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Introduction

There is a class of compact symmetric spaces, the so-called irreducible
symmetric R-spaces. Each irreducible symmetric R-space M has a big trans-
formation group G, called the group of basic transformations, greater than the
group of isometries of M. And every compact symmetric space with a big
transformation group is essentially a symmetric R-space (Nagano [6]).

For example, the sphere is an irreducible symmetric R-space, and G is the
group of conformal transformations. Also the projective space P,(F) over F=
R, C or real quaternions H and the Cayley projective plane are irreducible
symmetric R-spaces, and G are the group of projective transformations of P,(F)
and the connected simple Lie group of type EIV, respectively. Furthermore,
an irreducible Hermitian symmetric space M of compact type is an irreducible
symmetric R-space, and G is the group of holomorphic transformations and
anti-holomorphic transformations of M.

In this paper, we want to characterize these big groups G in terms of Rie-
mannian geometry of M, except for spheres.

A submanifold S of M is called a Helgason sphere if (1) S is a totally
geodesic sphere with minimum radius; and (2) S has the maximum dimension
among the submanifolds in (1). We define a distance d(p, q) of p, g€ M, called
the arithmetic distance, to be the minimum possible length of a chain of Helgason
spheres connecting p and g. We prove the following theorem.

Theorem. (i) Let M be a compact rank one symmetric space other than
spheres. Then the group G of basic transformations of M 1is identical with the
group of diffeomorphisms which carry each Helgason sphere to a Helgason sphere.

(il) Let M be an irreducible symmetric R-space of rank greater than one.
Then the group G of basic transformations of M is identical with the group of dif-
feomorphisms which preserve the arithmetic distance d on M.

Our problem was originated by Chow. In Chow [1] he studied the trans-
formations of certain homogeneous algebraic manifolds by purely algebraic
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methods. When the ground field is the complex number field, these manifolds
are the irreducible compact Hermitian symmetric spaces M of classical type,
and his result may be stated as follows. With respect to a family 4 of com-
plex submanifolds of M, a distance d on M is defined in the above way. For
example, for the complex Grassmann manifold M, 4 is the family of projective
lines lying on M, where M is regarded as a complex submanifold of a complex
projective space by the Plicker imbedding. It is verified that for each space M
4l is nothing but the family of Helgason spheres in our sense. He proved that
then the group of holomorphic and anti-holomorphic transformations of M is
identical with the group of isometric bijections of (M, d), except for complex
projective spaces. So our Theorem (ii) may be thought of as a generalization
of the theorem of Chow under differentiability.

Peterson [8] studied the arithmetic distance on irreducible compact sym-
metric spaces defined by means of Helgason spheres of dimension greater than
one. His method is different from ours and to use the Radon duality in the
sense of Nagano [7].

Our method is as follows. The spaces M in Theorem (i) are the projec-
tive spaces, and the Helgason spheres are the projective lines. Thus Theorem
(i) follows from the fundamental theorem in projective geometry, along with a
theorem of Springer [11]. For the proof of Theorem (ii), we make use of the
characterization of G by Tanaka [17] as the automorphism group Aut(P) of a
G,-structure P of M, G, being a Lie subgroup of GL(n, R), n=dim M. We
will prove that Aut(P) is equal to the isometric diffeomorphism group of (M, d).

The author would like to express his thanks to T. Nagano for his valuable
advice during the preparation of this paper.

1. Symmetric R-spaces

In this section we give the definition of symmetric R-spaces and recall
some properties of them (cf. Takeuchi [13], [15], Tanaka [17]).
Let

(1'1) G:0=0,48+a, [gp: Qq]Cgp+q

be a graded Lie algebra over R with g real simple and g_,# {0}, and = a Cartan
involution of g with

(1.2) 78y = 8-, (—1<p<]).

Such a pair (&, 7) is called a compact simple symmetric graded Lie algebra over R.
Two compact simple symmetric graded Lie algebras over R (G, 7) and (&', 77)
are said to be isomorphic to each other, if there is a Lie isomorphism ¢: g—g’
with @g,=8; (—1<p<1) and gor=1"0gp.
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Let (G, 7) be a compact simple symmetric graded Lie algebra over R.
Then, from (1.1) and the semi-simplicity of g, there is uniquely an element E €g,
with

(1.3) g, = {Xeg; [E, X]=pX} (—1<p<]),
which is called the characteristic element of G. From (1.2) one has
(1.4 7E=—E.

Now we define several subgroups of the automorphism group Aut(g) of g. Let
d=g€ denote the complexified Lie algebra of g and regard Aut(g) as a subgroup

of Aut(d). Denoting by Inn(g) the group of inner automorphisms of §, we
define

G’ = Aut(g)NInn(g),

which is an open normal subgroup of Aut(g). Let G, denote the group of
automorphisms of the graded Lie algebra &, that is,

Gy = {acAut(g); ag, = g, (—1<p<1)},
which is also described as
G, = {acsAut(g); aE = E},

in virtue of (1.3). Under the identification of g with Lie Aut(g), the Lie
algebra of Aut(g), through the adjoint representation, we have Lie Gy=g,.

Note that G, leaves g., invariant. Next we define an open subgroup G of
Aut(g), thus Lie G=g, by

G=GG'.
Then G, is a closed subgroup of G. Let
(1.5) g=1+p

be the Cartan decomposition associated to 7. Note that from (1.4) one has
Eep. Since 18,=@,, (1.5) induces a Cartan decomposition of g,:

8o = f+p,, where L, =1INg, P =»Ng,.

Extending 7 to a conjugate linear automorphism 7 of 3, and denoting by
(, ) the Killing form of g, we define a Hermitian inner product { , > on g by

X, Y>)=—(X,7Y) for X, YeEgq,
which is invariant under the group

Aut(g, 7) = {acAut(g); aT = 7a}.
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Its restriction < , >|gX @ to X @ is an inner product on g which is invariant
under the group

Aut(g, 7) = {a€Aut(g); ar = Ta} .
We define compact subgroups K and K, of G with Lie K=t and Lie K,=1, by

K = G NAut(g, 7),

Ky= G,NAut(g, ) = G,NK.
Then we have polar decompositions
(1.6) G=Kexpp,
(1.7) Gy= Kyexpb,.

The second one is the polar decomposition of the self-adjoint (with respect to
<, >lgxg) real algebraic group G,CGL(g). Also the first one follows from
the polar decomposition

Aut(g) = Aut(g, T)exp p

of the self-adjoint real algebraic group Aut(g)CGL(g). In particular, K is
a maximal compact subgroup of G. Next we define a parabolic subalgebra
1 of g by

n=g+8,
and a closed subgroup U of G with Lie U=u by
(1.8) U=G,expg,,
which is also described as
(1.9) U = {asAut(g); au = u} .
The homogeneous space
(1.10) M=G|U

is called the R-space associated to &, which is known to be compact, connected
and real projective algebraic. The group G acts on M effectively, so that it is
identified with a subgroup of the diffeomorphism group Diff(M) of M. We
call G the group of basic transformations of M. Furthermore it is shown that

(1.11) G =KU, KNnU=K,,
and hence we have a natural identification

(1.12) M = K/K,.
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Our homogeneous space M=G/U may be also described as a homogeneous
space of the open normal subgroup G’ of G in the following way. We define
Gi=G'NG,, K'=G'NK, Ki=G'NK,, U=G'NU. Then G{, K, K}, U’
are open normal subgroups of G,, K, K, U respectively, and equalities (1.6)~
(1.12) hold also for these groups, which will be denoted by the same numbers
with primes. From these we have

(1.13) G=KG, G,=KG;, U=K/U, K=KK',
which implies that
(1.14) G|G' = G,|G; = U|U’' = K|K' = K,|K}§ .
Note that our group G is given also by

G = G, Inn(g),

where Inn(g) denotes the group of inner automorphisms of g, since one has
G'=Gj Inn(g) (Takeuchi [12]).

Next we want to define a Riemannian metric on M. We define § € Aut(g)
with @°=1 by

6|g°= 1, 61(91+9—1) = -1,

where 1 designates the identity map. From fr=70 and §E=E, it follows that
0=G,NAut(g, 7)=K, and hence §GO'=G. Thus an automorphism 8 of G
whose differential is § € Aut(g), is defined by

0(a) = 0a0~'  for aEG.

It has the properties that (K)=K, @ (k)=k for any k€K, and {,={X t; 6X
=X}, whence (K, K, 8) is a compact symmetric pair. We define a K -invariant
subspace m of ¥ with =¥+ m by

m={Xel; 0X = —X} = {Xeg,+9-,; X = X},

which is identified with the tangent space T,M to M at the origin o=U&M.
Since { , >|mXm is a Kj-invariant inner product, for any ¢>0 there is uniquely
a K-invariant Riemannian metric g on M=K/K, such that g,=c{ , D|mXxm.
The Riemannian manifold (M, g) is a compact symmetric space with a cubic
lattice in the sense that a maximal torus 4,, of (M, g) has an expression

AM= R’/I‘M, r=rank(M, g)

by a lattice T, generated by an orthogonal basis of R’ of the same length.
Furthermore (M, g) is irreducible in the sense that it is not a Riemannian
product of compact symmetric spaces with cubic lattices. Conversely, any
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irreducible (in the above sense) compact symmetric space (M, g) with a cubic
lattice is obtained in this way frcm a compact simple symmetric graded Lie
algebra (G, 7) over R (unique up to isomorphism) and a constant ¢>0 (Loos
[5]). Our symmetric space (M, g) is called an irreducible symmetric R-space. In
the following, for the simplicity we assume that ¢=1.

ReMARK 1.1. From the definition of g, it is obvious that K is a subgroup
of the group I(M, g) of all isometries of (M, g). Actually, K is equal to I(M, g)
(cf. Corollary 6.9).

Take a maximal abelian subalgebra a in p with Ea, and extend it to a
Cartan subalgebra )=b--a of g with bct. Then the complexification §=5C is
a Cartan subalgebra of §. The real part ), of § is given by hr=+/—1b-+a.
We identify the root system 3, of § relative to b with a subset of §j by means of
the duality defined by ( , ), and set

S, = acS; (@ B=pb  (—1<p<).
Let
§=h+3¢"
aES,
be the H-root space decomposition of §. Then S=5_,US,US,, and the com-
plexifications §,=g§ (—1< p<1) are given by
§o=0+373", u= X 8".

ac3 LSh

Denoting by z,: hz— a the orthogonal projection, we set Z=7z4(Z)— {0}, which
is the root system of g relative to a, and set

3, ={re3; (v, E)=p (—1<p<1)).

Then X is an irreducible reduced root system in a, 3=3_,UZ,UZ,, and the
a-root space decomposition of g is given by

g=¢+34¢",
YEZ
where
g*= {Xeg; [H, X]=(\, H)X for each HEa} .
Let m(7v)=dim g” denote the multiplicity of yEX. Furthermore one has
902904‘297, gilzzgy)
ve3, YE€Z,,

and thus 3, is the root system of g, relative to a. Let o denote the complex
conjugation of § with respect to g. Choose a o-order > on Y in the sense of
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Satake [10] and denote by =* (resp. =) the set of positive (resp. negative) roots
in 3 (with respect to >). Let IICS* be the o-fundamental system, [1°=
{aell; ca=—a}, and ¢ the Satake involution of T—1I°. We define Aut(I1, o)
to be the subgroup of the automorphism group Aut(II) of II consistng of all the
t& Aut(II) such that tII°=I1° and #4=4¢ on II—II°. It is also identified as

(1.15) Aut(ll, o) = {t €GL(Yg); t= = 3, = = 3, to = ot}.
It is known (Takeuchi [12]) that
(1.16) Aut(g)/G" = Aut(11, o)

in a natural way. We set 3*=z,(3*)— {0} and II=n,(I1)— {0}, and thus
IIC=* is a fundamental system of 3. Now we choose a g-order > on §g such
that (a, E)>0 for any a 3" once and for all. Then one has =3 N {I1;} ,
for Iy=TINZ,, where {II;} ; denotes the subgroup of h, generated by II,, and
hence II, is a o-fundamental system of 3;,. Furthermore one has ,,=3*—3.
From these it follows that

(117) Z,=32NA{l}z for I, =1INZ,,

(L18) 2y =3*—3%,,

(1.19) (11, IL,) is an drreducible symmetric pair in the sense that IT is irreduci-
ble and ITI—II, consists of only one root v, called the distinguished root, such that
the highest root &X* has an expression

8=71+2m‘7'y’ m‘fez'
YET,

We define Aut(I1, I, o) to be the subgroup of Aut(Il, o) consisting of all the
t € Aut(Il, o) such that tfI,=1II,, Under the identification (1.15), it is also
given by

(1.20) Aut(IL, T1,, &) = {teAut(ll, o); tE = E}.

Lemma 1.2. The quotient group G,/G¢ is isomorphic to Aut(Il, IL, o) in
a natural way. Therefore also G|G' is isomorphic to Aut(1l, II,, o).

Proof. In general, for subsets 4, B, --- of §, we denote by Aut(g, 4, B, :+*)
the group of all the a= Aut(g) such that ad=4, aB=B, ---.

Let a=G, be arbitrary. Then, since I, is a o-fundamental system of 3,
there is a’€G{ such that b=a'ac Aut(g, bz, a, II)). Since bIl,=1I,, b leaves
St=3,NZ" invariant. Furthermore, since bE=E, b leaves also 3, invariant.
Therefore b leaves I+=3§ US, invariant, whence bII=1I. Thus we have
proved that

G, = G Aut(g, bg, a, I, I1)) .
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On the other hand, by (1.16) the natural homomorphism Aut(g, g, a, II, II)) —
Aut(I1, II,, o) is surjective, and has the kernel

AUt(g) bR) a, n’ ﬁo) N G' = AUt(g> bR’ a, ﬂ’ HO) N Gé °
Thus we obtain the lemma. q.e.d.
Let
W = NgA0)|Zg(a), W, = Ngy(a)/Zgi(0)
be the Weyl groups of g and g, respectively, which may be regarded as finite
subgroups of O(a) through the adjoint action, O(a) being the orthogonal group
on a with respect to the inner product { , >. Here Ny(a) (resp. Zy(a)) denotes
the normalizer (resp. centralizer) of a in *. The groups W, W, are related by
that W= {s€W; sE=E}. It is known that (II, II,) is of rank r, r=rank(M, g),
in the sense that the irreducible symmetric bounded domain corresponding to

(I, II,) has the rank . Thus we can choose (cf. Takeuchi [14]) a maximal
system

A= {Bn ) Br}) with ﬁl =0 ’

of strongly orthogonal roots in 3, of the same length. Here, by the length of
X €g we mean the norm | X | of X with respect to < , >. Note that AC W3.
Let us fix a root BEA. We choose an element Xgzeg® with | Xg|*=2/(B8, B),
and set X_p=71Xseg7®, dg=n(Xp+X_g)em. Then one has [Xp, X_g]=
—(2/(B, B))B. We define a basis {X,, X_, H} of 8{(2, R) and an element
Aesl(2, R) by

= ob = (0 o) = S a-( 0

Then the correspondence
bp: Xo > Xy, X 1> X_p, His (2(8, BB

(thus ¢p: A Ap) defines an injective Lie homomorphism ¢g: 8I[(2, R)—g.
The extension ¢g: SL(2, R)— G’ of ¢4 sends the parabolic subgroup

a b
P = %( );aER*, bER}
0 a!

of SL(2, R) into U’, and hence it induces a ¢g-equivariant imbedding
VYrg: P(R) = SL(2, R)/P-> M =G'|U".
Therefore
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Ts = {(exp tdp)o; 0<t<1}
is a simply closed geodesic of (M, g) of the length 27/|8|. In fact,

| Ap|* = <Ap, Ap> = —(Ap, Ap) = —22"(Xp, X_p)
= 27*| Xg|* = 47*/(B, B) = 4=*/|8|*.

For each 7 (1<7<r), we set

Xui = Xypiy, Ai= Aﬁ; =n(X;+X.), Ti= Tei s
b = bpi, Vi =Y.

Then the R-linear span
ay = {4y, -, 4} r
of {4,, --+, 4,} is a maximal abelian subalgebra in m, and hence
Ay = (exp ay)0 == 0, /Ty
is a maximal torus of (M, g), where
Ty = {Heay; (exp H)o = o} .

Furthermore, the Lie homomorphism ¢=¢, X+ X ¢,: SL(2, R)"— G’ sends P’
into U’, and induces a ¢-equivariant imbedding

¥: P(R) = M,

which gives rise to a diffeomorphism yr=Ar; X *+* X4r,: Py(R) —>Ay=T X - X T,.
Therefore, the lattice 'y, is given by

(1.21) Ty=A{d, A}z with <4; 4;>=8;;4a%/|3]*.
For H a,, we use the linear coordinate (x,, -+, x,) determined by
H= x4,

The real part (a,)g of (a,)¢ is given by (ay)rg=+/—1a. For yE(ay)g, let
|v| denote the norm of ¢y with respect to ( , ), which is positive definite on
(ay)r- We define b, (ay)r (1<i<r) by

(1.22) :I(h;, AJ) = 8,‘j7l.' (ISi,er) .

Note that (k;, k;)=3;;|8|%/4 (11, j <r) in virtue of (1.21). For y&(a,)z we
define

() = {X &1°; [H, X] = (v, H)X for each HeEay} ,
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and set
Sy = {rE(an)e—1{0}; )+ {0}},

which is the root system of (M, g) relative to a,. Then, irreducible symmetric
R-spaces are divided into the following five classes.

(I) Hermitian type.
g is not simple; z,(M) = {0} ;
Sy = {th+th; 1<i<j<r), £2h; (1<i<r)} or
{+h+h; (1<i<j<r), +h;, +2h; (1<i<r)}.
(IT) Type Sp(r).

g is simple; z,(M) = {0} ;
3y is the same as in (I) .

(IIT) Type U(r).
g is simple; z,(M) = Z;
Sy = {ti—h) (1<i<j<n)}.
(IV) Type SO(2r+1).
g is simple; 7,(M) = Z,;
Su = {+th+h; (1<i<j<r), +h (1<i<r)}.
(V) Type SO(2r) (r=2).
g is simple; 7, (M) = Z,;
S = {Lth+h; (1<i<j<n)}.
Let
Wt = Niy(aa) | Zgi(aa) © O(Asr)

be the Weyl group of (M, g). We denote by &, the subgroup of O(a,,) consist-
ing of transformations (x;, -+, &,)= (¥,), ***, X5n), P being a permutation of
{1, ---,7}, and by (Z,)" the subgroup of O(a,) consisting of transformations
(%1 =+0y %) (Eyxy, +o0, E,%,), E;=1.

Lemma 1.3. &, cW,c®,-(Z,) .

Proof. Since W, is generated by the reflections of a, with respect to
V=17 for yE3,,, this follows by the above table of . q.e.d.



Basic TRANSFORMATIONS 269

2. Stratifications

In this section we define certain stratifications of M and g_, by means of
the group orbits. We retain the notation in Section 1.

We define B, €q,, (0<I<r) by

By,=0, B,=(1/2)(4,++4) (1LILr),
and set
by=expBieK’, V,=UbpcM, 4 =dimY, (0LI<r).
Furthermore we define s, W (0<I<r) by
=1, s=sp 355 (I<I<7),

where sy& W c O(a) denotes the reflection with respect to yE 3.

Lemma 2.1. 1) exp(1/2)4;ENg/(a) and exp (1/2)4;|a=sp, (1<i<7).
Therefore b, Ng/(a) and b, | a=s, (0<I<7).

2)  A{so, $1, *++, S} s a set of complete representatives of the double coset space
W\W|W,.

3) M=CV,UV,U - - UV, (disjoint union).

4) If 0<I'<I<r, V) is contained in the closure C1CV; of V/,.

Proof. 1),2) See Takeuchi [15].
3) We define a nilpotent subalgebra n of g by

n= Egy)

yE3+
and set
N=expn, B ={aeG;an=n}.
In the same way we define
m= 3 ¢, where 3§ =3,NZ",

YEZ0

N, =expn, Bj={acsGj;any=ny}.

Then we have Bruhat decompositions

(2.1) G'= U NsB'= U B'sB’,
(2.2) 4= U NgB, = U BitBj.
teEW, teEWo

Therefore, by (2.2) together with (1.8)’, we have
(2.3) U' =Giexpg, = U NyiBjexpg, = U NyitB'.
tewy tewy

Hence, for each s&€ W we obtain
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(2.4) U'sU'= U B'tNsNt'B'= U B'Nyst'N,B’
t,t'eWy t,Y'ew,
= U B'tstB'= U B'wB'.
t,t’'ewy WEW W,

Since

W = U W,s,W, (disjoint union)
=0
by 2), together with the Bruhat decomposition (2.1), we get
G = LrJ0 U’s, U’ (disjoint union) .
I=

This implies the assertion 3).
4) For each coset [s]=sW,& W|W,, choosing an element k& Ny.(a) with
kla=s, we set CVrg=Nko. Then (Takeuchi [13])

M= U Vg (disjoint union)

[s1ewW/wo
gives a cellular decomposition of M with the closure relations: (Vs ClCVg
if and only if
(2.5) S'E—sE = 3\ myy with some my>0.

YO

Moreover, by (2.4) and (2.3) we have
UsU = U B'sB'= U B'sU' = U NsU’,

SEW s IWO SEW s 1 SEW s 1
and hence

(2-6) CVI = U CV{X]-

SEW s f

Suppose that 0<I'<I<r. Then we have

. 2
syE—sE _1'+§,-s: @ B) B;.
Therefore, by (2.5) Vs, 1 Cl Vg, and hence by (2.6) we get CV,,CCICY,.

q.e.d.
We define subsets D,Ca,, and 9,C 4, (0<I<r) by

Dy = {(x, -, %) €ay; |4 <12 (1<i<r7), ${i; 2,40} = I},
9D, = (exp D))o,

to get

(2.7) Ay = DUD,U--UQD, (disjoint union).
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Lemma 2.2. 1) V=K{9, (0<I<Lr).
2) V,=Ub0=K,D, (0<I<r). Therefore

G = u Us, U (disjoint union) .

Proof. If we denote by [xl] the homogeneous coordinate of P,(R)=
x.
SL(2, R)/P, we have ’

(o 2)e-[2]
(exp tX+)(exp é)?z [ i ] for teR,

(exp xA)P = [ cos ”x] - [—C"t ”x] for 0<|x|<1/2.

—sin zx 1

Therefore, for each xR with 0 <|x|<1/2, there is a& P such that
aexp(A4/2)P = (exp xA)P. The ¢-equivariance of yr: P(R)"— M implies that
for any pE 9, there is ac P such that p=e¢(a) exp (1/2)(4;,+--+4;,)0, 1<4,<
< <r. By ¢(P")cU’ and Lemma 1.3 we have that 9, U'b,0=C}/;, which
implies K{9D,CCV, since K{C U’. On the other hand, by (2.7) we get

M=K}A, = IQOK{,_CD, :

Thus the assertion 1) holds.

2) Since U=U'K, by (1.13) and K=K (N (ay), it suffices to show that
Ngy(0y) D=9, (0<I<r). But, since Ng (a,) acts on a, as orthogonal trans-
formations leaving T'), invariant, for any k& Nk (a,) there is a permutation p of
{1, -, 7} such that k4;=€;A,u, &==41 (1<i<r). Thus kD;=D, and hence
kD,=9,. q.e.d.

We define a K-equivariant linear isomorphism w_;: m—g_, by
w_(X) = (1/2)(X—[E, X)) for Xem.

Since w_,(4;)==X_;(1<i<r), w_, induces a linear isomorphism from a,, onto
the subspace a_, of g_, defined by

a,={X_, -, X_}r.
By m=K{a,, one has
(2.8) g, = Kla_,.
We define subsets E; of a_, (0<!<r) by
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By = {3 o X 465 w0} = 1}
Then a_, is a disjoint union of these E, (0<!<r), and hence by (2.8)
(2.9) 6= U KiE,.

Now we identify g_, with a Gy-invariant open dense subset of M through the
Gy-equivariant imbedding ¢: g_,— M defined by ¢(X)=(exp X)o for X €g_,,
and set

Vi=Wing, (0<I<r).

Then each V; (0</<r) is non-empty (cf. Lemma 2.3), and so it is a Gy-invariant
submanifold of g_, with dim V;=d,. These V, give a stratification

(2.10) S:g,=V,uV,u---uUV,
of g_,.
Lemma 2.3. 1) V,=K(E,=KE, (0<I<r).
2) For p, =0 with p+q<r, we define

Yyo=X 1+ 4+ X ,—X_ pip—"—X-p4+0EEps, -

Then
v, =, U GiY,, 0<i<r).

+g=1

3) Each V, (0<I<r) is a finite union of Gi-orbits (resp. Gy-orbits) in g_,.

Proof. 1) Under the notation in the proof of Lemma 2.2, we have

(exp xX_)P = [ 1] for xER,

—X.

(exptA)Pz[ 1 ] for t€R with [¢]<1/2.

—tan 7t

Therefore, for each X=3x,X_;EE, we have
L S (Tan"'x)4,€D,,
V4 i=1
(exp X)o = exp( L 33 (Tan-lx,.)A,.)er, ,
T i=1

and hence E;CV,; by Lemma 2.2. This implies K¢E,CV,. On the other
hand, by (2.9) one has

UK6E1 =

=0 4

V.

r r
=0
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Thus we get K¢ E,=V,, which also implies K E,=V, by the K -invariance of
Vl.

2) Let X &V, bearbitrary. By 1) there is k€ K{ with kX E,. Further-
more, since &,C W), by Lemma 1.3 and w_,: a,,—a_, is K{-equivariant, there
is k'€ Nyy(a_,) such that

? 7
kKX = § xiX-i—JZ:lxﬁjX-(pﬁ) s

with x;, x,.;>>0, p+g=I. On the other hand, the connected Lie subgroup A,
of G§ generated by

ay=1{By, -, B}z

leaves a_, invariant, and its matricial representation on a_, with respect to
{X_,, -+, X_,} is all the real diagonal matrices with positive entries. Thus
there is a€ 4, such that ak’kX=Y,,. Since ak’keGj, we get the assertion 2).

3) This follows from 2) and the Gj-invariance of V. q.e.d.

ReEMARK 2.4. We define
Yo: O, YIZX_1+°"+X_IEEI (lglgf).

Then, as is seen from the above proof, if W,, contains (Z,)", then V,=GY,=
G,Y, (0<I<r), that is, each V, consists of a single G¢-orbit (resp. a single G;-
orbit).

Lemma 2.5. Each V, or the closure C1V, in g_, (0<I<r) is invariant
under the transformation X+ tX of §_, for any t>0.

Proof. This follows from the fact that adE, E €g,, acts on g_; as —1,
together with the Gj-invariance of V. q.e.d.

Let uy: g_.,— T,M be the natural linear isomorphism induced by the
differential of the projection G— M=G|U. We identify as GL(T ,M)=GL(g-,)
through the isomorphism u,. Let p: U—GL(g.,) be the linear isotropy re-
presentation of M=G|U. It is known (Tanaka [17]) that the restriction p|G,
to G, is an injective Lie homomorphism. We identify G, with a Lie subgroup
of GL(g-,) through p|G,. We define

GL(8-,, S) = {acGL(g.); aV, = V; (0KI<r)},

and call it the group of automorphisms of the stratification S. Then, from the
Gy-invariance of each V), one has G,CGL(g_,, S).

3. Complex symmetric R-spaces

In this section we consider the symmetric R-spaces in complex category.
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Let

g:.g= §_;+80+8s [pr Qq]CQ;ﬁq

be a graded Lie algebra over € with g complex simple and g_,# {0}, and 7 a
Cartan involution of g, regarded as a real semi-simple Lie algebra, with vg,=g_,
(—1<p<1). Such a pair (G, 7) is called a compact simple symmetric graded Lie
algebra over C. 'The characteristic element E g, is defined in the same way as
in Section 1. Let

G, = {a€Aut(g); ag, = g, (—1<p< 1)},
G'=1Inn(g), G = G,G".

The various groups and Lie algebras, their subspaces are defined in the same
way as in Section 1. Note that then G', G¢, U’, K', K{ are all connected.
Various equalities hold also for these groups. In our case, the homogeneous
space

M = G|U = KK,

is a simply connected complex projective algebraic manifold, and is called the
complex R-space associated to G. The group G may be regarded as a subgroup
of the holomorphic automorphism group Aut(M) of M. In the same way as in
Section 1 we define a K-invariant Hermitian metric g on M by making use of
the Aut(g, 7)-invariant Hermitian inner product given by

X, Y>=—(X,rY) for X,Yeg,

where (, ) denotes the Killing form of g. The Hermitian manifold (M, g)
is an irreducible (in the sense of de Rham) Hermitian symmetric space of com-
pact type, and is called an érreducible complex symmetric R-space.

ReMARK 3.1.  Actually we have that G=Aut (M) and K=Aut(M)NI(M, g).
See the equality (1.9) in complex category and Remark 1.1.

In our case, the real subalgebra § of g defined as in Section 1 is a Cartan
subalgebra of the complex Lie algebra g, and a is nothing but the real part of b.
Let ZCa denote the root system of g relative to Y). We introduce a linear
order > on a such that (@, E)>0 for any positive root @ in 3. We define =,
(—1<p<1), 11, II,, W, Wy and so on in the same way as in Section 1. Then
(T1, IT,) is also an irreducible symmetric pair of rank r=rank(}, g), and hence
we can take a maximal system A= {3, ---, B,} of strongly orthogonal roots in 3,
of the same length with B,=3§, the highest root in . Thus we can define
X €84, 4;€m, beK’, Y,Eg_, and so on. Making use of the 4; (1<i<r)
we can construct a maximal abelian subalgebra a, in m with the coordinate
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(% ==+, %,). Then (cf. Takeuchi [14]) the Weyl group W, C O(a,,) of (M, g)
is given by
3.1) Wy =8,:(Z) .
We define
WYy =Ubp, V,=V, NG, d = dimc YV, (0<I<7),

regarding §_, as a G,-invariant open dense subset of } through the natural
imbedding ¢: g_,— M. Also G, is identified with a complex algebraic group in
GL(g-,), through the linear isotropy representation. We can prove the follow-
ing lemma in the same way as Lemma 1.2.

Lemma 3.2. If we define Aut(Il, I1,) = {t = Aut(I1); I1,=11,}, we have
G|G' = G,|G¢ = Aut(I1, II,) .

Lemma 3.3. 1) M=, UV, U+ UV, (disjoint union), and therefore we
get a stratification

S: 6., = VoUV,U-- UV, (disjoint union) .

2) UV, = Ubjo (0LILr).
3) Vi=G,Y,=GiY, (0<LI<r).
4) C1SY, is an algebraic subvariety of M, and

ClY, =Y, Uy, U - Uy, 0<LILr).
5) ClV,is an affine algebraic subvariety of §_,, and
ClV,=TV,ur,u-ur, 0LiLr).
6) 0=dy<d<--<d, =dimc M.

Proof. The proof of the assertions 1), 2) is the same as in Section 2. The
assertion 3) follows by the same argument as in Section 2 and the same reason-
ing as in Remark 2.4, recalling the equality (3.1).

4) In the same way as in Lemma 2.1, 4) we get

(3.2) I'<l=V,cClay,.

Since the complex linear algebraic group G’ acts on M regularly and U’ is an
algebraic subgroup of G’, by a well known fact in algebraic geometry (cf. for
example, A. Borel: Linear Algebraic Groups, Benjamin, 1969), <I/,=U’b;0 con-
tains a Zariski open subset of the Zariski closure CI?(CV)) of €V;. Thus we have
ClY,=Cl?(CY)). The Zariski connectedness of CIC/; follows from that of U".

Also from the above we have
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(3.3) Py ClY, 1+l = dp<d,.
In particular, by (3.2) we get
34 I'<l=d.,<d,.

Suppose that ¢V, cClCV, for I'’>>1. Then, by (3.3) we would have d<d,,
which is a contradiction to (3.4). Thus we have proved that I’</ if and only
if V,,cCl ¢V, which completes the proof of the assertion 4).

5) Since actually g_, is Zariski open in M, this follows from assertions
3), 4) and the Zariski connectedness of Gj.

6) Follows from (3.4). q.e.d.

ReMARK 3.4. The defining polynomials of the affine algebraic variety CIV,
ing_, are given as follows. Taking a basis {e,, -, ¢,} of g_, we identify g_,
with C", and then gl(g_,) with the space of 7n X7 complex matrices. Take a basis
{X,, -+, Xy} of goCgl(g_,). Then the set {F{)(z,, -, 2,)} of all minor deter-
minants of degree d;+1 of the #x N matrix

2
(X,2, -, Xy2), where z:(;’)

2n

is a set of defining polynomials of CIV,. This follows from assertions 3), 5),
6) in Lemma 3.3.

By Lemma 3.3, 5), the automorphism group of &:
GL(g-,, S) = {aeGL(g.)); aV,=V,; (0LI<Lr)}
is also given by
(3.5) GL(g-,, §) = {acsGL(g-); a(C1 V) =Cl V; (0LI<Lr)}.
Thus it is a complex algebraic group in GL(g_,). Note that G,CGL(g-,, S).
Theorem 3.5. G,=GL(g-,, S).

Proof. First we claim that g, is a maximal subalgebra of gl(g_,). Since g,
contains the scalar endomorphisms C1 of g_,, it suffices to show that the semi-
simple part §, of g, is a maximal subalgebra of 3[(g_,). Note here that §, acts
irreducibly on g_, because (M, g) is an irreducible Hermitian symmetric space.
Now our claim can be verified for each (#, g), by seeing the classification of
irreducible maximal subalgebras of 8[(N, C) by Dynkin [2].

So LieGL(g-,, &) is equal to either g, or gl(g-,). In the latter case, since
in general the number of GL(g.,, S)-orbitsin g_, is r+1, we have r=1 and
hence g,=g¢l(g-,). Thus we have always Lie GL(g_,, §)=g,, whence the identity
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component of GL(g.,, &) is equal to Gj. In the following we follow the argu-
ment in Gyoja [3]. Since GL(g_,, S) normalizes G§ by the above, Ad induces a
homomorphism @: GL(g_,, S)— Aut(g,) with

(3.6) @~ (Inn(g,)) = G .

Here (3.6) follows from the Schur’s lemma together with the fact that C*1c Gg.
We will show

(3.7) P(GL(§-,, S)) = Aut(g,, a, IT, IT;) Inn(g,) .

Let aeGL(g_,, S) be arbitrary. Since @(a)f) is a Cartan subalgebra of g,, there
is a'€G{ with p(a’a)E Aut(g,, a, II,). Set b=a'acGL(g-;, S). Denoting by
p: 8o gl(g,) the identity representation, we define a representation p® of g, by

p(X) = p(p(b)X)  for XEg,.

Then, since p(@(b)X )=bp(X)b™?, p® is equivalent to p. But the highest weight
of p is —a,, where ¢ is the distinguished root in II, and hence @(b)a, = a;.
Thus ¢ (b) € Aut(g,, a, II, IT,), and so @(a)=p(a’) 'p(b)E Aut(g,, a, II, IT,)-
Inn(g,). For the proof of the inclusion Aut(g,, a, IT, II))Inn(g,) Cp(GL(8-,, S)),
it suffices to show Aut(g,, a,II, IT)) Cp(GL(g-;, §)). Let acAut(g,, a, I, ITy)
be arbitrary. If we define a representation p° of g, by

pY(X) = p(aX) for Xeg,,

then by aa,=ay, p® is equivalent to p. Hence there is b6&GL(g.,) such that
p(X)=bp(X)b™! for each X &g,, which implies G;=>5G(5. We claim that
beGL(g-,, S). Infact, for each XV, (0<I<r), GtbX=bG(X=bV,. Thus
dim¢(G§bX)=dim¢ V;, and hence by Lemma 3.3, 6) GtbX=V,. In particular,
we have bX €V, whence the claim. Since ¢(b)=a, we are done.

Now (3.6), (3.7) imply that GL(g-,, S)/G{=@(GL(8-,, S))/Inn(g,)=
Aut(g,, a, I, IT)/Aut(g, a, II, II;) N Inn(g,) = Aut(Il, II,), and so by Lemma
3.2 we get the assertion of the theorem. q.e.d.

Lemma 3.6. We define
GL(8-1, 8) = {a€GL(g-1); a(Cl Vyy) = Cl Vy (0<k<[r/2])}.
Then, GL/(g-,, S)=GL(8-,, S) if r=3.

Proof. By (3.5) we have GL(g-,, S)C GL,(8-,, S). Since g,C Lie
GL,(8-;, S) and dim¢ GL(8-,, S)<dim¢ GL(g-,) in virtue of 7>3, we see by
the same argument as in the proof of Theorem 3.5 that the identity component
of GL,(g-,, 8) is equal to G§. Since GL(g-,, S) contains the normalizer of G§
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in GL(g-,) as we have seen in the proof of Theorem 3.5, we get GL,(g-,, §)C
GL(§-,, S). g.e.d.

4. Automorphisms of stratification

We come back to an irreducible symmetric R-space (M, g) and use the
same notation as in Sections 1 and 2. First we prove the following theorem,
making use of the results in complex category.

Theorem 4.1. 1) ClY,=V,UV, U UV, (0<KILr).
3) O=dy<d, <+ <d,=dim M.

Suppose first that g is simple. Then the complexification G: §=8_,+8,+8,
of G, together with the conjugate linear extension ¥ to § of 7, becomes a
compact simple symmetric graded Lie algebra (&, 7) over C. Various objects
for (G, 7) considered in Section 3 are denoted by the same symbols with —.
We define an involutive automorphism o of Aut(g) as a real Lie group by

o(a) = ocac™?  for acAut(g).

For a o-invariant subgroup H of Aut(g), H, will denote the group of all fixed
points of ¢ in H. For example, we have

(G’)v =G, (Go)cr = G, (Ko)a =K,.
Lemma 4.2. G = (G), .

Proof. It is obvious that G= G,G’' =(G),(G'),C(G),. For the proof of
(@) C G, we note first that by (1.9), (1.10)" in complex category, M=G|U can
be identified with the set of all complex parabolic subalgebras of § which are
conjugate to the complexification 1 of 1t under G or under Inn(g). Let a€(G),
be arbitrary. Then a=Aut(g) and so au is a parabolic subalgebra of g whose
complexification is conjugate to 1t under Inn(g) by the above remark. Since two
parabolic subalgebras of g are conjugate to each other under Inn(g) if and only
if their complexifications are conjugate to each other under Inn(g), there
is b&G’ such that dau=u. It follows from (1.9) that ba€ U and hence
aeG'U=G. q.e.d.

From the above lemma it follows that if H (resp. H) is one of the groups
G, G, UK, K, G, G, U, R, Kj (resp. G, G,, U, K, K, G', G, U', K', K¥),
then H=(H),. In particular, we have a natural G-equivariant imbedding

j:M=GU-M=G|U.

Furthermore, an involutive diffeomorphism o of M can be defined by
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o(a0) = o(a)o  for a=G.

For a o-invariant subset N of M, the set of all fixed points of ¢ in N will be
denoted by N,. It is known (Takeuchi [13]) that o is an involutive isometry

of (M, g) such that
(4.1) M = (M), .

Furthermore, z: §.,— M is o-equivariant and j: (M, g)— (M, 2) is isometric.
As a maximal abelian subalgebra a of p=p-++/—1%, we take

azbn=a+v——lby
and use the o-order > on §y for g as an order on a for §.

Lemma 4.3. We can choose A=1{B,, -+, B;} CZ, and X,egf (1<i<7)
for & in the following way.

(a) Class (II).

7=2r; o(By-1) =R o Xy =Xy (1<i<r); If we set Bi=mu(By) (1<
1 <r), then A={B,, -*+, B,} C=, is a system of orthogonal roots for g.

(b) Otherwise.

7=r; o(B)=P5; o X;=X; (1<i<r); If we set B;=0; (1<i<r), then
A=A{B,, +*+, B,} C=, is a system of orthogonal roots for g.

Proof. See Takeuchi [13]. However, for § of type E; or E, {B;} in
[13] should be replaced by the following, under the numbering of roots of
(11, 1I,) in [13].

= Eg: B, = a;+20t,+3ct,+ 20+ 05+ 2025
B, = a,ta,tata,tas.
g = E;: B, = a,+2a,+3a,+4a+3as+- 205+ 207

B, = a+2a,+ 20,4204+ as+ay ,
Ga =a. q.e.d.

Lemma 4.4. (a) Class (II).

CVI = (C(—721)cn VI = (Vzl)w dl = Jzz (OSISY) ,
C(;y_lan (I), Vzl_lﬂg_l == (I) (ISIST) .

(b) Otherwise.
CVI = (C(_/_I)o') V,= (Vl)w d, = Jl (OSIST) .
Proof. (a) By Lemam 4.3, we can take as

X, =X, ,+X;, (1<i<r).



280 M. TAKEUCHI

Then b;=b, and Y,=Y, (0<I<r). Now CV,="Ub,0 is o-invariant because of
byo=boeM. Moreover OV,=Ub,0C Ub,o=C1,. Thus, by Lemma 2.1, 3)
together with (4.1), we have that CU,,_,N M=¢ and A, =(Vy),- This implies

also d;=d,. In the same way as above, by Y,=Y, we obtain the o-invariance

of V,, and
(VZI)O' = (C—&ZI n Q—l)cr = (C—(—/Zl)cr N (g—-l)a‘
= Nng,=V;.

This implies also V,_,Ng_,=¢ by virtue of (2.10).
(b) This is proved in the same way as above, by taking as X;=X;. q.e.d.

Now Theorem 4.1 for simple § follows from the above lemma and the
assertions 4), 5), 6) in Lemma 3.3.

Suppose next that g is not simple. Then g is the scalar restriction to R of
a complex simple Lie algebra §. Let §, (—1<p<1) be the subspace of § such
that the scalar restriction to R of §, is g, Then the graded Lie algebra
G: §=08.,+8,+8, together with #==, becomes a compact simple symmetric
graded Lie algebra (G, #) over C. Various objects for (&, #) are denoted by
the same symbols as in Section 3, but with ~. Note that in particular we
have

(4.2) G' =G,

under the identification Aut(g)C Aut(g). In our case, f is a compact real form
of g and p=1I¢¥, where [ is the complex structure of §. Thus j=b+a=7la+ais
the scalar restriction to R of a Cartan subalgebra of g whose real part is a. The
real part B of § is given by

br=+v—1Ia+a.
Denoting the C-linear extension to § of I by the same I, we define
gt ={Xeg; IX=+v-1X},
to get a decomposition
(#.3) §d=g"®g"
with og*=g¥. Then R-linear isomorphisms w*: g— g* are defined by
(X)) = X* = (1/2)(XFvV/—-11X) for Xeg.
If we set a*=w*(a), we have

= at+a”.
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We may identify SCa with 2. For a3, a*=a* is defined by
(a*, H*) = (a, H)  foreach Hea.
Then we have

cat =a¥ for x>,
S ={a", a;ac3}, 3= {a*, a”; a3},
n=notun-, I,=I; ully,

where [T*= {a*; a€II} and II7= {a*; aIL}. In particular, o (restricted to
Hr) belongs to Aut(Il, I, o). We regard Aut(II) as a normal subgroup of
Aut(II) by the correspondence ¢—(t*, ¢t7) for t& Aut(II), where t* & Aut(IT*) is
defined by

t*(a*) = (ta)*  for a<Il.
Then we have a semi-direct decomposition
(4.4) Aut(I1, I, o) = Z,-Aut(1], I1,), where Z,= {1, o}.

An involutive automorphism k, of g with k)|9)p,=0c is constructed as follows.
Choose k= Aut(g, t, hg) with «|hp=—1 and «*=1, and set

k, = T Aut(g) .

Then it is verified that k9r=0Yr and ka*=a* for each a¢&II, and hence
ky|Dr=0c. Actually k, belongs to K,, because k,E=E and k,r=7k, Recall that
G|G'=Aut (11, I, ) by Lemma 1.2, G/G'=Aut(II, II,) by Lemma 3.2, and
G'=G’ by (4.2). So by (4.4) we get a semi-direct decomposition

G=2,G where Z,= {1, k;}.
This, together with (4.2), (1.14), implies semi-direct decompositions
(4.5) G,= 2,-G, U= 2,-U, K= Z,-R,, K, = Z,-K,,
and equalities
Gi=G;, U =0, K' =K, Ki=K;.
Thus we have a natural identification
M=GU=M=G|U,

which is a homothety between (M, g) and (M, g). It is easy to see that under
this identification we have

(4.6) YV, =, V,=V, (0<I<r=7),
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and hence dim CV,=dim V;,=2d, (0<I<r). Now Theorem 4.1 for non-simple
g follows from the assertions 4), 5), 6) in Lemma 3.3.

Remark 4.5. Each Cl V, (0<I/<r) is a real affine algebraic variety in g_,.
In case where § is not simple, this is obvious from Remark 3.4. In case where
g is simple, Cl V,=(Cl V,)Ng_,, m=1 or 2I, by Lemma 4.4. In the construc-
tion of defining polynomials {F{™} of ClV,, in Remark 3.4, we choose basis
{e,, **-, e,} and {X,, -+, Xy} of §_, and §, from g_, and g,, respectively. Then
{F{™} are real polynomials by which Cl V, is defined in g_,.

REMARK 4.6. If § is not simple, that is, if (M, g) is an irreducible Hermitian
symmetric space of compact type, the group G is equal to the group of holo-
morphic transformations and anti-holomorphic transformations of M. This
follows from Remark 3.1 and the decomposition G=Z,-G.

Theorem 4.7. GL(g-,, S)=G, ifr=>2.
Proof. Note first that by Theorem 4.1 GL(g-,, &S) is given also by
(47)  GL(g., S) = {acGL(g.); a(C1V,) = Cl¥, (0<I<n)},

and hence GL(g_,, &) is a closed subgroup of GL(g_,).
Suppose that g is simple. Then Gy=(G,),, as is seen in the proof of
Theorem 4.1, and GL(§-,, S)=G, by Theorem 3.5. Thus it suffices to show

(4.8) GL(g-1, §) = GL@-,, NGL@.)  if r>2,

GL(g-,) being regarded as a subgroup of GL(§-,). In case where M is of
class (II), by Lemma 4.4 we have ClV,=(Cl1V,)Ng_, (0<I<r). Hence, by
(3.5), (4.7) and Remark 4.5, we have

GL(g-,, S) = GL,(8-1, S NGL(G.,),

under the notation in Lemma 3.6. Since r>2, Lemma 3.6 implies (4.8). If
M is not of class (IT), we have Cl V,=(Cl1V,)Ng_, (0<I<r), which implies
(4.8) in the same way.

Suppose next that g is not simple. Then G,=Z,-G, with Z,={1, k;} by
(4.5), and GL(3_,, 8)=G, by Theorem 3.5. Thus it suffices to show

(4.9) GL(g_,, S) = Z,*GL(G-,, S) if r>2.
First we show
(4.10) g = Lie GL(g_,, S) if r>2.

We set g,=Lie GL(g-,, §). Let /€Endg_, denote the complex structure of
-, induced by that of g, and
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(4.11) g1 = ¢84+65

be the decomposition by I which is the one (4.3) for g_,. We define a complex
structure [ of End g, by

I(X)=IX for X€Endg_,.

Since each V, is a complex submanifold of §., by (4.6), g, is inavriant under 1.
Also g, is invariant under I, and I|g, is the complex structure of g, induced
by that of g. Thus we have the following three decompositions by 1.

End g, = (Endg.,)° = (End g_,)"+(End g.,)",

where
(End g_,)* = Hom(g*,, g%,)+Hom(gZ,, g%)),
gz CHom(g%,, ¢%)) .
By [8,, 8,]< @, and [§,, /]= {0}, we get
(4.12) (8 g¥1 g7

Let us consider the adjoint action of § on End §_,. Since g7 is included in
Hom(g%,, g%,) irreducibly, g, leaves Hom(g=,, g*,)CEnd §., invariant and acts
on it irreducibly. We set

g:+ = Q: n HOm(Qtn gil) ’
g:* = ¢¢ NHom(gZ,, g%,) .

We will show
(4.13) gy = g5 +g:t,
(4.14) g7 " CcHom(gZ;, g%,) is invariant under §, .

We denote a general element X €End §_, by a matricial form

X (A B) AeHom(g?,, g*,), B€Hom(g-,, gt,),
C D)’ Ce&Hom(gt, g-,), DEHom(go, 7)) .
Then, for
X, = (A° O)ego, A,=gt, D,=gv,
0 D,
A B
X = (O O)eg;‘, AeHom(gt,, g*,), BeHom(g-, g*,),
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we have

(o 1=

A,A—A4, A,B—BD,
o).

Since g7 contains the scalar endomorphisms Clgi , we can take as 4,=(1/2)1
-1
and Dy=—(1/2)1. Then, for any X &g} we have

%0 X1= f;)

which belongs to g7 by (4.12). Hence BEg;* and so A=X—Beg!*. Thus
we ge* (4.13). Since the action of § on Hom(g-,, g*,) is given by

B+ A,B—BD, for (4, Dy)Egi Pas = G,

we get also (4.14).

Now by the gy-irrecibility of Hom(g=;, g*,) and (4.14) we have either (a)
g *={0} or (b) gr*=Hom(gZ;, g%,). In case (a), by (4.13) gf is a subalgebra
of gl(g*,) with g5 Cg;. Since r>2, by the same argument as in the proof of
Theorem 3.5, we get g¢=g;, which implies g,=g,. In case (b), noting that
Clgixcg;“‘, we have g;* =gl(g*,). This, together with (b), implies gf =
(End g_,)*. Therefore we have g,=gl(g-,), which is a contradiction to r>2.
Thus we have proved (4.10). In particular, we see that any element a& GL(g_,, S)
normalizes @,.

Now let a€ GL(g.,, S) be arbitrary. Since the g;-module §_, has the
decomposition (4.11) with inequivalent irreducible g,-submodules g%, a, regarded
as an element of GL(§.,), permutes g*, and g=;. On the other hand, k,&G,C
GL(g-,, S) is anti-linear as a map of §_,, and hence k,, regarded as an element
of GL(§.,), interchanges g*, and g=;. Thus, either a or ak, leaves g%, invariant,
that is, either a or ak, is C-linear as a map of §.,. Therefore, either a or ak,
belongs to GL(§_,, S), because S=& by (4.6). This proves (4.9). q.e.d.

RemMARK 4.8. For classical G such that the symmetric domain correspond-
ing to (II, IIy) is of tube type, Theorem 4.7 was proved by Tanaka [18].

5. Helgason spheres

In this section we define the notion of a Helgason sphere of an irreducible
symmetric R-space (M, g), and prove that the group G permutes Helgason
spheres of (M, g).

Under the notation in Section 1, we introduce a linear order >on (a,)g in
such a way that A,>.-+>h,>0. Let Zj denote the set of positive roots in
Su. For each ye3, we define
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§=HLNE)+E)™,
m? = mN ()" +(E°)7), my(y) = dimm?,
and set
fg = fOﬁ(fc)(] == {XEtm [X’ aM] :{0}} ’
ml=mNEC)° =ay.

Then we have orthogonal decompositions
fo = fg+ 2 ﬁ)l ’
vyEZ},

m=m’4 3 m",
vl
For ye3,,, we set
2rv/—1

A= — (, 7)

vEa,.

Note that | 4| =2x/|v]. Let
Sy = (Eu)x U--u (EM).:

be the decomposition of 3, into the sum of irreducible components (=,);, and
8 (1<k<s) the highest root in (Z,/);. We choose 3, of the largest length among
these 8, (1<k<s) once and for all.

Suppose that y €33 satisfy 2y €S,,. We define

ny =RV _-1y+m’,
ty = [y, ny] = B+ [m", m’]
= 0+t 7],

g-y = ty—J[—n-y .
Then &, is a subalgebra of £, and by virtue of 2y &3, one has [[n,, ny], ny]Cn,.
Therefore

Ny = (exp ny)oC M

is a totally geodesic submanifold of (M, g) with
(5.1) dim Ny = my(v)+1.

Lemma 5.1 (Helgason [4]). Suppose that dim M >2.

1)  The maximum of sectional curvatures of (M, g) is equal to |8, |%

2) Ny has constant sectional curvature |7 |* (with respect to the metric on
Ny induced by g), and therefore the symmetric pair (8y, ty) is isomorphic to

(0(ma(7)+2), 0(myy(7)+1)) -
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3) If M is simply connected and =, is irreducible, then
(a) Ny, is a sphere, and

T = {(exp t4%x)0; 0<t<1}

is a simply closed geodesic in Ny, of length 2rn[|8y|, and has the minimum length
among all the closed geodesics of (M, g);

(b) Any totally geodesic sphere in (M, g) with dimension>2 of constant
curvature |8y |* is conjugate to a submanifold of Ny, under the largest conmected
isometry group 1°(M, g) of (M, g).

ReMARK 5.2. Acutally, Lemma 5.1 holds for any non-flat compact sym-
metric space (M, g).

Theorem 5.3. Suppose that dim M >2.

1) Shortest closed geodesics of (M, g) are conmjugate to each other under
I%(M, g) (up to parametrization).

2) We have an inequality

|4, <|A%x|,

which is equivalent to that |8, |<|8|, and the equality holds if and only if M is
simply connected.
3) The length of a shortest closed geodesic is 2z /|8 ]|.

Proof. Let ¢(t) (0<t<1) be any shortest simply closed geodesic of (M, g).
Recalling the fact that any vector in m can be transformed into a, by an ele-
ment of the identity component of K,, we see that ¢(¢) is conjugate to a geodesic

cA(t) = (exp tA)o (0<t<1), with A€T,,

under I(M, g). Since A4 has the shortest length among I';,— {0}, we have A=
+A4; (1<i<r). Furthermore we may assume that A=4, or —4, since Wy
contains &, by Lemma 1.3. But the corresponding closed geodesics c,, and
c_4, are the same up to parametrization, and so we get the assertion 1). We
prove the inequality in 2) for each of the five classes in Section 1 separately.

Classes (I) and (II). In these cases, =, is irreducible and 8, =2h,. A’x
can be computed by (1.22) to get A»=A4,. Thus [A%x|=|4,].

Class (III). By dim M >2, we have r>2. Thus 3, is irreducible and
Sy=h—h,. One has A%=A,—A,, and hence | A%%|=+/2 |4,|>|4,].

Class (IV). =, is irreducible, &,=h-+h, (r=2) or h (r=1). If r>2,
Alx=A,+ A4, and |A%x|=+/2|A4,|>|4,]. If r=1, A%»=24, and |4%|=
214, > | 4,].

Class (V). Suppose first that r>3. Then =, is irreducible and &,,=h,+h,.
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One has A%¢=4,4+ A4, and | A% |=+/2 |4,|>|4,|. Suppose that r=2. In
this case, =, is not irreducible and decomposed as =,,=(Z;/), U (), with

(EM)I = {hl+h2) —(h1+h2)} s 81 = h1+h2 s
(EM)z = {hl“hza hz_hl} ’ 32 = hl—hz .

We take as 8,,=h,+h,., Then A’x=A,+ A4, and |A%%|=+/2|4,|>]4,].
Now we obtain the assertion 2) by comparing the above computations of
| A% | with z,(M). The assertion 3) follows from that |4,|=2x/|§]|. q.e.d.

Seeing the above proof, we get the following

Corollary 5.4. Any shortest closed geodesic of (M, g) through the origin o is
conjugate to the geodesic

T, = {(exp td,)o; |t| <1/2}
under the group K; (up to parametrization).

A submanifold S of M is called a Helgason sphere of (M, g) if

(H1) S is a totally geodesic sphere with minimum radius; and

(H2) S has the maximum dimension among the submanifolds with the
property (H1).

RemMARK 5.5. A “Helgason sphere” in Nagano [7] or Peterson [8] is a
submanifold S with (H1), (H2) and dim S >2.

Theorem 5.6. 1) Helgason spheres of (M, g) are conjugate to each other
under 1°(M, g).

2) For any shortest closed geodesic ¢ of (M, g) there is a Helgason sphere which
includes c.

3) M is simply connected if and only if 2<dimension of a Helgason sphere
S. In this case, one has

4)  The radius of a Helgason sphere is 1/|8].

Proof. We may assume that dim M >2. Suppose first that M is simply
connected, that is, (M, g) is of class (I) or (II). Since = is irreducible in this
case, by Lemma 5.1, 2), 3) (a) and (5.1), N;,, is a totally geodesic sphere of the
radius 1/|8,,| with

Let N be an arbitrary totally geodesic sphere in (M, g). If dim N >2, by Lemma
5.1, 1) the sectional curvature « of N satisfies < |8, |>. Hence the radius of
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N=1//k >1/|8y]. If dimN=1, that is, N is a closed geodesic, then by
Lemma 5.1, 3) (a) the length of N>2#/|8,|, and hence the radius of N>
1/18y]. Therefore N, satisfies the property (H1). It has also the property
(H2) by virtue of Lemma 5.1, 3) (b). Thus N, is a Helgason sphere, and hence
the assertion 1) follows from Lemma 5.1, 3) (b). The assertion 2) follows from
Lemma 5.1, 3) (a) and Theorem 5.3, 1).

Suppose next that M is not simply connected. If N is a totally geodesic
sphere with dim N >2, then the radius of N >1/|8,], as is shown in the above.
The radius of a shortest closed geodesic is 1/|8]| by Theorem 5.3, 3). Thus,
by Theorem 5.3, 2) the Helgason spheres are the shortest closed geodesics.

Therefore the assertion 1) follows from Theorem 5.3, 1). The assertion 2) is
trivial.

The assertions 3) and 4) are obvious from the above arguments and Theo-
rem 5.3, 2). q.e.d.

We fix a root BEA and define a subalgebra gz of g by
gs = 8", 6"l +8°+g7".
It has a Cartan decomposition
(5.2) gs = Ps+Dbs, where I, =1tNgs Pg="9Ngs.

The symmetric pair dual to (gg, g) is in the same situation as (3, ty) in Lemma
5.1, by virtue of 28&X. Therefore, by Lemma 5.1, 2) and Remark 5.2 one has

(5.3) (85> ) = (o(1, m(B)+1), o(m(B)+1).
Furthermore we have a decomposition

Lo = (fs)o+mp, where (fg)o=1EsNE, mg=1Nm
with the property
(5.4) [[mg, mg], mg]Cm,.

Now let Gy be the connected Lie subgroup of G generated by gg and set Sp=
GgoC M. Then we have

Sp = (exp mp)o = Gg/Us,

where Ug=U NGy is a parabolic subgroup of Gg. Therefore, by (5.3) Sp is
the symmetric R-space associated to o(1, m(8)-+1), and hence it is a sphere.
Together with (5.4), it follows that Sg is a totally geodesic sphere in (M, g) with
dimension m(R3).

Lemma 5.7. S is a Helgason sphere.



Basic TRANSFORMATIONS 289

Proof. The closed geodesic T in Section 1 is contained in Sg and has the
length 27/|8|, and hence the radius of Sgis 1/|8|. Therefore, by Theorem
5.6, 4) Sg has the property (H1).

Suppose first that M is not simply connected. If dimSg would be greater
than one, then the radius of Sg>1/|8,,|>1/|8| by Theorem 5.3, 2), which is
a contradiction. Therefore dim Sg=1, whence S, is a Helgason sphere.

Suppose next that M is simply connected. By Theorem 5.6, 2) it suffices
to prove

(5.5) m(B) = my(8,)+1, where 8, = 2h,.

Denoting by w,: a— a, the orthogonal projection, we have (cf. Takeuchi [14])
(5.6) Hyes;mm) =B1=1 (I<i<r).

Moreover (Takeuchi [16]) there is c&Inn(g) such that

(5.7) cay = (ay)r, cB:i=2h (1L i<r).

Since AC Wé=Wg,, we have m(8)=m(8,), and so

m(B) = dime{X €3§; [H, X] = (B, H)X for each H<a}
= dimg{X €g; [H, X]= (B8, H)X for each HEa,} by (5.6)
= dim¢{X €§; [H, X] = (2h, H)X for each H €a,} by (5.7)
= dimg¢ (£¢)%x4-dim¢ (p©)°x ,
where
(PO)ox = {X €p°; [H, X] = (8, H)X for each H €a,}.
Since dimg(2€)%x=m,(3,,) and dim¢(p€)*x=1 (Takeuchi [16]), we get (5.5).
q.e.d.
Corollary 5.8.
my (&) +1  if m(M)={0},
1 if m(M)=+{0}.

For AeR and —1<p<1, we define

m(8) = {

S® = {ye3; 2(v, 8)/(8, 8) = A}, =P =3IMNZ,.
Then we have decompositions

S = 2(0> UE(” UE(-I) U E(z) U 2(—2) with z(iz) — {:ts} ,
So=ZPUSPUSY, = =3PUsPNZ®.

Furthermore we set
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Sy ={yES; (v, E)>0}, where E8=2E—(828)8,

(Zp)g = {vEZs; (v, Es5) = q}  for ¢=0.

Then we have decompositions

25 = (Zs)oU (Ze) U(Zs)2
(Zs)o=ZUSOUZ?,
(Zah =ZPUD,
(Zp)e = ="
We define a parabolic subalgebra [; of g and several subalgebras and a subspace
of Iy by
=g+ > ¢,
YEZB
L=g+ > ¢'2¢,

‘\/E(is)o
L= > g'Cu (a subspace),
1EGH,
L= 3 ¢cCg,
YEGH,

o ={X €l [X, 8] = {0}} Cg.

Note that [,;=g,P3,. The corresponding connected Lie subgroups of G are
denoted by L, Ly, L, and Z,, and set L,=exp [;. Then we have that Ly=L,L,L,
since I,+1, is a nilpotent ideal of I[;=1+1,+1, with [[;, [;]C],, and that L,=G,Z,.

Lemma 5.9. L;S;=S;.

Proof. We have that Ly=L,L,L,= G;Z,L,L,CG;U since Z,CG,, L,CU
and L,Cexp g;,. Thus, for each /& L; and each p=a0 € S; (aEG;), one has

Ip =laoeLjoCGsUo = Gy = S5 . q.e.d.

Theorem 5.10. Any element of the group G of basic transformations per-
mutes the Helgason spheres of (M, g).

Proof. We claim first that for any a&G aS; is also a Helgason sphere.
If we denote by G® and K° the identity components of G and K respectively,
we have the polar decomposition G*=K expp and G°=K°L;. The latter follows
from the fact that the parabolic subalgebra I; contains an Iwasawa subalgebra.
Thus, together with (1.6), we get G=KL;. Hence the claim follows by Lemma
5.9.

Now let S be an arbitrary Helgason sphere, and a=G be arbitrary. By
Theorem 5.6, 1) there is kK such that kS;=S. Therefore aS=akS; is a
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Helgason sphere by the above claim. q.e.d.

ExampLe 5.11. Let M<>Py(C) be the canonical equivariant projective
imbedding of an irreducible Hermitian symmetric space (M, g) of compact type,
in the sense of Sakane-Takeuchi [9]. Then a submanifold .S of M is a Helgason
sphere of (M, g) if and only if S is a projective line in Py(C). In fact, Sz in
Lemma 5.7 is a projective line in Py(C).

ReEMARK 5.12. It can be shown that a Helgason sphere generates the
homotopy 7z, (M) and the homology H,,s (M, Z).

6. Arithmetic distance

In this section we define a discrete valued distance d on an irreducible
symmetric R-space (M, g) in terms of Helgason spheres, and characterize the
group G as the group of isometries of d.

Lemma 6.1. For each peV, (1<I<r) there is a chain of Helgason spheres
of length | connecting o and p, that is, there are Helgason spheres Sy, -+, S, such
that o€ S, pE S, and S, N SpnF+d (1<ELI-1).

Proof. Since each element of K, permutes the Helgason spheres by K,C
I(M, g), and €V,=K, 9, by Lemma 2.2, we may assume that p9),. Further-
more, since &,C W), by Lemma 1.3, we may assume that

p=(expH)o, H=3Xxd;, 0<|x|<12 (1<i<]).
We set

Po=0, pi=(exp N mA)o (1<k<I-1), p =2,
o= {exp(SwA,ttd)o; 11112} (1<k<D).

Then ¢, is a shortest closed geodesic (of length 2z/|8|) through p,., and p,
(1<k<I). By Theorem 5.6, 2) there are Helgason spheres S, with ¢,CS,
(1<k<l!). The chain {S,} is the required one. q.e.d.

By this lemma and the transitivity of G on M, it follows that any two points
of M can be connected by a chain of Helgason spheres. So we may give the
following definition.

We define a distance d on (M, g), called the arithmetic distance, as follows.
For p, g M with p=gq, d(p, q) is defined to be the minimum possible length of
a chain of Helgason spheres connecting p and ¢; and d(p, )=0 if p=q. Let

(M, d) = {pDiff(M); d(p(p), p(g)) = d(p, g) for any p, g€ M}
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denote the isometric diffeomorphism group of (M,d). Note that GCI(M, d) in
virtue of Theorem 5.10. We define

M, = {peM; d(o, p) =1} (0<i<r).
Then Lemma 6.1 is restated as
Y, cM,UMU--UM, (0<I<Ly).
Lemma 6.2. If we define
st =sg, 85, EW  for 1<I<r—1,
then s1(Z(° U =@)C 3, U S, under the notation in Section 5.

Proof. Note that for yEZ, siyE3,UZ, if and only if (sjy, £)>0, where

2 2
v E)=(sE)=v,E——=—B,——————B1n
(i, )= (3, 1) = (v @ B Brow Bre) ™ )
. . 2 1+1 }
= (v, E) 5.9) 2 (wa(7), Bi).

If ye3®, then (v, E)=0 and w.(v)=(1/2)(B,—B,) 2<j<r)or (1/2)8, (cf.
Takeuchi [14]), whence (siy, E)=0 or 1. If y&3®, that is, y=34§, then
(v, E)=1 and w,(v)=4,, whence (sjv, E)=1. q.e.d.

Next we want to know the structure of C{/,=U’b0. Under the notation
in Section 5, we define

gl = "+ Zo)g”, g = > ¢,

yex{ yes D
sf'=3¢g, =39, ¢?=¢",
yezgl) ‘yeigo)
and define a parabolic subalgebra 1, of g, by
1, = g6”+g6™".
Then we have
8 = Uotgf’, &= a®+ai"+ai".

Let G®, GV, G{¥ and G® denote the connected Lie subgroups of G generated
by g”, af", ¢ and g® respectively, and let

Ut = {asGg; any = uy}.

Then Lie U{=1,, exp ,=G?G{ G and U'=GiG?G{"G{”. Since b,|a=s,
by Lemma 2.1, 1), we have
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unbu =g'+3>1¢?,
Y

where v runs through all the y&3 such that (v, £)>0 and (, 5,E)>0. But,
since

(o B 28) = (v, ) 22:8)
58 = (1 B2 8) = (o B- 2L,

we have

uNbu = uy+gi4-gi®.

Now Uj§ leaves invariant g, and g{"’+¢{”, and hence U} acts on g® ==
0,/(85+¢\") linearly. Then in the same way as in Takeuchi [15] we can prove

UnyUb' = UGG,
by which the following lemma is derived.

Lemma 6.3. The correspondence (a, X)+— a expXb,o (a€G§, X € g®) in-
duces a bijection W: G§X y; §® — UV, =U’byo0.

Theorem 6.4. M,=CV,(0<I<r). Therefore, the range of dis {0, 1, -+, r}.

Proof. We prove this by the induction on I. If /=0, this is obvious. Let
pEM, be arbitrary. Then there is a Helgason sphere through o and p, and
hence there is a shortest closed geodesic ¢ through o and p. Therefore, by
Corollary 5.4 there is k€ K such that ke=T,, whence kp=D),. Thus p belongs
to K¢9,, which is equal to ¢/, by Lemma 2.2, 1). Thus we get M,CC{/,.
Together with Lemma 6.1, we obtain M,=C{/,.

Assume that 1</<r—1 and M;=CV; holds for each 7 with 0<: <. We
show first that

(6.1) M,,,CCICV,,, .

Let peM,,, be arbitrary. Then there is g M, such that d(q, p)=1. By the
assumption, g€V/,=U"b,0. Here, since &,C W,, by Lemma 1.3, €|/, is also
written as C{/;=U'bjo with

b = exp(1/2)(Ap+ -+ +441) -

Therefore there is a= U’ such that g=abjo. Since b} 'a~'g=0 with b} 'a"'€
GcI(M, d), we have b,"a"peM,. By the fact: M;=CV, just proved, there is
be U’ such that b 'a~p=>bbo. Thus p—abibboc U'b;U’b0. So it suffices to
show

6.2) BUbocCl Y,
because of the U’-invariance of CICV,,,. Let z: G X y3 8¥—>R=Gib0=G/Uq
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denote the vector bundle projection. Since G{"b,0 is an open dense subset of
R, by Lemma 6.3 W(z(G§"b,0)) is a dense subset of CV/;. But ¥(z~*(G{b,0))
=G§{GPb,0, and so biGPGPbyo is dense in b5U’bo. On the other hand, since
bila=s{, by Lemma 6.2 we have

b,GGPboc U'bibo = U'bjy0 = WV, -

Thus we get (6.2).

Now, by (6.1) and Theorem 4.1 we have M, CV,UV, U - UV 4.
This, together with the assumption, implies M,,,C<V,,;. On the other hand,
by Lemma 6.1 ¢V, ,,CcM,UM,U---UM,,,. This, together with the assump-
tion, implies ¢V, CM,,,. Thus we have proved M, ,,=V ;. q.e.d.

Lemma 6.5. If pI(M, d) with p(o)=o, then (px),EGL(a-,, S), under
the identification GL(T,M)= GL(g-,) through the isomorphism u,: §_,—T,M
defined in Section 2.

Proof. By Theorem 6.4 we have
(6.3) PV, =V, (0LIZr).

Since g, is an open subset of M with o&g_,, there is an open set U of g_, with
0€U such that pUcg_,. Let X €ClV, be arbitrary. If >0 is sufficiently
small, we have tX&U. Then, by Lemma 2.5 tX&ClV,NU, and so by
(6.3) p(tX)=ClV,. Thus, by Lemma 2.5 again we have (1/t)p(tX)eCl V.
Therefore

(P2)(X) = lim - p(tX)ECL V1,
and hence (p4),(Cl V,)=Cl V, (0<I<r). This implies (@px),EGL(g-;, S) in

virtue of (4.7). q.e.d.

Let F(M) denote the bundle of frames of M, that is, the bundle of all
linear isomorphisms from g_, to tangent spaces to M. We define a subbundle

P of F(M) by
P = {ayu,; a€GY},
which is a Gy-structure over M. Let
Aut(P) = {peDiff(M); p4P = P}
denote the group of automorphisms of the Gy-structure P.

Lemma 6.6. (Tanaka [17]). If M is neither P,(R) (n>1) nor P,(C) (n>1),

one has
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G = Aut(P).

Theorem 6.7. Let (M, g) be an irreducible symmetric R-space with r=
rank (M, g)=2. Then the group G of basic transformations of M is identical with
the group I(M, d) of isometric diffeomorphisms of the arithmetic distance d.

Proof. We have seen the inclusion G CI(M, d). For the inclusion
I(M, d)CG, it suffices to show I(M, d)C Aut(P) in virtue of Lemma 6.6. To
prove this we follow the argument in Tanaka [18].

Let yv€I(M, d) and #EP be arbitrary. Then there is a&G such that
axuy=u. Moreover, by transitivity of G on M, there is b&G such that
byra(o)=o0. Set p=byracI(M, d). Then ¢(0)=o0 and

(6.4) Vs = by’ Patly -

By Lemma 6.5, (@), belongs to GL(g-,, S), which is equal to G, by Theorem
4.7. Therefore @4, P, and hence JrsuE P by (6.4). This shows that Jr&
Aut(P). Thus we have proved I(M, d)C Aut(P). g.e.d.

Theorem 6.8. Let (M, g) be an irreducible symmetric R-space with r=1
other than spheres. Then the group G of basic transformations of M is identical
with the group of diffeomorphisms of M which send each Helgason sphere to a
Helgason sphere.

Proof. Our (M, g) are the projective spaces P,(F) (n>2) over F=R, C or
real quaternions H and the Cayley projective plane P,(0). In these cases,
Helgason spheres are projective lines. The groups G are the group of projective
transformations of P,(F') and the connected simple Lie group of type EIV,
respectively. Here, by a projective transformation of P,(F') we mean a diffeo-
morphism of P,(F) induced by a semi-linear automorphism @ of F**! that is,
a bijection @: F"*'— F**! such that

p(u+v) = @(u)+o(v) for u, veF**'
@(u\) = p(u)o(N) for ue F**', \EF,

o being an automorphism of F. So our theorem follows from the funda-
mental theorem in projective geometry (for P,(F)) and a theorem of Springer
[11] (for P,0)). g.e.d.

Corollary 6.9. For an irreducible symmetric R-space (M, g), one has K=
(M, g)-

Proof. In case where (M, g) is an n-sphere (n>1), it is seen that K=
O(n+1). Thus we have K=I(M, g). Suppose that (M, g) is not a sphere. Since
any element of I(M, g) carries each Helgason sphere to a Helgason sphere, by
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Theorems 6.7 and 6.8 I(M, g) is a subgroup of G. Recalling that K CI(M, g)
and K is a maximal compact subgroup of G, we get K=I(M, g). q.e.d.

Appendix

Table of the dimension dimS of a Helgason sphere S and the quotient group
G/G° of G modulo the identity component G° of G for irreducible symmetric

R-spaces M

M | dim S | GIG®
SU((r+s)[SU@F)x U(s)) (1<r<s) 2 Z,+2Z, r=s>2
Z, otherwise
SO(2n)|U(n) (n=5) 2 Z,
Spn|U@r)  (r=2) 2 Zz,
SO(n+2)/SO2) x SO(n) (n=>5) 2 Z,+2Z, neven
Z, n odd
E¢/T-Spin (10) 2 Z,
E,|T-E; 2 Z,
SO(r+s)/S(O(r) X O(s)) (1<r<s) 1 Z+Z, r=s>2
Z, r=s=1orr<s, r+seven
{1} otherwise
Sp(r+s)/Sp(r) X Sp(s) (1<r<s) 4 Z, r=s
{1} r<s
Uy (r=3) 1 Z,+Z,
SO(n+1)/SO(n) (n=>5) n Z,
O(p) X O(@)/(O(p—1) X O(g—1))-Z, 1 Z:(Z,+Zy)® p=geven
2<p<gq, (p,9)*(2,2), (3,3)) Z;+2Z; p<4q,5,q even, or p=q odd
Z, otherwise
Sp(r) (r=1) 3 Z,
Um|o(r) (r=3) 1 Z,
SO(n) (n>5) 1 Z,+Z, neven
Z, n odd
U@2n)Sp(r) (r=3) 1 z,
Sp(4)/(Sp(2) X Sp(2))-Z, 1 {1}
F,/Spin(9) 8 {1}
SU®)/Sp(4)-Z, 1 Z,
T-Eg[F, 1 Z,

*) semi-direct product with N=Z;+ Z, normal; the generator of Z, interchanges two Z,’s

of N.
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