$ such that $a A=A, a B=B, \cdots$.

Let $a \in G_{0}$ be arbitrary. Then, since $\bar{\Pi}_{0}$ is a σ-fundamental system of $\bar{\Sigma}_{0}$, there is $a^{\prime} \in G_{0}^{\prime}$ such that $b=a^{\prime} a \in \operatorname{Aut}\left(\mathfrak{g}, \mathfrak{h}_{R}, \mathfrak{a}, \bar{\Pi}_{0}\right)$. Since $b \bar{\Pi}_{0}=\bar{\Pi}_{0}, b$ leaves $\bar{\Sigma}_{0}^{+}=\bar{\Sigma}_{0} \cap \bar{\Sigma}^{+}$invariant. Furthermore, since $b E=E, b$ leaves also $\bar{\Sigma}_{1}$ invariant. Therefore b leaves $\bar{\Sigma}^{+}=\bar{\Sigma}_{0}^{+} \cup \bar{\Sigma}_{1}$ invariant, whence $b \bar{\Pi}=\bar{\Pi}$. Thus we have proved that

$$
G_{0}=G_{0}^{\prime} \operatorname{Aut}\left(\mathfrak{g}, \mathfrak{G}_{R}, \mathfrak{a}, \bar{\Pi}, \bar{\Pi}_{0}\right) .
$$

On the other hand, by (1.16) the natural homomorphism $\operatorname{Aut}\left(\mathrm{g}, \mathfrak{b}_{\boldsymbol{R}}, \mathfrak{a}, \bar{\Pi}, \bar{\Pi}_{0}\right) \rightarrow$ $\operatorname{Aut}\left(\bar{\Pi}, \Pi_{0}, \sigma\right)$ is surjective, and has the kernel

$$
\operatorname{Aut}\left(\mathfrak{g}, \mathfrak{h}_{R}, \mathfrak{a}, \Pi, \Pi_{0}\right) \cap G^{\prime}=\operatorname{Aut}\left(\mathfrak{g}, \mathfrak{G}_{R}, \mathfrak{a}, \Pi, \Pi_{0}\right) \cap G_{0}^{\prime}
$$

Thus we obtain the lemma.
q.e.d.

Let

$$
W=N_{K^{\prime}}(\mathfrak{a}) / Z_{K^{\prime}}(\mathfrak{a}), \quad W_{0}=N_{K_{0}^{\prime}}(\mathfrak{a}) / Z_{K_{0}^{\prime}}(\mathfrak{a})
$$

be the Weyl groups of g and g_{0} respectively, which may be regarded as finite subgroups of $O(\mathfrak{a})$ through the adjoint action, $O(\mathfrak{a})$ being the orthogonal group on \mathfrak{a} with respect to the inner product \langle,$\rangle . Here N_{*}(\mathfrak{a})\left(\right.$ resp. $\left.Z_{*}(\mathfrak{a})\right)$ denotes the normalizer (resp. centralizer) of \mathfrak{a} in $*$. The groups W, W_{0} are related by that $W_{0}=\{s \in W ; s E=E\}$. It is known that $\left(\Pi, \Pi_{0}\right)$ is of $\operatorname{rank} r, r=\operatorname{rank}(M, g)$, in the sense that the irreducible symmetric bounded domain corresponding to (Π, Π_{0}) has the rank r. Thus we can choose (cf. Takeuchi [14]) a maximal system

$$
\Delta=\left\{\beta_{1}, \cdots, \beta_{r}\right\}, \quad \text { with } \beta_{1}=\delta
$$

of strongly orthogonal roots in Σ_{1} of the same length. Here, by the length of $X \in \mathfrak{g}$ we mean the norm $|X|$ of X with respect to \langle,$\rangle . Note that \Delta \subset W \delta$. Let us fix a root $\beta \in \Delta$. We choose an element $X_{\beta} \in g^{\beta}$ with $\left|X_{\beta}\right|^{2}=2 /(\beta, \beta)$, and set $X_{-\beta}=\tau X_{\beta} \in \mathrm{g}^{-\beta}, A_{\beta}=\pi\left(X_{\beta}+X_{-\beta}\right) \in \mathrm{m}$. Then one has $\left[X_{\beta}, X_{-\beta}\right]=$ $-(2 /(\beta, \beta)) \beta$. We define a basis $\left\{X_{+}, X_{-}, H\right\}$ of $\mathfrak{g l}(2, \boldsymbol{R})$ and an element $A \in \mathfrak{g l}(2, \boldsymbol{R})$ by

$$
X_{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad X_{-}=\left(\begin{array}{rr}
0 & 0 \\
-1 & 0
\end{array}\right), \quad H=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \quad A=\left(\begin{array}{rr}
0 & \pi \\
-\pi & 0
\end{array}\right)
$$

Then the correspondence

$$
\phi_{\beta}: X_{+} \mapsto X_{\beta}, X_{-} \mapsto X_{-\beta}, H \mapsto(2 /(\beta, \beta)) \beta
$$

(thus $\left.\phi_{\beta}: A \mapsto A_{\beta}\right)$ defines an injective Lie homomorphism $\phi_{\beta}: \mathfrak{s l}(2, \boldsymbol{R}) \rightarrow \mathfrak{g}$. The extension $\phi_{\beta}: S L(2, \boldsymbol{R}) \rightarrow G^{\prime}$ of $\phi_{\boldsymbol{\beta}}$ sends the parabolic subgroup

$$
P=\left\{\left(\begin{array}{ll}
a & b \\
0 & a^{-1}
\end{array}\right) ; a \in \boldsymbol{R}^{*}, b \in \boldsymbol{R}\right\}
$$

of $S L(2, \boldsymbol{R})$ into U^{\prime}, and hence it induces a ϕ_{β}-equivariant imbedding

$$
\psi_{\beta}: P_{1}(\boldsymbol{R})=S L(2, \boldsymbol{R}) / P \rightarrow M=G^{\prime} / U^{\prime}
$$

Therefore

$$
T_{\beta}=\left\{\left(\exp t A_{\beta}\right) o ; 0 \leq t \leq 1\right\}
$$

is a simply closed geodesic of (M, g) of the length $2 \pi /|\delta|$. In fact,

$$
\begin{aligned}
\left|A_{\beta}\right|^{2} & =\left\langle A_{\beta}, A_{\beta}\right\rangle=-\left(A_{\beta}, A_{\beta}\right)=-2 \pi^{2}\left(X_{\beta}, X_{-\beta}\right) \\
& =2 \pi^{2}\left|X_{\beta}\right|^{2}=4 \pi^{2} /(\beta, \beta)=4 \pi^{2} /|\delta|^{2} .
\end{aligned}
$$

For each $i(1 \leq i \leq r)$, we set

$$
\begin{aligned}
& X_{ \pm i}=X_{ \pm \beta i}, \quad A_{i}=A_{\beta_{i}}=\pi\left(X_{i}+X_{-i}\right), \quad T_{i}=T_{\beta i} \\
& \phi_{i}=\phi_{\beta i}, \quad \psi_{i}=\psi_{\beta i}
\end{aligned}
$$

Then the \boldsymbol{R}-linear span

$$
\mathfrak{a}_{M}=\left\{A_{1}, \cdots, A_{r}\right\}_{\boldsymbol{R}}
$$

of $\left\{A_{1}, \cdots, A_{r}\right\}$ is a maximal abelian subalgebra in \mathfrak{m}, and hence

$$
A_{M}=\left(\exp \mathfrak{a}_{M}\right) o \simeq \mathfrak{a}_{M} / \Gamma_{M}
$$

is a maximal torus of (M, g), where

$$
\Gamma_{M}=\left\{H \in \mathfrak{a}_{M} ;(\exp H) o=o\right\}
$$

Furthermore, the Lie homomorphism $\phi=\phi_{1} \times \cdots \times \phi_{r}: S L(2, \boldsymbol{R})^{r} \rightarrow G^{\prime}$ sends P^{r} into U^{\prime}, and induces a ϕ-equivariant imbedding

$$
\psi: P_{1}(\boldsymbol{R})^{r} \rightarrow M
$$

which gives rise to a diffeomorphism $\psi=\psi_{1} \times \cdots \times \psi_{r}: P_{1}(\boldsymbol{R})^{r} \rightarrow A_{M}=T_{1} \times \cdots \times T_{r}$. Therefore, the lattice Γ_{M} is given by

$$
\begin{equation*}
\Gamma_{M}=\left\{A_{1}, \cdots, A_{r}\right\}_{Z} \quad \text { with } \quad\left\langle A_{i}, A_{j}\right\rangle=\left.\delta_{i j} 4 \pi^{2}| | \delta\right|^{2} \tag{1.21}
\end{equation*}
$$

For $H \in \mathfrak{a}_{M}$ we use the linear coordinate $\left(x_{1}, \cdots, x_{r}\right)$ determined by

$$
H=\sum_{i=1}^{r} x_{i} A_{i}
$$

The real part $\left(\mathfrak{a}_{M}\right)_{\boldsymbol{R}}$ of $\left(\mathfrak{a}_{M}\right)^{\boldsymbol{c}}$ is given by $\left(\mathfrak{a}_{M}\right)_{\boldsymbol{R}}=\sqrt{-1} \mathfrak{a}_{M}$. For $\gamma \in\left(\mathfrak{a}_{M}\right)_{\boldsymbol{R}}$, let $|\gamma|$ denote the norm of γ with respect to $($,$) , which is positive definite on$ $\left(\mathfrak{a}_{M}\right)_{\boldsymbol{R}}$. We define $h_{i} \in\left(\mathfrak{a}_{M}\right)_{\boldsymbol{R}}(1 \leq i \leq r)$ by

$$
\begin{equation*}
\sqrt{-1}\left(h_{i}, A_{j}\right)=\delta_{i j} \pi \quad(1 \leq i, j \leq r) \tag{1.22}
\end{equation*}
$$

Note that $\left(h_{i}, h_{j}\right)=\delta_{i j}|\delta|^{2} / 4(1 \leq i, j \leq r)$ in virtue of (1.21). For $\gamma \in\left(\mathfrak{a}_{M}\right)_{\boldsymbol{R}}$ we define

$$
\left(\mathfrak{f}^{c}\right)^{\gamma}=\left\{X \in \mathfrak{i}^{c} ;[H, X]=(\gamma, H) X \text { for each } H \in \mathfrak{a}_{M}\right\},
$$

and set

$$
\Sigma_{M}=\left\{\gamma \in\left(\mathfrak{a}_{M}\right)_{\boldsymbol{R}}-\{0\} ;\left(\mathfrak{f}^{c}\right)^{\gamma} \neq\{0\}\right\}
$$

which is the root system of (M, g) relative to \mathfrak{a}_{M}. Then, irreducible symmetric R-spaces are divided into the following five classes.
(I) Hermitian type.
$\overline{\mathrm{g}}$ is not simple; $\pi_{1}(M)=\{0\}$;

$$
\begin{aligned}
\Sigma_{M}= & \left\{ \pm h_{i} \pm h_{j}(1 \leq i<j \leq r), \pm 2 h_{i}(1 \leq i \leq r)\right\} \quad \text { or } \\
& \left\{ \pm h_{i} \pm h_{j}(1 \leq i<j \leq r), \pm h_{i}, \pm 2 h_{i}(1 \leq i \leq r)\right\}
\end{aligned}
$$

(II) Type $S p(r)$.
$\overline{\mathrm{g}}$ is simple; $\pi_{1}(M)=\{0\} ;$
Σ_{M} is the same as in (I).
(III) Type $U(r)$.
$\overline{\mathfrak{g}}$ is simple; $\pi_{1}(M)=\boldsymbol{Z}$;
$\Sigma_{M}=\left\{ \pm\left(h_{i}-h_{j}\right)(1 \leq i<j \leq r)\right\}$.
(IV) Type $S O(2 r+1)$.
$\overline{\mathrm{g}}$ is simple; $\pi_{1}(M)=\boldsymbol{Z}_{2}$;

$$
\Sigma_{M}=\left\{ \pm h_{i} \pm h_{j}(1 \leq i<j \leq r), \pm h_{i}(1 \leq i \leq r)\right\}
$$

(V) Type $S O(2 r)(r \geq 2)$.
$\overline{\mathfrak{g}}$ is simple; $\boldsymbol{\pi}_{1}(M)=\boldsymbol{Z}_{2} ;$
$\Sigma_{M}=\left\{ \pm h_{i} \pm h_{j}(1 \leq i<j \leq r)\right\}$.
Let

$$
W_{M}=N_{K_{0}^{\prime}}\left(\mathfrak{a}_{M}\right) / Z_{K_{0}^{\prime}}\left(\mathfrak{a}_{M}\right) \subset O\left(\mathfrak{a}_{M}\right)
$$

be the Weyl group of (M, g). We denote by \mathfrak{S}_{r} the subgroup of $O\left(\mathfrak{a}_{M}\right)$ consisting of transformations $\left(x_{1}, \cdots, x_{r}\right) \mapsto\left(x_{p(1)}, \cdots, x_{p(r)}\right), p$ being a permutation of $\{1, \cdots, r\}$, and by $\left(\boldsymbol{Z}_{2}\right)^{r}$ the subgroup of $O\left(\mathfrak{a}_{M}\right)$ consisting of transformations $\left(x_{1}, \cdots, x_{r}\right) \mapsto\left(\varepsilon_{1} x_{1}, \cdots, \varepsilon_{r} x_{r}\right), \varepsilon_{i}= \pm 1$.

Lemma 1.3. $\mathscr{S}_{r} \subset W_{M} \subset \mathscr{S}_{r} \cdot\left(Z_{2}\right)^{r}$.
Proof. Since W_{M} is generated by the reflections of \mathfrak{a}_{M} with respect to $\sqrt{-1} \gamma$ for $\gamma \in \Sigma_{M}$, this follows by the above table of Σ_{M}.
q.e.d.

2. Stratifications

In this section we define certain stratifications of M and \mathfrak{g}_{-1} by means of the group orbits. We retain the notation in Section 1.

We define $B_{l} \in \mathfrak{a}_{M}(0 \leq l \leq r)$ by

$$
B_{0}=0, \quad B_{l}=(1 / 2)\left(A_{1}+\cdots+A_{l}\right) \quad(1 \leq l \leq r),
$$

and set

$$
b_{l}=\exp B_{l} \in K^{\prime}, \quad \subset V_{l}=U^{\prime} b_{l} \circ \subset M, \quad d_{l}=\operatorname{dim} \subset V_{l} \quad(0 \leq l \leq r)
$$

Furthermore we define $s_{l} \in W(0 \leq l \leq r)$ by

$$
s_{0}=1, \quad s_{l}=s_{\beta_{1}} \cdots s_{\beta_{l}} \quad(1 \leq l \leq r),
$$

where $s_{\gamma} \in W \subset O(\mathfrak{a})$ denotes the reflection with respect to $\gamma \in \Sigma$.
Lemma 2.1. 1) $\exp (1 / 2) A_{i} \in N_{R^{\prime}}(\mathfrak{a})$ and $\exp (1 / 2) A_{i} \mid \mathfrak{a}=s_{\boldsymbol{\beta}_{i}}(1 \leq i \leq r)$. Therefore $b_{l} \in N_{K^{\prime}}(\mathfrak{a})$ and $b_{l} \mid \mathfrak{a}=s_{l}(0 \leq l \leq r)$.
2) $\left\{s_{0}, s_{1}, \cdots, s_{r}\right\}$ is a set of complete representatives of the double coset space $W_{0} \backslash W / W_{0}$.
3) $M=\subset V_{0} \cup \subset V_{1} \cup \cdots \cup \subset V_{r}$ (disjoint union).
4) If $0 \leq l^{\prime} \leq l \leq r, \subset V_{l^{\prime}}$ is contained in the closure $\mathrm{Cl} \mathcal{V}_{l}$ of $\subset V_{l}$.

Proof. 1), 2) See Takeuchi [15].
3) We define a nilpotent subalgebra \mathfrak{n} of \mathfrak{g} by

$$
\mathfrak{n}=\sum_{\gamma \in \Sigma^{+}} \mathrm{g}^{\gamma},
$$

and set

$$
N=\exp \mathfrak{n}, \quad B^{\prime}=\left\{a \in G^{\prime} ; a \mathfrak{n}=\mathfrak{n}\right\}
$$

In the same way we define

$$
\begin{aligned}
& \mathfrak{n}_{0}=\sum_{\gamma \in \Sigma_{0}^{+}} \mathrm{g}^{\gamma}, \quad \text { where } \quad \Sigma_{0}^{+}=\Sigma_{0} \cap \Sigma^{+}, \\
& N_{0}=\exp \mathfrak{n}_{0}, \quad B_{0}^{\prime}=\left\{a \in G_{0}^{\prime} ; a \mathfrak{n}_{0}=\mathfrak{n}_{0}\right\}
\end{aligned}
$$

Then we have Bruhat decompositions

$$
\begin{align*}
& G^{\prime}=\bigcup_{s \in W} N s B^{\prime}=\bigcup_{s \in W} B^{\prime} s B^{\prime} \tag{2.1}\\
& G_{0}^{\prime}=\bigcup_{t \in W_{0}} N_{0} t B_{0}^{\prime}=\bigcup_{t \in W_{0}} B_{0}^{\prime} t B_{0}^{\prime} . \tag{2.2}
\end{align*}
$$

Therefore, by (2.2) together with (1.8)', we have

$$
\begin{equation*}
U^{\prime}=G_{0}^{\prime} \exp g_{1}=\bigcup_{t \in W_{0}} N_{0} t B_{0}^{\prime} \exp g_{1}=\bigcup_{t \in W_{0}} N_{0} t B^{\prime} \tag{2.3}
\end{equation*}
$$

Hence, for each $s \in W$ we obtain

$$
\begin{align*}
U^{\prime} s U^{\prime} & =\bigcup_{t, t^{\prime} \in W_{0}} B^{\prime} t N_{0} s N_{0} t^{\prime} B^{\prime}=\underset{t, t^{\prime} \in W_{0}}{\bigcup} B^{\prime} N_{0} t s t^{\prime} N_{0} B^{\prime} \tag{2.4}\\
& =\bigcup_{t, t^{\prime} \in W_{0}} B^{\prime} t s t^{\prime} B^{\prime}=\underset{w \in W_{0} s W_{0}}{ } B^{\prime} w B^{\prime} .
\end{align*}
$$

Since

$$
W=\bigcup_{l=0}^{r} W_{0} s_{l} W_{0} \text { (disjoint union) }
$$

by 2), together with the Bruhat decomposition (2.1), we get

$$
G^{\prime}=\bigcup_{l=0}^{r} U^{\prime} s_{l} U^{\prime} \text { (disjoint union). }
$$

This implies the assertion 3).
4) For each coset $[s]=s W_{0} \in W / W_{0}$, choosing an element $k \in N_{K^{\prime}}(\mathfrak{a})$ with $k \mid \mathfrak{a}=s$, we set $\mathcal{V}_{[s]}=N k o$. Then (Takeuchi [13])

$$
M=\underset{[s] \in W / W_{0}}{\cup} V_{[s]} \text { (disjoint union) }
$$

gives a cellular decomposition of M with the closure relations: $\mathcal{V}_{\left[s^{\prime}\right]} \subset \mathrm{ClC} \mathcal{V}_{\text {[s] }}$ if and only if

$$
\begin{equation*}
s^{\prime} E-s E=\sum_{\gamma \in \mathbb{I}} m_{\gamma} \gamma \quad \text { with some } m_{\gamma} \geq 0 \tag{2.5}
\end{equation*}
$$

Moreover, by (2.4) and (2.3) we have

$$
U^{\prime} s_{l} U^{\prime}=\bigcup_{s \in W_{0} s^{3} W_{0}} B^{\prime} s B^{\prime}=\bigcup_{s \in W_{0} s_{l}} B^{\prime} s U^{\prime}=\bigcup_{s \in W_{0} s_{l}} N s U^{\prime}
$$

and hence

$$
\begin{equation*}
C V_{l}=\bigcup_{s \in W_{0} s_{l}} C_{[s]} \tag{2.6}
\end{equation*}
$$

Suppose that $0 \leq l^{\prime} \leq l \leq r$. Then we have

$$
s_{l^{\prime}} E-s_{l} E=\sum_{l^{\prime}+1 \leq i \leq l} \frac{2}{\left(\beta_{i}, \beta_{i}\right)} \beta_{i}
$$

Therefore, by (2.5) $\mathcal{V}_{\left[s_{l}\right]} \subset \mathrm{Cl} \mathscr{V}_{\left[s_{l}\right]}$, and hence by (2.6) we get $\mathscr{V}_{l^{\prime}} \subset \mathrm{Cl} \mathcal{V}_{l}$. q.e.d.

We define subsets $D_{l} \subset \mathfrak{a}_{M}$ and $\mathscr{D}_{l} \subset A_{M}(0 \leq l \leq r)$ by

$$
\begin{aligned}
& D_{l}=\left\{\left(x_{1}, \cdots, x_{r}\right) \in \mathfrak{a}_{M} ;\left|x_{i}\right| \leq 1 / 2(1 \leq i \leq r), \#\left\{i ; x_{i} \neq 0\right\}=l\right\}, \\
& \mathscr{D}_{l}=\left(\exp D_{l}\right) o
\end{aligned}
$$

to get

$$
\begin{equation*}
A_{M}=\mathscr{D}_{0} \cup \mathscr{D}_{1} \cup \cdots \cup \mathscr{D}_{r} \text { (disjoint union). } \tag{2.7}
\end{equation*}
$$

Lemma 2.2. 1) $\quad \mathcal{V}_{l}=K_{0}^{\prime} \mathscr{D}_{l}(0 \leq l \leq r)$.
2) $\mathcal{V}_{l}=U b_{l} o=K_{0} \mathscr{D}_{l}(0 \leq l \leq r)$. Therefore

$$
G=\bigcup_{l=0}^{r} U s_{l} U(\text { disjoint union })
$$

Proof. If we denote by $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ the homogeneous coordinate of $P_{1}(\boldsymbol{R})=$ $S L(2, \boldsymbol{R}) / P$, we have

$$
\begin{aligned}
& \left(\exp \frac{A}{2}\right) P=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& \left(\exp t X_{+}\right)\left(\exp \frac{A}{2}\right) P=\left[\begin{array}{l}
t \\
1
\end{array}\right] \quad \text { for } t \in \boldsymbol{R} \\
& (\exp x A) P=\left[\begin{array}{r}
\cos \pi x \\
-\sin \pi x
\end{array}\right]=\left[\begin{array}{c}
-\cot \pi x \\
1
\end{array}\right] \quad \text { for } 0<|x| \leq 1 / 2
\end{aligned}
$$

Therefore, for each $x \in \boldsymbol{R}$ with $0<|x| \leq 1 / 2$, there is $a \in P$ such that $a \exp (A / 2) P=(\exp x A) P$. The ϕ-equivariance of $\psi: P_{1}(\boldsymbol{R})^{r} \rightarrow M$ implies that for any $p \in \mathscr{D}_{l}$ there is $a \in P^{r}$ such that $p=\phi(a) \exp (1 / 2)\left(A_{i_{1}}+\cdots+A_{i_{l}}\right) 0,1 \leq i_{1}<$ $\cdots<i_{l} \leq r$. By $\phi\left(P^{r}\right) \subset U^{\prime}$ and Lemma 1.3 we have that $\mathscr{D}_{l} \subset U^{\prime} b_{l} o=\subset V_{l}$, which implies $K_{0}^{\prime} \mathscr{D}_{l} \subset \mathcal{V}_{l}$ since $K_{0}^{\prime} \subset U^{\prime}$. On the other hand, by (2.7) we get

$$
M=K_{0}^{\prime} A_{M}=\bigcup_{l=0}^{r} K_{0}^{\prime} \mathscr{D}_{l} .
$$

Thus the assertion 1) holds.
2) Since $U=U^{\prime} K_{0}$ by (1.13) and $K_{0}=K_{0}^{\prime} N_{K_{0}}\left(\mathfrak{a}_{M}\right)$, it suffices to show that $N_{K_{0}}\left(\mathfrak{a}_{M}\right) \mathscr{D}_{l}=\mathscr{D}_{l}(0 \leq l \leq r)$. But, since $N_{K_{0}}\left(\mathfrak{a}_{M}\right)$ acts on \mathfrak{a}_{M} as orthogonal transformations leaving Γ_{M} invariant, for any $k \in N_{K_{0}}\left(\mathfrak{a}_{M}\right)$ there is a permutation p of $\{1, \cdots, r\}$ such that $k A_{i}=\varepsilon_{i} A_{p(i)}, \varepsilon_{i}= \pm 1(1 \leq i \leq r)$. Thus $k D_{l}=D_{l}$ and hence $k \mathscr{D}_{l}=\mathscr{D}_{l}$.

We define a K_{0}-equivariant linear isomorphism $\widetilde{\tau}_{-1}: \mathfrak{m} \rightarrow \mathfrak{g}_{-1}$ by

$$
\varpi_{-1}(X)=(1 / 2)(X-[E, X]) \quad \text { for } X \in \mathfrak{m}
$$

Since $\varpi_{-1}\left(A_{i}\right)=\pi X_{-i}(1 \leq i \leq r), \varpi_{-1}$ induces a linear isomorphism from \mathfrak{a}_{M} onto the subspace \mathfrak{a}_{-1} of \mathfrak{g}_{-1} defined by

$$
\mathfrak{a}_{-1}=\left\{X_{-1}, \cdots, X_{-r}\right\}_{R}
$$

By $\mathfrak{m}=K_{0}^{\prime} \mathfrak{a}_{M}$, one has

$$
\begin{equation*}
\mathbf{g}_{-1}=K_{0}^{\prime} \mathfrak{a}_{-1} \tag{2.8}
\end{equation*}
$$

We define subsets E_{l} of $\mathfrak{a}_{-1}(0 \leq l \leq r)$ by

$$
E_{l}=\left\{\sum_{l=1}^{r} x_{i} X_{-i} ; \#\left\{i ; x_{i} \neq 0\right\}=l\right\} .
$$

Then \mathfrak{a}_{-1} is a disjoint union of these $E_{l}(0 \leq l \leq r)$, and hence by (2.8)

$$
\begin{equation*}
\mathfrak{g}_{-1}=\bigcup_{l=0}^{\tau} K_{0}^{\prime} E_{l} \tag{2.9}
\end{equation*}
$$

Now we identify g_{-1} with a G_{0}-invariant open dense subset of M through the G_{0}-equivariant imbedding $\iota: \mathrm{g}_{-1} \rightarrow M$ defined by $\iota(X)=(\exp X) o$ for $X \in \mathrm{~g}_{-1}$, and set

$$
V_{l}=V_{l} \cap g_{-1} \quad(0 \leq l \leq r)
$$

Then each $V_{l}(0 \leq l \leq r)$ is non-empty (cf. Lemma 2.3), and so it is a G_{0}-invariant submanifold of g_{-1} with $\operatorname{dim} V_{l}=d_{l}$. These V_{l} give a stratification

$$
\begin{equation*}
\mathcal{S}: \mathfrak{g}_{-1}=V_{0} \cup V_{1} \cup \cdots \cup V_{r} \tag{2.10}
\end{equation*}
$$

of g_{-1}.
Lemma 2.3. 1) $V_{l}=K_{0}^{\prime} E_{l}=K_{0} E_{l}(0 \leq l \leq r)$.
2) For $p, q \geq 0$ with $p+q \leq r$, we define

$$
Y_{p, q}=X_{-1}+\cdots+X_{-p}-X_{-(p+1)}-\cdots-X_{-(p+q)} \in E_{p+q} .
$$

Then

$$
V_{l}=\bigcup_{p+q=l} G_{0}^{\prime} Y_{p, q} \quad(0 \leq l \leq r) .
$$

3) Each $V_{l}(0 \leq l \leq r)$ is a finite union of G_{0}^{\prime}-orbits (resp. G_{0}-orbits) in \mathfrak{g}_{-1}.

Proof. 1) Under the notation in the proof of Lemma 2.2, we have $\left(\exp x X_{-}\right) P=\left[\begin{array}{r}1 \\ -x\end{array}\right] \quad$ for $x \in \boldsymbol{R}$, $(\exp t A) P=\left[\begin{array}{c}1 \\ -\tan \pi t\end{array}\right] \quad$ for $t \in \boldsymbol{R}$ with $|t|<1 / 2$.

Therefore, for each $X=\Sigma x_{i} X_{-i} \in E_{l}$ we have

$$
\begin{aligned}
& \frac{1}{\pi} \sum_{i=1}^{r}\left(\operatorname{Tan}^{-1} x_{i}\right) A_{i} \in D_{l} \\
& (\exp X) o=\exp \left(\frac{1}{\pi} \sum_{i=1}^{r}\left(\operatorname{Tan}^{-1} x_{i}\right) A_{i}\right) o \in \mathscr{D}_{l},
\end{aligned}
$$

and hence $E_{l} \subset V_{l}$ by Lemma 2.2. This implies $K_{0}^{\prime} E_{l} \subset V_{l}$. On the other hand, by (2.9) one has

$$
\bigcup_{l=0}^{\tau} K_{0}^{\prime} E_{l}=\bigcup_{l=0}^{r} V_{l} .
$$

Thus we get $K_{0}^{\prime} E_{l}=V_{l}$, which also implies $K_{0} E_{l}=V_{l}$ by the K_{0}-invariance of V_{l}.
2) Let $X \in V_{l}$ be arbitrary. By 1) there is $k \in K_{0}^{\prime}$ with $k X \in E_{l}$. Furthermore, since $\mathfrak{S}_{r} \subset W_{M}$ by Lemma 1.3 and $\varpi_{-1}: \mathfrak{a}_{M} \rightarrow \mathfrak{a}_{-1}$ is K_{0}^{\prime}-equivariant, there is $k^{\prime} \in N_{K_{0}^{\prime}}\left(\mathfrak{a}_{-1}\right)$ such that

$$
k^{\prime} k X=\sum_{i=1}^{p} x_{i} X_{-i}-\sum_{j=1}^{q} x_{p+j} X_{-(p+j)}
$$

with $x_{i}, x_{p+j}>0, p+q=l$. On the other hand, the connected Lie subgroup A_{Δ} of G_{0}^{\prime} generated by

$$
\mathfrak{a}_{\Delta}=\left\{\beta_{1}, \cdots, \beta_{r}\right\}_{\boldsymbol{R}}
$$

leaves \mathfrak{a}_{-1} invariant, and its matricial representation on \mathfrak{a}_{-1} with respect to $\left\{X_{-1}, \cdots, X_{-r}\right\}$ is all the real diagonal matrices with positive entries. Thus there is $a \in A_{\Delta}$ such that $a k^{\prime} k X=Y_{p, q} . \quad$ Since $a k^{\prime} k \in G_{0}^{\prime}$, we get the assertion 2).
3) This follows from 2) and the G_{0}-invariance of V_{l}.
q.e.d.

Remark 2.4. We define

$$
Y_{0}=0, Y_{l}=X_{-1}+\cdots+X_{-l} \in E_{l} \quad(1 \leq l \leq r)
$$

Then, as is seen from the above proof, if W_{M} contains $\left(\boldsymbol{Z}_{2}\right)^{r}$, then $V_{l}=G_{0}^{\prime} Y_{l}=$ $G_{0} Y_{l}(0 \leq l \leq r)$, that is, each V_{l} consists of a single G_{0}^{\prime}-orbit (resp. a single $G_{0}-$ orbit).

Lemma 2.5. Each V_{l} or the closure $\mathrm{Cl} V_{l}$ in $\mathrm{g}_{-1}(0 \leq l \leq r)$ is invariant under the transformation $X \mapsto t X$ of g_{-1} for any $t>0$.

Proof. This follows from the fact that ad $E, E \in \mathfrak{g}_{0}$, acts on \mathfrak{g}_{-1} as -1 , together with the G_{0}-invariance of V_{l}. q.e.d.

Let $u_{0}: g_{-1} \rightarrow T_{0} M$ be the natural linear isomorphism induced by the differential of the projection $G \rightarrow M=G / U$. We identify as $G L\left(T_{0} M\right)=G L\left(\mathrm{~g}_{-1}\right)$ through the isomorphism u_{0}. Let $\rho: U \rightarrow G L\left(\mathfrak{g}_{-1}\right)$ be the linear isotropy representation of $M=G / U$. It is known (Tanaka [17]) that the restriction $\rho \mid G_{0}$ to G_{0} is an injective Lie homomorphism. We identify G_{0} with a Lie subgroup of $G L\left(\mathrm{~g}_{-1}\right)$ through $\rho \mid G_{0}$. We define

$$
G L\left(\mathrm{~g}_{-1}, \mathcal{S}\right)=\left\{a \in G L\left(\mathrm{~g}_{-1}\right) ; a V_{l}=V_{l}(0 \leq l \leq r)\right\},
$$

and call it the group of automorphisms of the stratification \mathcal{S}. Then, from the G_{0}-invariance of each V_{l}, one has $G_{0} \subset G L\left(g_{-1}, \mathcal{S}\right)$.

3. Complex symmetric \boldsymbol{R}-spaces

In this section we consider the symmetric R-spaces in complex category.

Let

$$
\mathcal{G}: \mathfrak{g}=\mathrm{g}_{-1}+\mathrm{g}_{0}+\mathrm{g}_{1},\left[\mathrm{~g}_{p}, \mathrm{~g}_{q}\right] \subset \mathrm{g}_{p+q}
$$

be a graded Lie algebra over \boldsymbol{C} with \mathfrak{g} complex simple and $\mathfrak{g}_{-1} \neq\{0\}$, and τ a Cartan involution of \mathfrak{g}, regarded as a real semi-simple Lie algebra, with $\tau \mathfrak{g}_{p}=\mathfrak{g}_{-p}$ $(-1 \leq p \leq 1)$. Such a pair (\mathcal{G}, τ) is called a compact simple symmetric graded Lie algebra over \boldsymbol{C}. The characteristic element $E \in \mathrm{~g}_{0}$ is defined in the same way as in Section 1. Let

$$
\begin{aligned}
& G_{0}=\left\{a \in \operatorname{Aut}(\mathrm{~g}) ; a \mathfrak{g}_{p}=\mathrm{g}_{p}(-1 \leq p \leq 1)\right\}, \\
& G^{\prime}=\operatorname{Inn}(\mathrm{g}), \quad G=G_{0} G^{\prime}
\end{aligned}
$$

The various groups and Lie algebras, their subspaces are defined in the same way as in Section 1. Note that then $G^{\prime}, G_{0}^{\prime}, U^{\prime}, K^{\prime}, K_{0}^{\prime}$ are all connected. Various equalities hold also for these groups. In our case, the homogeneous space

$$
M=G / U=K / K_{0}
$$

is a simply connected complex projective algebraic manifold, and is called the complex R-space associated to \mathcal{G}. The group G may be regarded as a subgroup of the holomorphic automorphism group $\operatorname{Aut}(M)$ of M. In the same way as in Section 1 we define a K-invariant Hermitian metric g on M by making use of the $\operatorname{Aut}(\mathrm{g}, \tau)$-invariant Hermitian inner product given by

$$
\langle X, Y\rangle=-(X, \tau Y) \quad \text { for } \quad X, Y \in \mathrm{~g},
$$

where (,) denotes the Killing form of \mathfrak{g}. The Hermitian manifold (M, g) is an irreducible (in the sense of de Rham) Hermitian symmetric space of compact type, and is called an irreducible complex symmetric R-space.

Remark 3.1. Actually we have that $G=\operatorname{Aut}(M)$ and $K=\operatorname{Aut}(M) \cap \mathrm{I}(M, g)$. See the equality (1.9) in complex category and Remark 1.1.

In our case, the real subalgebra \mathfrak{b} of g defined as in Section 1 is a Cartan subalgebra of the complex Lie algebra \mathfrak{g}, and \mathfrak{a} is nothing but the real part of \mathfrak{g}. Let $\Sigma \subset \mathfrak{a}$ denote the root system of \mathfrak{g} relative to \mathfrak{h}. We introduce a linear order $>$ on \mathfrak{a} such that $(\alpha, E) \geq 0$ for any positive root α in Σ. We define Σ_{p} $(-1 \leq p \leq 1), \Pi, \Pi_{0}, W, W_{0}$ and so on in the same way as in Section 1. Then (Π, Π_{0}) is also an irreducible symmetric pair of $\operatorname{rank} r=\operatorname{rank}(M, g)$, and hence we can take a maximal system $\Delta=\left\{\beta_{1}, \cdots, \beta_{r}\right\}$ of strongly orthogonal roots in Σ_{1} of the same length with $\beta_{1}=\delta$, the highest root in Σ. Thus we can define $X_{ \pm i} \in \mathrm{~g}_{ \pm 1}, A_{i} \in \mathfrak{m}, b_{l} \in K^{\prime}, Y_{l} \in \mathrm{~g}_{-1}$ and so on. Making use of the $A_{i}(1 \leq i \leq r)$ we can construct a maximal abelian subalgebra \mathfrak{a}_{M} in \mathfrak{m} with the coordinate
$\left(x_{1}, \cdots, x_{r}\right)$. Then (cf. Takeuchi [14]) the Weyl group $W_{M} \subset O\left(\mathfrak{a}_{M}\right)$ of (M, g) is given by

$$
\begin{equation*}
W_{M}=\mathbb{S}_{r} \cdot\left(\boldsymbol{Z}_{2}\right)^{r} \tag{3.1}
\end{equation*}
$$

We define

$$
\mathcal{V}_{l}=U^{\prime} b_{l} o, V_{l}=\mathcal{V}_{l} \cap \mathrm{~g}_{-1}, d_{l}=\operatorname{dim}_{C} \subset V_{l}(0 \leq l \leq r)
$$

regarding g_{-1} as a G_{0}-invariant open dense subset of M through the natural imbedding $\iota: \mathrm{g}_{-1} \rightarrow M$. Also G_{0} is identified with a complex algebraic group in $G L\left(\mathrm{~g}_{-1}\right)$, through the linear isotropy representation. We can prove the following lemma in the same way as Lemma 1.2.

Lemma 3.2. If we define $\operatorname{Aut}\left(\Pi, \Pi_{0}\right)=\left\{t \in \operatorname{Aut}(\Pi) ; t \Pi_{0}=\Pi_{0}\right\}$, we have

$$
G / G^{\prime} \simeq G_{0} / G_{0}^{\prime} \simeq \operatorname{Aut}\left(\Pi, \Pi_{0}\right)
$$

Lemma 3.3. 1) $M=\subset V_{0} \cup \vartheta_{1} \cup \cdots \cup V_{r}$ (disjoint union), and therefore we get a stratification

$$
\mathcal{S}: \mathfrak{g}_{-1}=V_{0} \cup V_{1} \cup \cdots \cup V_{r}(\text { disjoint union })
$$

2) $C V_{l}=U b_{l} o(0 \leq l \leq r)$.
3) $\quad V_{l}=G_{0} Y_{l}=G_{0}^{\prime} Y_{l}(0 \leq l \leq r)$.
4) $\mathrm{Cl} \vee_{l}$ is an algebraic subvariety of M, and

$$
\mathrm{Cl} \subset V_{l}=C V_{0} \cup \subset V_{1} \cup \cdots \cup \subset V_{l} \quad(0 \leq l \leq r)
$$

5) $\mathrm{Cl} V_{l}$ is an affine algebraic subvariety of g_{-1}, and

$$
\mathrm{Cl} V_{l}=V_{0} \cup V_{1} \cup \cdots \cup V_{l} \quad(0 \leq l \leq r)
$$

6) $0=d_{0}<d_{1}<\cdots<d_{r}=\operatorname{dim}_{C} M$.

Proof. The proof of the assertions 1), 2) is the same as in Section 2. The assertion 3) follows by the same argument as in Section 2 and the same reasoning as in Remark 2.4, recalling the equality (3.1).
4) In the same way as in Lemma 2.1, 4) we get

$$
\begin{equation*}
l^{\prime} \leq l \Rightarrow \subset V_{l^{\prime}} \subset \mathrm{Cl} \subset V_{l} \tag{3.2}
\end{equation*}
$$

Since the complex linear algebraic group G^{\prime} acts on M regularly and U^{\prime} is an algebraic subgroup of G^{\prime}, by a well known fact in algebraic geometry (cf. for example, A. Borel: Linear Algebraic Groups, Benjamin, 1969), $\mathcal{V}_{l}=U^{\prime} b_{l} o$ contains a Zariski open subset of the Zariski closure $\mathrm{Cl}^{z}\left(\mathcal{V}_{l}\right)$ of \mathcal{V}_{l}. Thus we have $\mathrm{Cl} \mathcal{V}_{l}=\mathrm{Cl}^{z}\left(\mathcal{V}_{l}\right)$. The Zariski connectedness of $\mathrm{Cl} V_{l}$ follows from that of U^{\prime}. Also from the above we have

$$
\begin{equation*}
\subset \mathcal{V}_{l^{\prime}} \subset \mathrm{Cl} \mathcal{V}_{l}, l \neq l^{\prime} \Rightarrow d_{l^{\prime}}<d_{l} . \tag{3.3}
\end{equation*}
$$

In particular, by (3.2) we get

$$
\begin{equation*}
l^{\prime}<l \Rightarrow d_{l^{\prime}}<d_{l} . \tag{3.4}
\end{equation*}
$$

Suppose that $\mathcal{V}_{l^{\prime}} \subset \mathrm{Cl} \subset V_{l}$ for $l^{\prime}>l$. Then, by (3.3) we would have $d_{l^{\prime}}<d_{l}$, which is a contradiction to (3.4). Thus we have proved that $l^{\prime} \leq l$ if and only if $\mathcal{V}_{l^{\prime}} \subset \mathrm{Cl} \mathcal{V}_{l}$, which completes the proof of the assertion 4).
5) Since actually g_{-1} is Zariski open in M, this follows from assertions 3), 4) and the Zariski connectedness of G_{0}^{\prime}.
6) Follows from (3.4).
q.e.d.

Remark 3.4. The defining polynomials of the affine algebraic variety $\mathrm{Cl} V_{l}$ in g_{-1} are given as follows. Taking a basis $\left\{e_{1}, \cdots, e_{n}\right\}$ of g_{-1} we identify g_{-1} with \boldsymbol{C}^{n}, and then $\mathfrak{g l}\left(\mathfrak{g}_{-1}\right)$ with the space of $n \times n$ complex matrices. Take a basis $\left\{X_{1}, \cdots, X_{N}\right\}$ of $g_{0} \subset \mathfrak{g l}\left(\mathfrak{g}_{-1}\right)$. Then the set $\left\{F_{\alpha}^{(l)}\left(z_{1}, \cdots, z_{n}\right)\right\}$ of all minor determinants of degree $d_{l}+1$ of the $n \times N$ matrix

$$
\left(X_{1} z, \cdots, X_{N} z\right), \quad \text { where } \quad z=\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{n}
\end{array}\right)
$$

is a set of defining polynomials of $\mathrm{Cl} V_{l}$. This follows from assertions 3), 5), 6) in Lemma 3.3.

By Lemma 3.3, 5), the automorphism group of \mathcal{S} :

$$
G L\left(\mathrm{~g}_{-1}, \mathcal{S}\right)=\left\{a \in G L\left(\mathrm{~g}_{-1}\right) ; a V_{l}=V_{l}(0 \leq l \leq r)\right\}
$$

is also given by

$$
\begin{equation*}
G L\left(\mathrm{~g}_{-1}, \mathcal{S}\right)=\left\{a \in G L\left(\mathrm{~g}_{-1}\right) ; a\left(\mathrm{Cl} V_{l}\right)=\mathrm{Cl} V_{l}(0 \leq l \leq r)\right\} \tag{3.5}
\end{equation*}
$$

Thus it is a complex algebraic group in $G L\left(\mathfrak{g}_{-1}\right)$. Note that $G_{0} \subset G L\left(\mathfrak{g}_{-1}, \mathcal{S}\right)$.
Theorem 3.5. $\quad G_{0}=G L\left(\mathrm{~g}_{-1}, \mathcal{S}\right)$.
Proof. First we claim that g_{0} is a maximal subalgebra of $\mathfrak{g l}\left(\mathfrak{g}_{-1}\right)$. Since g_{0} contains the scalar endomorphisms $\boldsymbol{C} 1$ of \mathfrak{g}_{-1}, it suffices to show that the semisimple part $\mathfrak{\Omega}_{0}$ of \mathfrak{g}_{0} is a maximal subalgebra of $\mathfrak{g l}\left(\mathfrak{g}_{-1}\right)$. Note here that \mathfrak{g}_{0} acts irreducibly on g_{-1} because (M, g) is an irreducible Hermitian symmetric space. Now our claim can be verified for each (M, g), by seeing the classification of irreducible maximal subalgebras of $\mathfrak{B l}(N, \boldsymbol{C})$ by Dynkin [2].

So $\operatorname{Lie} G L\left(\mathrm{~g}_{-1}, \mathcal{S}\right)$ is equal to either g_{0} or $\mathfrak{g l}\left(\mathrm{g}_{-1}\right)$. In the latter case, since in general the number of $G L\left(\mathfrak{g}_{-1}, \mathcal{S}\right)$-orbits in \mathfrak{g}_{-1} is $r+1$, we have $r=1$ and hence $\mathrm{g}_{0}=\mathfrak{g l}\left(\mathrm{g}_{-1}\right)$. Thus we have always Lie $G L\left(\mathrm{~g}_{-1}, \mathcal{S}\right)=\mathrm{g}_{0}$, whence the identity
component of $G L\left(\mathrm{~g}_{-1}, \mathcal{S}\right)$ is equal to G_{0}^{\prime}. In the following we follow the argument in Gyoja [3]. Since $G L\left(\mathrm{~g}_{-1}, \mathcal{S}\right)$ normalizes G_{0}^{\prime} by the above, Ad induces a homomorphism $\varphi: G L\left(\mathrm{~g}_{-1}, \mathcal{S}\right) \rightarrow \operatorname{Aut}\left(\mathrm{g}_{0}\right)$ with

$$
\begin{equation*}
\varphi^{-1}\left(\operatorname{Inn}\left(\mathrm{~g}_{0}\right)\right)=G_{0}^{\prime} \tag{3.6}
\end{equation*}
$$

Here (3.6) follows from the Schur's lemma together with the fact that $C^{*} 1 \subset G_{0}^{\prime}$. We will show

$$
\begin{equation*}
\varphi\left(G L\left(\mathfrak{g}_{-1}, \mathcal{S}\right)\right)=\operatorname{Aut}\left(\mathrm{g}_{0}, \mathfrak{a}, \Pi, \Pi_{0}\right) \operatorname{Inn}\left(\mathrm{g}_{0}\right) \tag{3.7}
\end{equation*}
$$

Let $a \in G L\left(\mathfrak{g}_{-1}, \mathcal{S}\right)$ be arbitrary. Since $\varphi(a) \mathfrak{h}$ is a Cartan subalgebra of g_{0}, there is $a^{\prime} \in G_{0}^{\prime}$ with $\varphi\left(a^{\prime} a\right) \in \operatorname{Aut}\left(\mathfrak{g}_{0}, \mathfrak{a}, \Pi_{0}\right)$. Set $b=a^{\prime} a \in G L\left(\mathfrak{g}_{-1}, \mathcal{S}\right)$. Denoting by $\rho: g_{0} \hookrightarrow \mathfrak{g l}\left(\mathrm{~g}_{-1}\right)$ the identity representation, we define a representation ρ^{b} of g_{0} by

$$
\rho^{b}(X)=\rho(\varphi(b) X) \quad \text { for } X \in g_{0}
$$

Then, since $\rho(\varphi(b) X)=b \rho(X) b^{-1}, \rho^{b}$ is equivalent to ρ. But the highest weight of ρ is $-\alpha_{1}$, where α_{1} is the distinguished root in Π, and hence $\varphi(b) \alpha_{1}=\alpha_{1}$. Thus $\varphi(b) \in \operatorname{Aut}\left(g_{0}, \mathfrak{a}, \Pi, \Pi_{0}\right)$, and so $\varphi(a)=\varphi\left(a^{\prime}\right)^{-1} \varphi(b) \in \operatorname{Aut}\left(g_{0}, \mathfrak{a}, \Pi, \Pi_{0}\right)$. $\operatorname{Inn}\left(\mathrm{g}_{0}\right)$. For the proof of the inclusion $\operatorname{Aut}\left(\mathrm{g}_{0}, \mathfrak{a}, \Pi, \Pi_{0}\right) \operatorname{Inn}\left(\mathfrak{g}_{0}\right) \subset \varphi\left(G L\left(\mathfrak{g}_{-1}, \mathcal{S}\right)\right)$, it suffices to show $\operatorname{Aut}\left(\mathfrak{g}_{0}, \mathfrak{a}, \Pi, \Pi_{0}\right) \subset \varphi\left(G L\left(g_{-1}, \mathcal{S}\right)\right)$. Let $a \in \operatorname{Aut}\left(\mathrm{~g}_{0}, \mathfrak{a}, \Pi, \Pi_{0}\right)$ be arbitrary. If we define a representation ρ^{a} of g_{0} by

$$
\rho^{a}(X)=\rho(a X) \quad \text { for } X \in g_{0}
$$

then by $a \alpha_{1}=\alpha_{1}, \rho^{a}$ is equivalent to ρ. Hence there is $b \in G L\left(g_{-1}\right)$ such that $\rho^{a}(X)=b \rho(X) b^{-1}$ for each $X \in g_{0}$, which implies $G_{0}^{\prime}=b G_{0}^{\prime-1} b$. We claim that $b \in G L\left(\mathfrak{g}_{-1}, \mathcal{S}\right)$. In fact, for each $X \in V_{l}(0 \leq l \leq r), G_{0}^{\prime} b X=b G_{0}^{\prime} X=b V_{l}$. Thus $\operatorname{dim}_{C}\left(G_{0}^{\prime} b X\right)=\operatorname{dim}_{C} V_{l}$, and hence by Lemma 3.3, 6) $G_{0}^{\prime} b X=V_{l}$. In particular, we have $b X \in V_{l}$, whence the claim. Since $\varphi(b)=a$, we are done.

Now (3.6), (3.7) imply that $G L\left(\mathrm{~g}_{-1}, \mathcal{S}\right) / G_{0}^{\prime} \simeq \varphi\left(G L\left(\mathrm{~g}_{-1}, \mathcal{S}\right)\right) / \operatorname{Inn}\left(\mathrm{g}_{0}\right) \simeq$ $\operatorname{Aut}\left(\mathrm{g}_{0}, \mathfrak{a}, \Pi, \Pi_{0}\right) / \operatorname{Aut}\left(\mathfrak{g}_{0}, \mathfrak{a}, \Pi, \Pi_{0}\right) \cap \operatorname{Inn}\left(\mathrm{g}_{0}\right) \simeq \operatorname{Aut}\left(\Pi, \Pi_{0}\right)$, and so by Lemma 3.2 we get the assertion of the theorem.

Lemma 3.6. We define

$$
G L_{e}\left(\mathrm{~g}_{-1}, \mathcal{S}\right)=\left\{a \in G L\left(\mathrm{~g}_{-1}\right) ; a\left(\mathrm{Cl} V_{2 k}\right)=\mathrm{Cl} V_{2 k}(0 \leq k \leq[r / 2])\right\}
$$

Then, $G L_{e}\left(\mathfrak{g}_{-1}, \mathcal{S}\right)=G L\left(\mathfrak{g}_{-1}, \mathcal{S}\right)$ if $r \geq 3$.
Proof. By (3.5) we have $G L\left(\mathfrak{g}_{-1}, \mathcal{S}\right) \subset G L_{e}\left(\mathrm{~g}_{-1}, \mathcal{S}\right)$. Since $\mathrm{g}_{0} \subset$ Lie $G L_{e}\left(\mathrm{~g}_{-1}, \mathcal{S}\right)$ and $\operatorname{dim}_{C} G L_{e}\left(\mathrm{~g}_{-1}, \mathcal{S}\right)<\operatorname{dim}_{C} G L\left(\mathrm{~g}_{-1}\right)$ in virtue of $r \geq 3$, we see by the same argument as in the proof of Theorem 3.5 that the identity component of $G L_{e}\left(\mathfrak{g}_{-1}, \mathcal{S}\right)$ is equal to G_{0}^{\prime}. Since $G L\left(\mathfrak{g}_{-1}, \mathcal{S}\right)$ contains the normalizer of G_{0}^{\prime}
in $G L\left(\mathrm{~g}_{-1}\right)$ as we have seen in the proof of Theorem 3.5 , we get $G L_{e}\left(\mathrm{~g}_{-1}, \mathcal{S}\right) \subset$ $G L\left(\mathrm{~g}_{-1}, \mathcal{S}\right)$. q.e.d.

4. Automorphisms of stratification

We come back to an irreducible symmetric R-space (M, g) and use the same notation as in Sections 1 and 2. First we prove the following theorem, making use of the results in complex category.

Theorem 4.1. 1) $\mathrm{Cl} \vee_{l}=\mathcal{V}_{0} \cup \mathcal{V}_{1} \cup \cdots \cup \mathcal{V}_{l}(0 \leq l \leq r)$.
2) $\mathrm{Cl} V_{l}=V_{0} \cup V_{1} \cup \cdots \cup V_{l}(0 \leq l \leq r)$.
3) $0=d_{0}<d_{1}<\cdots<d_{r}=\operatorname{dim} M$.

Suppose first that $\overline{\mathrm{g}}$ is simple. Then the complexification $\overline{\mathcal{G}}: \overline{\mathrm{g}}=\overline{\mathrm{g}}_{-1}+\overline{\mathrm{g}}_{0}+\overline{\mathrm{g}}_{1}$ of \mathcal{G}, together with the conjugate linear extension $\bar{\tau}$ to $\overline{\mathfrak{g}}$ of τ, becomes a compact simple symmetric graded Lie algebra $(\bar{G}, \bar{\tau})$ over C. Various objects for $(\overline{\mathcal{G}}, \bar{\tau})$ considered in Section 3 are denoted by the same symbols with -. We define an involutive automorphism σ of $\operatorname{Aut}(\overline{\mathrm{g}})$ as a real Lie group by

$$
\sigma(a)=\sigma a \sigma^{-1} \quad \text { for } a \in \operatorname{Aut}(\overline{\mathfrak{g}})
$$

For a σ-invariant subgroup H of $\operatorname{Aut}(\overline{\mathrm{g}}), H_{\sigma}$ will denote the group of all fixed points of σ in H. For example, we have

$$
\left(\bar{G}^{\prime}\right)_{\sigma}=G^{\prime}, \quad\left(\bar{G}_{0}\right)_{\sigma}=G_{0}, \quad\left(\bar{K}_{0}\right)_{\sigma}=K_{0}
$$

Lemma 4.2. $\quad G=(\bar{G})_{\sigma}$.
Proof. It is obvious that $G=G_{0} G^{\prime}=\left(\bar{G}_{0}\right)_{\sigma}\left(\bar{G}^{\prime}\right)_{\sigma} \subset(\bar{G})_{\sigma}$. For the proof of $(\bar{G})_{\sigma} \subset G$, we note first that by (1.9), (1.10)' in complex category, $\bar{M}=\bar{G} / \bar{U}$ can be identified with the set of all complex parabolic subalgebras of $\overline{\mathfrak{g}}$ which are conjugate to the complexification $\overline{\mathfrak{H}}$ of \mathfrak{H} under \bar{G} or under $\operatorname{Inn}(\overline{\mathfrak{g}})$. Let $a \in(\bar{G})_{\sigma}$ be arbitrary. Then $a \in \operatorname{Aut}(g)$ and so $a \mathfrak{t}$ is a parabolic subalgebra of g whose complexification is conjugate to $\overline{\mathfrak{H}}$ under $\operatorname{Inn}(\overline{\mathfrak{g}})$ by the above remark. Since two parabolic subalgebras of g are conjugate to each other under $\operatorname{Inn}(g)$ if and only if their complexifications are conjugate to each other under $\operatorname{Inn}(\overline{\mathfrak{g}})$, there is $b \in G^{\prime}$ such that $b a \mathfrak{u}=\mathfrak{u}$. It follows from (1.9) that $b a \in U$ and hence $a \in G^{\prime} U=G$. q.e.d.

From the above lemma it follows that if \bar{H} (resp. H) is one of the groups $\bar{G}, \bar{G}_{0}, \bar{U}, \bar{K}, \bar{K}_{0}, \bar{G}^{\prime}, \bar{G}_{0}^{\prime}, \bar{U}^{\prime}, \bar{K}, \bar{K}_{0}^{\prime}\left(\right.$ resp. $\left.G, G_{0}, U, K, K_{0}, G^{\prime}, G_{0}^{\prime}, U^{\prime}, K^{\prime}, K_{0}^{\prime}\right)$, then $H=(\bar{H})_{\sigma}$. In particular, we have a natural G-equivariant imbedding

$$
j: M=G / U \hookrightarrow \bar{M}=\bar{G} / \bar{U} .
$$

Furthermore, an involutive diffeomorphism σ of \bar{M} can be defined by

$$
\sigma(a o)=\sigma(a) o \quad \text { for } a \in \bar{G}
$$

For a σ-invariant subset N of \bar{M}, the set of all fixed points of σ in N will be denoted by N_{σ}. It is known (Takeuchi [13]) that σ is an involutive isometry of (\bar{M}, \bar{g}) such that

$$
\begin{equation*}
M=(\bar{M})_{\sigma} \tag{4.1}
\end{equation*}
$$

Furthermore, $\bar{\iota}: \overline{\mathrm{g}}_{-1} \rightarrow \bar{M}$ is σ-equivariant and $j:(M, g) \rightarrow(\bar{M}, \bar{g})$ is isometric. As a maximal abelian subalgebra $\overline{\mathfrak{a}}$ of $\overline{\mathfrak{p}}=\mathfrak{p}+\sqrt{-1} \mathfrak{f}$, we take

$$
\overline{\mathfrak{a}}=\mathfrak{h}_{\boldsymbol{R}}=\mathfrak{a}+\sqrt{-1} \mathfrak{b},
$$

and use the σ-order $>$ on $\mathfrak{G}_{\boldsymbol{R}}$ for \mathfrak{g} as an order on $\overline{\mathfrak{a}}$ for $\overline{\mathfrak{g}}$.
Lemma 4.3. We can choose $\bar{\Delta}=\left\{\bar{\beta}_{1}, \cdots, \bar{\beta}_{\bar{r}}\right\} \subset \bar{\Sigma}_{1}$ and $\bar{X}_{i} \in \bar{g}^{\bar{\beta}_{i}}(1 \leq i \leq \bar{r})$ for $\overline{\mathrm{g}}$ in the following way.
(a) Class (II).
$\bar{r}=2 r ; \sigma\left(\bar{\beta}_{2 i-1}\right)=\bar{\beta}_{2 i}, \sigma \bar{X}_{2 i-1}=\bar{X}_{2 i}(1 \leq i \leq r) ;$ If we set $\beta_{i}=\pi_{\alpha}\left(\bar{\beta}_{2 i}\right)(1 \leq$ $i \leq r)$, then $\Delta=\left\{\beta_{1}, \cdots, \beta_{r}\right\} \subset \Sigma_{1}$ is a system of orthogonal roots for \mathfrak{g}.
(b) Otherwise.
$\bar{r}=r ; \sigma\left(\bar{\beta}_{i}\right)=\bar{\beta}_{i}, \sigma \bar{X}_{i}=\bar{X}_{i}(1 \leq i \leq r) ;$ If we set $\beta_{i}=\bar{\beta}_{i}(1 \leq i \leq r)$, then $\Delta=\left\{\beta_{1}, \cdots, \beta_{r}\right\} \subset \Sigma_{1}$ is a system of orthogonal roots for \mathfrak{g}.

Proof. See Takeuchi [13]. However, for $\overline{\mathrm{g}}$ of type E_{6} or $E_{7},\left\{\bar{\beta}_{i}\right\}$ in [13] should be replaced by the following, under the numbering of roots of $\left(\bar{\Pi}, \bar{\Pi}_{0}\right)$ in [13].

$$
\begin{align*}
\overline{\mathfrak{g}}=E_{6}: \bar{\beta}_{1} & =\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4}+\alpha_{5}+2 \alpha_{6}, \\
\bar{\beta}_{2} & =\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5} . \\
\overline{\mathfrak{g}}=E_{7}: \bar{\beta}_{1} & =\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+4 \alpha_{4}+3 \alpha_{5}+2 \alpha_{6}+2 \alpha_{7}, \\
\bar{\beta}_{2} & =\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+2 \alpha_{4}+\alpha_{5}+\alpha_{7}, \\
\bar{\beta}_{3} & =\alpha_{1} .
\end{align*}
$$

Lemma 4.4. (a) Class (II).

$$
\begin{aligned}
& C V_{l}=\left(\bar{V}_{2 l}\right)_{\sigma}, V_{l}=\left(\bar{V}_{2 l}\right)_{\sigma}, d_{l}=\bar{d}_{2 l}(0 \leq l \leq r), \\
& \bar{V}_{2 l-1} \cap M=\phi, \bar{V}_{2 l-1} \cap g_{-1}=\phi(1 \leq l \leq r) .
\end{aligned}
$$

(b) Otherwise.

$$
\subset V_{l}=\left(\bar{V}_{l}\right)_{\sigma}, V_{l}=\left(\bar{V}_{l}\right)_{\sigma}, d_{l}=\bar{d}_{l}(0 \leq l \leq r) .
$$

Proof. (a) By Lemam 4.3, we can take as

$$
X_{i}=\bar{X}_{2 i-1}+\bar{X}_{2 i} \quad(1 \leq i \leq r)
$$

Then $b_{l}=\bar{b}_{2 l}$ and $Y_{l}=\bar{Y}_{2 l}(0 \leq l \leq r)$. Now $\bar{V}_{2 l}=\bar{U} \bar{b}_{2 l} o$ is σ-invariant because of $\bar{b}_{21} o=b_{l} o \in M$. Moreover $C V_{l}=U b_{l} o \subset \bar{U} \bar{b}_{2 l} o=\bar{V}_{2 l}$. Thus, by Lemma 2.1, 3) together with (4.1), we have that $\overline{C V}_{2 l-1} \cap M=\phi$ and $C V_{l}=\left(\overline{C V}_{2 l}\right)_{\sigma}$. This implies also $d_{l}=\bar{d}_{2 l}$. In the same way as above, by $Y_{l}=\bar{Y}_{2 l}$ we obtain the σ-invariance of $\nabla_{2 l}$, and

$$
\begin{aligned}
\left(\bar{V}_{2 l}\right)_{\sigma} & =\left(\overline{C V}_{2 l} \cap \overline{\mathrm{~g}}_{-1}\right)_{\sigma}=\left(\overline{\mathscr{V}}_{2 l}\right)_{\sigma} \cap\left(\overline{\mathrm{g}}_{-1}\right)_{\sigma} \\
& =C V_{l} \cap g_{-1}=V_{l} .
\end{aligned}
$$

This implies also $\bar{V}_{2 l-1} \cap g_{-1}=\phi$ by virtue of (2.10).
(b) This is proved in the same way as above, by taking as $X_{i}=\bar{X}_{i}$. q.e.d.

Now Theorem 4.1 for simple $\overline{\mathfrak{g}}$ follows from the above lemma and the assertions 4), 5), 6) in Lemma 3.3.

Suppose next that \bar{g} is not simple. Then \mathfrak{g} is the scalar restriction to \boldsymbol{R} of a complex simple Lie algebra $\tilde{\mathfrak{g}}$. Let $\tilde{\mathfrak{g}}_{p}(-1 \leq p \leq 1)$ be the subspace of $\tilde{\mathfrak{g}}$ such that the scalar restriction to \boldsymbol{R} of $\tilde{\mathfrak{g}}_{p}$ is \mathfrak{g}_{p}. Then the graded Lie algebra $\tilde{\mathcal{G}}^{\prime}: \tilde{\mathfrak{g}}=\tilde{\mathfrak{g}}_{-1}+\tilde{\mathfrak{g}}_{0}+\tilde{\mathfrak{g}}_{1}$, together with $\tilde{\boldsymbol{\tau}}=\boldsymbol{\tau}$, becomes a compact simple symmetric graded Lie algebra ($\tilde{\mathcal{G}}, \tilde{\tau}$) over \boldsymbol{C}. Various objects for ($\tilde{\mathscr{G}}, \tilde{\boldsymbol{\tau}}$) are denoted by the same symbols as in Section 3, but with \sim. Note that in particular we have

$$
\begin{equation*}
G^{\prime}=\tilde{G}^{\prime}, \tag{4.2}
\end{equation*}
$$

under the identification $\operatorname{Aut}(\tilde{\mathfrak{g}}) \subset \operatorname{Aut}(\mathrm{g})$. In our case, \boldsymbol{z} is a compact real form of $\tilde{\mathfrak{g}}$ and $\mathfrak{p}=I \mathfrak{t}$, where I is the complex structure of \mathfrak{g}. Thus $\mathfrak{g}=\mathfrak{b}+\mathfrak{a}=I \mathfrak{a}+\mathfrak{a}$ is the scalar restriction to \boldsymbol{R} of a Cartan subalgebra of $\tilde{\mathfrak{g}}$ whose real part is \mathfrak{a}. The real part $\mathfrak{h}_{\boldsymbol{R}}$ of $\overline{\mathfrak{h}}$ is given by

$$
\mathfrak{h}_{\boldsymbol{R}}=\sqrt{-1} I \mathfrak{a}+\mathfrak{a}
$$

Denoting the \boldsymbol{C}-linear extension to $\overline{\mathfrak{g}}$ of I by the same I, we define

$$
\mathfrak{g}^{ \pm}=\{X \in \overline{\mathfrak{g}} ; I X= \pm \sqrt{-1} X\}
$$

to get a decomposition

$$
\begin{equation*}
\overline{\mathfrak{g}}=\mathrm{g}^{+} \oplus \mathfrak{g}^{-} \tag{4.3}
\end{equation*}
$$

with $\sigma \mathfrak{g}^{ \pm}=\mathfrak{g}^{\mp}$. Then \boldsymbol{R}-linear isomorphisms $\varpi^{ \pm}: \mathfrak{g} \rightarrow \mathfrak{g}^{ \pm}$are defined by

$$
\varpi^{ \pm}(X)=X^{ \pm}=(1 / 2)(X \mp \sqrt{-1} I X) \quad \text { for } X \in \mathfrak{g} .
$$

If we set $\mathfrak{a}^{ \pm}=\boldsymbol{\varpi}^{ \pm}(\mathfrak{a})$, we have

$$
\mathfrak{h}_{\boldsymbol{R}}=\mathfrak{a}^{+}+\mathfrak{a}^{-}
$$

We may identify $\Sigma \subset \mathfrak{a}$ with $\tilde{\Sigma}$. For $\alpha \in \Sigma, \alpha^{ \pm} \in \mathfrak{a}^{ \pm}$is defined by

$$
\left(\alpha^{ \pm}, H^{ \pm}\right)=(\alpha, H) \quad \text { for each } H \in \mathfrak{a}
$$

Then we have

$$
\begin{aligned}
& \sigma \alpha^{ \pm}=\alpha^{\mp} \quad \text { for } \alpha \in \Sigma, \\
& \bar{\Sigma}=\left\{\alpha^{+}, \alpha^{-} ; \alpha \in \Sigma\right\}, \bar{\Sigma}^{+}=\left\{\alpha^{+}, \alpha^{-} ; \alpha \in \Sigma^{+}\right\}, \\
& \bar{\Pi}=\Pi^{+} \cup \Pi^{-}, \bar{\Pi}_{0}=\Pi_{0}^{+} \cup \Pi_{0}^{-}
\end{aligned}
$$

where $\Pi^{ \pm}=\left\{\alpha^{ \pm} ; \alpha \in \Pi\right\}$ and $\Pi_{0}^{ \pm}=\left\{\alpha^{ \pm} ; \alpha \in \Pi_{0}\right\}$. In particular, σ (restricted to $\left.\mathfrak{G}_{\boldsymbol{R}}\right)$ belongs to $\operatorname{Aut}\left(\bar{\Pi}, \Pi_{0}, \sigma\right)$. We regard $\operatorname{Aut}(\Pi)$ as a normal subgroup of $\operatorname{Aut}(\bar{\Pi})$ by the correspondence $t \mapsto\left(t^{+}, t^{-}\right)$for $t \in \operatorname{Aut}(\Pi)$, where $t^{ \pm} \in \operatorname{Aut}\left(\Pi^{ \pm}\right)$is defined by

$$
t^{ \pm}\left(\alpha^{ \pm}\right)=(t \alpha)^{ \pm} \quad \text { for } \alpha \in \Pi
$$

Then we have a semi-direct decomposition

$$
\begin{equation*}
\operatorname{Aut}\left(\bar{\Pi}, \bar{\Pi}_{0}, \sigma\right)=\boldsymbol{Z}_{2} \cdot \operatorname{Aut}\left(\Pi, \Pi_{0}\right), \quad \text { where } \quad \boldsymbol{Z}_{2}=\{1, \sigma\} \tag{4.4}
\end{equation*}
$$

An involutive automorphism k_{0} of g with $k_{0} \mid \mathfrak{h}_{\boldsymbol{R}}=\sigma$ is constructed as follows. Choose $\kappa \in \operatorname{Aut}\left(\tilde{\mathfrak{g}}, \boldsymbol{t}, \mathfrak{h}_{\boldsymbol{R}}\right)$ with $\kappa \mid \mathfrak{h}_{\boldsymbol{R}}=-1$ and $\kappa^{2}=1$, and set

$$
k_{0}=\tau \kappa \in \operatorname{Aut}(\mathrm{g})
$$

Then it is verified that $k_{0} \mathfrak{G}_{\boldsymbol{R}}=\mathfrak{G}_{\boldsymbol{R}}$ and $k_{0} \alpha^{ \pm}=\alpha^{\mp}$ for each $\alpha \in \Pi$, and hence $k_{0} \mid \mathfrak{h}_{R}=\sigma$. Actually k_{0} belongs to K_{0}, because $k_{0} E=E$ and $k_{0} \tau=\tau k_{0}$. Recall that $G / G^{\prime} \simeq \operatorname{Aut}\left(\bar{\Pi}, \bar{\Pi}_{0}, \sigma\right)$ by Lemma 1.2, $\bar{G} / G^{\prime} \simeq \operatorname{Aut}\left(\Pi, \Pi_{0}\right)$ by Lemma 3.2, and $G^{\prime}=\tilde{G}^{\prime}$ by (4.2). So by (4.4) we get a semi-direct decomposition

$$
G=\boldsymbol{Z}_{2} \cdot G \quad \text { where } \quad \boldsymbol{Z}_{2}=\left\{1, k_{0}\right\}
$$

This, together with (4.2), (1.14), implies semi-direct decompositions

$$
\begin{equation*}
G_{0}=\boldsymbol{Z}_{2} \cdot \tilde{G}_{0}, U=\boldsymbol{Z}_{2} \cdot \tilde{U}, K=\boldsymbol{Z}_{2} \cdot \tilde{K}_{0}, K_{0}=\boldsymbol{Z}_{2} \cdot \tilde{K}_{0} \tag{4.5}
\end{equation*}
$$

and equalities

$$
G_{0}^{\prime}=\tilde{G}_{0}^{\prime}, U^{\prime}=\widetilde{U}^{\prime}, K^{\prime}=\tilde{K}^{\prime}, K_{0}^{\prime}=\tilde{K}_{0}^{\prime}
$$

Thus we have a natural identification

$$
M=G / U \simeq \tilde{M}=\tilde{G} / \tilde{U}
$$

which is a homothety between (M, g) and (\tilde{M}, \tilde{g}). It is easy to see that under this identification we have

$$
\begin{equation*}
V_{l}=\tilde{V}_{l}, V_{l}=\tilde{V}_{l}(0 \leq l \leq r=\tilde{r}), \tag{4.6}
\end{equation*}
$$

and hence $\operatorname{dim} C V_{l}=\operatorname{dim} V_{l}=2 \tilde{d}_{l}(0 \leq l \leq r)$. Now Theorem 4.1 for non-simple $\overline{\mathrm{g}}$ follows from the assertions 4), 5), 6) in Lemma 3.3.

Remark 4.5. Each $\mathrm{Cl} V_{l}(0 \leq l \leq r)$ is a real affine algebraic variety in g_{-1}. In case where $\overline{\mathrm{g}}$ is not simple, this is obvious from Remark 3.4. In case where $\overline{\mathrm{g}}$ is simple, $\mathrm{Cl} V_{l}=\left(\mathrm{Cl} \bar{V}_{m}\right) \cap \mathrm{g}_{-1}, m=l$ or $2 l$, by Lemma 4.4. In the construction of defining polynomials $\left\{F_{\alpha}^{(m)}\right\}$ of $\mathrm{Cl} \bar{V}_{m}$ in Remark 3.4, we choose basis $\left\{e_{1}, \cdots, e_{n}\right\}$ and $\left\{X_{1}, \cdots, X_{N}\right\}$ of $\overline{\mathrm{g}}_{-1}$ and $\overline{\mathfrak{g}}_{0}$ from \mathfrak{g}_{-1} and \mathfrak{g}_{0}, respectively. Then $\left\{F_{a}^{(m)}\right\}$ are real polynomials by which $\mathrm{Cl} V_{l}$ is defined in g_{-1}.

Remark 4.6. If \bar{g} is not simple, that is, if (M, g) is an irreducible Hermitian symmetric space of compact type, the group G is equal to the group of holomorphic transformations and anti-holomorphic transformations of M. This follows from Remark 3.1 and the decomposition $G=\boldsymbol{Z}_{2} \cdot \tilde{G}$.

Theorem 4.7. $\quad G L\left(\mathrm{~g}_{-1}, \mathcal{S}\right)=G_{0} \quad$ if $r \geq 2$.
Proof. Note first that by Theorem $4.1 G L\left(\mathrm{~g}_{-1}, \mathcal{S}\right)$ is given also by

$$
\begin{equation*}
G L\left(\mathfrak{g}_{-1}, \mathcal{S}\right)=\left\{a \in G L\left(\mathfrak{g}_{-1}\right) ; a\left(\mathrm{Cl} V_{l}\right)=\mathrm{Cl} V_{l}(0 \leq l \leq r)\right\}, \tag{4.7}
\end{equation*}
$$

and hence $G L\left(\mathfrak{g}_{-1}, \mathcal{S}\right)$ is a closed subgroup of $G L\left(\mathfrak{g}_{-1}\right)$.
Suppose that $\overline{\mathfrak{g}}$ is simple. Then $G_{0}=\left(\bar{G}_{0}\right)_{\sigma}$, as is seen in the proof of Theorem 4.1, and $G L\left(\overline{\mathrm{~g}}_{-1}, \overline{\mathcal{S}}\right)=\bar{G}_{0}$ by Theorem 3.5. Thus it suffices to show

$$
\begin{equation*}
G L\left(\mathfrak{g}_{-1}, \mathcal{S}\right)=G L\left(\overline{\mathfrak{g}}_{-1}, \overline{\mathcal{S}}\right) \cap G L\left(\mathrm{~g}_{-1}\right) \quad \text { if } \quad r \geq 2 \tag{4.8}
\end{equation*}
$$

$G L\left(\mathrm{~g}_{-1}\right)$ being regarded as a subgroup of $G L\left(\overline{\mathfrak{g}}_{-1}\right)$. In case where M is of class (II), by Lemma 4.4 we have $\mathrm{Cl} V_{l}=\left(\mathrm{Cl} \bar{V}_{2 l}\right) \cap \mathrm{g}_{-1}(0 \leq l \leq r)$. Hence, by (3.5), (4.7) and Remark 4.5, we have

$$
G L\left(\mathrm{~g}_{-1}, \mathcal{S}\right)=G L_{e}\left(\overline{\mathfrak{g}}_{-1}, \overline{\mathcal{S}}\right) \cap G L\left(\mathrm{~g}_{-1}\right),
$$

under the notation in Lemma 3.6. Since $r \geq 2$, Lemma 3.6 implies (4.8). If M is not of class (II), we have $\mathrm{Cl} V_{l}=\left(\mathrm{Cl} \bar{V}_{l}\right) \cap g_{-1}(0 \leq l \leq r)$, which implies (4.8) in the same way.

Suppose next that $\overline{\mathrm{g}}$ is not simple. Then $\boldsymbol{G}_{0}=\boldsymbol{Z}_{2} \cdot \bar{G}_{0}$ with $\boldsymbol{Z}_{2}=\left\{1, k_{0}\right\}$ by (4.5), and $G L\left(\tilde{\mathfrak{g}}_{-1}, \tilde{\mathcal{S}}\right)=\tilde{G}_{0}$ by Theorem 3.5. Thus it suffices to show

$$
\begin{equation*}
G L\left(\mathfrak{g}_{-1}, \mathcal{S}\right)=\boldsymbol{Z}_{2} \cdot G L\left(\tilde{\mathfrak{g}}_{-1}, \tilde{\mathcal{S}}\right) \quad \text { if } \quad r \geq 2 \tag{4.9}
\end{equation*}
$$

First we show

$$
\begin{equation*}
\mathrm{g}_{0}=\operatorname{Lie} G L\left(\mathrm{~g}_{-1}, \mathcal{S}\right) \quad \text { if } \quad r \geq 2 \tag{4.10}
\end{equation*}
$$

We set $\mathfrak{g}_{s}=$ Lie $G L\left(\mathrm{~g}_{-1}, \mathcal{S}\right)$. Let $I \in$ End \mathfrak{g}_{-1} denote the complex structure of g_{-1} induced by that of g , and

$$
\begin{equation*}
\overline{\mathrm{g}}_{-1}=\mathrm{g}_{-1}^{+}+\mathrm{g}_{-1}^{-} \tag{4.11}
\end{equation*}
$$

be the decomposition by I which is the one (4.3) for $\overline{\mathrm{g}}_{-1}$. We define a complex structure I of End \mathbf{g}_{-1} by

$$
I(X)=I \circ X \quad \text { for } X \in \text { End } g_{-1}
$$

Since each V_{l} is a complex submanifold of $\tilde{\mathfrak{g}}_{-1}$ by (4.6), \mathfrak{g}_{s} is inavriant under I. Also g_{0} is invariant under I, and $I \mid g_{0}$ is the complex structure of g_{0} induced by that of g . Thus we have the following three decompositions by I.

$$
\begin{aligned}
& \text { End } \bar{g}_{-1}=\left(\text { End } \mathfrak{g}_{-1}\right)^{c}=\left(\text { End } \mathfrak{g}_{-1}\right)^{+}+\left(\text {End } g_{-1}\right)^{-} \\
& \overline{\mathfrak{g}}_{s}=\mathfrak{g}_{s}^{+}+\mathrm{g}_{s}^{-} \\
& \overline{\mathrm{g}}_{0}=\mathfrak{g}_{0}^{+} \oplus \mathrm{g}_{0}^{-}
\end{aligned}
$$

where

$$
\begin{aligned}
\left(\text { End } \mathfrak{g}_{-1}\right)^{ \pm}= & \operatorname{Hom}\left(\mathfrak{g}_{-1}^{+}, \mathfrak{g}_{-1}^{ \pm}\right)+\operatorname{Hom}\left(\mathfrak{g}_{-1}^{-}, \mathfrak{g}_{-1}^{ \pm}\right), \\
& \mathfrak{g}_{0}^{ \pm} \subset \operatorname{Hom}\left(\mathfrak{g}_{-1}^{ \pm}, \mathfrak{g}_{-1}^{ \pm}\right) .
\end{aligned}
$$

By $\left[\overline{\mathrm{g}}_{0}, \overline{\mathrm{~g}}_{s}\right] \subset \overline{\mathrm{g}}_{s}$ and $\left[\overline{\mathrm{g}}_{0}, I\right]=\{0\}$, we get

$$
\begin{equation*}
\left[\bar{g}_{0}, \mathfrak{g}_{s}^{ \pm}\right] \subset \mathfrak{g}_{s}^{ \pm} \tag{4.12}
\end{equation*}
$$

Let us consider the adjoint action of $\overline{\mathfrak{g}}_{0}$ on End $\overline{\mathfrak{g}}_{-1}$. Since $\boldsymbol{g}_{0}^{ \pm}$is included in $\operatorname{Hom}\left(\mathfrak{g}_{-1}^{ \pm}, \mathfrak{g}_{-1}^{ \pm}\right)$irreducibly, $\overline{\mathfrak{g}}_{0}$ leaves $\operatorname{Hom}\left(\mathfrak{g}_{-1}^{-}, \mathrm{g}_{-1}^{+}\right) \subset$ End $\overline{\mathfrak{g}}_{-1}$ invariant and acts on it irreducibly. We set

$$
\begin{aligned}
& \mathfrak{g}_{s}^{++}=\mathfrak{g}_{s}^{+} \cap \operatorname{Hom}\left(\mathfrak{g}_{-1}^{+}, \mathfrak{g}_{-1}^{+}\right) \\
& \mathfrak{g}_{s}^{-+}=\mathfrak{g}_{s}^{+} \cap \operatorname{Hom}\left(\mathrm{g}_{-1}^{-}, \mathrm{g}_{-1}^{+}\right)
\end{aligned}
$$

We will show

$$
\begin{align*}
& \mathfrak{g}_{s}^{+}=\mathfrak{g}_{s}^{++}+\mathrm{g}_{s}^{-+}, \tag{4.13}\\
& \mathrm{g}_{s}^{-+} \subset \operatorname{Hom}\left(\mathrm{g}_{-1}^{-}, \mathrm{g}_{-1}^{+}\right) \text {is invariant under } \overline{\mathrm{g}}_{0} \tag{4.14}
\end{align*}
$$

We denote a general element $X \in$ End $\overline{\mathrm{g}}_{-1}$ by a matricial form

$$
X=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right), \quad \begin{aligned}
& A \in \operatorname{Hom}\left(\mathrm{~g}_{-1}^{+}, \mathfrak{g}_{-1}^{+}\right), B \in \operatorname{Hom}\left(\mathrm{~g}_{-1}^{-}, \mathrm{g}_{-1}^{+}\right) \\
& C \in \operatorname{Hom}\left(\mathrm{~g}_{-1}^{+}, \mathrm{g}_{-1}^{-}\right), D \in \operatorname{Hom}\left(\mathrm{~g}_{-1}^{-}, \mathrm{g}_{-1}^{-}\right)
\end{aligned}
$$

Then, for

$$
\begin{aligned}
& X_{0}=\left(\begin{array}{cc}
A_{0} & 0 \\
0 & D_{0}
\end{array}\right) \in \overline{\mathfrak{g}}_{0}, \quad A_{0} \in \mathrm{~g}_{0}^{+}, \quad D_{0} \in \mathfrak{g}_{0}^{-}, \\
& X=\left(\begin{array}{cc}
A & B \\
0 & 0
\end{array}\right) \in \mathfrak{g}_{s}^{+}, \quad A \in \operatorname{Hom}\left(\mathfrak{g}_{-1}^{+}, \mathfrak{g}_{-1}^{+}\right), \quad B \in \operatorname{Hom}\left(\mathfrak{g}_{-1}^{-}, \mathfrak{g}_{-1}^{+}\right),
\end{aligned}
$$

we have

$$
\left[X_{0}, X\right]=\left(\begin{array}{cc}
A_{0} A-A A_{0} & A_{0} B-B D_{0} \\
0 & 0
\end{array}\right)
$$

Since $\mathfrak{g}_{0}^{ \pm}$contains the scalar endomorphisms $\boldsymbol{C}_{\mathfrak{g}_{ \pm_{1}}}$, we can take as $A_{0}=(1 / 2) 1$ and $D_{0}=-(1 / 2) 1$. Then, for any $X \in \mathrm{~g}_{s}^{+}$we have

$$
\left[X_{0}, X\right]=\left(\begin{array}{cc}
0 & B \\
0 & 0
\end{array}\right)
$$

which belongs to g_{s}^{+}by (4.12). Hence $B \in \mathrm{~g}_{s}^{-+}$and so $A=X-B \in \mathrm{~g}_{s}^{++}$. Thus we ge^{+}(4.13). Since the action of $\overline{\mathfrak{g}}_{0}$ on $\operatorname{Hom}\left(\mathrm{g}_{-1}^{-}, \mathfrak{g}_{-1}^{+}\right)$is given by

$$
B \mapsto A_{0} B-B D_{0} \quad \text { for }\left(A_{0}, D_{0}\right) \in \mathfrak{g}_{0}^{+} \oplus \mathrm{g}_{0}^{-}=\bar{g}_{0}
$$

we get also (4.14).
Now by the $\overline{\mathfrak{g}}_{0}$-irrecibility of $\operatorname{Hom}\left(\mathfrak{g}_{-1}, \mathfrak{g}_{-1}^{+}\right)$and (4.14) we have either (a) $\mathrm{g}_{s}^{-+}=\{0\}$ or $(\mathrm{b}) \mathrm{g}_{s}^{-+}=\operatorname{Hom}\left(\mathrm{g}_{-1}^{-}, \mathrm{g}_{-1}^{+}\right)$. In case (a), by (4.13) g_{s}^{+}is a subalgebra of $\mathfrak{g l}^{l}\left(\mathfrak{g}_{-1}^{+}\right)$with $\mathfrak{g}_{0}^{+} \subset \mathfrak{g}_{s}^{+}$. Since $r \geq 2$, by the same argument as in the proof of Theorem 3.5, we get $\mathrm{g}_{0}^{+}=\mathrm{g}_{s}^{+}$, which implies $\mathrm{g}_{0}=\mathrm{g}_{s}$. In case (b), noting that $\boldsymbol{C} 1_{\mathfrak{g}_{-1}^{+}} \subset \mathfrak{g}_{s}^{++}$, we have $\mathfrak{g}_{s}^{++}=\mathfrak{g l}\left(\mathfrak{g}_{-1}^{+}\right)$. This, together with (b), implies $\mathfrak{g}_{s}^{+}=$ (End $\left.\mathfrak{g}_{-1}\right)^{+}$. Therefore we have $\mathfrak{g}_{s}=\mathfrak{g l}\left(g_{-1}\right)$, which is a contradiction to $r \geq 2$. Thus we have proved (4.10). In particular, we see that any element $a \in G L\left(\mathfrak{g}_{-1}, \mathcal{S}\right)$ normalizes g_{0}.

Now let $a \in G L\left(\mathfrak{g}_{-1}, \mathcal{S}\right)$ be arbitrary. Since the \mathfrak{g}_{0}-module $\tilde{\mathfrak{g}}_{-1}$ has the decomposition (4.11) with inequivalent irreducible g_{0}-submodules $\mathrm{g}^{ \pm}$, a, regarded as an element of $G L\left(\overline{\mathfrak{g}}_{-1}\right)$, permutes \mathfrak{g}_{-1}^{+}and \mathfrak{g}_{-1}^{-}. On the other hand, $k_{0} \in G_{0} \subset$ $G L\left(\mathrm{~g}_{-1}, \mathcal{S}\right)$ is anti-linear as a map of $\tilde{\mathfrak{g}}_{-1}$, and hence k_{0}, regarded as an element of $G L\left(\overline{\mathfrak{g}}_{-1}\right)$, interchanges \mathfrak{g}_{-1}^{+}and g_{-1}^{-}. Thus, either a or $a k_{0}$ leaves $\mathrm{g}_{-1}^{ \pm}$invariant, that is, either a or $a k_{0}$ is \boldsymbol{C}-linear as a map of $\tilde{\mathfrak{g}}_{-1}$. Therefore, either a or $a k_{0}$ belongs to $G L\left(\tilde{\mathfrak{g}}_{-1}, \tilde{\mathcal{S}}\right)$, because $\mathcal{S}=\tilde{\mathcal{S}}$ by (4.6). This proves (4.9). q.e.d.

Remark 4.8. For classical \mathcal{G} such that the symmetric domain corresponding to $\left(\Pi, \Pi_{0}\right)$ is of tube type, Theorem 4.7 was proved by Tanaka [18].

5. Helgason spheres

In this section we define the notion of a Helgason sphere of an irreducible symmetric R-space (M, g), and prove that the group G permutes Helgason spheres of (M, g).

Under the notation in Section 1, we introduce a linear order $>$ on $\left(\mathfrak{a}_{M}\right)_{\boldsymbol{R}}$ in such a way that $h_{1}>\cdots>h_{r}>0$. Let Σ_{M}^{+}denote the set of positive roots in Σ_{M}. For each $\boldsymbol{\gamma} \in \Sigma_{M}$ we define

$$
\begin{aligned}
& \mathfrak{t}_{0}^{\gamma}=\mathfrak{t}_{0} \cap\left(\left(\mathfrak{f}^{C}\right)^{\gamma}+\left(\mathfrak{t}^{C}\right)^{-\gamma}\right), \\
& \mathfrak{m}^{\gamma}=\mathfrak{m} \cap\left(\left(\mathfrak{f}^{C}\right)^{\gamma}+\left(\mathfrak{f}^{C}\right)^{-\gamma}\right), \quad m_{M}(\gamma)=\operatorname{dim} \mathfrak{m}^{\gamma}
\end{aligned}
$$

and set

$$
\begin{aligned}
& \mathfrak{f}_{0}^{0}=\mathfrak{t}_{0} \cap\left(\mathfrak{f}^{C}\right)^{0}=\left\{X \in \mathfrak{t}_{0} ;\left[X, \mathfrak{a}_{M}\right]=\{0\}\right\}, \\
& \mathfrak{m}^{0}=\mathfrak{m} \cap\left(\mathfrak{t}^{C}\right)^{0}=\mathfrak{a}_{M} .
\end{aligned}
$$

Then we have orthogonal decompositions

$$
\begin{aligned}
& \mathfrak{f}_{0}=\mathfrak{f}_{0}^{0}+\sum_{\gamma \in \Sigma_{\mathfrak{m}}^{+}} \mathfrak{f}_{0}^{\gamma}, \\
& \mathfrak{m}=\mathfrak{m}^{0}+\sum_{\gamma \in \Sigma_{\mathbf{L}}^{+}} \mathfrak{m}^{\gamma} .
\end{aligned}
$$

For $\gamma \in \Sigma_{M}$, we set

$$
A^{\gamma}=-\frac{2 \pi \sqrt{-1}}{(\gamma, \gamma)} \gamma \in \mathfrak{a}_{M}
$$

Note that $\left|A^{\gamma}\right|=2 \pi /|\gamma|$. Let

$$
\Sigma_{M}=\left(\Sigma_{M}\right)_{1} \cup \cdots \cup\left(\Sigma_{M}\right)_{s}
$$

be the decomposition of Σ_{M} into the sum of irreducible components $\left(\Sigma_{M}\right)_{k}$, and $\delta_{k}(1 \leq k \leq s)$ the highest root in $\left(\Sigma_{M}\right)_{k}$. We choose δ_{M} of the largest length among these $\delta_{k}(1 \leq k \leq s)$ once and for all.

Suppose that $\gamma \in \Sigma_{M}^{+}$satisfy $2 \gamma \notin \Sigma_{M}$. We define

$$
\begin{aligned}
\mathfrak{n}_{\gamma} & =\boldsymbol{R} \sqrt{-1} \gamma+\mathfrak{m}^{\gamma}, \\
\mathfrak{t}_{\gamma} & =\left[\mathfrak{n}_{\gamma}, \mathfrak{n}_{\gamma}\right]=\mathfrak{t}_{0}^{\gamma}+\left[\mathfrak{m}^{\gamma}, \mathfrak{m}^{\gamma}\right] \\
& =\mathfrak{t}_{0}^{\gamma}+\left[\mathfrak{t}_{0}^{\gamma}, \mathfrak{t}_{0}^{\gamma}\right], \\
\mathfrak{g}_{\gamma} & =\mathfrak{t}_{\boldsymbol{\gamma}}+\mathfrak{n}_{\gamma} .
\end{aligned}
$$

Then \mathfrak{Z}_{γ} is a subalgebra of \mathfrak{t}, and by virtue of $2 \gamma \notin \Sigma_{M}$ one has $\left[\left[\mathfrak{n}_{\gamma}, \mathfrak{n}_{\gamma}\right], \mathfrak{n}_{\gamma}\right] \subset \mathfrak{n}_{\gamma}$. Therefore

$$
N_{\gamma}=\left(\exp \mathfrak{n}_{\gamma}\right) o \subset M
$$

is a totally geodesic submanifold of (M, g) with

$$
\begin{equation*}
\operatorname{dim} N_{\gamma}=m_{M}(\gamma)+1 \tag{5.1}
\end{equation*}
$$

Lemma 5.1 (Helgason [4]). Suppose that $\operatorname{dim} M \geq 2$.

1) The maximum of sectional curvatures of (M, g) is equal to $\left|\delta_{M}\right|^{2}$.
2) N_{γ} has constant sectional curvature $|\gamma|^{2}$ (with respect to the metric on N_{γ} induced by g), and therefore the symmetric pair $\left(\mathfrak{z}_{\gamma}, \mathrm{t}_{\gamma}\right)$ is isomorphic to

$$
\left(\mathfrak{o}\left(m_{M}(\gamma)+2\right), \mathfrak{o}\left(m_{M}(\gamma)+1\right)\right) .
$$

3) If M is simply connected and Σ_{M} is irreducible, then
(a) $N_{\delta_{k}}$ is a sphere, and

$$
T=\left\{\left(\exp t A^{\delta_{X I}}\right) o ; 0 \leq t \leq 1\right\}
$$

is a simply closed geodesic in $N_{\delta_{\text {I }}}$ of length $2 \pi /\left|\delta_{M}\right|$, and has the minimum length among all the closed geodesics of (M, g);
(b) Any totally geodesic sphere in (M, g) with dimension ≥ 2 of constant curvature $\left|\delta_{M}\right|^{2}$ is conjugate to a submanifold of $N_{\delta_{K}}$ under the largest connected isometry group $\mathrm{I}^{0}(M, g)$ of (M, g).

Remark 5.2. Acutally, Lemma 5.1 holds for any non-flat compact symmetric space (M, g).

Theorem 5.3. Suppose that $\operatorname{dim} M \geq 2$.

1) Shortest closed geodesics of (M, g) are conjugate to each other under $\mathrm{I}^{0}(M, g)(u p$ to parametrization $)$.
2) We have an inequality

$$
\left|A_{1}\right| \leq\left|A^{\delta_{\mathrm{IK}}}\right|
$$

which is equivalent to that $\left|\delta_{M}\right| \leq|\delta|$, and the equality holds if and only if M is simply connected.
3) The length of a shortest closed geodesic is $2 \pi /|\delta|$.

Proof. Let $c(t)(0 \leq t \leq 1)$ be any shortest simply closed geodesic of (M, g). Recalling the fact that any vector in \mathfrak{m} can be transformed into \mathfrak{a}_{M} by an element of the identity component of K_{0}, we see that $c(t)$ is conjugate to a geodesic

$$
c_{A}(t)=(\exp t A) o(0 \leq t \leq 1), \text { with } A \in \Gamma_{M},
$$

under $\mathrm{I}^{0}(M, g)$. Since A has the shortest length among $\Gamma_{M}-\{0\}$, we have $A=$ $\pm A_{i}(1 \leq i \leq r)$. Furthermore we may assume that $A=A_{1}$ or $-A_{1}$ since W_{M} contains \mathscr{S}_{r} by Lemma 1.3. But the corresponding closed geodesics $c_{A_{1}}$ and $c_{-A_{1}}$ are the same up to parametrization, and so we get the assertion 1). We prove the inequality in 2) for each of the five classes in Section 1 separately.

Classes (I) and (II). In these cases, Σ_{M} is irreducible and $\delta_{M}=2 h_{1} . \quad A^{\delta_{M}}$ can be computed by (1.22) to get $A^{\delta_{M}}=A_{1}$. Thus $\left|A^{\delta_{M}}\right|=\left|A_{1}\right|$.

Class (III). By $\operatorname{dim} M \geq 2$, we have $r \geq 2$. Thus Σ_{M} is irreducible and $\delta_{M}=h_{1}-h_{r} . \quad$ One has $A^{\delta_{M K}}=A_{1}-A_{r}$, and hence $\left|A^{\delta_{K}}\right|=\sqrt{2}\left|A_{1}\right|>\left|A_{1}\right|$.

Class (IV). Σ_{M} is irreducible, $\delta_{M}=h_{1}+h_{2}(r \geq 2)$ or $h_{1}(r=1)$. If $r \geq 2$, $A^{\delta_{x}}=A_{1}+A_{2}$ and $\left|A^{\delta_{M}}\right|=\sqrt{2}\left|A_{1}\right|>\left|A_{1}\right|$. If $r=1, A^{\delta_{X I}}=2 A_{1}$ and $\left|A^{\delta_{u}}\right|=$ $2\left|A_{1}\right|>\left|A_{1}\right|$.

Class (V). Suppose first that $r \geq 3$. Then Σ_{M} is irreducible and $\delta_{M}=h_{1}+h_{2}$.

One has $A^{\delta_{X X}}=A_{1}+A_{2}$ and $\left|A^{\delta_{X}}\right|=\sqrt{2}\left|A_{1}\right|>\left|A_{1}\right|$. Suppose that $r=2$. In this case, Σ_{M} is not irreducible and decomposed as $\Sigma_{M}=\left(\Sigma_{M}\right)_{1} \cup\left(\Sigma_{M}\right)_{2}$ with

$$
\begin{array}{ll}
\left(\Sigma_{M}\right)_{1}=\left\{h_{1}+h_{2},-\left(h_{1}+h_{2}\right)\right\}, & \delta_{1}=h_{1}+h_{2}, \\
\left(\Sigma_{M}\right)_{2}=\left\{h_{1}-h_{2}, h_{2}-h_{1}\right\}, & \delta_{2}=h_{1}-h_{2} .
\end{array}
$$

We take as $\delta_{M}=h_{1}+h_{2}$. Then $A^{\delta_{M}}=A_{1}+A_{2}$ and $\left|A^{\delta_{M}}\right|=\sqrt{2}\left|A_{1}\right|>\left|A_{1}\right|$.
Now we obtain the assertion 2) by comparing the above computations of $\left|A^{\delta_{M}}\right|$ with $\pi_{1}(M)$. The assertion 3) follows from that $\left|A_{1}\right|=2 \pi /|\delta|$. q.e.d.

Seeing the above proof, we get the following
Corollary 5.4. Any shortest closed geodesic of (M, g) through the origin o is conjugate to the geodesic

$$
T_{1}=\left\{\left(\exp t A_{1}\right) o ;|t| \leq 1 / 2\right\}
$$

under the group K_{0}^{\prime} (up to parametrization).
A submanifold S of M is called a Helgason sphere of (M, g) if
(H1) S is a totally geodesic sphere with minimum radius; and
(H2) S has the maximum dimension among the submanifolds with the property (H1).

Remark 5.5. A "Helgason sphere" in Nagano [7] or Peterson [8] is a submanifold S with (H1), (H2) and $\operatorname{dim} S \geq 2$.

Theorem 5.6. 1) Helgason spheres of (M, g) are conjugate to each other under $\mathrm{I}^{0}(M, g)$.
2) For any shortest closed geodesic c of (M, g) there is a Helgason sphere which includes c.
3) M is simply connected if and only if $2 \leq$ dimension of a Helgason sphere S. In this case, one has

$$
\operatorname{dim} S=m_{M}\left(\delta_{M}\right)+1
$$

4) The radius of a Helgason sphere is $1 /|\delta|$.

Proof. We may assume that $\operatorname{dim} M \geq 2$. Suppose first that M is simply connected, that is, (M, g) is of class (I) or (II). Since Σ_{M} is irreducible in this case, by Lemma 5.1, 2), 3) (a) and (5.1), $N_{\delta_{M}}$ is a totally geodesic sphere of the radius $1 /\left|\delta_{M}\right|$ with

$$
\operatorname{dim} N_{\delta_{\boldsymbol{I I}}}=m_{M}\left(\delta_{M}\right)+1
$$

Let N be an arbitrary totally geodesic sphere in (M, g). If $\operatorname{dim} N \geq 2$, by Lemma $5.1,1)$ the sectional curvature κ of N satisfies $\kappa \leq\left|\delta_{M}\right|^{2}$. Hence the radius of
$N=1 / \sqrt{\kappa} \geq 1 /\left|\delta_{M}\right|$. If $\operatorname{dim} N=1$, that is, N is a closed geodesic, then by Lemma 5.1,3) (a) the length of $N \geq 2 \pi| | \delta_{M} \mid$, and hence the radius of $N \geq$ $1 /\left|\delta_{M}\right|$. Therefore $N_{\delta_{M}}$ satisfies the property (H1). It has also the property (H2) by virtue of Lemma 5.1, 3) (b). Thus $N_{\delta_{\mu}}$ is a Helgason sphere, and hence the assertion 1) follows from Lemma 5.1, 3) (b). The assertion 2) follows from Lemma 5.1, 3) (a) and Theorem 5.3, 1).

Suppose next that M is not simply connected. If N is a totally geodesic sphere with $\operatorname{dim} N \geq 2$, then the radius of $N \geq 1 /\left|\delta_{M}\right|$, as is shown in the above. The radius of a shortest closed geodesic is $1 /|\delta|$ by Theorem 5.3,3). Thus, by Theorem 5.3, 2) the Helgason spheres are the shortest closed geodesics. Therefore the assertion 1) follows from Theorem 5.3, 1). The assertion 2) is trivial.

The assertions 3) and 4) are obvious from the above arguments and Theorem 5.3, 2).
q.e.d.

We fix a root $\beta \in \Delta$ and define a subalgebra g_{β} of \mathfrak{g} by

$$
\mathfrak{g}_{\boldsymbol{\beta}}=\left[\mathrm{g}^{\beta}, \mathfrak{g}^{-\beta}\right]+\mathrm{g}^{\beta}+\mathfrak{g}^{-\beta}
$$

It has a Cartan decomposition

$$
\begin{equation*}
\mathfrak{g}_{\beta}=\mathfrak{f}_{\beta}+\mathfrak{p}_{\beta}, \quad \text { where } \quad \mathfrak{f}_{\beta}=\mathfrak{f} \cap \mathfrak{g}_{\beta}, \mathfrak{p}_{\beta}=\mathfrak{p} \cap \mathfrak{g}_{\beta} \tag{5.2}
\end{equation*}
$$

The symmetric pair dual to $\left(\boldsymbol{g}_{\beta}, \boldsymbol{f}_{\beta}\right)$ is in the same situation as $\left(\mathfrak{g}_{\gamma}, \mathrm{t}_{\gamma}\right)$ in Lemma 5.1, by virtue of $2 \beta \notin \Sigma$. Therefore, by Lemma 5.1,2) and Remark 5.2 one has

$$
\begin{equation*}
\left(\mathrm{g}_{\beta}, \mathfrak{f}_{\beta}\right) \simeq(\mathfrak{p}(1, m(\beta)+1), \mathfrak{p}(m(\beta)+1)) \tag{5.3}
\end{equation*}
$$

Furthermore we have a decomposition

$$
\mathfrak{f}_{\beta}=\left(\mathfrak{f}_{\beta}\right)_{0}+\mathfrak{m}_{\beta}, \quad \text { where } \quad\left(\mathfrak{f}_{\beta}\right)_{0}=\mathfrak{f}_{\beta} \cap \mathfrak{f}_{0}, \mathfrak{m}_{\beta}=\mathfrak{f}_{\beta} \cap \mathfrak{m}
$$

with the property

$$
\begin{equation*}
\left[\left[\mathfrak{m}_{\beta}, \mathfrak{m}_{\beta}\right], \mathfrak{m}_{\beta}\right] \subset \mathfrak{m}_{\beta} \tag{5.4}
\end{equation*}
$$

Now let G_{β} be the connected Lie subgroup of G generated by g_{β} and set $S_{\beta}=$ $G_{\beta} O \subset M$. Then we have

$$
S_{\beta}=\left(\exp \mathfrak{m}_{\beta}\right) o \simeq G_{\beta} / U_{\beta},
$$

where $U_{\beta}=U \cap G_{\beta}$ is a parabolic subgroup of G_{β}. Therefore, by (5.3) S_{β} is the symmetric R-space associated to $\mathfrak{o}(1, m(\beta)+1)$, and hence it is a sphere. Together with (5.4), it follows that S_{β} is a totally geodesic sphere in (M, g) with dimension $m(\beta)$.

Lemma 5.7. S_{β} is a Helgason sphere.

Proof. The closed geodesic T_{β} in Section 1 is contained in S_{β} and has the length $2 \pi /|\delta|$, and hence the radius of S_{β} is $1 /|\delta|$. Therefore, by Theorem $5.6,4) S_{\beta}$ has the property (H1).

Suppose first that M is not simply connected. If $\operatorname{dim} S_{\beta}$ would be greater than one, then the radius of $S_{\beta} \geq 1 /\left|\delta_{M}\right|>1 /|\delta|$ by Theorem 5.3,2), which is a contradiction. Therefore $\operatorname{dim} S_{\beta}=1$, whence S_{β} is a Helgason sphere.

Suppose next that M is simply connected. By Theorem 5.6,2) it suffices to prove

$$
\begin{equation*}
m(\beta)=m_{M}\left(\delta_{M}\right)+1, \quad \text { where } \quad \delta_{M}=2 h_{1} \tag{5.5}
\end{equation*}
$$

Denoting by $\varpi_{\Delta}: \mathfrak{a} \rightarrow \mathfrak{a}_{\Delta}$ the orthogonal projection, we have (cf. Takeuchi [14])

$$
\begin{equation*}
\#\left\{\gamma \in \Sigma ; \varpi_{\Delta}(\gamma)=\beta_{i}\right\}=1 \quad(1 \leq i \leq r) . \tag{5.6}
\end{equation*}
$$

Moreover (Takeuchi [16]) there is $c \in \operatorname{Inn}(\overline{\mathrm{~g}})$ such that

$$
\begin{equation*}
c \mathfrak{a}_{\Delta}=\left(\mathfrak{a}_{M}\right)_{\boldsymbol{R}}, \quad c \beta_{i}=2 h_{i}(1 \leq i \leq r) \tag{5.7}
\end{equation*}
$$

Since $\Delta \subset W \delta=W \beta_{1}$, we have $m(\beta)=m\left(\beta_{1}\right)$, and so

$$
\begin{aligned}
& m(\beta)=\operatorname{dim}_{C}\left\{X \in \overline{\mathfrak{g}} ;[H, X]=\left(\beta_{1}, H\right) X \quad \text { for each } H \in \mathfrak{a}\right\} \\
& =\operatorname{dim}_{C}\left\{X \in \overline{\mathfrak{g}} ;[H, X]=\left(\beta_{1}, H\right) X \quad \text { for each } H \in \mathfrak{a}_{\Delta}\right\} \text { by (5.6) } \\
& =\operatorname{dim}_{\boldsymbol{C}}\left\{X \in \overline{\mathfrak{g}} ;[H, X]=\left(2 h_{1}, H\right) X \quad \text { for each } H \in \mathfrak{a}_{M}\right\} \text { by (5.7) } \\
& =\operatorname{dim}_{\boldsymbol{C}}\left({ }^{\boldsymbol{P} C}\right)^{\delta_{\boldsymbol{X}} \boldsymbol{C}}+\operatorname{dim}_{\boldsymbol{C}}\left(\mathfrak{p}^{C}\right)^{\delta_{\boldsymbol{x}}} \text {, }
\end{aligned}
$$

where

$$
\left(\mathfrak{p}^{c}\right)^{\delta_{\mathfrak{K}}}=\left\{X \in \mathfrak{p}^{c} ;[H, X]=\left(\delta_{M}, H\right) X \quad \text { for each } H \in \mathfrak{a}_{M}\right\}
$$

Since $\operatorname{dim}_{C}\left({ }^{\boldsymbol{f}}\right)^{\delta_{\boldsymbol{M}}}=m_{M}\left(\delta_{M}\right)$ and $\operatorname{dim}_{\boldsymbol{C}}\left(\mathfrak{p}^{C}\right)^{\delta_{\boldsymbol{M}}}=1$ (Takeuchi [16]), we get (5.5).

Corollary 5.8.

$$
m(\beta)= \begin{cases}m_{M}\left(\delta_{M}\right)+1 & \text { if } \quad \pi_{1}(M)=\{0\} \\ 1 & \text { if } \quad \pi_{1}(M) \neq\{0\}\end{cases}
$$

For $\lambda \in \boldsymbol{R}$ and $-1 \leq p \leq 1$, we define

$$
\Sigma^{(\lambda)}=\{\gamma \in \Sigma ; 2(\gamma, \delta) /(\delta, \delta)=\lambda\}, \quad \Sigma_{p}^{(\lambda)}=\Sigma^{(\lambda)} \cap \Sigma_{p}
$$

Then we have decompositions

$$
\begin{aligned}
& \Sigma=\Sigma^{(0)} \cup \Sigma^{(1)} \cup \Sigma^{(-1)} \cup \Sigma^{(2)} \cup \Sigma^{(-2)} \text { with } \Sigma^{(\pm 2)}=\{ \pm \delta\}, \\
& \Sigma_{0}=\Sigma_{0}^{(0)} \cup \Sigma_{0}^{(1)} \cup \Sigma_{0}^{(-1)}, \quad \Sigma_{1}=\Sigma_{1}^{(0)} \cup \Sigma_{1}^{(1)} \cap \Sigma^{(2)} .
\end{aligned}
$$

Furthermore we set

$$
\begin{aligned}
& \Sigma_{\delta}=\left\{\gamma \in \Sigma ;\left(\gamma, E_{\delta}\right) \geq 0\right\}, \text { where } E_{\delta}=2 E-\frac{2}{(\delta, \delta)} \delta, \\
& \left(\Sigma_{\delta}\right)_{q}=\left\{\gamma \in \Sigma_{\delta} ;\left(\gamma, E_{\delta}\right)=q\right\} \quad \text { for } q \geq 0 .
\end{aligned}
$$

Then we have decompositions

$$
\begin{aligned}
& \Sigma_{\delta}=\left(\Sigma_{\delta}\right)_{0} \cup\left(\Sigma_{\delta}\right)_{1} \cup\left(\Sigma_{\delta}\right)_{2} \\
& \left(\Sigma_{\delta}\right)_{0}=\Sigma_{0}^{(0)} \cup \Sigma^{(2)} \cup \Sigma^{(-2)} \\
& \left(\Sigma_{\delta}\right)_{1}=\Sigma_{\delta}^{(-1)} \cup \Sigma_{1}^{(1)} \\
& \left(\Sigma_{\delta}\right)_{2}=\Sigma_{1}^{(0)}
\end{aligned}
$$

We define a parabolic subalgebra \mathfrak{l}_{δ} of \mathfrak{g} and several subalgebras and a subspace of \mathfrak{r}_{δ} by

$$
\begin{aligned}
& \mathfrak{I}_{\delta}=\mathrm{g}^{0}+\sum_{\gamma \in \Sigma_{\delta}} \mathrm{g}^{\gamma}, \\
& \mathfrak{l}_{0}=\mathrm{g}^{0}+\sum_{\gamma \in\left(\Sigma_{\delta}\right)_{0}} \mathrm{~g}^{\gamma} \supset \mathrm{g}_{\delta}, \\
& \mathfrak{I}_{1}=\sum_{\gamma \in\left(\Sigma_{\delta_{1}}\right.} \mathfrak{g}^{\gamma} \subset \mathfrak{H} \text { (a subspace), } \\
& \mathfrak{I}_{2}=\sum_{\gamma \in\left(\Sigma_{\delta)_{2}}\right.} g^{\gamma} \subset g_{1}, \\
& z_{0}=\left\{X \in \mathfrak{r}_{0} ;\left[X, g_{\delta}\right]=\{0\}\right\} \subset g_{0} .
\end{aligned}
$$

Note that $\mathfrak{I}_{0}=g_{\delta} \oplus \mathcal{z}_{0}$. The corresponding connected Lie subgroups of G are denoted by L_{δ}, L_{0}, L_{2} and Z_{0}, and set $L_{1}=\exp \mathfrak{l}_{1}$. Then we have that $L_{\delta}=L_{0} L_{1} L_{2}$ since $\mathfrak{I}_{1}+\mathfrak{Y}_{2}$ is a nilpotent ideal of $\mathfrak{Y}_{\delta}=\mathfrak{Y}_{0}+\mathfrak{Y}_{1}+\mathfrak{Y}_{2}$ with $\left[\mathfrak{l}_{1}, \mathfrak{Y}_{1}\right] \subset \mathfrak{Y}_{2}$, and that $L_{0}=G_{8} Z_{0}$.

Lemma 5.9. $L_{\delta} S_{\delta}=S_{\delta}$.
Proof. We have that $L_{\delta}=L_{0} L_{1} L_{2}=G_{\delta} Z_{0} L_{1} L_{2} \subset G_{\delta} U$ since $Z_{0} \subset G_{0}, L_{1} \subset U$ and $L_{2} \subset \exp \mathrm{~g}_{1}$. Thus, for each $l \in L_{\delta}$ and each $p=a 0 \in S_{\delta}\left(a \in G_{\delta}\right)$, one has

$$
l p=l a o \in L_{\delta} o \subset G_{\delta} U o=G_{\delta} o=S_{\delta} . \quad \text { q.e.d. }
$$

Theorem 5.10. Any element of the group G of basic transformations permutes the Helgason spheres of $\left(M_{\wedge} g\right)$.

Proof. We claim first that for any $a \in G a S_{\delta}$ is also a Helgason sphere. If we denote by G^{0} and K^{0} the identity components of G and K respectively, we have the polar decomposition $G^{0}=K^{0} \exp \mathfrak{p}$ and $G^{0}=K^{0} L_{\delta}$. The latter follows from the fact that the parabolic subalgebra \mathfrak{I}_{δ} contains an Iwasawa subalgebra. Thus, together with (1.6), we get $G=K L_{\delta}$. Hence the claim follows by Lemma 5.9.

Now let S be an arbitrary Helgason sphere, and $a \in G$ be arbitrary. By Theorem $5.6,1$) there is $k \in K$ such that $k S_{\delta}=S$. Therefore $a S=a k S_{\delta}$ is a

Helgason sphere by the above claim.
q.e.d.

Example 5.11. Let $M \hookrightarrow P_{N}(\mathbb{C})$ be the canonical equivariant projective imbedding of an irreducible Hermitian symmetric space (M, g) of compact type, in the sense of Sakane-Takeuchi [9]. Then a submanifold S of M is a Helgason sphere of (M, g) if and only if S is a projective line in $P_{N}(\boldsymbol{C})$. In fact, S_{β} in Lemma 5.7 is a projective line in $P_{N}(\boldsymbol{C})$.

Remark 5.12. It can be shown that a Helgason sphere generates the homotopy $\pi_{m(\delta)}(M)$ and the homology $H_{m(\delta)}(M, \boldsymbol{Z})$.

6. Arithmetic distance

In this section we define a discrete valued distance d on an irreducible symmetric R-space (M, g) in terms of Helgason spheres, and characterize the group G as the group of isometries of d.

Lemma 6.1. For each $p \in \mathcal{V}_{l}(1 \leq l \leq r)$ there is a chain of Helgason spheres of length l connecting o and p, that is, there are Helgason spheres S_{1}, \cdots, S_{l} such that $o \in S_{1}, p \in S_{l}$ and $S_{k} \cap S_{k+1} \neq \phi(1 \leq k \leq l-1)$.

Proof. Since each element of K_{0} permutes the Helgason spheres by $K_{0} \subset$ $\mathrm{I}(M, g)$, and $\mathcal{V}_{l}=K_{0} \mathscr{D}_{l}$ by Lemma 2.2, we may assume that $p \in \mathscr{D}_{l}$. Furthermore, since $\mathfrak{S}_{r} \subset W_{M}$ by Lemma 1.3, we may assume that

$$
p=(\exp H) o, \quad H=\sum_{i=1}^{l} x_{i} A_{i}, \quad 0<\left|x_{i}\right| \leq 1 / 2 \quad(1 \leq i \leq l)
$$

We set

$$
\begin{aligned}
& p_{0}=o, \quad p_{k}=\left(\exp \sum_{i=1}^{k} x_{i} A_{i}\right) o(1 \leq k \leq l-1), p_{l}=p \\
& c_{k}=\left\{\exp \left(\sum_{i=1}^{k-1} x_{i} A_{i}+t A_{k}\right) o ;|t| \leq 1 / 2\right\} \quad(1 \leq k \leq l)
\end{aligned}
$$

Then c_{k} is a shortest closed geodesic (of length $2 \pi /|\delta|$) through p_{k-1} and p_{k} $(1 \leq k \leq l)$. By Theorem $5.6,2)$ there are Helgason spheres S_{k} with $c_{k} \subset S_{k}$ $(1 \leq k \leq l)$. The chain $\left\{S_{k}\right\}$ is the required one.
q.e.d.

By this lemma and the transitivity of G on M, it follows that any two points of M can be connected by a chain of Helgason spheres. So we may give the following definition.

We define a distance d on (M, g), called the arithmetic distance, as follows. For $p, q \in M$ with $p \neq q, d(p, q)$ is defined to be the minimum possible length of a chain of Helgason spheres connecting p and q; and $d(p, q)=0$ if $p=q$. Let

$$
\mathrm{I}(M, d)=\{\varphi \in \operatorname{Diff}(M) ; d(\varphi(p), \varphi(q))=d(p, q) \text { for any } p, q \in M\}
$$

denote the isometric diffeomorphism group of (M, d). Note that $G \subset 1(M, d)$ in virtue of Theorem 5.10. We define

$$
M_{l}=\{p \in M ; d(o, p)=l\} \quad(0 \leq l \leq r)
$$

Then Lemma 6.1 is restated as

$$
\subset V_{l} \subset M_{0} \cup M_{1} \cup \cdots \cup M_{l} \quad(0 \leq l \leq r)
$$

Lemma 6.2. If we define

$$
s_{l}^{\prime}=s_{\beta_{2}} \cdots s_{\beta_{l+1}} \in W \quad \text { for } 1 \leq l \leq r-1,
$$

then $s_{l}^{\prime}\left(\Sigma_{0}^{(1)} \cup \Sigma^{(2)}\right) \subset \Sigma_{0} \cup \Sigma_{1}$, under the notation in Section 5.
Proof. Note that for $\gamma \in \Sigma, s_{l}^{\prime} \gamma \in \Sigma_{0} \cup \Sigma_{1}$ if and only if $\left(s_{l}^{\prime} \gamma, E\right) \geq 0$, where

$$
\begin{aligned}
\left(s_{l}^{\prime} \gamma, E\right) & =\left(\gamma, s_{l}^{\prime} E\right)=\left(\gamma, E-\frac{2}{\left(\beta_{2}, \beta_{2}\right)} \beta_{2}-\cdots-\frac{2}{\left(\beta_{l+1}, \beta_{l+1}\right)} \beta_{l+1}\right) \\
& =(\gamma, E)-\frac{2}{(\delta, \delta)} \sum_{i=2}^{l+1}\left(\varpi_{\Delta}(\gamma), \beta_{i}\right)
\end{aligned}
$$

If $\gamma \in \Sigma_{0}^{(1)}$, then $(\gamma, E)=0$ and $\sigma_{\Delta}(\gamma)=(1 / 2)\left(\beta_{1}-\beta_{j}\right)(2 \leq j \leq r)$ or $(1 / 2) \beta_{1}$ (cf. Takeuchi [14]), whence $\left(s_{l}^{\prime} \gamma, E\right)=0$ or 1 . If $\gamma \in \Sigma^{(2)}$, that is, $\gamma=\delta$, then $(\gamma, E)=1$ and $\varpi_{\Delta}(\gamma)=\beta_{1}$, whence $\left(s_{i}^{\prime} \gamma, E\right)=1$. q.e.d.

Next we want to know the structure of $Q_{1}=U^{\prime} b_{1} o$. Under the notation in Section 5, we define

$$
\begin{aligned}
& \mathbf{g}_{0}^{(0)}=\mathfrak{g}^{0}+\sum_{\gamma \in \Sigma_{0}^{(0)}} g^{\gamma}, \quad g_{0}^{(\pm 1)}=\sum_{\gamma \in \Sigma_{0}^{(\pm 1)}} g^{\gamma}, \\
& \mathfrak{g}_{1}^{(1)}=\sum_{\gamma \in \Sigma_{1}^{1)}} \mathfrak{g}^{\gamma}, \quad \mathfrak{g}_{1}^{(0)}=\sum_{\gamma \in \Sigma_{1}^{(0)}} g^{\gamma}, \quad \mathfrak{g}^{(2)}=\mathfrak{g}^{\delta},
\end{aligned}
$$

and define a parabolic subalgebra \mathfrak{u}_{0} of \mathfrak{g}_{0} by

$$
\mathfrak{u}_{0}=\mathfrak{g}_{0}^{(0)}+\mathfrak{g}_{0}^{(-1)}
$$

Then we have

$$
\mathfrak{g}_{0}=\mathfrak{1}_{0}+\mathfrak{g}_{0}^{(1)}, \quad \mathfrak{g}_{1}=\mathfrak{g}^{(2)}+\mathfrak{g}_{1}^{(1)}+\mathfrak{g}_{1}^{(0)}
$$

Let $G_{0}^{(1)}, G_{1}^{(1)}, G_{1}^{(0)}$ and $G^{(2)}$ denote the connected Lie subgroups of G generated by $\mathfrak{g}_{0}^{(1)}, \mathfrak{g}_{1}^{(1)}, \mathfrak{g}_{1}^{(0)}$ and $\mathfrak{g}^{(2)}$ respectively, and let

$$
U_{0}^{\prime}=\left\{a \in G_{0}^{\prime} ; a \mathfrak{u}_{0}=\mathfrak{H}_{0}\right\}
$$

Then Lie $U_{0}^{\prime}=\mathfrak{1}_{0}, \exp g_{1}=G^{(2)} G_{1}^{(1)} G_{1}^{(0)}$ and $U^{\prime}=G_{0}^{\prime} G^{(2)} G_{1}^{(1)} G_{1}^{(0)}$. Since $b_{1} \mid \mathfrak{a}=s_{1}$ by Lemma 2.1, 1), we have

$$
\mathfrak{u} \cap b_{1} \mathfrak{u}=\mathfrak{g}^{0}+\sum_{\gamma} \mathfrak{g}^{\gamma}
$$

where γ runs through all the $\gamma \in \Sigma$ such that $(\gamma, E) \geq 0$ and $\left(\gamma, s_{1} E\right) \geq 0$. But, since

$$
\left(\gamma, s_{1} E\right)=\left(\gamma, E-\frac{2}{(\delta, \delta)} \delta\right)=(\gamma, E)-\frac{2(\gamma, \delta)}{(\delta, \delta)}
$$

we have

$$
\mathfrak{u} \cap b_{1} \mathfrak{u}=\mathfrak{u}_{0}+\mathfrak{g}_{1}^{(1)}+\mathfrak{g}_{1}^{(0)}
$$

Now U_{0}^{\prime} leaves invariant \mathfrak{g}_{1} and $\mathfrak{g}_{1}^{(1)}+\mathfrak{g}_{1}^{(0)}$, and hence U_{0}^{\prime} acts on $\mathfrak{g}^{(2)} \simeq$ $\mathfrak{g}_{1} /\left(\mathfrak{g}_{1}^{(1)}+\mathfrak{g}_{1}^{(0)}\right)$ linearly. Then in the same way as in Takeuchi [15] we can prove

$$
U^{\prime} \cap b_{1} U^{\prime} b_{1}^{-1}=U_{0}^{\prime} G_{1}^{(1)} G_{1}^{(0)}
$$

by which the following lemma is derived.
Lemma 6.3. The correspondence $(a, X) \mapsto a \exp X b_{1} o\left(a \in G_{0}^{\prime}, X \in \mathfrak{g}^{(2)}\right)$ induces a bijection $\Psi: G_{0}^{\prime} \times{ }_{U_{0}^{\prime}} \mathrm{g}^{(2)} \rightarrow \mathcal{V}_{1}=U^{\prime} b_{1} o$.

Theorem 6.4. $\quad M_{l}=V_{l}(0 \leq l \leq r)$. Therefore, the range of d is $\{0,1, \cdots, r\}$.
Proof. We prove this by the induction on l. If $l=0$, this is obvious. Let $p \in M_{1}$ be arbitrary. Then there is a Helgason sphere through o and p, and hence there is a shortest closed geodesic c through o and p. Therefore, by Corollary 5.4 there is $k \in K_{0}^{\prime}$ such that $k c=T_{1}$, whence $k p \in \mathscr{D}_{1}$. Thus p belongs to $K_{0}^{\prime} \mathscr{D}_{1}$, which is equal to $C V_{1}$ by Lemma 2.2, 1). Thus we get $M_{1} \subset \bigvee_{1}$. Together with Lemma 6.1, we obtain $M_{1}=C_{1}$.

Assume that $1 \leq l \leq r-1$ and $M_{i}=\mathcal{V}_{i}$ holds for each i with $0 \leq i \leq l$. We show first that

$$
\begin{equation*}
M_{l+1} \subset \mathrm{Cl} \vee_{l+1} \tag{6.1}
\end{equation*}
$$

Let $p \in M_{l+1}$ be arbitrary. Then there is $q \in M_{l}$ such that $d(q, p)=1$. By the assumption, $q \in \mathcal{V}_{l}=U^{\prime} b_{l} o$. Here, since $\mathscr{S}_{r} \subset W_{M}$ by Lemma 1.3, \mathcal{V}_{l} is also written as $C V_{l}=U^{\prime} b_{l}^{\prime} o$ with

$$
b_{l}^{\prime}=\exp (1 / 2)\left(A_{2}+\cdots+A_{l+1}\right)
$$

Therefore there is $a \in U^{\prime}$ such that $q=a b_{l}^{\prime} o$. Since $b_{l}^{\prime-1} a^{-1} q=o$ with $b_{l}^{\prime-1} a^{-1} \in$ $G \subset \mathrm{I}(M, d)$, we have $b_{l}^{\prime^{-1}} a^{-1} p \in M_{1}$. By the fact: $M_{1}=V_{1}$ just proved, there is $b \in U^{\prime}$ such that $b_{l}^{\prime-1} a^{-1} p=b b_{1} o$. Thus $p=a b_{l}^{\prime} b b_{1} o \in U^{\prime} b_{l}^{\prime} U^{\prime} b_{1} o$. So it suffices to show

$$
\begin{equation*}
b_{l}^{\prime} U^{\prime} b_{1} o \subset \mathrm{Cl} \subset V_{l+1}, \tag{6.2}
\end{equation*}
$$

because of the U^{\prime}-invariance of $\mathrm{Cl} \subset V_{l+1}$. Let $\pi: G_{0}^{\prime} \times_{U_{0}^{\prime}} \mathrm{g}^{(2)} \rightarrow R=G_{0}^{\prime} b_{1} O \simeq G_{0}^{\prime} / U_{0}^{\prime}$
denote the vector bundle projection. Since $G_{0}^{(1)} b_{1} o$ is an open dense subset of R, by Lemma $6.3 \Psi\left(\pi^{-1}\left(G_{0}^{(1)} b_{1} o\right)\right)$ is a dense subset of V_{1}. But $\Psi\left(\pi^{-1}\left(G_{0}^{(1)} b_{1} o\right)\right)$ $=G_{0}^{(1)} G^{(2)} b_{1} o$, and so $b_{l}^{\prime} G_{0}^{(1)} G^{(2)} b_{1} o$ is dense in $b_{l}^{\prime} U^{\prime} b_{1} o$. On the other hand, since $b_{l}^{\prime} \mid \mathfrak{a}=s_{l}^{\prime}$, by Lemma 6.2 we have

$$
b_{l}^{\prime} G_{0}^{(1)} G^{(2)} b_{1} o \subset U^{\prime} b_{l}^{\prime} b_{1} o=U^{\prime} b_{l+1} o=\subset V_{l+1} .
$$

Thus we get (6.2).
Now, by (6.1) and Theorem 4.1 we have $M_{l+1} \subset V_{0} \cup \subset V_{1} \cup \cdots \cup \subset V_{l+1}$. This, together with the assumption, implies $M_{l+1} \subset \mathcal{C V}_{l+1}$. On the other hand, by Lemma $6.1 \subset V_{l+1} \subset M_{0} \cup M_{1} \cup \cdots \cup M_{l+1}$. This, together with the assumption, implies $\mathcal{V}_{l+1} \subset M_{l+1}$. Thus we have proved $M_{l+1}=\mathcal{V}_{l+1}$. q.e.d.

Lemma 6.5. If $\varphi \in \mathrm{I}(M, d)$ with $\varphi(o)=0$, then $\left(\varphi_{*}\right)_{o} \in G L\left(\mathrm{~g}_{-1}, \mathcal{S}\right)$, under the identification $G L\left(T_{0} M\right)=G L\left(\mathfrak{g}_{-1}\right)$ through the isomorphism $u_{0}: \mathfrak{g}_{-1} \rightarrow T_{0} M$ defined in Section 2.

Proof. By Theorem 6.4 we have

$$
\begin{equation*}
\varphi \subset V_{l}=\mathcal{V}_{l} \quad(0 \leq l \leq r) \tag{6.3}
\end{equation*}
$$

Since g_{-1} is an open subset of M with $o \in \mathrm{~g}_{-1}$, there is an open set \mathcal{V} of g_{-1} with $o \in \mathcal{U}$ such that $\phi Q \subset g_{-1}$. Let $X \in \mathrm{Cl} V_{l}$ be arbitrary. If $t>0$ is sufficiently small, we have $t X \in \mathcal{Q}$. Then, by Lemma $2.5 t X \in \mathrm{Cl} V_{l} \cap \mathcal{Q}$, and so by (6.3) $\varphi(t X) \in \mathrm{Cl} V_{l}$. Thus, by Lemma 2.5 again we have $(1 / t) \varphi(t X) \in \mathrm{Cl} V_{l}$. Therefore

$$
\left(\varphi_{*}\right)_{0}(X)=\lim _{t \not 00} \frac{1}{t} \varphi(t X) \in \mathrm{Cl} V_{l}
$$

and hence $\left(\varphi_{*}\right)_{o}\left(\mathrm{Cl} V_{l}\right)=\mathrm{Cl} V_{l}(0 \leq l \leq r)$. This implies $\left(\varphi_{*}\right)_{o} \in G L\left(\mathfrak{g}_{-1}, \mathcal{S}\right)$ in virtue of (4.7). q.e.d.

Let $F(M)$ denote the bundle of frames of M, that is, the bundle of all linear isomorphisms from g_{-1} to tangent spaces to M. We define a subbundle P of $F(M)$ by

$$
P=\left\{a_{*} u_{0} ; a \in G\right\}
$$

which is a G_{0}-structure over M. Let

$$
\operatorname{Aut}(P)=\left\{\varphi \in \operatorname{Diff}(M) ; \varphi_{*} P=P\right\}
$$

denote the group of automorphisms of the G_{0}-structure P.
Lemma 6.6. (Tanaka [17]). If M is neither $P_{n}(\boldsymbol{R})(n \geq 1)$ nor $P_{n}(\boldsymbol{C})(n \geq 1)$, one has

$$
G=\operatorname{Aut}(P) .
$$

Theorem 6.7. Let (M, g) be an irreducible symmetric R-space woith $r=$ $\operatorname{rank}(M, g) \geq 2$. Then the group G of basic transformations of M is identical with the group $\mathrm{I}(M, d)$ of isometric diffeomorphisms of the arithmetic distance d.

Proof. We have seen the inclusion $G \subset \mathrm{I}(M, d)$. For the inclusion $\mathrm{I}(M, d) \subset G$, it suffices to show $\mathrm{I}(M, d) \subset \operatorname{Aut}(P)$ in virtue of Lemma 6.6. To prove this we follow the argument in Tanaka [18].

Let $\psi \in \mathrm{I}(M, d)$ and $u \in P$ be arbitrary. Then there is $a \in G$ such that $a_{*} u_{0}=u$. Moreover, by transitivity of G on M, there is $b \in G$ such that $b \psi a(o)=0$. Set $\varphi=b \psi a \in \mathrm{I}(M, d)$. Then $\varphi(o)=o$ and

$$
\begin{equation*}
\psi_{*} u=b_{*}^{-1} \varphi_{*} u_{0} \tag{6.4}
\end{equation*}
$$

By Lemma $6.5,\left(\varphi_{*}\right)_{o}$ belongs to $G L\left(\mathrm{~g}_{-1}, \mathcal{S}\right)$, which is equal to G_{0} by Theorem 4.7. Therefore $\varphi_{*} u_{0} \in P$, and hence $\psi_{*} u \in P$ by (6.4). This shows that $\psi \in$ $\operatorname{Aut}(P)$. Thas we have proved $\mathrm{I}(M, d) \subset \operatorname{Aut}(P)$.
q.e.d.

Theorem 6.8. Let (M, g) be an irreducible symmetric R-space with $r=1$ other than spheres. Then the group G of basic transformations of M is identical with the group of diffeomorphisms of M which send each Helgason sphere to a Helgason sphere.

Proof. Our (M, g) are the projective spaces $P_{n}(\boldsymbol{F})(n \geq 2)$ over $\boldsymbol{F}=\boldsymbol{R}, \boldsymbol{C}$ or real quaternions \boldsymbol{H} and the Cayley projective plane $P_{2}(\boldsymbol{O})$. In these cases, Helgason spheres are projective lines. The groups G are the group of projective transformations of $P_{n}(\boldsymbol{F})$ and the connected simple Lie group of type EIV, respectively. Here, by a projective transformation of $P_{n}(\boldsymbol{F})$ we mean a diffeomorphism of $P_{n}(\boldsymbol{F})$ induced by a semi-linear automorphism φ of \boldsymbol{F}^{n+1}, that is, a bijection $\varphi: \boldsymbol{F}^{n+1} \rightarrow \boldsymbol{F}^{n+1}$ such that

$$
\begin{array}{ll}
\varphi(u+v)=\varphi(u)+\varphi(v) & \text { for } u, v \in \boldsymbol{F}^{n+1} \\
\varphi(u \lambda)=\varphi(u) \sigma(\lambda) & \text { for } u \in F^{n+1}, \lambda \in \boldsymbol{F}
\end{array}
$$

σ being an automorphism of \boldsymbol{F}. So our theorem follows from the fundamental theorem in projective geometry (for $P_{n}(\boldsymbol{F})$) and a theorem of Springer [11] (for $P_{2}(\mathbf{O})$).
q.e.d.

Corollary 6.9. For an irreducible symmetric R-space (M, g), one has $K=$ $\mathrm{I}(M, g)$.

Proof. In case where (M, g) is an n-sphere $(n \geq 1)$, it is seen that $K=$ $O(n+1)$. Thus we have $K=\mathrm{I}(M, g)$. Suppose that (M, g) is not a sphere. Since any element of $\mathrm{I}(M, g)$ carries each Helgason sphere to a Helgason sphere, by

Theorems 6.7 and $6.8 \mathrm{I}(M, g)$ is a subgroup of G. Recalling that $K \subset \mathrm{I}(M, g)$ and K is a maximal compact subgroup of G, we get $K=\mathrm{I}(M, g)$. q.e.d.

Appendix

Table of the dimension $\operatorname{dim} S$ of a Helgason sphere S and the quotient group G / G^{0} of G modulo the identity component G^{0} of G for irreducible symmetric R-spaces M

M	$\operatorname{dim} S$	$\boldsymbol{G} / \boldsymbol{G}^{0}$
$S U(r+s) / S(U(r) \times U(s)) \quad(1 \leq r \leq s)$	2	$\begin{array}{ll} Z_{2}+Z_{2} & r=s \geq 2 \\ Z_{2} & \text { otherwise } \end{array}$
$S O(2 n) / U(n)(n \geq 5)$	2	\boldsymbol{Z}_{2}
$S p(r) / U(r) \quad(r \geq 2)$	2	\boldsymbol{Z}_{2}
$S O(n+2) / S O(2) \times S O(n) \quad(n \geq 5)$	2	$\begin{array}{ll} Z_{2}+Z_{2} & n \text { even } \\ Z_{2} & n \text { odd } \end{array}$
$E_{6} / T \cdot \operatorname{Spin}(10)$	2	\boldsymbol{Z}_{2}
$E_{7} / T \cdot E_{6}$	2	\boldsymbol{Z}_{2}
$S O(r+s) / S(O(r) \times O(s)) \quad(1 \leq r \leq s)$	1	$\begin{array}{ll} Z_{2}+Z_{2} & r=s \geq 2 \\ Z_{2} & r=s=1 \text { or } r<s, r+s \text { even } \\ \{1\} & \text { otherwise } \end{array}$
$S p(r+s) / S p(r) \times S p(s) \quad(1 \leq r \leq s)$	4	$\begin{array}{ll} \boldsymbol{Z}_{2} & r=s \\ \{1\} & r<s \end{array}$
$U(r) \quad(r \geq 3)$	1	$\boldsymbol{Z}_{2}+\boldsymbol{Z}_{2}$
$S O(n+1) / S O(n) \quad(n \geq 5)$	n	\boldsymbol{Z}_{2}
$\begin{aligned} & O(p) \times O(q) /(O(p-1) \times O(q-1)) \cdot Z_{2} \\ & (2 \leq p \leq q, \quad(p, q) \neq(2,2),(3,3)) \end{aligned}$	1	$\begin{aligned} & \boldsymbol{Z}_{2} \cdot\left(\boldsymbol{Z}_{2}+\boldsymbol{Z}_{2}\right)^{*)} \quad p=q \text { even } \\ & \boldsymbol{Z}_{2}+\boldsymbol{Z}_{2} \quad p<q, \boldsymbol{s}, q \text { even, or } p=q \text { odd } \\ & \boldsymbol{Z}_{2} \quad \text { otherwise } \end{aligned}$
$S p(r) \quad(r \geq 1)$	3	\boldsymbol{Z}_{2}
$U(r) / O(r) \quad(r \geq 3)$	1	\boldsymbol{Z}_{2}
$S O(n) \quad(n \geq 5)$	1	$\begin{array}{ll} \boldsymbol{Z}_{2}+\boldsymbol{Z}_{2} & n \text { even } \\ \boldsymbol{Z}_{2} & n \text { odd } \end{array}$
$U(2 r) / S p(r) \quad(r \geq 3)$	1	\boldsymbol{Z}_{2}
$S p(4) /(S p(2) \times S p(2)) \cdot Z_{2}$	1	\{1\}
$F_{4} / \operatorname{Spin}(9)$	8	\{1\}
$S U(8) / S p(4) \cdot Z_{2}$	1	\boldsymbol{Z}_{2}
$T \cdot E_{6} / F_{4}$	1	\boldsymbol{Z}_{2}

[^0]
References

[1] W.L. Chow: On the geometry of homogeneous spaces, Ann. of Math. 50 (1949), 32-67.
[2] E.B. Dynkin: The maximal subgroups of the classical groups, Amer. Math. Soc. Transl. Ser. 2, 6 (1957), 245-378.
[3] A. Gyoja: Representations of reductive group schemes, Preprint Osaka Univ., Osaka (1986).
[4] S. Helgason: Totally geodesic spheres in compact symmetric spaces, Math. Ann. 165 (1966), 309-317.
[5] O. Loos: Charakterisierung symmetrischer R-Räume durch ihre Einheitsgitter, Math. Z. 189 (1985), 211-226.
[6] T. Nagano: Transformation groups on compact symmetric spaces, Trans. Amer. Math. Soc. 118 (1965), 428-453.
[7] T. Nagano: The involutions of compact symmetric spaces, Tokyo J. Math. 11 (1988), 57-79.
[8] S.P. Peterson: Arithmetic distance on compact symmetric spaces, Geom. Ded. 23 (1987), 1-14.
[9] Y. Sakane-M. Takeuchi: Einstein hypersurfaces of kählerian C-spaces, Nagoya Math. J. 78 (1980), 153-175.
[10] I. Satake: On representations and compactifications of symmetric Riemannian spaces, Ann. of Math. 71 (1960), 77-110.
[11] T.A. Springer: The projective octave plane, Indag. Math. 22 (1960), 74-88, 89101.
[12] M. Takeuchi: On the fundamental group and the group of isometries of a symmetric space, J. Fac. Sci. Univ. Tokyo, Ser. I, 10 (1964), 88-123.
[13] M. Takeuchi: Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo, Ser. I, 12 (1965), 81-192.
[14] M. Takeuchi: Polynomial representations associated with symmetric bounded domains, Osaka J. Math. 10 (1973), 441-475.
[15] M. Takeuchi: On conjugate loci and cut loci of compact symmetric spaces II, Tsukuba J. Math. 2 (1979), 1-29.
[16] M. Takeuchi: Stability of certain minimal submanifolds of compact Hermitian symmetric spaces, Tôhoku Math. J. Ser. II, 36 (1984), 293-314.
[17] N. Tanaka: On the equivalence problems associated with a certain class of homogeneous spaces, J. Math. Soc. Japan 17 (1965), 103-139.
[18] N. Tanaka: On affine symmetric spaces and the automorphism groups of product manifolds, Hokkaido Math. J. 14 (1985), 277-351.

Department of Mathematics
College of General Education
Osaka University
Toyonaka, Osaka, Japan

[^0]: ${ }^{*)}$ semi-direct product with $N=\boldsymbol{Z}_{2}+\boldsymbol{Z}_{2}$ normal; the generator of \boldsymbol{Z}_{2} interchanges two \boldsymbol{Z}_{2} 's of N.

