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SUPER DIFFERENTIAL CALCULUS
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(Received December 22, 1986)

The theory of super differential manifolds has been developed in recent
years by many authors. While there are several approaches to the subject, we
shall take the so-called geometric approach, developed by Boyer-Gitler [2],
DeWitt [3] and Rogers [4]. On the other hand, Bernshtein-RosenfeΓd [1] have
introduced a differential calculus on an infinite dimensional Euclidean space.
Regarding the super Euclidean space as a protective limit of a family of finite
dimensional Euclidean spaces as [1], in this note we shall propose a super dif-
ferential calculus as a foundation for the theory of super manifolds. The
underlying principle is to describe the concept of super differential calculus in
terms of a differential calculus on an infinite dimensional Euclidean space.
This gives a reduction of a * 'super" argument to an ordinary one and leads to
an easier and clearer understanding of the theory of super manifolds. In sec-
tion 4 we obtain the Cauchy-Riemann equations for a super smooth function,
first obtained in [2], which is rather simplified. In the last section the inverse
mapping theorem is also obtained following our principle.

The author would like to thank his friend Professor T. Ochiai who recom-
mended to him this new subject and encouraged him constantly during this
work.

1. Super numbers and super Euclidean spaces

Let {ζN: Nϊ> 1} be a set of countably infinite distinct letters. These are fixed
once for all. We denote by Λ# the Grassmann algebra of the vector space
generated by {ξ\ f2, •••, ζN} over the real number field R where for N=Q, ΛQ
denotes the real number field R. The family {Λ^: Λ/l>0} and the natural pro-
jection of Λjy onto Λtf.j define the projective limit, denoted by Λ. In a natural
way, Λ can be identified with the algebra of all formal series of the following
form:

where Γ denotes the set of all A-tuples K=(kly &2, •••, kh) of integers (A^O) with
— <kh and 2k(ΞR and ζκ=ζkι ζk2...ζ><h (ζ*=l^R). The algebra
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Λ is called the super number algebra and an element of Λ is called a super number.

In super differential calculus, the super number algebra Λ is comparable to the
real number field in ordinary differential calculus. The natural projection pN of

the projective limit Λ onto Λ.N maps the above #eΛ to the following

**= Σ **?*

where TN= {K=(kl9 Aa, •-, kh)<=Γ: l^kl<k2< — <kk^N} . The algebra AN

is called the N-th skeleton of the super number algebra Λ. In the case where

N=Q, the 0-th skeleton Λ^—R is called the body of the super number algebra Λ.

The projection pQ of Λ onto the body R of Λ will be denoted by pB. For each

super number #^Λ, pB(z)^R is called the body of the super number #, denoted

by #£?, and ZS=Z—ZB is called the soul of #. For each K=(kly •• ,&Λ)eΓ, the
parity \K\ of K is defined by \K\=h mod 2e^2. For p^Z2ί Tp and Λ, are
defined as follows:

Then Λ^ΛO+ΛJ and Λ, Λ,cΛ,+ff (p,q^Z2). If *eΛ,, then \x\=pGZp is
called the parity of #eΛ. If the parity of #eΛ is 0(1), then the super number

# is said to be e^en (orfJ) or commutative (anti-commutative), resp. Since AN

(ΛΓ^>0) is a real vector space of 2N dimension, Λ# has a natural topology, and

hence the projective limit Λ has the projective limit topology, with which Λ is a
Frάchet space and the projection pN of Λ onto Λ^ is continuous and open for

REMARK. The notation, ΛQ and Λ1? does have some ambiguity: that is, ΛO

(Λα) denotes the 0-th (1-st) skeleton of Λ and also the set of all even (odd) super

numbers, resp. In general, there will be no confusion. However, in those cases

where there may be some doubt, the set of all even (odd) super numbers will be
denoted by Λc (Λβ).

REMARK. In a later argument the following simple fact will be often ap-

plied: If % is in Λ and z w=Q for each odd super number w there, then #=0.

The super Euclidean space JRm}n of dimension (m\n) is, by definition, the

product space (A0)
mX(A.1)

n where are m copies of Λ^Λ,. and n copies of

A1=Aa. The projection^ of Λ onto Λ# induces the projection of Rm{n onto
R$n which is, by definition, the product space ((ΛQ)^ X ((Λ^y1 where (Λ^)^=

pN(Ap) (p&Z2). The space R$n is called the N-th skeleton of the super Euclide-

an space Rmln, which is a 2N~\m-]

Γri) dimensional real vector space for N^l and

the ordinary m-dimensional real Euclidean space Rm for N= 0 (the 0-th skeleton
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of the super Euclidean space Rml" is called the body of Rm\n). Moreover Rm\n

can be regarded as the projective limit of the family {R$n: n^O} of finite di-
mensional real vector spaces. Then the super Euclidean space Rm\n is a Frechet

space and the projection^ of Rm{n onto R^n is continuous and open for each
JV^O. The image pN(z) (pN(U)) of z&Rm*n (a subset U of Rm\n) by the projec-
tion^ is denoted by zN^Rm\" (UN<^R$n, called the ΛΓ-th skeleton of U), resp.
On the super Euclidean space J?m|M sometimes we consider another topology, the
coarse topology, with respect to which an open set in Rm\n is an inverse image of
an open set in the body Rm by the projection pB. An open set in Rm\n with re-
spect to the coarse topology will be called a C-open set. Unless otherwise stated,
we consider the Frechet topology on Rm}n.

The projection of Rm^n=(AQ)mX(A.l)
Λ onto the ί-th component Ap(p=Q (1)

if l<^i<^m(m+l^,i^m+n), resp.) will be denoted by z* (for l^i^m+n).
For ί^i^m(m+l^i^m+n)9 sometimes 2* will be denoted by xμ(θp), resp.
where ί^μ^m and l^p^n. Thus as usual, each z^Rm\" can be written as
follows:

The parity \i\ of the coordinate index i is defined as follows : | i \ =0 (1) if 1 ̂ i ̂

m(m+l^i^m+n). On the ΛΓ-th skeleton R$n of Λm|n(7V^O), we consider
the following natural coordinate system {̂ : 1^/^m+w, K^TN, \K\ = \i\}.
For each ^=(«f')e/Zlll|f>, the component z* can be written as follows:

** = 2 x'κ ζ
κ where ^ = \i\ .

Thus jarΛr=(«JSΓ)eΛ3J|11 has the coordinate {zl

K: l^i<^m+n, K&ΓN, \K\ = \i\}.
Formally {z*κ: \^ί<Lm+n, K&T, \K\ = \i\} can be considered as a natural
coordinate system of Rm\*.

Let φ(t) be a Λ-valued function defined on an interval / in R. Then φ(i)
can written as follows:

where φκ(t) is a real valued function on / for each K^T. We can prove the
following with respect to the Frechet topology:

limφ(ί)= Σ

Thus φ(t) is continuous with respect to the Frόchet topology if and only if φκ(t)

is continuous in the usual sense for each K^T. The differentiation and integral
of such φ(t) are defined as follows:
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where φ(t) is written in the above form. We have the following.

Lemma 1.1. Let φ(t) and Φ(t) be continuous A-valued functions on an
interval \a, b] in R. Then

f*1) I φ(f) dt exists,
Ja

2) */ Φ'(f) = φ(t) on [a, b] then

f φ(t)dΐ = Φ(b)-Φ(a),
Ja

J b f b
φ(t) cdt = (\ φ(t)dt} c.

a Ja

2. C^-functions on JEmlπ

A real-valued function / defined on an open set U in Rm\n is said to be
admissible on U if there exists some N^O and a real-valued function φ defined
on the ΛΓ-skeleton UN of U such that f=φ°pN on U. Since UN is an open set
of a finite dimensional Euclidean space R$n, the notion of Cr-function on UN is
well-defined as usual. In the above case, / is said to be Cr(0^r^ oo) if and only

if φ is so. When/ is Cr(r^l), then the partial derivative —ί- is canonically
well-defined for each 1 ̂  i^m+n, L e Γ and | L \ = | i \ . d**L

Let/be a Λ-valued function defined on an open set U in Rm]n. Then /
can be written in the following form:

where /^ is a real-valued function on C7. If each/^ (^eΓ) is admissible (Cr)
on i7, then/ is said to be admissible (Cr) on [7, respectively. When/ is Cr(r^l)
on E7, its partial derivatives are defined as follows:

where / is in the above form and | / 1 = | L \ . A Λ-valued function / o n U is
said to be projectable if for each Λ^O there exists a Λ^-valued function fN de-

fined on UN in R$n such that pN

Qf—fN

QPN on U. fN is called the N-th projec-
tion off. Obviously a projectable function on U is admissible on U.

3. (τ°°-functions on Rm\n

Let/ be a Λ-valued function on an open set U in Rml". Then / is said
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to be G1 on U if and only if there exist Λ-valued continuous functions Ft (l^i
on U such that

for each *eC7 and A=(A')eJ?w|n where f(z+th) is considered as a Λ-valued
function with one real variable t^R. If / is G1 on U, then these Fέ exist
uniquely, and there also exist Λ-valued continuous functions G, on U such that

= Σ A' G,.(*)
i;sis«i+«

for each #e C7 and A=(Aί)eΛ1111". These ί\ and G, will be denoted as follows:

These are called the super partial derivatives of /. For r^2, / is said to be
Gr if all super partial derivatives are Gr"1. And /is siad to be G°° or super smooth
i f / i sG r fora l l r^ l .

Theorem 1. Le/ f be a K-valued function on a convex open set U in Rm]n.
Iff is G1 on U, then f is projectable and C1 on U.

Proof. Let z and z-\-h be in U. Then ss+th is also in U for
since Z7 is convex. We have the following for O^Z^l :

!•/(*+**)!,= Σ Fj(*+th).hf
dt l^i^m + n

Thus by Lemma 1.1, we have the following.

•/(*+**)!, A

= Σ

Therefore if 2 and w are in U and zN=zoNί then we have f(z)N=f(w)N This
implies that / is projectable and in particular / is admissible on U. Let ζf^ be
the element of Rm\n whose ί-th component is ξκ and whose other components
are zero where | ί | = | JC |. Then we have

9 jr / x d

d%κ dt

Thus the admissible function / is C1 on U. This completes the proof.
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4. Cauchy-Riemann equations

Let/ be a Λ-valued C°° function on an open set U in Rm{n which is G1 on

U. Then as shown in the proof of Theorem 1, we obtain the following:

where l^,i^m+n,K(ΞΓ and |ί| =

These equations imply the following:

where \K\=Q, \L\ = \H\ = 1, l^μijm and l^p^n. These equations are

called the Cauchy-Riemann equations.

Theorem 2. LeJ f be a K-valued C°° function on an open set U in Rmln.

Then f is G1 on U if and only if f satisfies the Cauchy-Riemann equations on U.

Proof. We have already shown that a G1 function satisfies the Cauchy-
Riemann equations. Now suppose that / satisfies the Cauchy-Riemann equa-

tions on U. To show that/ is G1 on C7, we have to construct continuous func-

tions F{ (l^ί^m+n) on U such that

l«= Σ
l^i^m + n

for #e t/ and AeΛw | n. First for l^μ^m, let

On the other hand ^>f^) (w+l^^)^m+w) can not be defined directly. Apply-
r\

ing Lemma 4.4 below for { - /(#)• ̂ eΓ\} while w+l^^)^m+/z and ^e C7
9^έ

are fixed, there exists Fp(z) in Λ such that

9 y(Λ)= = dp >( j8?).fjr for each

Now we shall prove that

,-0
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for set/ and Aeβw|Λ. Since /is admissible, for any ΛΓ^>0 there exist some
L^N and a Λ^-valued C°° function fL on ί/L in R™ln such that f(^)N=fL(^L) f°r

each set/. Then we can show that if KeΓL,-^fL(xL)==(-^f(x))N and
Q Q%κ

otherwise -_Γ/£(«I.)=0.

8*i

= 23

)N for any N*£
i

Thus we have

Λ
i -̂ i τrι / _,\ β j-ί

The continuity of Ff(x) can be seen easily.

Lemma 4.4. L ί̂ {|0eΛ: β^ΓJ be a set of super numbers such that ξQ ζR

-\-ξR ζ
Q=Q for any R and QelV Then there exists a unique super number £eΛ

such that ξQ=ξ ζQ for each £?eΓV

Proof. First we consider only the family {£(,•>: ι=l, 2, •••} . Let ?(,•)= Σ #5
-SeΓ

ξ"s. Since f(. ) ̂ '=0, we have Σ as ζ*5=0. Therefore each f (t ) can be written
ίφ^eΓ

uniquely as follows: £(,•>—( Σ *s ?s) £' ϊ for some b*s^R. Then the condition

that f (f ) ̂  = ξ(j) ζ* holds for any i and j implies that bs=b*s for i , j φ S e Γ. Letting
is=i^ for iφiSeΓ, f = Σ *s ?s is well-defined and furthermore f ω=£ ?' holds
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for each i. This ξ satisfies the above condition for each

Theorem 3. Let f be a Λ-valued C°° function on an open set U in ΛW | Λ.
Iff is G1 on U, then f is G" on U.

Proof. Let /be G1 on U. Then/ satisfies the Cauchy-Riemann equations
Λ

on U. Since /is C°° on C7, — -f(%) also satisfies the same equations and hence
0 Xφ ^_

/-^(*) is G1 on U. Similarly _?_/(*)=/ JL.f/ is also G1 on U. Therefore
ox QΘ9j dθ

the following equations hold for any/el^:

Thus/ - (z) satisfies the Cauchy-Riemann equations on U and hence it is G1

dθ9

on U. Therefore /(#) is G2 on U. By induction it can be seen that f ( z ) is G°°

on 17.

REMARK. This assertion seems to contradict the theorem in [1]. In our
argument we take Rm\n as base space while their space in [1] is the ΛΓ-th skeleton
R$n of Rm\*. By considering the projective limit /2w|nof the family {R$n} the
argument is rather simplified.

5. ^-expansion of G°° functions

First we consider G°° functions on R°ln: i.e., G°° functions with only odd
variables.

Lemma 5.1. Let f be a G°° function on an open set U in R°ln. Then f
can be written as follows:

where P=(plt •••,£*)» ί^p1< -<pk^n, θp=θpι θpk and CPeΛ is constant.
In particular any G°° function on a connected open set in R°\n can be extended to the
whole space R°l" uniquely.

Proof. First we consider the case where / has only one odd variable. Let
/ be a G°° function on an open set U in -R0'1. Thus we have

9 ΘL

 J ^ ' J dθ
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Hence

Qθg dθL

Since \H\ = \L\ =1, we have

9 8
3 Off 8 ΘL 3 ΘL 3 ΘH

Thus we have

m

This implies that each component fκ(θ) of f(θ)= Σ //£•(#)'£* is a polynomial of
K

degree 1 with variables {ΘL:L<=ΓK}. Ύhenf-^-(θ) ζκ=-^-f(θ) is con-
<7 ασ 3 0£

stant for any K^Tλ. Thus / - (θ) is constant, denoted by αeΛ. Then

(f(θ)—aθ)—=Q. This shows that/(0)=tf0+δ for some ieΛ. Now let / be
dθ

a G~ function on an open set U in Λ0|w. While 01, •••, θn~l are fixed, /(01, — ,
0W-1, ^n) is a G°° function with one odd variable θn. Thus we have the following:

Therefore g is G°° on θ\ •••, ̂ n-1 and hence h is also G°° on θ1, •••, ^n~1. By

induction we can show that/(^1, •••, θn) can be written in the above form.
Now we consider G°° functions on Rm]0: i.e., G°° functions with only even

variables.

Lemma 5.2. Let f be a G°° function on a C-open set Uin Rml° which vanishes
identically on the body UB of U. Then f vanishes identically on U.

Proof. Clearly it is sufficient to consider the case of only one even variable.
Let /be a G°° function on a C-open set U in R1]0. Let t be an arbitrary point
in UB. We shall consider the behavior of/ on psl(t). Let z^p~B\f) and %N=
pN(z). Then {%: φ3=K^ΓN, |^|=0} is a coordinate for (pB\t))N as the

ordinary Euclidean space. Let fN be the N-th projection of /. Then - fN

N and \K\=0. If Kυ -, KkeTN, \K}\ =0aιιd
σ Λ^Φ /Λ Λ

none of them is φ and 2h>N, then ?Ί. .fJΓ*=0 and — " ----- ?L_f (̂  )==0.
3 8 ̂
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This implies that/^ is a polynomial on (pB\t))N. Moreover for any λ^O,

9 x

Since/vanishes identically on the body UB, we have

( ) /= 0 on UB

and hence

9 9
9 xKl 9 xKk

fN(t) = 0 for any λ^O and

Thus the polynomial fN \ (pl}l(t))N must vanish identically and hence fN=0 on
UN. This holds for any N^ 0. Thus /= 0 on U.

Let U be a C-open set in Rm\° and φ a Λ- valued C°° function on the body

UB of [7. Then the so-called Z-expansion $ of φ is defined as follows: For any

where XS=(XIB) is the body of * and xs=x— XB and /=(ίj, •••, ίm) and xr

s=(χϊ

s)
iι

.»(«S)'- and /!=^!...^,! and Z > ί = _ - ^ 1 . . . _ w and /=(/*) denotes the
V 9 ί'1 / \ 9 / < w /

canonical coordinate on the body Rm of Λm|n.

Lemma 5.3. Lei U be a C-open set of Rm\° and φ(i) a ^.-valued C°° func-

tion on the body UB of U. Then the Z-expansion <j>(x) is G°° on U. Moreover for

(x)

Proof.

J- $(x+th) IM = J- Σ -1-
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Therefore we have

Hence $(#) is G°° on U.

Combining the above lemmas, we obtain the following theorem.

Theorem 4. Let f be a G°° function on a C-open set U in Rml*. Then

there exist K-valued C°° functions φP(P=(pv — ,ί*)> l^iPi<'"<Pk^n) on UB

such that

where z=(x, 0)e CΛ Moreover this expression is unique.

6. The linear groups

Regarding Rmln as a real vector space, a linear mapping Φ of Rmln into R™\"
is said to be projectable if for each -/V^>0, there exists a linear mapping ΦN of

R*$n into jRjp such that ΦN°pN=pN°Φ on ΛW | M. In this case Φ^ is called the
JV-ίA projection of Φ. Let M(fn\n, m\n) denote the set of all projectable linear

mappings of Rm}n into R™\" and MN(m\ny m\n) the set of all JV-th projections

ΦN of Φe^/(m|w, m\n). Then Λf(m\ή,m\n) can be identified with the pro-
jective limit of the family {MN(fn \n,m\ n)} in a canonical way. In case of m=ϊn
and n=n, these sets will be denoted by M(m\rί) and MN(m\n) respectively,

which form algebras over R. The set of all invertible elements of M(m \ n) (resp.
MN(m \ n)) is denoted by Qi(m \ n) (resp. 3lN(m \ n)). Then Qi(m \ n) and 3lN(m \ n)
are groups, and moreover QlN(m \ n) is a closed subgroup of the general linear
group GL(R$n} over the vector space R^n. Furthermore Qi(m \ n) can be identi-
fied with the projective limit of the family {QlN(m \ n)} , which is called the general
linear group over the vector space Λm|n.

Lemma 6.1. Let Φ be in M(m\n). Then Φ is in <fl(m\ri) if and only if
ΦN is in <^N(m \ n) for all ΛΓjΞ> 0.

Proof. Suppose that Φ^ is in <?ίN(m\ri) for any Λf^O. Let z&Rmln be in
the kernel of Φ. Then ΦN(zN)=(Φ(z))N= 0 for any ΛΓ^O. Thus #^=0 for

any N^.0 and hence ^—0. This shows that Φ is injective. Let w be an arbi-
trary element in Rm\n. Then for each Λ^^O, there exists a unique element 2NG.

R$n such that ΦN(%N)—WN Then {%N} defines an element z^Rm\n such that
2N=pN(z) for each Λf^O and moreover Φ(z)=w. Thus Φ is surjective. The
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converse is obvious.

Now we regard Rm}n as the set of all (m-\-n)-columτι vectors whose first m
components are even super numbers and last n components are odd super
numbers. We denote by M(m\n, m\n) the set of all (m+n, m+ri) matrices of
the following form.

=(AB\
\c D)

where A, B, C and D are (m, m), (m, n), (n, m) and (n, n) matrices, respectively
and components of A and D are even and components of B and C are odd. For
each φeM(fn\n, m\ri) and N^Q, we define a matrix φ(ΛΓ) by

(A» BN\
~ U Dj

where AN. BNy CN and DN denote the matrices whose components are the Λf-th
projections of those of A, B, C and Z). When N=0y φ(0) will be also denoted by
ΦB, called the body of φ. For^e^ and -/V^O, we define (ApyN as follows;

( Λ V =
ΛΓ if p=Nmod2

where XN=ζ1 ζ
Now for each φ^M(m\n, m\n) and ΛΓ^O, we define a matrix φN by

'^(B^Y

where (B)1 and (DN)' denote the matrices whose components are the projections
of those of BN and DN into (ΛJjlr and (Λo)^, resp. We define M(N)(m\n, m\n)
and MN(m \ n> m \ n) by

MtN)(m\n,m\n)= {φ(jy): <j>t=M(m\n, m\n)}

MN(m\n,m\ri)= {φN: φ

Then in a natural way MN(ΐn \n,m\ri) acts on jR$|w on the left hand side effec-
tively. Moreover we have the following commutative diagram:

M(m \n,m\ri) -> M(m \n,m\ri)

/ \PN I PN

7Γ ί

, m\n) -> MN(m\n,m\ri) -> MN(m\n, m\n)

where both / are natuarl imbeddings. In particular when N— 1 or 0 and φ
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is a matrix in the above form,

z
A ± (A* °\and Mo z>J

where AB and DB are the bodies of matrices A and D.
By Theorem 2, the characterization of M(m\n,m\ri) in M(m\ήy m\n) is given as
follows.

Lemma 6.2. Let Φ be in Λ4(m\n,m\ri). Then Φ is in M(m\ή,m\ri) if
and only if Φ satisfies the Cauchy-Riemann equations.

When m=m and n=n, M(m\n,m\ri) will be denote by M(m\n). Then M(m\n)
forms a subalgebra of M(m\ri). The set of all invertible elements of M(m\n)
is denoted by GL(m \ ri), which forms a subgroup of <?l(m \ n) and is called the
super general linear group over Rmln.

Lemma 6.3. Let φ be in M(m\ri). Then φ is in GL(m\n) if and only if
det(AB)^0 and det(DB)^Q where

Φ =

Moreover we have GL(m\ri)=M(m\ri){\<?l(m\ri).

Proof. Suppose that det(^45)Φθ and det(Dβ)Φθ. Then the inverse of φ

is gievn by

Conversely if φ is in GL(m\n) then φB is in GL(m+n, R) and det(^4B)Φθ and

det (DB) Φ 0. Now let φ e M(m \ n) C <?l(m \ n) . Then regarding φ as a projectable
R linear endomorphism of Rm\n, the 1st projecton projection φx of φ is in

lri). On the other hand, φ1 is given by

D

Therefore det(^B)Φθ and det(D5)Φθ and hence φ is in GL(m\ri).

7. Jacobi matrixes

Let / be a projectable C°° mapping of an open set U in Rmln into R™1".
Then the Jacobi matrix $ f(z)^M(m\n, m\n) of /at #e U is defined as follows.
For any
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-
at

With respect to the natural coordinate systems of Rmln and J?™1*, the Jacobi
matrix //(#) can expressed by

(//(«) (*))i = Σ - y / i (*MίL \

Thus formally //(#) can be regarded as the matrix ί - -fn (z).
^ o %>κ '

Let / be a G°° mapping of an open set U in Rm]tt into Λ*1*. Then the
super Jacobi matrix Jf(z)^M(m\ή, m\n) of / at #e U is defined as follows.

With the canonical inclusion of M(m\n,m\ri) into M(m\n,m\ri), the super
Jacobi matrix T/C^O and the Jacobi matrix //(#) coincides for a G°° mapping / of

U into Λw|n. Applying Theorem 2 and Theorem 3, we can show that if / is a

projectable C°° mapping of an open set £7 in Rml" into JR"1'* whose Jacobi matrix

//(*) is in M ( f f l \ n , m \ n ) for each ^ei7, then /is G°° on C7.

Theorem 5. Let f be a G°° mapping of a C-open set U in Rm\n into Rm\n

whose super Jacobi matrix Jf(sέ) at a point z in U is invertible. Then we can find
a C-open neighborhood V of z and a C-open neighborhood W of f(z) such that the

restriction of f to V is a one-to-one mapping of V onto W and its inverse mapping is
also G°° on W.

Proof. Let fN be the ΛΓ-th projection of /. Considering R$n as a vector

bundle over Λ^!?ι, fN is a fibre-preserving mapping over a base-mapping fN-ι and
moreover the restriction of fN to each fibre is an affine mapping of a vector space.

In the case of N=Q, the Jacobi matrix of the 0-th projection /0 of / is the 0-th

projection of the super Jacobi matrix //(#) of /, which is the body AB of the

matrix A where /f(z)=( ]^GL(m\ri). Therefore there exists an open
\t^ JL//

neighborhood VBc:Rm of %B and an open neighborhood WBdRm of (f(z))B such
that the 0-th projection /0 of / is a bijective mapping of VB onto WB and the

inverse mapping (/o)""1 of/ is C°° on WB. Let V and Wbe the inverse images

of VB and WB by the projection^ of Rm}n onto Rm. We shall show by induc-

tion that the N-th projection fN of /is a bijection of the N-th skeleton VN onto

the JV-th skeleton WN and its inverse mapping is C°° on WN. In the case of
N=Q, this has been shown already. Now suppose that the assertion holds in the

case of N— 1. The Jacobi matrix of fN at %N is invertible and the restriction of
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fN to each fibre is an affine mapping when R$n is regarded as a vector bundle
over R$"I. On the other hand fN_λ is a diffeomorphism of VN^ onto WN^.

Thus/tf is a diffeomorphism of VN onto WN. Therefore there exists a C°° in-
verse mapping/""1 of/which maps W onto V. Moreover //•/(/""1)=identity

of Λm|M and hence /(f^)(w) is GL(m\n). Therefore f~l is also G°°. This
completes the proof.

REMARK. The inverse mapping theorem does not hold for a projectable

mapping nor an admissible mapping of Rm\n.
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