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SUPER DIFFERENTIAL CALCULUS
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(Received December 22, 1986)

The theory of super differential manifolds has been developed in recent
years by many authors. While there are several approaches to the subject, we
shall take the so-called geometric approach, developed by Boyer-Gitler [2],
DeWitt [3] and Rogers [4]. On the other hand, Bernshtein-Rosenfel’d [1] have
introduced a differential calculus on an infinite dimensional Euclidean space.
Regarding the super Euclidean space as a projective limit of a family of finite
dimensional Euclidean spaces as [1], in this note we shall propose a super dif-
ferential calculus as a foundation for the theory of super manifolds. The
underlying principle is to describe the concept of super differential calculus in
terms of a differential calculus on an infinite dimensional Euclidean space.
This gives a reduction of a ‘“‘super” argument to an ordinary one and leads to
an easier and clearer understanding of the theory of super manifolds. In sec-
tion 4 we obtain the Cauchy-Riemann equations for a super smooth function,
first obtained in [2], which is rather simplified. In the last section the inverse
mapping theorem is also obtained following our principle.

The author would like to thank his friend Professor T. Ochiai who recom-
mended to him this new subject and encouraged him constantly during this
work.

1. Super numbers and super Euclidean spaces

Let {{¥: N=1} be a set of countably infinite distinct letters. These are fixed
once for all. We denote by Ay the Grassmann algebra of the vector space
generated by {¢, &%, «--, £V} over the real number field R where for N=0, A,
denotes the real number field B. The family {Ay: N=0} and the natural pro-
jection of Ay onto Ay_, define the projective limit, denoted by A. In a natural
way, A can be identified with the algebra of all formal series of the following
form:

2= D) 2 L¥
Ker

where T' denotes the set of all A-tuples K=(&,, &,, -++, k,) of integers (A=0) with
1=k <k,<-+<k, and 2,€R and {E=Ch{k...lh (§¢=1R). The algebra
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A is called the super number algebra and an element of A is called a super number.
In super differential calculus, the super number algebra A is comparable to the
real number field in ordinary differential calculus. The natural projection py of
the projective limit A onto Ay maps the above 2& A to the following 2y EAy:
By = 23 g t¥
Eel’ N

where Ty={K=(k, k,, *-*, k) ET: 1<k <k,<<-+<k,=<N}. The algebra Ay
is called the N-th skeleton of the super number algebra A. In the case where
N=0, the 0-th skeleton A;,=R is called the dody of the super number algebra A.
The projection p, of A onto the body R of A will be denoted by pz. For each
super number 2E A, py(2)E R is called the body of the super number 2, denoted
by 25, and 2g=2—=2; is called the soul of 2. For each K=(k,, -+, k,)ET, the
parity | K| of K is defined by |K|=h mod 2€Z, For peZ, T, and A, are
defined as follows:

T,= {KeT: |K| = p}
A= {2EA: 2= 3] 2 (% 2 ER}
EeT,

Then A=A,+A, and A,cA,CA,,, (p,9EZ,). If 2EA,, then |2|=pEZ, is
called the parity of & A. If the parity of 2 A is 0 (1), then the super number
2 is said to be even (odd) or commutative (anti-commutative), resp. Since Ay
(N'=0) is a real vector space of 2¥ dimension, A, has a natural topology, and
hence the projective limit A has the projective limit topology, with which A is a
Fréchet space and the projection p, of A onto Ay is continuous and open for
N=0.

RemArRk. The notation, A, and A,, does have some ambiguity: that is, A,
(A,) denotes the 0-th (1-st) skeleton of A and also the set of all even (odd) super
numbers, resp. In general, there will be no confusion. However, in those cases
where there may be some doubt, the set of all even (odd) super numbers will be
denoted by A, (A,).

ReEMARK. In a later argument the following simple fact will be often ap-
plied: If 2 isin A and 2-w=0 for each odd super number @ there, then 2=0.

The super Euclidean space R™* of dimension (m|n) is, by definition, the
product space (Ay)"X(A;)" where are m copies of A;=A, and n copies of
A;=A,. The projection py of A onto A, induces the projection of R™!* onto
R7" which is, by definition, the product space ((Ay)x)” X ((Ay)y)" where (A,)y=
pn(A,) (PEZ,). The space R} is called the N-th skeleton of the super Euclide-
an space R™!*, which is a 2V ~Y(m-n) dimensional real vector space for N=1 and
the ordinary m-dimensional real Euclidean space R™ for N=0 (the 0-th skeleton
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of the super Euclidean space R™!" is called the body of R™*). Moreover R™"
can be regarded as the projective limit of the family {RH": n=0} of finite di-
mensional real vector spaces. Then the super Euclidean space R™!* is a Fréchet
space and the projection py of R™!* onto R} is continuous and open for each
N=0. The image py(2) (px(U)) of z&R™* (a subset U of R™*) by the projec-
tion py is denoted by zyR™!* (UyC R}, called the N-th skeleton of U), resp.
On the super Euclidean space R™* sometimes we consider another topology, the
coarse topology, with respect to which an open set in R™!" is an inverse image of
an open set in the body R™ by the projection p;. An open set in R™* with re-
spect to the coarse topology will be called a C-open set. Unless otherwise stated,
we consider the Fréchet topology on R™i*,

The projection of R™"=(Ay)" X (A,)" onto the i-th component A,(p=0 (1)
if 1Si<m(m+1=<i<m-+n), resp.) will be denoted by 2 (for 1=<i<m-n).
For 1=i<m (m+1=i<m-+n), sometimes 2’ will be denoted by x*(6?), resp.
where 1= u<mand 1<p=<n. Thus as usual, each z&R™!" can be written as
follows:

g = (21’ “er, zm+n) — (z‘)

= (xl, e, & 01, e, 6") = (x"’ 01’) .

The parity |i| of the coordinate index 7 is defined as follows: || =0(1)if 1=</=<
m(m+1=<i<m+n). On the N-th skeleton R}" of R™*(N=0), we consider
the following natural coordinate system {2k: 1<i<m-+n, KETY, |K|=|i|}.
For each 2=(2)eR™*, the component 2’ can be written as follows:
2= 3 2k ¥ where p=|i]|.
K€T,

Thus 2y=(2)ER¥" has the coordinate {2k: 1=<i<m—+n, KETy, |K|=|i|}.
Formally {zk: 1=<i<m-+n, KT, |K|=|7|} can be considered as a natural
coordinate system of R™!*.

Let ¢(2) be a A-valued function defined on an interval I in R. Then ¢(t)
can written as follows:

B(1) = 3 bult) £*

where ¢(t) is a real valued function on I for each K&T'. We can prove the
following with respect to the Fréchet topology:

lim ¢ (2) = 33 (lim ¢x(2)) £% .

Thus ¢(2) is continuous with respect to the Fréchet topology if and only if ¢g(7)
is continuous in the usual sense for each K&T'. The differentiation and integral
of such ¢(t) are defined as follows:
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#() = 3 k() b
[[owa=3( ectyants

where ¢(2) is written in the above form. We have the following.

Lemma 1.1. Let ¢(t) and D(t) be continuous A-valued functions on an
interval [a,b] in R. Then
0 [ ewar eviss,
2) ij: D'(t) = ¢p(t) on [a,b] then
[[s0dt =202,
b

3) if cEA is constant then g: o(t)-cdt = (S o (t)dt)-c.

2. C~-functions on Rm»

A real-valued function f defined on an open set U in R™!* is said to be
admissible on U if there exists some N=0 and a real-valued function ¢ defined
on the N-skeleton Uy of U such that f=¢opy on U. Since Uy is an open set
of a finite dimensional Euclidean space R3", the notion of C’-function on Uy is
well-defined as usual. In the above case, f is said to be C"(0=<7= o) if and only

if ¢ is so. When f is C'(r=1), then the partial derivative G_f’ is canonically
well-defined for each 1<i<m-n, LET and |L|=]7]. o

Let f be a A-valued function defined on an open set U in R™*. Then f
can be written in the following form:

@) = S fele) b5 ()

where fy is a real-valued function on U. If each fr (KET') is admissible (C")
on U, then f is said to be admissible (C") on U, respectively. When f is C"(r=1)
on U, its partial derivatives are defined as follows:

A N

027 Eer 92}
where f is in the above form and |/|=|L|. A A-valued function f on U is
said to be projectable if for each N=0 there exists a Ay-valued function fy de-

fined on Uy in R}™ such that pyof=fyopy on U. fy is called the N-th projec-
tion of f. Obviously a projectable function on U is admissible on U.

3. G=-functions on Rmin

Let f be a A-valued function on an open set U in R™*. Then f is said
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to be G* on U if and only if there exist A-valued continuous functions F; (1=i
=m-n) on U such that

L et th)im=_3 Fio)H
1Sism+n

for each z€U and h=(k')c R™" where f(z+th) is considered as a A-valued
function with one real variable f€R. If f is G* on U, then these F; exist
uniquely, and there also exist A-valued continuous functions G; on U such that

2 fet )= 5 H-G(o
+ 1<iSm+n

for each 2z U and A=(F)R™*. These F; and G; will be denoted as follows:

Fie)=f 220, G =2 1)

These are called the super partial derivatives of f. For r=2, f is said to be

G’ if all super partial derivatives are G"™'. And f is siad to be G* or super smooth
if fis G" for all r=1.

Theorem 1. Let f be a A-valued function on a convex open set U in R™™*.
If fis G* on U, then f is projectable and C* on U.

Proof. Let 2 and 2+A be in U. Then 2-4th is also in U for 0511
since U is convex. We have the following for 0<t<1:

2 f(otth)|, = 3 Fatth)-
dt 1<isSm+n
Thus by Lemma 1.1, we have the following.
ld
farn—f@) = | £ fatth)|, at
odt

- = (Sl Fi(z-+-th) dt) - b
1gism+n Jo

Therefore if 2 and w are in U and 2y=wy, then we have f(2)y=f(w)y. This

implies that f is projectable and in particular f is admissible on U. Let {{;) be

the element of B™* whose i-th component is {¥ and whose other components

are zero where |i|=|K|. Then we have

0
0=k

f@) = & flatt£8) im0 = Fia) L.

Thus the admissible function fis C* on U. This completes the proof.
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4. Cauchy-Riemann equations

Let f be a A-valued C* function on an open set U in R"* which is G* on
U. Then as shown in the proof of Theorem 1, we obtain the following:

D

0 _ FK
o ) = F ()8

where 1=<i<m-n, KET and |{|=|K]| .
These equations imply the following:

0 0 K
mf(z)— a—ng(z) &

0 0 L
@b 0 f@) =0

where |K|=0, |L|=|H|=1,1=p=<m and 1=<p=<n. These equations are
called the Cauchy-Riemann equations.

Theorem 2. Let f be a A-valued C*= function on an open set U in R™".
Then f is G' on U if and only if f satisfies the Cauchy-Riemann equations on U.

Proof. We have already shown that a G! function satisfies the Cauchy-
Riemann equations. Now suppose that f satisfies the Cauchy-Riemann equa-
tions on U. To show that f is G' on U, we have to construct continuous func-

tions F; (1=i<m-n) on U such that
L fatth) o= 3 Fi0)H
A 1Sig<m+n
for z€U and A& R™*. First for 1< u<m, let
Fu(z) = —0_f(2) (for z€U).
0 xf

On the other hand F(2) (m+41= p=m--n) can not be defined directly. Apply-

ing Lemma 4.4 below for { 62” f(®): KT} while m+-1<p<m-+n and z€U
K
are fixed, there exists F,(2) in A such that

agﬁf(z)=Fp(z)-C” for each Ke&T.

Now we shall prove that

4 fatth)],y= 51 Fyz)-k
dt 1<ism+n
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for z€U and h&R™". Since f is admissible, for any N =0 there exist some
L>=N and a Ay-valued C* function f; on U, in R7" such that f(2)y=f.(2;) for
each z€U. Then we can show that if KT, 9 f,_(z;_):(i.f(z))” and
3 02k 02k

fi(z2)=0.

otherwise

0=k
(& fatth) 1) = L (f(a+th))ul o
_d
= EfL(zL+thL)|t=0

_ 9 i
=33 250 fuen)- )k

=33 3 (2 S (i

— 3 3 (F(9)- - (i

— 5 SUEE)- () ()

= S (FD T - ()

= SF(y S EE ()i

— SYEw- ()

= S E)n- ()

= ('E Fy(2)-h)y forany N=0.

Thus we have
L fatth) o= 3} Fi(2)-H
dt 1Sism+n

The continuity of F;(2) can be seen easily.

Lemma 4.4. Let {£q=A: QET} be a set of super numbers such that Eq &®
+ £, 59=0 for any R and QET,. Then there exists a unique super number £ A
such that Eq=E L9 for each Q€T

Proof. First we consider only the family {&): i=1,2, .«-}. Let&unH= Epaé

¢S. Since ;) &i=0, we have 31 a% £5=0. Therefore each &, can be written
iESeEr

uniquely as follows: £ =( 25—1' Pb‘s £S) ¢ for some b5 R. Then the condition
H €

that ;) §7=E;) &* holds for any 7 and j implies that b5 =b% for 7, jee SET". Letting
bs=>b% for i SET, €= D1 bs & is well-defined and furthermore £;)=¢ £ holds
Ser
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for each 7. 'This £ satisfies the above condition for each Q&T,.

Theorem 3. Let f be a A-valued C* function on an open set U in R™".
If fis G* on U, then f is G= on U.
Proof. Letfbe G'on U. Then f satisfies the Cauchy-Riemann equations

on U. Since fis C~ on U, 6—6—” f(2) also satisfies the same equations and hence
X

f %(z) is G on U. Similarly 527] f(= %-C’ is also G' on U. Therefore

the following equations hold for any JET:

_@(f%) ()L za%(fai;) ()£

Ouxly s
0 (1 2)@-tr+-2 (1.2 )t} r— 0
{aeﬁ (F30) @€ AT A
Thus f %(z) satisfies the Cauchy-Riemann equations on U and hence it is G*

on U. Therefore f(2)is G*on U. By induction it can be seen that f(2) is G*
on U.

Remark. This assertion seems to contradict the theorem in [1]. In our
argument we take R™!” as base space while their space in [1] is the N-th skeleton
Ry of R™*. By considering the projective limit R"!"of the family {R3"} the
argument is rather simplified.

5. Z-expansion of G~ functions

First we consider G™ functions on R’": i.e., G* functions with only odd
variables.

Lemma 5.1. Let f be a G function on an open set U in R°"™. Then f
can be written as follows:

f(ol’ ) on) = ; Cp0°

where P=(py, *, pp), 1S py<<-<pp=m, 6F=0"---0? and Cr,EA 1is constant.
In particular any G= function on a connected open set in R°\* can be extended to the
whole space R°'" uniquely.

Proof. First we consider the case where f has only one odd variable. Let
f be a G* function on an open set U in R°!’. Thus we have

) A
o 1O = 0)-¢.
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Hence
0
9 L H
005 0 (fd0 d6‘>()§ Sk
Since |H|=|L|=1, we have
0 0
)= ————
00y, 60Lf() 00, 06
Thus we have
0
=0 f H,LeT,.
s g /@ =0 forany X

This implies that each component f,(8) of f(8)= X fx(6)-¢* is a polynomial of
K

degree 1 with variables {6;: LEI‘K} Then fi (0)-tx=

f(0) is con-

(] 0K
stant for any KeT,. Thus f—(¢9) is constant, denoted by a=A. Then
f (0)—a0)d—0—0. This shows that f(0)—a¢9—|—b for some b A. Now let f be

a G* function on an open set U in R°*. While 8%, ..., 8*7! are fixed, f(6", ---,
01, 8") is a G* function with one odd variable §”. Thus we have the following:

f(gl e, 0% = g(6Y, -+, 070" R (Y, -+, 0771
0, -, 0") =g (6", -+, 6"7Y).
f2e @ 0) = g )
Therefore g is G* on @, -+, "' and hence % is also G* on 6, .-+, 6*"'. By
induction we can show that f(6", ---, 8") can be written in the above form.

Now we consider G~ functions on R™!°: i.e., G* functions with only even
variables.

Lemma 5.2. Let f be a G function on a C-open set U in R™° which vanishes
identically on the body Uy of U. Then f vanishes identically on U.

Proof. Clearly it is sufficient to consider the case of only one even variable.
Let f be a G~ function on a C-open set U in R". Let ¢ be an arbitrary point
in Uz. We shall consider the behavior of f on p3'(¢). Let 2Ep3z'(¢) and 2y=
pn(2). Then {xx: p*+Ke&Ty, |K|=0} is a coordinate for (pz'(t))y as the

ordinary Euclidean space. Let fy be the N-th projection of f. Then 66 fx
x

()= Fulen) % for KTy and | K| =0, If K, o+, K, T, |K,|=04and

none of them is ¢ and 2A>N, then {¥1...{%»=0 and 9 fn(25)=0.

xg, 0xg,
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This implies that fy is a polynomial on (p3'(f))y. Moreover for any £2=0,

0 fult) = (—)"fn(t) et

0 xxl B xx,,

Since f vanishes identically on the body Uj, we have

6 h
(—) f=0 on U,
6.704,

and hence

9 .. % p@t)=0 forany h=0 and
Oxg, Oxg,

¢+K,, -, K,ETY, |K;| =0.

Thus the polynomial fy|(p3'(t))y must vanish identically and hence fy=0 on
Uy. This holds for any N=0. Thus f=0on U.

Let U be a C-open set in R”!° and ¢ a A-valued C* function on the body
Ug of U. Then the so-called Z-expansion ¢ of ¢ is defined as follows: For any
x=(x")eU,

B() = - (D] ) (52) %

where xp=(x5%) is the body of x and xs=x—ux; and I=(3,, *+-, ,) and x5=(x})"s

ooo(x%)im and I!=g,!+z,! and Dr:<63" )'1(—6%—)‘"1 and t=(t") denotes the
1 S m

canonical coordinate on the body R™ of R™!",

Lemma 5.3. Let U be a C-open set of R™° and ¢(t) a A-valued C* func-
tion on the body Uy of U. Then the Z-expansion $(x) is G= on U. Moreover for
1Susm

9 .. 08 (7
=280 =(24)®.
Proof.
L E (- th) 1oy = L 33 L (D] §) (g+-ths) - (x5 the)'|
dt =0 — d 5 I B B S ) t=0
— 1 FQ
o P ICORER

33— (D) () e

_I_
5117 01 (5) ) (sa) - (-48)

I
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_ 1 f 0 o
= % ;?(D:(W> ¢) (xp)-xs-h".
Therefore we have
. 9
¢ 0 «*
Hence ¢(x) is G= on U.

@)= 3 O(2) #) ()-t.

Combining the above lemmas, we obtain the following theorem.

Theorem 4. Let f be a G function on a C-open set U in R™*. Then

there exist A-valued C* functions ¢p(P=(py, **+, pr)s 1S py<-+<pp=<m) on Uy
such that

f(2) = f(x 0) = 33 ¢p(x)- 67

where 2=(x, )€ U. Moreover this expression is unique.

6. The linear groups

Regarding R™!" as a real vector space, a linear mapping ® of R™* into R™!*
is said to be projectable if for each N =0, there exists a linear mapping ®, of
R7™ into R%™ such that @ yopy=pyo® on R™". In this case @ is called the
N-th projection of ®. Let M (ii|n, m|n) denote the set of all projectable linear
mappings of R™" into R™" and #/y(#i|#%, m|n) the set of all N-th projections
Dy of DeM(m|#f, m|n). Then #/(m|#, m|n) can be identified with the pro-
jective limit of the family {4/, (#|#, m|n)} in a canonical way. In case of m=im
and n=#, these sets will be denoted by #7/(m|n) and #y(m|n) respectively,
which form algebras over B. 'The set of all invertible elements of #7(m|n) (resp.
My(m|n)) is denoted by G/(m|n) (resp. Gly(m|n)). Then G/{(m|n) and Gly(m|n)
are groups, and moreover G/y(m|n) is a closed subgroup of the general linear
group GL(R3") over the vector space R%”. Furthermore G/(m|n) can be identi-
fied with the projective limit of the family {G/y(m|n)}, which is called the general
linear group over the vector space R™!*.

Lemma 6.1. Let ® be in M(m|n). Then ® is in g/(m|n) if and only if
Dy is in gly(m|n) for all N =0.

Proof. Suppose that @ is in ¢/y(m|n) for any N=0. Let z€R"" be in
the kernel of ®@. Then ®y(2y)=(®(2))y=0 for any N=0. Thus 2,=0 for
any N =0 and hence 2=0. This shows that ® is injective. Let @ be an arbi-
trary element in R™*. Then for each N =0, there exists a unique element 2y &
R}” such that ®y(2y)=wy. Then {25} defines an element 2 R™* such that
2y=pn(2) for each N=0 and moreover ®(z)=w. Thus @ is surjective. The
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converse is obvious.

Now we regard R™* as the set of all (m-n)-column vectors whose first m
components are even super numbers and last # components are odd super
numbers. We denote by M (#|#, m|n) the set of all (#+#, m-+n) matrices of

the following form.
()
*=\cp

where 4, B, C and D are (7, m), (i, n), (i, m) and (%, n) matrices, respectively
and components of A and D are even and components of B and C are odd. For
each pM (M |#, m|n) and N =0, we define a matrix ¢y by

(AN By
¢(N) = CN DN

where Ay By, Cy and Dy denote the matrices whose components are the N-th
projections of those of 4, B, C and D. When N=0, ¢ will be also denoted by
¢, called the body of ¢. For peZ, and N=0, we define (A,)4 as follows;

j(A,)N if p==N mod 2

(Ap)iv = ((Ap)w/R-Xy if p=Nmod 2

where Xy={'--{¥EAy.
Now for each p=M (7| %, m|n) and N =0, we define a matrix ¢ by

o= (criom)

where (B)" and (Dy)’ denote the matrices whose components are the projections
of those of By and Dy into (A,)y and (Ag)y, resp. We define My, (7| %, m|n)
and My (i |#, m|n) by

M|, m|n) = {pw): €M (m|n, m|n)}

My(m|n, m|\n) = {py: =M (|, m|n)} .
Then in a natural way M (|7, m|n) acts on R%” on the left hand side effec-
tively. Moreover we have the following commutative diagram:

M@\, mlny >  M(@m|F, m|n)

P(N)/ \PN i PN
My (8| 7, m|n) 5 Myy(m| 7, | n) > My (78| 3, m|n)

where both 7 are natuarl imbeddings. In particular when N=1 or 0 and ¢
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is a matrix in the above form,

_ABO) C B0)
""“(CIDB an "’”“(0 D,

where Ay and Dy are the bodies of matrices 4 and D.
By Theorem 2, the characterization of M (#|#i, m|n) in M (| #, m|n) is given as
follows.

Lemma 6.2. Let ® be in M(iwi|#, m|n). Then ® is in M (W |%, m|n) if
and only if ® satisfies the Cauchy-Riemann equations.

When #=m and #i=n, M(m|n, m|n) will be denote by M(m|n). Then M (m|n)
forms a subalgebra of #7(m|n). The set of all invertible elements of M (m|n)
is denoted by GL(m|n), which forms a subgroup of ¢(m|n) and is called the
super general linear group over R™*,

Lemma 6.3. Let ¢ be in M(m|n). Then ¢ is in GL(m|n) if and only if
det (Ap)=+0 and det(Dg)==0 where

_ (A B
*=\c D)'
Moreover we have GL(m|n)=M (m|n)N\¢(m|n).

Proof. Suppose that det(A4;)=0 and det(Dz)=4=0. Then the inverse of ¢
is gievn by

67 = 65 32 (—($—da) 67

Conversely if ¢ is in GL(m|n) then ¢ is in GL(m-+n, R) and det(A4z)==0 and
det(Dp)#0. Now let p=M(m|n)Cgl(m|n). Then regarding ¢ as a projectable
R linear endomorphism of R™!", the 1st projecton projection ¢, of ¢ is in
@h(m|n). On the other hand, ¢, is given by

(4,0 )
""—(cl D)

Therefore det(Az)=0 and det(D;)=0 and hence ¢ is in GL(m|n).

7. Jacobi matrixes

Let f be a projectable C* mapping of an open set U in R™* into R™%,
Then the Jacobi matrix j f(2)s M (| #, m|n) of f at € U is defined as follows.
For any he R™'*,
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71 () = L fat-th)] 1o

With respect to the natural coordinate systems of R™* and R™% the Jacobi
matrix / f(2) can expressed by

(16 ) =33 (52 1) @)

Thus formally 7 f(2) can be regarded as the matrix ( 66 -f Lf) (2).
Rk

Let f be a G* mapping of an open set U in R™”* into R™7*. Then the
super Jacobi matrix Jf(z)eM (m|#i, m|n) of f at z€ U is defined as follows.

aazf (z)> :

With the canonical inclusion of M (|7, m|n) into A (m|#, m|n), the super
Jacobi matrix Jf(2) and the Jacobi matrix / f(2) coincides for a G* mapping f of
U into R™*. Applying Theorem 2 and Theorem 3, we can show that if f is a
projectable C= mapping of an open set U in R™!* into R™!* whose Jacobi matrix
7 f(2) is in M (i |n, m|n) for each € U, then f is G* on U.

I@=(r

Theorem 5. Let f be a G* mapping of a C-open set U in R™" into R™"
whose super Jacobi matrix Jf(2) at a point 2 in U is invertible. Then we can find
a C-open neighborhood V of = and a C-open neighborhood W of f(2) such that the
restriction of f to V is a one-to-one mapping of V onto W and its inverse mapping is
also G= on W.

Proof. Let fy be the N-th projection of f. Considering R}" as a vector
bundle over Ry, fy is a fibre-preserving mapping over a base-mapping fy_, and
moreover the restriction of fy to each fibre is an affine mapping of a vector space.
In the case of N=0, the Jacobi matrix of the 0O-th projection f, of f is the 0-th
projection of the super Jacobi matrix /f(2) of f, which is the body Ay of the
matrix A where / f(z):(‘é ZB;) &GL(m|n). Therefore there exists an open
neighborhood V;C R" of 25 and an open neighborhood W R" of (f(2))s such
that the O-th projection f, of f is a bijective mapping of ¥ onto Wy and the
inverse mapping (f,)™* of f is C* on Wj. Let V" and W be the inverse images
of V and Wy by the projection py of R™* onto R™. We shall show by induc-
tion that the N-th projection fy of fis a bijection of the N-th skeleton V' onto
the N-th skeleton W, and its inverse mapping is C= on Wy. In the case of
N=0, this has been shown already. Now suppose that the assertion holds in the
case of N—1. The Jacobi matrix of fy at 2y is invertible and the restriction of
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fx to each fibre is an affine mapping when R3" is regarded as a vector bundle
over R%”,. On the other hand fy_, is a diffeomorphism of V_; onto Wy_,.
Thus fy is a diffeomorphism of Vy onto Wy. Therefore there exists a C* in-
verse mapping f~! of f which maps W onto V. Moreover /f-/(f *)=identity

of R™* and hence /(f™")(w) is GL(m|n). Therefore f~! is also G=. This
completes the proof.

ReMARk. The inverse mapping theorem does not hold for a projectable
mapping nor an admissible mapping of R™!*,
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