GENERALIZATIONS OF NAKAYAMA RING VI

$$
\text { (RIHGT US- } n \text { RINGS; } n=3,4 \text {) }
$$

Dedicated to Professor Hiroyuki Tachikawa on his 60th birthday

Manabu HARADA

(Received June 4, 1986)

We have studied artinian right US-3 rings in [5] and right US-4 algebras over an algebraically closed field in [7]. We shall continue, in this paper, to study a right US-3 (resp. US-4) ring R when R is either hereditary or left serial.

In the first two sections, we shall give the characterization of a right US-3 (resp. US-4) ring R, when R satisfies a weaker condition (*, 1^{\prime}) (see § 1) than R being either hereditary or left serial. In the next two sections, we shall specify the characterizations given in the previous sections to hereditary rings and left serial rings. We shall exhibit several examples in the final section to illutsrate the above characterizations.

1. US-3 rings

Throughout this paper we deal with an artinian ring R and every R-module is a unitary right R-module. We shall use the same terminologies and definitions given in [2] ~[8].

As a generalization of right serial rings, we considered
Every maximal submodule in a direct sum D of n hollow modules contains a non-zero direct summand of D [5].

It is clear that if $D / J(D)$ is not homogeneous, D satisfies $(* *, n)$. Hence we may restrict ourselves to hollow modules of a form $e R / E$, where e is a primitive idempotent and E is a submodule of $e R$. If ($* *, n$) holds for any direct sum of n hollow modules, we call R a right $U S-n$ ring [5]. Since the concept of US- n rings is Morita equivalent, we study always a basic ring.

We studied right US- n algebras over an algebraically closed field for $n=3$ and 4 in [5] and [7], respectively. In this and next sections we shall give a complete list of the structure of right US-3 (resp. US-4) rings with ($*, 1^{\prime}$) below. We can give theoretically the complete structure, however as we know a few properties of division rings, we can not give the complete examples for each structure.

We quote here a particular property of a semisimple module (cf. [8] and [9]).

Let e be a primitive idempotent in R and D a semisimple R-module and $(\#, m) \quad a$ left eRe-module. For any two R-submodules V_{1} and V_{2} with $\left|V_{1}\right|=$ $\left|V_{2}\right|=m$, there exists a unit x in eRe such that $x V_{1}=V_{2}$.

Further we consider one more property:
$e J^{i}$ is a direct sum of hollow modules for each primitive idempotent e and each i.

If R satisfies ($*, 1$), then $\left(*, 1^{\prime}\right)$ holds. Moreover, if R is hereditary or left serial, $\left(*, 1^{\prime}\right)$ holds by [11], Corollary 4.2. Under the assumption ($*, 1^{\prime}$), we obtain the following diagram (cf. [8]):

where the A are hollow.
Let A_{1}, A_{2} be submodules in $e R$. If there exists a unit x in $e R e$ such that $x A_{1} \subset A_{2}$ or $x A_{1} \supset A_{2}$, we indicate this situation by $A_{1} \sim A_{2}[4]$. We put $\Delta=$ eRe/eJe $(=\overline{e R e})$ and $\Delta\left(A_{1}\right)=\left\{x \mid \in \Delta, x A_{1} \subset A_{1}\right\}$ [2].

Let $D=A_{1} \oplus A_{2}$; the A_{1} are uniserial. A submodule $B=B_{1} \oplus B_{2}\left(A_{i} \supset B_{i}\right)$ is called a standard submodule in D [3].

Lemma 1. Let A_{1} and A_{2} be as in (1). If $A_{1} \sim A_{2}, A_{1}=x A_{2}$ for some unit element x in eRe, and hence $A_{1} \approx A_{2}$.

Proof. Since $A_{1} \sim A_{2}$, there exists a unit x in $e R e$ such that $x A_{1} \supset A_{2}$ or $x A_{1} \subset A_{2}$. We may assume that $x A_{1} \subset A_{2}$. If $x A_{1} \neq A_{2}, x A_{1} \subset J\left(A_{2}\right) \subset e J^{t+1}$, since A_{2} is hollow. Hence $A_{1} \subset x^{-1} e J^{t+1}=e J^{t+1}$, a contradiction. Therefore $x A_{1}=A_{2}$.

Lemma 2. Let A_{1} and A_{2} be as in (1). Let B be a hollow submodule in A_{2}, which appears on the level eJ ${ }^{k+t}(k \geqslant 0)$ in (1). If $\Delta\left(A_{1}\right)=\Delta, A_{1} \nsim B$.

Proof. First assume $k \geqslant 1$ and $A_{1} \sim B$, i.e., there exists a unit x in $e R e$ such that $x A_{1} \supset B$ or $x A_{1} \subset B$. In the latter case $A_{1} \subset e J^{t+1}$. Hence $x A_{1} \supset B$. Since $\Delta\left(A_{1}\right)=\Delta$, there exists an element j in eJe with $(x+j) A_{1}=A_{1}$. Let b be a generator of B. Then we obtain a in A_{1} with $x a=b . \quad b=(x+j-j) a=(x+j) a-j a$. Let p_{1} be the projection of $e J^{t}$ to $A_{1} . \quad 0=p_{1}(b)=(x+j) a-p_{1}(j a)$. Assume $a \in e J^{p}-e J^{p+1}$, and $p(j a) \in e J^{p+1}$, which is a contradiction, since $x+j$ is a unit in $e R e$. Finally assume $B=A_{2}$. Then $A_{2}=x^{\prime} A_{1}$ for some unit x^{\prime} in $e R$. Hence we obtain the same situation as above, which is a contradiction.

From [2], Theorem 2 we have
Lemma 3. If R is a right $U S-n$ ring, then $[\Delta: \Delta(A)] \leqslant n-1$ for any submodule A in $e R$.

Put $\widetilde{R}=R / J^{t+k}$. Then $\widetilde{e R e} / \widetilde{e J e} \approx e R e / e J e=\Delta . \quad$ Let A_{1} be as in (1). Then we can define $\Delta\left(\tilde{A}_{1}\right)=\Delta\left(\left(A_{1}+J^{t+k}\right) / J^{t+k}\right)=\left\{x \mid \in \Delta, x\left(A_{1}+J^{t+k}\right) \subset\left(A_{1}+J^{t+k}\right)\right\}$. It is clear that $\Delta\left(A_{1}\right)$ is a division subring of $\Delta\left(\tilde{A}_{1}\right)$.

Lemma 4. Let A_{1} and A_{2} be as in (1). If $\Delta\left(A_{1}\right)=\Delta, \Delta\left(\tilde{A}_{1}\right)=\Delta$. Next assume that $A_{2}=x A_{1}$ for some unit x in eRe. If $\left[\Delta: \Delta\left(A_{1}\right)\right]=2$ (resp. 3), $\left[\Delta: \Delta\left(\tilde{A}_{1}\right)\right]=2\left(\right.$ resp. 3), where $\tilde{A}_{1}=\left(A_{1}+J^{t+k}\right) / J^{t+k} \subset \tilde{R}=R / J^{t+k}$.

Proof. The first part is clear from the remark above. Assume $(x+j) \mathscr{A}_{1} \subset \mathscr{A}_{1}$ for some j in $e J e$. Since $(x+j) A_{1} \subset A_{2}+j A_{1} \subset A_{2}+e J^{t+1},(x+j) A_{1} \subset\left(A_{1}+e J^{t+1}\right) \cap$ $\left(A_{2}+e J^{t+1}\right)=e J^{t+1}$, a contradiction. Hence $x \notin \Delta\left(A_{1}\right)$. Further $\left[\Delta: \Delta\left(A_{1}\right)\right]$ is prime, and so $\left[\Delta: \Delta\left(A_{1}\right)\right]=\left[\Delta: \Delta\left(\tilde{A}_{1}\right)\right]$.

Remark 5. We shall study a right US- n ring and observe $\left[\Delta: \Delta\left(A_{1}\right)\right]$. Since $\left[\Delta: \Delta\left(A_{1}\right)\right] \leqslant 3$, we may assume $J^{t+1}=0$ by Lemma 4, [3], Lemma 1 and its proof, when we observe $\left[\Delta: \Delta\left(A_{1}\right)\right.$] (the x in Lemma 4 exists, provided $\left.\left[\Delta: \Delta\left(A_{1}\right)\right] \geqslant 2\right)$.

Theorem 1. R is a right (basic) US-3 ring with (*, 1^{\prime}) if and only if $e R$ has one of the following structures for each primitive idempotent e.

1) $e R / e J^{t}$ is uniserial for some t and
2) $e J^{t}=0$ or $e J^{t}=A \oplus B$, where A is simple and B is uniserial, such that a) $[\Delta: \Delta(A)]=2$ or b) $\Delta=\Delta(A)=\Delta(B)$.

In case a) B is simple and $A \oplus B$ satisfies (\#, 1).
In case b)
i) B is simple and $A \approx B$ or
ii) B is not simple, and if A is isomorphic to a simple subfactor module B_{i} / B_{i+1} of $B, B_{i+1}=0$ (i.e., B_{i} is the socle of B) and this isomorphism is given by $j_{l}:$ the left-sided multiplication of j in eJe.

Proof. We assume that R is a right US-3 ring. From (*, 1') and [5], Proposition 1,3) $e J=A \oplus B$, where A and B are hollow. We may assume $|A| \leqslant|B|$. $[\Delta: \Delta(C)] \leqslant 2$ for any submodule C in $e R$ by Lemma 3. Hence we divide ourselves into two cases: I) $[\Delta: \Delta(A)]=2$ and II) $\Delta=\Delta(A)$.
Case I). Since $[\Delta: \Delta(A)]=2$, by [5], Proposition 1,2) there exists a unit element x in $e R e$ such that $x A \subset J(A) \oplus J(B)$ or $x A \supset J(A) \oplus J(B)$. However $A \nsubseteq e J^{t+1}$ and so $x A \supset J(A) \oplus J(B)$. On the other hand, $|A|=|J(A)+1|$ and $x A \neq$ $J(A) \oplus J(B)$. Hence $J(B)=0$. Further $A \cong B$ by Lemma 1 and [5], Proposition 1.2). Therefore A and B are simple and $e J^{t+1}=0$. Which means that every
(simple) submodule C in $e J^{t}$ is characteristic if and only if $\Delta(C)=\Delta$. Hence $[\Delta: \Delta(C)]=2$ and $e J^{t}$ satisfies (\#, 1) by [5], Proposition 1,2).
Case II). We know from the above argument that $\Delta=\Delta(A)=\Delta(B)$ (note that we did not use the assumption $|A| \leqslant|B|$). Let y be any unit element in $e R e$. Since $\Delta=\Delta(A)$, there exists an element j in eJe such that $(y+j) A=A$. Then $(y+j)(A \oplus J(B)) \subset A \oplus(y+j) J(B) \subset A \oplus e J^{t+1}=A \oplus J(B)$. Hence $\Delta(A \oplus J(B))$ $=\Delta$. Assume that B is not simple. $A \oplus J(B)$ or $J(A) \oplus B$ is hollow by [5], Proposition 1,4)-iv). Hence

$$
J(A)=0, \quad \text { i.e., } A \text { is simple. }
$$

We shall show that B is uniserial. Assume $e J^{t+k}=B J^{k}=C_{1} \oplus C_{2} \oplus \cdots$; the C_{i} are hollow. If $\Delta\left(C_{1}\right) \neq \Delta, C_{1} \sim A_{1}$ by [5], Proposition 1,2), which is a contradiction from Lemma 2. Hence $\Delta=\Delta\left(C_{1}\right)=\Delta\left(C_{2}\right)$. However $\left\{A, C_{1}, C_{2}\right\}$ derives a contradiction by Lemma 2 and [4], Corollary 2 of Theorem 2, provided $C_{2} \neq 0$. Therefore
B is uniserial .
Next assume $g: A \approx B_{i} / B_{i+1} ; B \supset B_{i} \supset B_{i+1}$. Take $\left\{A, B_{i}, B_{i}\left(g^{-1}\right)\right.$; the graph of B_{i} with respect ot $\left.g^{-1}\right\}$. Since A is simple (and hence $e J e B \subset B$) and $\Delta(B)=\Delta$, B is characteristic. Hence $A \sim B_{i}\left(g^{-1}\right)$, and so there exists a unit x_{1} in $e R e$ such that $x_{1} A \subset B_{i}\left(g^{-1}\right)$. If $B_{i+1} \neq 0, x_{1} A \subset B_{i+1} \subset e J^{k+1}$, a contradiction. Hence $B_{i+1}=0$ and $g: A \approx B_{n}$, the socle of B. Let j be an element in eJe such that $\left(x_{1}+j\right) A=A$, and put $x_{2}=x_{1}+j$. Then $A(g)=x_{1} A=\left(x_{2}-j\right) A$. Put $A=a R$. Then $a+g(a)=\left(x_{2}-j\right) a r$ for some r in $R . \quad e J e A \subset e J^{t+1}$ and $e J^{t+1}=B J$ imply $e J e A \subset B_{n}$. Hence

$$
a=x_{2} a r \quad \text { and } \quad g(a)=-j a r
$$

and so $g(a)=-j x_{2}^{-1} a$. Therefore $g=\left(-j x_{2}^{-1}\right)_{l}$ and $-x_{2} j^{-1} \in e J e$ (b-ii)). Finally assume that B is simple. If $f: A \approx B,\{A, B, A(f)\}$ derives a contradiction from [5], Lemma 1, (note $e J^{t+1}=0$ and use Lemma 8 below). Hence $A \approx B$ (b-i)). Conversely, assume that $e R$ has one of the structures given in the theorem. Clearly (*, 1^{\prime}) holds. Let $\left\{E_{i}\right\}_{i=1}^{3}$ be any set of submodules in $e R$. Case a): If $E_{1} \supset e J^{t}$ and $E_{2} \supset e J^{t}, \Delta\left(E_{i}\right)=\Delta$ for $i=1,2$ and $E_{1} \supset E_{2}$ or $E_{1} \subset E_{2}$. Hence $D=\sum_{i=1}^{3} \oplus E_{i}$ contains a non-zero direct summand of D by [4], Corollary 1 of Theorem 2. If $E_{1} \subsetneq e J^{t}$ and $E_{2} \subsetneq e J^{t}, E_{2}=x E_{1}(\approx A)$ for some x in $e R e$ by (\#, 1). Hence D satisfies (**, 3) again by [4], Corollary 1 of Theorem 2. Case b-ii): If $E_{i} \subset e J^{t}, x_{1} E_{i}$ is a standard submodule in $e J^{t}$ for a unit $x_{1}=(e+j)$ in $e R e$ by assumption. Hence $E_{i} \sim E_{j}$ for some pair i, j. Further $\Delta=\Delta(E)$ by assumption. Therefore D satisfies (**,3) by [4], Corollary 1 of Theorem 2. Case b-i): This is much simpler than the above. Thus R is right US-3.

In the last paragraph of the proof of "only if part" in Theorem 1, we have shown

Lemma 6. Assume that $e J^{t}=A \oplus A^{\prime} \oplus B$ and 1) A and A^{\prime} are simple modules with $\Delta(A)=\Delta$, and 2) B is non-simple and uniserial. If $g: A \approx B_{i} \mid B_{i+1}$ and $A \sim B_{i}\left(g^{-1}\right), B_{i+1}=0$ and g is given by $j_{l} ; j \in e J e$, and hence $i>1$ (cf. [7], Lemma 16).

We shall illustrate the structure in Theorem 1 as the following diagram:
1)

2)

where the straight line means uniserial.
It is clear that if R has the structure above, $(*, 1)$ (and hence $\left.\left(*, 1^{\prime}\right)\right)$ holds. We note that if (*, 1^{\prime}) does not hold, Theorem 1 is not true (see [6]). We shall give examples of a) and b) in $\S 5$.

2. US-4 rings

Next we shall characterize a right US-4 ring with (*, 1').
Lemma 7. Let R be a right US-4 ring and $\left\{A_{i}\right\}^{4}{ }_{i=1}$ a set of submodules in eJ. Then 1) if $\Delta\left(A_{i}\right)=\Delta$ or all $i \leqslant 3$ and $A_{k} \nsim A_{k}$, for $k \neq k^{\prime} \leqslant 3$, then $A_{4} \sim$ (some A_{i}). 2) $A_{i} \sim A_{j}$ for some pair i, j. 3) If $\left[\Delta: \Delta\left(A_{i}\right)\right]=2$ for $i=1,2, A_{1} \sim A_{2}$. 4) If $\left[\Delta: \Delta\left(A_{1}\right)\right]=3, A_{1} \sim A_{j}$ for all j. 5) If $\left[\Delta: \Delta\left(A_{1}\right)\right]=2, A_{i} \sim A_{j}$ for some $i, j \leqslant 3$.

Proof. This is clear from [4], Corollary 2 of Theorem 2.
Lemma 8. Let A_{1} and A_{2} be as in (1). Assume $J^{i+1}=0$. If $\Delta\left(A_{1}\right)=\Delta$, A_{1} is characteristic.

Proof. This is clear.
Lemma 9. Let R be a right US-4 (basic) ring, and $\left\{A_{i}\right\}_{i=1}^{t}$ a set of hollow submodules on the level eJ ${ }^{t}$ in (1). If $\Delta\left(A_{i}\right)=\Delta$ for all $i, t \leqslant 3$.

Proof. This is clear from Lemmas 7, 8 and Remark 5.
From now on we assume that R is a right US-4 (basic) ring satisfying $\left(*, 1^{\prime}\right)$. Let $D=\left(e J^{t}=\right) A_{1} \oplus A_{2} \oplus \cdots \oplus A_{t}$, where the A_{i} are hollow. In the
following lemmas, we mainly assume that D is characteristic. We note [Δ : $\left.\Delta\left(A_{i}\right)\right] \leqslant 3$ for all i by Lemma 3.

Lemma 10. Assume $\left[\Delta: \Delta\left(A_{i}\right)\right]=2$ for all i. Then i) $t=2$. ii) There exists a unit x in eRe such that $x A_{1}=A_{2}$. iii) A_{1} is a uniserial module with $\left|A_{1}\right| \leqslant 2$. iv) If there are characteristic submodules in $A_{1} \oplus A_{2}$, they are linear with respect to the inclusion. v) If B is not a characteristic submodule in $A_{1} \oplus A_{2},[\Delta: \Delta(B)]=2$ and those submodules are related by \sim.

Proof. We may assume $\left|A_{1}\right| \leqslant\left|A_{2}\right| \leqslant \cdots \leqslant\left|A_{t}\right|$ (note $t \geqslant 2$). By Lemmas 1 and $7, A_{k}=x_{k} A_{1}$ for all k. Hence
(α) if $\left[\Delta: \Delta\left(A_{i}\right)\right] \geqslant 2$ for all i, there exists a unit x_{i} in $e R e$ such that $x_{i} A_{1}=A_{i}$ for all i.
On the other hand, since $\left[\Delta: \Delta\left(A_{1}\right)\right]=2, \Delta=\Delta\left(A_{1}\right)+\bar{x}_{2} \Delta\left(A_{1}\right)$. Assume $e J^{i+1}=0$ from Remark 5. Since $D=\Delta A_{1}=\Delta\left(A_{1}\right) A_{1}+\bar{x}_{2} \Delta\left(A_{1}\right) A_{1}=A_{1} \oplus A_{2}, t=2$. We note that from the above argument and Lemma 3 we obtain
(β) If $\left[\Delta: \Delta\left(A_{i}\right)\right] \geqslant 2$ for all $i, t \leqslant 3$.
Assume that $A_{1} / A_{1} J^{k}$ is uniserial and $A_{1} J^{k}=B_{1} \oplus B_{2} \oplus \cdots \oplus B_{s}$, where the B_{j} are hollow and $s \geqslant 2$. In order to show $s \leqslant 1$, we may assume $e J^{i+k+1}=0$ by Remark 5. First we note that there exists a unit x in $e R e$ such that $x A_{1}=A_{2}$. Hence $\Delta\left(B_{p}\right) \neq \Delta$ for all p. On the other hand, $D J^{k}=A_{1} J^{k} \oplus A_{2} J^{k}=\sum_{p=1}^{s} \oplus B_{p} \oplus \sum_{p=1}^{s} \oplus x B_{p}$, which is a contradiction to (β). Therefore A_{1} and A_{2} are uniserial. Next assume $A_{1} J^{2} \neq 0 . \quad \Delta\left(A_{1} J \oplus A_{2} J^{2}\right) \neq \Delta$ by existence of x_{2}. Hence $\left\{A_{1}, A_{1} J \oplus A_{2} J^{2}\right\}$ derives a contradiction by Lemma 7. Therefore $\left|A_{1}\right| \leqslant 2$. Since $\Delta\left(A_{1} J \oplus\left(A_{2}\right)\right)$ $\subset \Delta\left(A_{1}\right), \Delta\left(A_{1} \oplus J\left(A_{2}\right)\right)=\Delta\left(A_{1}\right)$ for $\Delta\left(A_{1} \oplus J\left(A_{2}\right)\right) \neq \Delta$. Similarly $\left[\Delta: \Delta\left(J\left(A_{1}\right)\right)\right]$ $=2$. Let E be a submodule with $[\Delta: \Delta(E)]=3$. Then there exists a unit element x in $e R e$ such that $x E \subset A_{1}$ or $x E \supset A_{1}$ by Lemma 7. In the former case $[\Delta: \Delta(E)]=[\Delta: \Delta(x E)]=2$. If $x E \supset A_{1}, x E=A_{1} \oplus E^{\prime} ; E^{\prime} \subset A_{2}$. Hence $[\Delta: \Delta(x E)]=2$ from the above. Therefore there are no submodules E with $[\Delta: \Delta(E)]=3$. Finally assume that $A_{1} \oplus A_{2}$ contains two characteristic submodules C_{1}, C_{2} such that $C_{1} \nsim C_{2}$. Consider $\left\{A_{1}, A_{1}, C_{1}, C_{2}\right\}$, and $A_{1} \sim C_{1}$ or $A_{1} \sim C_{2}$ by Lemma 7. If $A_{1} \supset C_{1}, C_{1}=0$ and if $A_{1} \subset C_{1}, C_{1}=A_{1} \oplus F ; F \subset A_{2}$, and so $C_{1}=A_{1} \oplus A_{2}$. Hence $C_{1} \supset C_{2}$ or $C_{1} \subset C_{2}$. Let $\Delta(E)=\Delta$. If $\left|A_{1}\right|=1, E$ is characteristic. Assume $\left|A_{1}\right|=2$. Put $C_{1}=A_{2} \oplus B_{2}$. Then $E \sim C_{1}$ from the above. Hence $E \subset C_{1}$ or $E \supset C_{1}$, and so E is characteristic.

Lemma 11. Assume $\left[\Delta: \Delta\left(A_{i}\right)\right]=3$ for all i. Then $t \leqslant 3$, and the A_{i} are simple and there exists a unit x_{i} in eRe such that $x_{i} A_{1}=A_{i}$ for each i. If $t=3, D$ satisfies (\#, 1) and (\#,2) and $[\Delta: \Delta(C)] \leqslant 3$ for every submodule C in D. If $t=2, D$ satisfies (\#, 1).

Proof. Since $\left[\Delta: \Delta\left(A_{1}\right)\right]=3$, there exists a unit x_{i} in $e R e$ such that $x_{i} A_{1}=A_{i}$
from (α) and $t \leqslant 3$ by (β). Assume $t=3$. Taking $\left\{A_{1}, J(D)\right.$, we know from Lemma 7 that A_{1} is simple and hence $e J^{i+1}=0$. It is clear from Lemmas 7 and 8 that there are no simple submodules B in D with $\Delta(B)=\Delta$. Hence D satisfies (\#, 1). Let C be a submodule of D with $|C|=2$. Then $D=C \oplus A_{i}$ for some i. Hence $\Delta(C) \neq \Delta$ by Lemma 7, and so D satisfies (\#, 2). We obtain the similar result for $t=2$.

Lemma 12. Assume $\left[\Delta: \Delta\left(A_{1}\right)\right]=1$ and $\Delta\left(A_{i}\right) \neq \Delta$ for $i \geqslant 2$. Then A_{1} is uniserial and $t \leqslant 3$.
i) $t=3$:

Then all A_{i} are simple, $\left[\Delta: \Delta\left(A_{i}\right)\right]=2$ for $i=2,3, A_{1} \approx A_{2}$ and $A_{2} \oplus A_{3}$ satisfies (\#, 1).
ii) $t=2$: a) A_{1} is not simple.

Then $\left[\Delta: \Delta\left(A_{2}\right)\right]=2$, and A_{2} is a simple submodule isomorphic to B, the socle of A_{1}. If $A_{2} \approx E_{i} / E_{i+1}\left(A_{1} \supset E_{i} \supset E_{i+1}\right), E_{i}=B$ and $E_{i+1}=0$. Further $B \oplus A_{2}$ satisfies $(\#, 1)$ except B.
b) A_{1} is simple.

Then 1) $\left[\Delta: \Delta\left(A_{2}\right)\right]=2, A_{1} \oplus A_{2} / J\left(A_{2}\right)$ satisfies (\#, 1) except A_{1}.
2) $A_{2} / A_{2} J^{t}$ is uniserial for some t and

2-i). $\quad A_{2} J^{t}=0$ or
2-ii) $\quad A_{2} J^{t}=B_{1} \oplus B_{2} ; B_{1}$ is simple and B_{2} is uniserial.
2-ii-1) $\quad \Delta\left(B_{1}\right)=\Delta\left(B_{2}\right)=\Delta$.
2-ii-1-1) $\quad B_{1} \not \approx B_{2} / J\left(B_{2}\right)$.
2-ii-1-2) $\quad A_{1} \not \approx F_{i} / F_{i+1}\left(A_{2} \supsetneq F_{i} \supset F_{i+1} \supset B_{1} \oplus B_{2}\right)$.
2-ii-1-3) If $f: A_{1} \approx G_{j} / G_{j+1}\left(f^{\prime}: B_{1} \approx G_{j} / G_{j+1}\right)\left(B_{2} \supset G_{j} \supset G_{j+1}\right)$, then $G_{j+1}=0$ and $f\left(f^{\prime}\right)$ is given by $j_{l} ; j \in e J e$.

2-ii-1-4) If $f: A_{1} \approx B_{1}$, we have the same result as 2-ii-1-3).
2-ii-2). $\quad\left[\Delta: \Delta\left(B_{1}\right)\right]=\left[\Delta: \Delta\left(B_{2}\right)\right]=2$.
2-ii-2-1) $\quad B_{1}$ and B_{2} are simple and $B_{1} \oplus B_{2}$ satisfies (\#, 1).
2-ii-2-2) $\quad A_{1} \not \approx F_{i} / F_{i+1}\left(A_{2} \supsetneq F_{i} \supset F_{i+1} \supset B_{1} \oplus B_{2}\right)$.
2-ii-2-3) If $A_{1} \approx B_{1}$, then f is given by $j_{l}^{\prime} ; j^{\prime} \in e J e$.
Proof. It is clear, from the assumption and Lemmas 1 and 7, that $\left[\Delta: \Delta\left(A_{i}\right)\right]=2$ for all $i \geqslant 2$. Assume that A_{1} contains two independent submodules B_{1}, B_{2}. If $\Delta\left(B_{1}\right)=\Delta\left(B_{2}\right)=\Delta$, $\left\{B_{1}, B_{2}, A_{2}, A_{2}\right\}$ derives a contradiction by Lemmas 7, 8 and Remark 5. On the other hand, if $\Delta\left(B_{1}\right) \neq \Delta,\left\{B_{1}, B_{1}, A_{2}\right.$, $\left.A_{2}\right\}$ derives again a contradiction. Hence

$$
A_{1} \text { is uniserial }
$$

by (*, 1^{\prime}).
a) $J\left(A_{1}\right) \neq 0$: Consider $\left\{A_{1}, A_{2}, J(D)\right\}$. Then $A_{1} \nsim A_{2}$ by Lemma 2. Hence $J(D) \sim A_{1}$ or $J(D) \sim A_{1}$ by Lemma 7. However $J(D) \nsim A_{2}$, since $J(D)$ is
characteristic and $J\left(A_{1}\right) \neq 0$. Hence
the A_{i} are simple for all $i \geqslant 2$.
Since $\left[\Delta: \Delta\left(A_{i}\right)\right]=2$, there exists x_{i} in $e R e$ such that $x_{i} A_{2}=A_{i}$ for $i>2$ by Lemmas 1 and 7. Hence in order to show $t \leqslant 3$, we may assume $J^{i+1}=0$ by Remark 5. Noting $\bar{x}_{3} \notin \Delta\left(A_{2}\right), \Delta=\Delta\left(A_{2}\right) \oplus x_{3} \Delta\left(A_{2}\right)$, which implies that $A_{2} \oplus A_{3}=$ $\Delta A_{2} \supset \sum_{i=2}^{t} \oplus A_{i}$. Hence $t \leqslant 3$. Assume $t=3$. Now we resume to the original situation. We note eJe $A_{1} \subset J\left(A_{1}\right)$, and hence A_{1} is characteristic. Since $\Delta\left(\mathrm{J}\left(A_{1}\right)\right)=\Delta, \Delta\left(\mathrm{J}\left(A_{1}\right) \oplus A_{2}\right) \neq \Delta . \quad$ Consider $\left\{A_{1}, \mathrm{~J}\left(A_{1}\right) \oplus A_{2}, A_{2} \oplus A_{3}\right\} . \quad \Delta\left(A_{1}\right)=\Delta$ and $\Delta\left(\mathrm{J}\left(A_{1}\right) \oplus A_{2}\right) \neq \Delta$ imply $\left(\mathrm{J}\left(A_{1}\right) \oplus A_{2}\right) \sim\left(A_{2} \oplus A_{3}\right)$ by Lemma 7. Hence there exists a unit x in $e R e$ such that $x\left(\mathrm{~J}\left(A_{1}\right) \oplus A_{2}\right) \subset\left(A_{2} \oplus A_{3}\right)$ or $x\left(\mathrm{~J}\left(A_{1}\right) \oplus A_{2}\right) \supset$ $\left(A_{2} \oplus A_{3}\right)$. However, $\Delta\left(\mathrm{J}\left(A_{1}\right)\right)=\Delta$ implies $x \mathrm{~J}\left(A_{1}\right) \nsubseteq A_{2} \oplus A_{3}$. Hence $x\left(\mathrm{~J}\left(A_{1}\right) \oplus A_{2}\right)$ $\supset A_{2} \oplus A_{3}$. Taking $\tilde{R}=R / J^{t+1}$, we know that it is impossible. Therefore $t=2$ provided $\mathrm{J}\left(A_{1}\right) \neq 0$, i.e.,

$$
D=A_{1} \oplus A_{2} \quad\left(\mathrm{~J}\left(A_{1}\right) \neq 0\right) .
$$

Now we take the similar manner to Lemma 6. Assume $f: A_{2} \approx E_{i} / E_{i+1} ; A_{1} \supset$ $E_{i} \supset E_{i+1}$. We note that A_{1} is characteristic. $\left\{A_{1}, A_{2}, E_{i}\left(f^{-1}\right)\right\}$ implies $A_{2} \sim$ $E_{i}\left(f^{-1}\right)$ from the above remark and Lemma 7. Hence $E_{i+1}=0$ as the proof of Lemma 6. Further since $\Delta\left(A_{2}\right) \neq \Delta, A_{2} \approx E_{n}$; the socle of A_{1}. Let $C\left(\neq E_{n}\right)$ be a simple submodule in $E_{n} \oplus A_{2}$. Consider $\left\{A_{1}, C, A_{2}, A_{2}\right\}$. It is clear that if $C \sim A_{1}, C \subset A_{1}$. Hence $C \sim A_{2}$ by Lemmas 2 and 7 , and so $E_{n} \oplus A_{2}$ satisfies $(\#, 1)$ except E_{n}.
b) $\mathrm{J}\left(A_{1}\right)=0, t \geqslant 3$. Assume $\mathrm{J}\left(A_{2}\right) \neq 0$. Since $t \geqslant 3$, there exists a unit x in $e R e$ with $x A_{2}=A_{3}$ by Lemmas 1 and 7 , and so $\Delta\left(A_{1} \oplus \mathrm{~J}\left(A_{2}\right)\right) \neq \Delta$. Then $A_{2} \sim A_{1} \oplus \mathrm{~J}\left(A_{2}\right)$ by Lemma 7. Assume $A_{2} \supset y\left(A_{1} \oplus \mathrm{~J}\left(A_{2}\right)\right)$ for some unit y. Since A_{1} is simple and $\Delta\left(A_{1}\right)=\Delta, p_{1}\left(y A_{1}\right)=A_{1}$, where $p_{1}: e J^{i} \rightarrow A_{1}$ the projection, which is a contradiction. Similarly, since A_{1} is simple and A_{2} is not, $p_{2}\left(y^{\prime} A_{1}\right) \subset$ $\mathrm{J}\left(A_{2}\right)$ for any unit y^{\prime} in $e R e$. Hence $A_{2} \nsubseteq y^{\prime}\left(A_{1} \oplus \mathrm{~J}\left(A_{2}\right)\right)$. Therefore

$$
A_{2} \text { (and so } A_{i}(i \geqslant 2) \text {) is simple. }
$$

Accordingly $t=3$ from the initial paragraph of a). If $f: A_{1} \approx A_{2},\left\{A_{1}, A_{1}(f), A_{2}\right.$, $\left.A_{2}\right\}$ derives a contradiction, since $\Delta A_{2}=A_{2} \oplus A_{3}$ as before (note $e J^{i+1}=0$). Hence $A_{1} \approx A_{2}$. Further if $A_{2} \oplus A_{3}$ contains a characteristic submodule $B \neq 0$, $\left\{A_{1}, B, A_{2}, A_{2}\right\}$ derives a contradiction. Therefore $A_{2} \oplus A_{3}$ satisfies (\#, 1).

Case $t=2$ and $\mathrm{J}\left(A_{1}\right)=0\left(D=A_{1} \oplus A_{2}\right)$. First we shall show that $A_{1} \oplus A_{2} / \mathrm{J}\left(A_{2}\right)$ satisfies $(\#, 1)$ except A_{1}. Since $\Delta\left(A_{2}\right) \neq \Delta$, there exists a unit x in $e R e$ such that $p_{1}\left(x A_{2}\right)=A_{1}$, where $p_{1}: e J^{i} \rightarrow A_{1}$ is the projection. Further eJe $A_{2} \subset A_{2}$, since A_{1} is simple. Hence $(x+j)\left(A_{2}+J^{i+1}\right) \neq A_{2}+J^{i+1}$ for any j in $e J e$, and so $\Delta\left(A_{2}\right)=$ $\Delta\left(\left(A_{2}+J^{i+1}\right) / J^{i+1}\right)$. Therefore we may assume $J^{i+1}=0$ (cf. Remark 5). Then
$A_{1} \oplus A_{2}$ satisfies (\#, 1) except A_{1} from Lemma 7. Now we resume the original situation. Since A_{1} is simple, $e J^{i+1}=A_{2} J$. Assume that $A_{2} / A_{2} J^{t}$ is uniserial and $e J^{i+t}=B_{1} \oplus B_{2} \oplus \cdots \oplus B_{s}$, where the B_{i} are hollow. Then from Lemmas $10 \sim$ 16 below, $s \leqslant 3$. Further $\left[\Delta: \Delta\left(B_{i}\right)\right] \leqslant 2$ by Lemmas 2 and 7. Assume $s=3$. Then $\Delta\left(B_{i}\right) \neq \Delta$ (resp. $\left[\Delta: \Delta\left(B_{j}\right] \neq 2\right)$ for some i (resp. j) by Lemmas 7 and 10. Hence we remain two cases $\Delta\left(B_{1}\right)=\Delta,\left[\Delta: \Delta\left(B_{j}\right)\right]=2$ for $j=2,3$ and $\Delta\left(B_{i}\right)=\Delta$ for $i=1,2,\left[\Delta: \Delta\left(B_{3}\right)\right]=2$. On the other hand, since $\Delta\left(A_{1}\right)=\Delta$, we do not have such cases by Lemmas 2 and 7. Therefore $s \leqslant 2$. Similarly we do not have a case $\Delta\left(B_{1}\right)=\Delta$ and $\left[\Delta: \Delta\left(B_{2}\right)\right]=2$. Thus we obtain two cases; 2-ii-1): $\Delta\left(B_{i}\right)=\Delta$ for $i=1,2$ and 2-ii-2): $\left[\Delta: \Delta\left(B_{j}\right)\right]=2$ for $j=1,2$.

2-ii-1) We assume $\left|B_{1}\right| \leqslant\left|B_{2}\right| . \quad\left\{A_{1}, B_{1}, B_{2}, \mathrm{~J}\left(B_{1}\right) \oplus \mathrm{J}\left(B_{2}\right)\right\}$ gives $\mathrm{J}\left(B_{1}\right)=0$ from Lemmas 2 and 7. Assume $B_{2} J^{k}=C_{1} \oplus C_{2} \oplus \cdots \oplus C_{s} ; s \geqslant 2$ and the C_{i} are hollow. If $\left[\Delta: \Delta\left(C_{1}\right)\right] \geqslant 2,\left\{A_{1}, B_{1}, C_{1}, C_{1}\right\}$ derives a contradiction from Lemmas 2 and 7. Hence $\Delta\left(C_{1}\right)=\Delta\left(C_{2}\right)=\Delta$. Taking $R / J^{i+t+k+1}$, we obtain again a contradiction from $\left\{A_{1}, B_{1}, C_{1}, C_{2}\right\}$ and Lemmas 2, 7 and 8. Accordingly B_{2} is uniserial. If $f: B_{1} \approx B_{2} / \mathrm{J}\left(B_{2}\right),\left\{A_{1}, B_{1}, B_{2}, B_{2}\left(f^{-1}\right)\right\}$ derives a contradiction. Hence $\left.B_{1} \approx B_{2} / \mathrm{J}\left(B_{2}\right)(2-\mathrm{ii}-1-1)\right)$. Further if $g: B_{1} \approx G_{i} / G_{i+1}\left(B_{2} \supsetneq G_{i} \supset G_{i+1}\right)$, $\left\{A_{1}, B_{1}, B_{2}, G_{i}\left(g^{-1}\right)\right\}$ gives $B_{1} \sim G_{i}\left(g^{-1}\right)$, since $\Delta\left(A_{1}\right)=\Delta\left(B_{2}\right)=\Delta$. Hence $G_{i+1}=0$ and g is given by $j_{l}: j \in e J e$ from Lemma 6. Similarly if $f_{1}: A_{1} \approx G_{i} / G_{i+1}$, $\left\{A_{1}, G_{i}\left(f_{1}^{-1}\right), A_{2}, A_{2}\right\}$ gives $A_{1} \sim G_{i}\left(f_{1}^{-1}\right)$, since $\Delta\left(A_{1}\right)=\Delta$. Then we can show similarly to Lemma 6 that $G_{i+1}=0$ and f_{1} is given by $\left.j_{i}^{\prime} ; j^{\prime} \in e j e(2-i i-1-3)\right)$. Next if $h: A_{1} \approx F_{j} / F_{j+1}\left(A_{2} \supsetneq F_{j} \supset F_{j+1} \supset B_{1} \oplus B_{2}\right)$, consider $\left\{A_{1}, F_{j}\left(h^{-1}\right), A_{2}, A_{2}\right\}$. Then $x A_{1} \subset F_{j}\left(h^{-1}\right)$ for some unit x in $e R e$, since $A_{2} \neq F_{j}$ and $\Delta\left(A_{1}\right)=\Delta$. Hence $x A_{1} \subset F_{j+1} \subset \mathrm{~J}\left(A_{2}\right)$, a contradiction. Accordingly $A_{1} \not \approx F_{j} / F_{j+1}\left(F_{j} \neq A_{2}\right)(2$-ii-1-2)). In the same manner given in the proof of 2-ii-1-3), we have 2-ii-1-4).

2-ii-2) Since $\left[\Delta: \Delta\left(B_{1}\right)\right]=\left[\Delta: \Delta\left(B_{2}\right)\right]=2, B_{1} \approx B_{2}$ by Lemmas 1 and 7 . $\left\{A_{1}, B_{1}, B_{2}, \mathrm{~J}\left(B_{1}\right) \oplus \mathrm{J}\left(B_{2}\right)\right\}$ gives $\mathrm{J}\left(B_{1}\right)=\mathrm{J}\left(B_{2}\right)=0$. Accordingly B_{1} and B_{2} are simple. Let C be any simple submodule in $B_{1} \oplus B_{2}$. Then $\left\{A_{1}, B_{1}, B_{1}, C\right\}$ shows $C=x B_{1}$ for some unit x in $e R e$ by Lemmas 2 and 7. Hence $B_{1} \oplus B_{2}$ satisfies (\#, 1) (2-ii-2-1).

2-ii-2-2) is same to 2-ii-1-2). If $f: A_{1} \approx B_{1},\left\{A_{1}, A_{1}(f), B_{1}, B_{1}\right\}$ gives $A_{1} \sim$ $A_{1}(f)$. Hence f is given by $\left.j_{l} ; j \in e J e(2-\mathrm{ii}-2-3)\right)$.

Remark 13. We shall consider the situation of ii-b) of Lemma 12. Taking $\tilde{R}=R / J^{i+1}$, we may assume that $e J^{i}(=V)=A_{1} \oplus A_{2}$: the A_{i} are simple, $\Delta\left(A_{1}\right)=\Delta$, and $\left[\Delta: \Delta\left(A_{2}\right)\right]=2$. Then $A_{1} \approx A_{2}\left(\approx \overline{g_{1} R g_{1}}=\Delta^{\prime}\right)$. We shall express End ${\Delta^{\prime}}^{\prime}(V)$ as elements of matrices $\left(\Delta^{\prime}\right)_{2}$. Since A_{1} is characteristic, for any element x in Δ,

$$
x=\left(\begin{array}{ll}
x_{1} & x_{3} \\
0 & x_{2}
\end{array}\right) \quad: x_{1} \in \Delta^{\prime}
$$

Δ being a division ring, x_{2} and x_{3} are uniquely determined by x_{1}. Hence we
obtain two monomorphisms as rings f_{1}, f_{2} of Δ to Δ^{\prime} such that $f_{i}(x)=x_{i}$ and a homomorphism g as additive groups of Δ to Δ^{\prime} such that
i) $g\left(x x^{\prime}\right)=f_{1}(x) g\left(x^{\prime}\right)+g(x) f_{2}\left(x^{\prime}\right)$.

Then $\Delta\left(A_{2}\right)=g^{-1}(0)$ (note, from i), that $g^{-1}(0)$ is a division subring of Δ). Hence $\left[\Delta: \Delta\left(A_{2}\right)\right]=2$ is equivalent to
ii) $\left[\Delta: g^{-1}(0)\right]=2$.

Further ($\#, 1$) holds if and only if, for any α in Δ, there exists $x \neq 0$ in Δ such that
iii) $\quad \alpha=-f_{1}\left(x^{-1}\right) g(x)\left(=g\left(x^{-1}\right) f_{2}(x)\right)$, i.e., $F: \Delta \rightarrow \Delta^{\prime}\left(F(x)=f_{1}(x)^{-1} g(x)\right)$ is surjective.
If $\alpha \neq 0, x \notin g^{-1}(0)$. Hence if either $|\Delta|$, cardinal of $\Delta,\left(|\Delta| \leqslant\left|\Delta^{\prime}\right|\right)$ is finite or $|\Delta|<\left|\Delta^{\prime}\right|$, iii) does not hold. Hence we assume that $|\Delta|$ is infinite. Further, since f_{1} is a monomorphism, we may assume that $\Delta \subset \Delta^{\prime}$ and f_{1} is the inclusion. Now assume that Δ^{\prime} is commutative. Then g is a K-linear mapping from i), where $K=g^{-1}(0)$. Using those facts and $|\Delta| \geqslant \infty$, for any g we can show by computation that there exists α in Δ^{\prime} not satisfying iii) for any $x \in \Delta$. Therefore if Δ^{\prime} is commutative, we do not have the case of ii) of Lemma 12.

Remark 14. Next we consider the case $t=2$ in Lemma 11. Let K be a field and R a K-algebra. If [$\left.\Delta^{\prime}: K\right]$ is not divided by 3 , this case does not occur. Because, since $V=A_{1} \oplus A_{2}$ and $A_{1} \approx A_{2}, \operatorname{End}_{\Delta}(V)=\left(\Delta^{\prime}\right)_{2}$ and $\Delta \subset\left(\Delta^{\prime}\right)_{2}$. $\left[\Delta: \Delta\left(A_{1}\right)\right]=3$ implies that $4\left[\Delta^{\prime}: K\right]$ is divided by 3.

Finally we take division rings given by [10]. Let $D \supset D_{1}$ be division rings such that $\left[D: D_{1}\right]_{r}=3$ and $\left[D: D_{1}\right]_{l}=2$. Put $D=D_{1} 1+D_{1} u$, and $D^{*}=\operatorname{Hom}_{D_{1}}\left(D_{1} D\right.$, ${ }_{D_{1}} D_{1}$). Then $\left[D^{*}: D_{1}\right]_{r}=2$ and D^{*} is a left D-vector space. Define $1^{*} \in D^{*}$ by setting $1^{*}(1)=1,1^{*}(u)=0$, and put $A_{1}=1^{*} D_{1}$. Then $D\left(A_{1}\right)=\left\{d \mid \in D, d A_{1} \subset A_{1}\right\}$ $=u^{-1} D_{1} u$, and so $\left[D: D\left(A_{1}\right)\right]_{r}=3$. For any h in D^{*} and $h^{-1}(0)=D_{1} u_{1}$, we have $D=D_{1} u_{1} \oplus D_{1} v_{1}$. Put $d=h\left(v_{1}\right)$. Then $\left(u_{1}^{-1} u\right) 1^{*}\left(u_{1}\right)=0$ and $\left(u_{1}^{-1} u\right) 1^{*}\left(v_{1}\right)=d^{\prime} \neq 0$. Hence $h=\left(u_{1}^{-1} u\right) 1^{*} d^{\prime-1} d$, and so $h D_{1}=\left(u_{1}^{-1} u\right) A_{1}$. Therefore D^{*} satisfies (\#, 1), $\left[D: D\left(A_{1}\right)\right]=3$ and $\left[D^{*}: D_{1}\right]=2$. We shall use D^{*} in $\S 5$, Example 3^{\prime}.

Now we resume to study the structure of right US-4 rings.
Lemma 15. If R is a $U S-4$ ring with (*, $\left.1^{\prime}\right)$. D has one of the structures in Lemmas 10, 11, 12 and 16 below.

Proof. Assume 1) $\Delta\left(A_{1}\right)=\Delta\left(A_{2}\right)=\Delta\left(A_{3}\right)=\Delta$. Then $t=3$ by Lemmas 7 and 8 (the case of Lemma 16 below). 2) $\Delta\left(A_{1}\right)=\Delta_{2}(A)=\Delta$ and $\Delta\left(A_{i}\right) \neq \Delta$ for $i \geqslant 3$. Then $\left\{A_{1}, A_{2}, A_{3}, A_{3}\right\}$ derives a contradiction from Lemmas 2 and 7. 3) $\Delta\left(A_{1}\right)=\Delta$ and $\Delta(A)_{i} \neq \Delta$ for $i \geqslant 2$. This is a case of Lemma 12. 4) [Δ : $\left.\Delta\left(A_{i}\right)\right]=2$ for $i \leqslant$ some $l,\left[\Delta: \Delta\left(A_{j}\right)\right]=3$ for $j>l$. Since $\left[\Delta: \Delta\left(A_{k}\right)\right] \geqslant 2$ for all k, from (α) there exists a unit x_{i} in $e R e$ such that $x_{i} A_{1}=A_{i}$ for all i. Hence $\Delta\left(A_{j}\right)=x_{j} \Delta_{1}(A) x_{j}^{-1}$, and so we obtain the cases of Lemmas 10 and 11.

Lemma 16. Assume $\Delta\left(A_{i}\right)=\Delta$ for all i. Then $t \leqslant 3$, and

1) $t=3$:
A_{3} is uniserial and A_{1}, A_{2} are simple, $A_{1} \not \approx A_{2}$. If A_{3} is simple, $A_{3} \approx A_{1}$ and $A_{3} \approx A_{2}$. If A_{3} is not simple and $f: A_{1} \approx F_{i} / F_{i+1}\left(A_{3} \supset F_{i} \supset F_{i+1}\right)$, then $F_{i+1}=0$ and f is given by $j_{l} ; j \in e J e$, and hence $i>1$.
2) $t=2: \quad$ i) $A_{1} \approx A_{2}\left(\approx g_{1} R / g_{1} J\right)$.

Then A_{1} and A_{2} are simple and $\Delta=\overline{g_{1} R g_{1}} \approx \bar{Z}=Z / 2$.
ii) $A_{1} \approx A_{2}\left(\left|A_{1}\right| \leqslant\left|A_{2}\right|\right)$
a) A_{2} is uniserial; $A_{2}=F_{1} \supset F_{2} \supset \cdots \supset F_{p} \supset F_{p+1}=0$.

Then A_{1} is a uniserial module with $\left|A_{1}\right| \leqslant 2 ; A_{1}=E_{1} \supset E_{2} \supset E_{3}=0$.
a-1) $\quad\left|A_{1}\right|=2$.
a-1-1) If $f: A_{1} / E_{2} \approx A_{2} / F_{2}\left(\approx g_{2} R / g_{2} J\right), \Delta \approx \overline{g_{2} R g_{2}} \approx \bar{Z}$. fis a unique isomorphism. In this case put $B_{1}=\left\{x+y \mid \in A_{1} \oplus A_{2}, f(\bar{x})=\bar{y}\right\}$.
a-1-2) If $A_{1} / E_{2} \approx F_{i} / F_{t+1}, i>1$, then $i \geqslant p-1$.
a-1-3) If $f: E_{2} \approx F_{i} / F_{i+1}\left(\approx g_{3} R / g_{3} J\right)(p>i \geqslant 2), \Delta \approx \bar{g}_{3} \operatorname{Rg}_{3} \approx \bar{Z}$. We have the same result as a-2-1) below, replacing A_{1} with E_{2}. In this case put $B_{i}^{\prime}=$ $\left\{x+y \mid \in E_{2} \oplus F_{i}, f(x)=\bar{y}\right\}$.
a-1-4) $f: E_{2} \approx F_{p}$. If $p=2, \Delta \approx \overline{g_{4} R g_{4}} \approx \bar{Z}$, where $E_{2} \approx F_{2} \approx g_{4} R / g_{4} R$. Further if $f^{\prime}: A_{1} / E_{2} \approx F_{2}\left(A_{2} / F_{2} \approx E_{2}\right), A_{1}(f)=x A_{1}$ for some unit x in eRe.
If $p>2$, we have the same result as a-2-2) below, replacing A_{1} with E_{2}. If f is not given by j_{l}, put $B^{\prime \prime}=E_{2}(f)$.
a-1-5) Further every submodule in eJ ${ }^{i}$ except B_{1}, B_{i}^{\prime} and $B^{\prime \prime}$ is isomorphic to a standard submodule in $e J^{i}$ via $x_{i} ; x$ is a unit in $e R e$.
a-2). $\quad\left|A_{1}\right|=1$:
a-2-1) If $A_{1} \approx F_{i} / F_{i+1}\left(\approx g_{5} R / g_{5} J\right)$ for some $i<p, \Delta \approx \overline{g R_{5} g_{5}} \approx \bar{Z}$. . Further $A_{1} \approx F_{j} / F_{j+1}$ for any ($i \neq$) $j<p$.
a-2-2) Assume $f_{1}, f_{2}: A_{1} \approx F_{p}\left(\approx g_{6} R / g_{6} J\right)$.
If the f_{i} are not given by j_{l}^{\prime} in eJe, there exists a unit x in eRe such that $x A_{1}=A_{1}$ and $x f_{1}-f_{2} x_{1}=j_{l}(j \in e J e)$. In this case $A_{1} \approx F_{i} / F_{i+1}(i<p)$. In particular if $e J e A_{1}=0, \Delta \approx \overline{g_{6} R g} \approx \bar{Z}$.
b) $A_{2} / A_{2} J^{k}$ is uniserial and $A_{2} J^{k}$ is not unisrial, i.e., $A_{2} J^{k}=B_{1} \oplus B_{2} \oplus \cdots \oplus B_{s}$, where the B_{i} are hollow. Then A_{1} is simple and $s=2$. Further
$\left.\mathrm{b}_{1}\right) \quad \Delta\left(B_{2}\right)=\Delta\left(B_{1}\right)=\Delta$.
Then $B_{1} \not \approx B_{2}\left(\left|B_{1}\right| \leqslant\left|B_{2}\right|\right)$, and B_{1} is simple, B_{2} is uniserial.
$\left.\mathrm{b}_{1}-1\right)$ If $f: A_{1} \approx F_{i} / F_{i+1}\left(A_{2} \supset F_{i} \supset F_{i+1} \supset B_{1} \oplus B_{2}\right)$, then we obtain the same result modulo $B_{1} \oplus B_{2}$ as given in a-2-1).
$\mathrm{b}_{1}-2$) If $f: A_{1} \approx B_{1}$, f is givn given by $j_{l} ; j \in e J e$.
b_{1}-3) If $f: A_{1} \approx H_{i} / H_{i+1}\left(B_{2} \supset H_{i} \supset H_{i+1}\right)$, then $H_{i+1}=0$ and f is given by $j_{l} ; j \in e J e$.
$\left.\mathrm{b}_{1}-4\right)$ If $f: B_{1} \approx H_{i} / H_{i+1}$, then $H_{i+1}=0$ and f is given by $j_{l} ; j \in e J e$.
$\left.\mathrm{b}_{2}\right) \quad\left[\Delta: \Delta\left(B_{i}\right)\right]=2$ for $i=1,2$.

Then $B_{1} \approx B_{2}$ and B_{1}, B_{2} are simple and $V=B_{1} \oplus B_{2}$ satisfies (\#, 1).
$\left.\mathrm{b}_{2}-1\right) \quad A_{1} \approx F_{i} / F_{i+1}\left(A_{2} \supset F_{i} \supset F_{i+1} \supset V\right)$.
$\mathrm{b}_{2}-2$) If $f: A_{1} \approx B_{1}$, f is given by $j_{l} ; j \in e J e$. (cf. [7], Theorem 17.)
Proof. We know $t \leqslant 3$ by Lemma 9. Assume that $\left|A_{1}\right| \leqslant\left|A_{2}\right| \leqslant\left|A_{3}\right|$.
i) $t=3$. Consider $\left\{A_{1}, A_{2}, A_{3}, \mathrm{~J}(D)=\mathrm{J}\left(A_{1}\right) \oplus \mathrm{J}\left(A_{2}\right) \oplus \mathrm{J}\left(A_{3}\right)\right\}$. Since $\Delta\left(A_{i}\right)$ $=\Delta \mathrm{J}\left(A_{1}\right) \oplus \mathrm{J}\left(A_{2}\right) \oplus \mathrm{J}_{3}(A)$ is contained in some A_{i} by Lemmas 2 and 7. Hence $\mathrm{J}\left(A_{1}\right)=\mathrm{J}\left(A_{2}\right)=0$ (note $\left.\left|A_{3}\right| \geqslant\left|A_{i}\right|\right)$. Assume that A_{3} contains two independent submodules B_{1} and B_{2} in $e J^{i+k}$ on the same level in (1). Take $\tilde{R}=R / J^{i+k+1}$. Then both $\left[\Delta: \Delta\left(B_{1}\right)\right]$ and $\left[\Delta: \Delta\left(B_{2}\right)\right]$ are not equal to 1 and $\left[\Delta: \Delta\left(B_{i}\right)\right] \neq 3$ for any i by Lemmas 2 and 7 , and hence $\left[\Delta: \Delta\left(B_{i}\right)\right]=2$ for $i=1$ or 2 by Lemma 3, (say $i=1$). Then $\left\{B_{1}, B_{1}, A_{1}, A_{2}\right\}$ contradicts Lemmas 2 and 7 , since $B_{i} \subset A_{3}$. Hence A_{3} is uniserial. Assume $f: A_{1} \approx A_{2}$. Then $\left\{A_{1}, A_{2}, A_{3}, A_{1}(f)\right\}$ implies $A_{1}(f) \sim\left(\right.$ some $\left.A_{i}\right)$. Since A_{i} is characteristic (we may assume $J^{i+1}=0$ by Remark 5), $A_{1}(f) \subset A_{i}$, which is a contradiction. Finally assume $g: A_{1} \approx F_{i} / F_{i+1}$. Since $\Delta\left(A_{3}\right)=\Delta$ and A_{1}, A_{2} are simple, A_{3} is characteristic. Hence $\left\{A_{1}, A_{2}, F_{i}\left(g^{-1}\right), A_{3}\right\}$ derives from Lemmas 2 and 7 that $A_{1} \sim F_{i}\left(g^{-1}\right)$. Therefore g is given by j_{l} from Lemma 6.
2) $t=2$.
i) $f: A_{1} \approx A_{2}$. Assume $\Delta \neq \Delta\left(A_{1}(f)\right)$. Then $\left\{A_{1}, A_{2}, A_{1}(f), A(f)\right\}$ implies $A_{1}(f) \sim A_{i}$ for some i, say 1 from Lemma 7. Since $A_{2} \approx A_{1} \approx A_{1}(f), A_{1}(f)=x A_{1}$ for some unit x in $e R e$. Hence $\Delta\left(A_{1}(f)\right)=\bar{x} \Delta\left(A_{1}(f)\right) x^{-1}=\Delta$, a contradiction. Accordingly $\Delta\left(A_{1}(f)\right)=\Delta . \quad$ Consider $\left\{A_{1}, A_{2}, A_{1}(f), \mathrm{J}\left(A_{1}\right) \oplus \mathrm{J}\left(A_{2}\right)\right\}$, and $\mathrm{J}\left(A_{1}\right)=0$ by Lemma 7 (note $\left.\Delta\left(A_{i}\right)=\Delta\left(A_{1}(f)\right)=\Delta\right)$. Hence A_{1} and A_{2} are simple, and so $e J^{i+1}=0$. Let f and f^{\prime} be two isomorphisms of A_{1} to A_{2} and consider $\left\{A_{1}, A_{2}\right.$, $\left.A_{1}(f), A_{1}\left(f^{\prime}\right)\right\}$. Since $e J^{i+1}=0$, they are characteristic, and so $A_{1}(f)=A_{1}\left(f^{\prime}\right)$ by Lemmas 7 and 8. Hence $f=f^{\prime}$. Considering an isomorphism δf for $\delta \in \Delta$, $\Delta=\{0,1\}$. Since $\operatorname{Hom}_{R}\left(A_{1}, A_{1}\right)=\{0,1\}, \Delta^{\prime}=\overline{g R g}=\{0,1\}$, where $A \approx g R / g J$.
ii) $A_{1} \approx A_{2}\left(\left|A_{1}\right| \leqslant\left|A_{2}\right|\right)$. Assume $A_{1} J \neq 0$ and $A_{2} J^{k}=C_{1} \oplus C_{2} \oplus \cdots \oplus C_{s}$ $(s \geqslant 1)$, where the C_{i} are hollow. Consider $\left\{A_{1}, A_{2}, A_{1} J \oplus C_{1}, A_{1} J \oplus C_{2}\right\}(s \geqslant 2)$. Then $A_{1} J \oplus C_{1} \sim A_{1} J \oplus C_{2}$ by Lemmas 2 and 7, provided $A_{1} J \neq 0$, Assume $\Delta\left(A_{1} J \oplus C_{i}\right)=\Delta$ for $i=1,2$ and $x\left(A_{1} J \oplus C_{1}\right) \subset A_{1} J \oplus C_{2}$ for some unit x. We may assume $J^{i+k+1}=0$. There exists j in eJe such that $(x+j)\left(A_{1} J \oplus C_{1}\right)=A_{1} J$ $\oplus C_{1}$. Then $x C_{1} \subset(x+j) C_{1}+j C_{1} \subset A_{1} J+C_{1}$. Hence $x C_{1} \subset\left(A_{1} J \oplus C_{1}\right) \cap\left(A_{1} J \oplus\right.$ $\left.C_{2}\right)=A_{1} J$, and so $C_{1} \sim A_{1}$, a contradiction by Lemma 2. Hence $\Delta\left(A_{1} J \oplus C_{1}\right) \neq \Delta$ for some i, say 1. $\quad\left\{A_{1}, A_{2}, A_{1} J \oplus C_{1}, A_{1} J \oplus C_{1}\right\}$ implies either $A_{1} \sim A_{1} J \oplus C_{1}$ or $A_{2} \sim A_{1} J \oplus C_{2}$ by Lemma 7. Which is again a contradiction by Lemma 2. Hence $s=1$, and so
A_{2} is uniserial, provided $A_{1} J \neq 0$.
Similarly A_{1} is also uniserial, provided $A_{2} J \neq 0$. Now assume that A_{2} is uniserial $\left(\left|A_{2}\right| \geqslant 2\right.$ and hence so is $\left.A_{1}\right)$. We shall show $\left|A_{1}\right| \leqslant 2$. Assume $A_{1} J^{2} \neq 0$ and
hence $A_{2} J^{2} \neq 0$. Consider $\left\{A_{1}, A_{1} J \oplus A_{2} J^{2}, A_{1} J^{2} \oplus A_{2} J, A_{2}\right\}$. Since $A_{1} \nsim A_{2}$ by Lemma 2, 1) $A_{1} \sim A_{1} J \oplus A_{2} J^{2}$ or 2) $A_{1} \sim A_{1} J^{2} \oplus A_{2} J$ (A_{1} and A_{2} are symmetry) or 3) $A_{1} J \oplus A_{2} J^{2} \sim A_{1} J^{2} \oplus A_{2} J$.

1) It is clear that $x A_{1} \supset A_{1} J \oplus A_{2} J_{1}$ for a unit x. However A_{1} is uniserial, and so $A_{2} J^{2}=0$ (note $\left.\left|A_{1}\right| \leqslant\left|A_{2}\right|\right)$. 2) This is similar. 3) Aassume $x\left(A_{1} J \oplus\right.$ $\left.A_{2} J^{2}\right) \supset A_{1} J^{2} \oplus A_{2} J$. Since $\Delta\left(A_{1}\right)=\Delta$, there exists j in eJe such that $(x+j) A_{1}=$ A_{1}. Let $a_{2} j_{2}$ be an element in $A_{2} J\left(a_{2} \in A_{2}, j_{2} \in J\right)$. Then $x\left(a_{1} j_{3}+a_{2}^{\prime} j_{4}\right)=a_{2} j_{2}$ for some $a_{1} \in A_{1}, a_{2}^{\prime} \in A_{3}, j_{3} \in J$ and $j_{4} \in J^{2}$. Hence $(x+j) a_{1} j_{3}-j a_{1} j_{3}+x a_{2}^{\prime} j_{4}=a_{2} j_{2}$. On the other hand, $j a_{1} j_{3}, x a_{2}^{\prime} j_{4}$ are contained in J^{i+2}. Take the projection of $e J^{i}$ onto A_{2}, and $a_{2} j_{2} \in A_{2} \cap J^{i+2}=A_{2} J^{2}$. Hence $A_{2} J=0$. Similarly if $x\left(A_{1} J \oplus A_{2} J^{2}\right)$ $\supset A_{1} J^{2} \oplus A_{2} J, A_{1} J=0$. Therefore $\left|A_{1}\right| \leqslant 2$.

We observe isomorphisms between sub-factor modules of A_{1} and A_{2}, and then investigate submodules X in $e J^{i}$. It is well known that there exist submodules $A_{1} \supset C \supset C^{\prime}$ and $A_{2} \supset D \supset D^{\prime}$ such that $h: C / C^{\prime} \approx D / D^{\prime}$ and $X=\{c+d \mid$ $\left.\in C \oplus D, h\left(c+C^{\prime}\right)=d+D^{\prime}\right\}$ (cf. [3]). We denote X by $C(h) D$.
a-1) Let $\left|A_{1}\right|=2$.
a-1-1) $f: A_{1} / E_{2} \approx A_{2} / F_{2}(\approx g R / g J)$.
Then $\Delta^{\prime}=\overline{g R g}=\bar{Z}$ from 2-i) and f is a unique isomorphism.
a-1-2) ([7], Theorem 17) Assume $f: A_{1} / E_{2} \approx F_{i} / F_{i+1}(i>1)$. Consider $\left\{A_{1}, A_{2}, E_{2} \oplus F_{2}, A_{1}(f) F_{i}\right\}$. Since $\Delta\left(A_{1}\right)=\Delta\left(A_{2}\right)=\Delta, A_{2} \approx A_{1}(f) F_{i}$. Further $E_{2} \oplus F_{2}$ being characteristic, from Lemma 7 there exists a unit x^{\prime} in $e R e$ such that $x^{\prime} A_{1} \subset A_{1}(f) F_{i}$. Let $p_{j}: e J^{i} \rightarrow A_{j}$ be the projection and $x^{\prime}=x+j ; x A_{1}=A_{1}$, $j \in e J e$ as usual. Then for a generator a in A_{1}

$$
(x+j) a=a r+f(a r)+z_{1}+z_{2} ; r \in R, z_{1} \in E_{2} \text { and } z_{2} \in F_{i+1} .
$$

Hence

$$
x a+p_{1}(j a)=a r+z_{1} \text { and } p_{2}(j a)=f(a r)+z_{2} .
$$

Since $p_{1}(j a) \in E_{2}, x a \equiv a r\left(\bmod E_{2}\right)$. Assume $i<p-1$. Since $j a \in F_{p-1} \subset F_{i+1}$, $f(a r) \equiv f(x a) \equiv 0\left(\bmod F_{i+1}\right) . \quad$ However $x a$ is a generator of A_{1}, and hence $f=0$. Therefore $i \geqslant p-1$.
a-1-3). See a-2-1) below.
a-1-4). $\quad E_{2} \approx F_{2}(p=2)$. We have the situation of 2-i).
Assume further $f: A_{1} / E_{2} \approx F_{2}\left(A_{2} / F_{2} \approx E_{2}\right)$, and consider $\left\{A_{1}, A_{2}, A_{1}(f)\right.$, $\left.E_{2} \oplus F_{2}\right\}$. Then $A_{1} \sim A_{1}(f)$ by Lemma 7 and so $A_{1}(f)=x A_{1}$ for some unit x in $e R e$, since $A_{1} \approx A_{1}(f)$. If $p>2$, see a-2-2) below.
a-1-5) Let X be a submodule in $e J^{i}$.
i) $X=A_{1}\left(f_{1}\right) F_{i}=F_{i}\left(f_{1}^{-1}\right)\left(f_{1}: A_{1} \approx F_{i} / F_{i+2}\right)$. If $i=1$, consider R / J^{i+3}. Then this contradicts 2-i). Hence $i \neq 1, F_{i}=F_{p-1}$ and $F_{i+2}=0$ from a-1-2). $\left\{A_{1}, A_{2}\right.$, $\left.E_{2} \oplus F_{2}, A_{1}\left(f_{1}\right)\right\}$ shows $A_{1}\left(f_{1}\right)=x A_{1}$ for some unit x in $e R e$.
ii) $\quad X=A_{1}\left(f_{2}\right) A_{2}\left(f_{2}: A_{1} / E_{2} \approx A_{2} / F_{2}\right)$. Then $X=B_{1}$ from a-1-1).
iii) $\quad X=A_{1}\left(f_{3}\right) F_{i}\left(f_{3}: A_{1} / E_{2} \approx F_{i} / F_{i+1}, i>1\right)$ and hence $i=p-1$ or p by a-1-2). Then $\left\{A_{1} \oplus F_{i+1}, A_{2}, E_{2} \oplus F_{2}, A_{1}\left(f_{3}\right) F_{i}\right\}$ shows $A_{1}\left(f_{3}\right) F_{i}=x\left(A_{1} \oplus F_{i+1}\right)$.
iv) $X=A_{2}\left(f_{4}^{-1}\right)\left(f_{4}: E_{2} \approx A_{2} / F_{2}\right) . \quad\left\{A_{1}, A_{2}, E_{2} \oplus F_{2}, A_{2}\left(f_{4}^{-1}\right)\right\}$ shows $A_{2}=$ $x A_{2}\left(f_{4}^{-1}\right)$.
v) $X=F_{i}\left(f_{5}^{-1}\right)\left(f_{5}: E_{2} \approx F_{i} / F_{i+1}, i \geqslant 2\right)$. In this case $e J^{i+1}=E_{2} \oplus F_{2}$. Hence this is the case of a-2). Accordingly $X=B_{1}, B_{i}^{\prime}$ or $B^{\prime \prime}$, provided X is not isomorphic to a standard submodule in $e J^{i+1}$ via x_{l}.
Thus we have shown that X is isomorphic to a standard submodule in $e J^{i}$ via x_{l} except B_{1}, B_{i}^{\prime} and $B^{\prime \prime}$.
a-2) $\quad\left|A_{1}\right|=1$.
a-2-1) Let $f: A_{1} \approx F_{i} / F_{i+1}(i<p)$. If $F_{i}\left(f^{-1}\right) \supset x A_{1}$ for some unit x in $e R e$, $x A_{1} \subset F_{i+1} \subset A_{2}$, since $\mathrm{J}\left(F_{i}\left(f^{-1}\right)\right)=F_{i+1}$, which is a contradiction from lemma 2. We note further that A_{2} is characteristic, since $\Delta\left(A_{2}\right)=\Delta$ and A_{1} is simple. Assume $\Delta\left(F_{i}\left(f^{-1}\right)\right) \neq \Delta$. Then $\left\{A_{2}, A_{1}, F_{i}\left(f^{-1}\right)\right\}$ derives a contradiction from the above remarks and Lemma 7. It is clear that $\operatorname{eJe}\left(F_{i}\left(f^{-1}\right)\right) \subset e J e\left(F_{i} \oplus A_{1}\right) \subset F_{i+1}$. Hence $F_{i}\left(f^{-1}\right)$ is also characteristic. Let $f^{\prime}: A_{1} \approx F_{i} / F_{i+1}$ be another isomorphism. $\quad\left\{A_{2}, A_{1}, F_{i}\left(f^{-1}\right), F_{i}\left(f^{\prime-1}\right)\right\}$ gives $F_{i}\left(f^{-1}\right)=F_{i}\left(f^{\prime-1}\right)$ since they are characteristic. Therefore $f=f^{\prime}$. Accordingly, $\Delta \approx \overline{g_{4} R_{4} g} \approx \bar{Z}$ as given in the proof of 2-i). Further assume $g: A_{1} \approx F_{j} / F_{j+1}(j<p)$. Again consider $\left\{A_{2}, A_{1}, F_{i}\left(f^{-1}\right)\right.$, $\left.F_{j}\left(g^{-1}\right)\right\}$. Then $F_{i}\left(f^{-1}\right) \supset F_{j}\left(g^{-1}\right)$ if $i<j$, and so $F_{j}\left(g^{-1}\right) \subset F_{i+1}$, a contradiction.
a-2-2) Assume that $f_{1}, f_{2}: A_{1} \approx F_{p}$ and they are not given by j_{l}^{\prime} in eJe. Then $\left\{A_{2}, A_{1}, A_{1}\left(f_{1}\right), A_{1}\left(f_{2}\right)\right\}$ gives, from Lemmas 6 and 7 , that $A_{1}\left(f_{1}\right)=x^{\prime} A_{1}\left(f_{2}\right)$ for some unit x^{\prime} in $e R e$. Since $\Delta\left(A_{1}\right)=\Delta$, there exists j in eJe such that $\left(x^{\prime}+j\right) A_{1}=A_{1}$. Put $x=x^{\prime}+j$. Then for a generator a in A_{1}

$$
(x-j)\left(a_{2}+f_{2}(a)\right)=a r+f_{1}(a r) ; r \in R .
$$

Hence

$$
x a=a r, x f_{2}(a)-j a=f_{1}(a r) .
$$

Next assume further that $q: A_{1} \approx F_{i} / F_{i+1}(i<p)$. Consider $\left\{A_{2}, A_{1}, F_{i}\left(q^{-1}\right)\right.$, $\left.A_{1}(f)\right\}$, and $F_{i}\left(q^{-1}\right) \sim A_{1}\left(f_{1}\right)$ since $F_{i}\left(q^{-1}\right)$ is characteristic. Which is a contradiction. In particular, if $e J e A_{1}=0, A_{1}(f)$ is characteristic, since $\Delta\left(A_{1}(f)\right)=\Delta$ (if $\Delta \neq \Delta\left(A_{1}(f)\right),\left\{A_{1}, A_{2}, A_{1}(f)\right\}$ gives $\left.A_{1} \sim A_{1}(f)\right)$. Then f is given by j_{l} from Lemma 6). Hence $f_{1}=f_{2}$ from the first paragraph, and so $\Delta \approx \overline{g_{5} R_{5} g} \approx \bar{Z}$ as in the proof of 2-i).
b) $A_{2} / A_{2} J^{k}(k \geqslant 1)$ is uniserial and $A_{2} J^{k}=\sum_{i=1}^{s} \oplus B_{i}(s \geqslant 2)$. Then A_{1} is simple from the initial paragraph of ii). Then $D J^{k}=e J^{i+k}=A_{2} J^{k}$. Since $e J^{i+k}=B_{1} \oplus \cdots \oplus B_{s}, s \leqslant 3$ from Lemma 15, and $\left[\Delta: \Delta\left(B_{i}\right)\right] \leqslant 2$ for all i by Lemmas 2 and 7. If $\left[\Delta: \Delta\left(B_{1}\right)\right]=1$ and $\left[\Delta: \Delta\left(B_{2}\right)\right]=2,\left\{A_{1}, B_{1}, B_{2}, B_{2}\right\}$ derives a contradiction. Hence either $\left[\Delta: \Delta\left(B_{i}\right)\right]=1$ for all $\left.i\left(b_{1}\right)\right)$ or $\left[\Delta: \Delta\left(B_{i}\right)\right]=2$ for all $i\left(b_{2}\right)$). In the former case $s=2$ by Lemma 7 and in the latter case also $s=2$ and $B_{2}=x B_{1}$ for some unit x in $e R e$ by Lemma 10.
$\left.\mathrm{b}_{1}\right) \quad \Delta\left(B_{1}\right)=\Delta\left(B_{2}\right)=\Delta$.
Then $\left\{A_{1}, B_{1}, B_{2}, \mathrm{~J}\left(B_{1}\right) \oplus \mathrm{J}\left(B_{2}\right)\right\}$ implies $\mathrm{J}\left(B_{1}\right)=0\left(\left|B_{1}\right| \leqslant\left|B_{2}\right|\right)$. If $f: B_{1} \approx B_{2}$, $\left\{A_{1}, B_{1}, B_{2}, B_{1}(f)\right\}$ derives a contradiction. Hence $B_{1} \not \approx B_{2}$. We can show as before that B_{2} is uniserial.
$\mathrm{b}_{1}-1$) This is the case of a-2-1).
$\left.\mathrm{b}_{1}-2\right) \quad$ Assume $f: A_{1} \approx B_{1} . \quad\left\{A_{1}, A_{1}(f), B_{1}, B_{2}\right\}$ derives $A_{1} \sim A_{1}(f)$, i.e., $(x+j) A_{1}=A_{1}(f): x A_{1}=A_{1}$ and $j \in e J e . \quad(x+j) a=a r+f(a r) ; A_{1}=a R, r \in R$. Hence $x a=a r$ and $j a=f(a r)$. Put $x a=b$, and $A_{1}=b R$. $f(b)=j x^{-1} b$.
b_{1}-3) Assume $f: A_{1} \approx H_{i} / H_{i+1} . \quad\left\{A_{1}, B_{1}, B_{2}, H_{i}\left(f^{-1}\right)\right\}$ shows $A_{1} \sim H_{i}\left(f^{-1}\right)$. Hence $H_{i+1}=0$ and f is given by j_{l} as above (cf. Lemma 6).
$\left.\mathrm{b}_{1}-4\right)$ Assume $f: B_{1} \approx H_{i} / H_{i+1} . \quad\left\{A_{1}, B_{1}, B_{2}, H_{i}\left(f^{-1}\right)\right\}$ derives $B_{1} \sim H_{i}\left(f^{-1}\right)$, since $\Delta\left(B_{\varepsilon}\right)=\Delta$. Hence $H_{i+1}=0$ and f is given by j_{l} from Lemma 6.
$\left.\mathrm{b}_{2}\right) \quad\left[\Delta: \Delta\left(B_{i}\right)\right]=2$ for $i=1,2,\left(B_{2}=x B_{1}\right)$.
$\left\{A_{1}, B_{1}, B_{2}, \mathrm{~J}\left(B_{1}\right) \oplus \mathrm{J}\left(B_{2}\right)\right\}$ shows, from Lemma 2, that $\mathrm{J}\left(B_{2}\right)=0$, i.e., B_{2} is simple. Further since $\Delta\left(A_{1}\right)=\Delta$ and $\left[\Delta: \Delta\left(B_{1}\right)\right]=2,[\Delta: \Delta(E)]=2$ for all simple submodules E in $V=B_{1} \oplus B_{2}$ by Lemmas 2 and 8 . Hence V satisfies (\#, 1) by Lemma 7.
$\mathrm{b}_{2}-1$) If $A_{1} \approx F_{i} / F_{i+1}, \Delta=\bar{Z}$ by a-1-3). Hence $\Delta\left(B_{1}\right)=\Delta$.
b_{2}-2). Assume $f: A_{1} \approx B_{1} . \quad\left\{A_{1}, B_{1}, B_{1}, A_{1}(f)\right\}$ derives $A_{1} \sim A_{1}(f)$. Hence f is given by j_{l} as $\mathrm{b}_{1}-2$).

Remark 17. If R is an algebra over an algebraically closed field $K, \Delta \neq \bar{Z}$ and the first part of a-2-2) does not occur (take $f_{2}=k f_{1}, k \neq 1 ; k \in K$). We can express f in a-1-2) as an element in $e J e$, however it is little complicated (cf. [7], Theorem 17).

In order to make the converse version clear, we illustrate the structure of Lemmas $10 \sim 16$ as follows:

1) (Lemma 10)

$\left[\Delta: \Delta\left(A_{1}\right)\right]=\left[\Delta: \Delta\left(A_{2}\right)\right]=2$, every characteristic submodule in $e J^{i}$ is linear with respect to the inclusion and $[\Delta: \Delta(C)]=2$ for any non-characteristic submodule C in $e J^{i}$. Further those C are related to one another with respect to \sim.
2) (Lemma 11)

$e R$	$e J^{i}$
	$A_{1} \quad-0$
	$A_{2}=x_{2} A_{1}-0$
	$A_{3}=x_{3} A_{1}-0$

$\left[\Delta: \Delta\left(A_{1}\right)\right]=\left[\Delta: \Delta\left(A_{2}\right)\right]=\left[\Delta: \Delta\left(A_{3}\right)\right]=3$ and $A_{1} \oplus A_{2} \oplus A_{3}$ satisfies (\#, 1) and (\#, 2). Further $[\Delta: \Delta(C)] \leqslant 3$ for every submodule C in $A_{1} \oplus A_{2} \oplus A_{3}$. (A_{3} may be zero.)
3) (Lemma 12, i))

$\left[\Delta: \Delta\left(A_{1}\right)\right]=1$ and $\left[\Delta: \Delta\left(A_{2}\right)\right]=\left[\Delta: \Delta\left(A_{3}\right)\right]=2$. Further $A_{2} \oplus A_{3}$ satisfies (\#, 1).
4) (Lemma 12, ii-a))

$e R$	$e J^{i}$	$e J^{n+i-1}$
$A_{1}-$	$E_{n}-0$	
$A_{2}-0$		

$\left[\Delta: \Delta\left(A_{1}\right)\right]=1,\left[\Delta: \Delta\left(A_{2}\right)\right]=2$ and $A_{2} \oplus E_{n}$ satisfies (\#, 1) except E_{n}.
5) (Lemma 12, ii-b ii-b-2-ii-1))

$\left[\Delta: \Delta\left(A_{1}\right)\right]=1,\left[\Delta: \Delta\left(A_{2}\right)\right]=2$ and $\left[\Delta: \Delta\left(B_{1}\right)\right]=\left[\Delta: \Delta\left(B_{2}\right)\right]=1 . A_{1} \oplus A_{2} / \mathrm{J}\left(A_{2}\right)$ satisfies (\#, 1) except A_{1}. (B_{2} may be zero.)

5')

$\left[\Delta: \Delta\left(B_{1}\right)\right]=\left[\Delta: \Delta\left(B_{2}\right)\right]=2$ and $B_{1} \approx B_{2} . \quad B_{1} \oplus B_{2}$ satisfies $(\#, 1)$.
6) $($ Lemma 16,1$))$

$e R$	$e J^{i}$	$e J^{i+n-1}$
	A_{1}	$E_{n}-0$
	$\begin{aligned} & A_{2}-0 \\ & \# \# \\ & A_{3}-0 \end{aligned}$	

$\left[\Delta: \Delta\left(A_{1}\right)\right]=\left[\Delta: \Delta\left(A_{2}\right)\right]=\left[\Delta: \Delta\left(A_{3}\right)\right]=1$. If $f: A_{2} \approx E_{n}, f$ is given by $j_{l} ; j \in e J e . \quad\left(A_{2}, A_{3}\right.$ and E_{2} may be zero.)
7) (Lemma 16, 2-i))

$\left[\Delta: \Delta\left(A_{1}\right)\right]=\left[\Delta: \Delta\left(A_{2}\right)\right]=1$ and $\Delta \approx \Delta^{\prime} \approx \bar{Z}$.
8) (Lemma 16, 2-ii-a-1))

$\left[\Delta: \Delta\left(A_{1}\right)\right]=\left[\Delta: \Delta\left(A_{2}\right)\right]=1$. If $f: A_{1} / E_{2} \approx A_{2} / F_{2}, \Delta \approx \Delta^{\prime} \approx \bar{Z}$. Every submodule except B_{1}, B_{i}^{\prime} and $B^{\prime \prime}$ is isomorphic to a standard submodule via x_{l}. (If $n=2$ and $E_{2} \approx F_{2}, \Delta \approx \Delta^{\prime} \approx \bar{Z}$.) If $E_{2}=0$, the conditions in a-2) of Lemma 16 are fulfiled.
9) (Lemma 16, 2-ii- b_{1}))

$\left[\Delta: \Delta\left(A_{1}\right)\right]=\left[\Delta: \Delta\left(A_{2}\right)\right]=1,\left[\Delta: \Delta\left(B_{1}\right)\right]=\left[\Delta: \Delta\left(B_{2}\right)\right]=1$. If $f: A_{1} \approx B_{1}, f$ is given by $j_{l} ; j \in e J e$. Similar facts hold for other cases.
10) (Lemma 16, 2-ii-b ${ }_{2}$))

$\left[\Delta: \Delta\left(A_{1}\right)\right]=\left[\Delta: \Delta\left(A_{2}\right)\right]=1,\left[\Delta: \Delta\left(B_{2}\right)\right]=2$ and $B_{1} \oplus B_{2}$ satisfies $(\#, 1)$.
We shall show that if $e R$ has one of the structures of the above diagrams $1) \sim 10)$, then R is a right US-4 ring with ($*, 1^{\prime}$). It is clear from the diagrams that ($*, 1^{\prime}$) holds. Let $\left\{U_{i}\right\}^{4}=1$ be a set of submodules in $e R$.

Diagram 1). If U_{1} and U_{2} are characteristic, $U_{1} \supset U_{2}$ or $U_{1} \subset U_{2}$. Hence $U_{1} \oplus U_{2}$ satisfies ($* *, 2$) by [4], Corollary 1 of Theorem 2. Hence $D=\sum_{i=1}^{4} \oplus U_{i}$ satisfies ($* *, 4$) by [2], Lemma 1. Assume that $U_{1} \cap U_{2} \supset e J^{i}$. Then U_{i} for $i=1,2$ is characteristic, and hence D satisfies (**, 4) from the above. Next assume that $U_{1} \supset e J^{i}$ and $e J^{i} \supset U_{j}$ for $j>1$. Since $\Delta\left(U_{1}\right)=\Delta, U_{1} \oplus U_{2}$ satisfies $(* *, 2)$ by [4], Corollary 1 of Theorem 2. Finally assume $e J^{i} \supset U_{j}$ for all j. If $\left\{U_{j}\right\}_{j=1}^{3}$ is a set of non-characteristic submodules, then we may assume $U_{1} \supset$ $x_{2} U_{2} \supset x_{3} U_{3}$ for some units x_{i} in $e R e$ by assumption. Since $\left[\Delta: \Delta\left(U_{i}\right)\right]=2$, $U_{1} \oplus U_{2} \oplus U_{3}$ satisfies ($* *, 3$) by [4], Corollary 3 of Theorem 2. Therefore D satisfies ($* *, 4$).
2) As is shown in 1), we may assume that $e J^{i} \supset U_{j}$ for all j. Then $U_{1} \supset$ $x_{2} U_{2} \supset x_{3} U_{3} \supset x_{4} U_{4}$ by assumption, where the x_{i} are units in $e R e$. Then from the assumption $[\Delta: \Delta(C)] \leqslant 3$ and the argument of the proof of [4], Corollary 3 of Theorem 2, D satisfies (**, 4).
3) Let $e J^{i} \supset U_{j}$ for all j. Then $U_{i}=A_{1} \oplus B_{i}$ or $U_{i} \subset A_{2} \oplus A_{3}$ by assumption, where $B_{i} \subset A_{2} \oplus A_{3}$. First assume $U_{j} \subset A_{2} \oplus A_{3}$ or $U_{j}=A_{1} \oplus B_{j}\left(B_{j} \neq 0\right)$ for all $j \leqslant 3$. Then D satisfies ($* *, 4$) by [4], Corollary 3 of Theorem 2 (note A_{1} and $A_{2} \oplus A_{3}$ are characteristic and see the remark above). If $U_{1}=A_{1}$ and $U_{2}=A_{1} \oplus B_{2}, U_{1} \oplus U_{2}$ satisfies (**, 2) by [4], Corollary 1 of Theorem 2. Thus D satisfies ($* *, 4$)
4) Every submodule in $e J^{i}$ is isomorphic to a standard submodule in $e J^{i}$ via x_{l}. Hence we may assume that all U_{j} are standard. Then D satisfies $(*, 4)$ by [4], Corollaries $1 \sim 3$ of Theorem 2.
5) and 5') Let $e J^{i} \supset U_{1} \supset A_{2} J$ and $U_{1} \neq A_{1} \oplus A_{2}$. Then $U_{1} / A_{2} J=x\left(A_{2} / A_{2} J\right)$, and so $x A_{2}=U_{1}$. Further $A_{1} \oplus A_{2} J$ is characteristic. If $U_{1}=A_{1} \oplus A_{2} J$ and $U_{2} \subset A_{2} J, U_{1} \oplus U_{2}$ satisfies (*,2). Accordingly we may assume that U_{i} is A_{1} or a submodule of A_{2} Therefore D satisfies ($* *, 4$).
6) and 7) These are clear.
8) First we note $B_{1} \supset E_{2} \oplus F_{2} \supset B_{i}^{\prime}\left(E_{2} \oplus F_{2} \supset B^{\prime \prime}\right)$ and $B_{i}^{\prime}, B^{\prime \prime}$ do not appear simultaneously. If the U_{i} are standard for all $i, U_{i} \sim U_{j}$ for some pair i, j. Hence D satisfies (**, 4) by [4], Corollary 2 of Theorem 2. The conditions given in Lemma 16 show that $A_{1} \sim A_{1}(f), F_{p}\left(f^{-1}\right) \sim F_{p}\left(g^{-1}\right), \cdots$ etc.. Hence we obtain the desired result.
9) and 10) These are simpler than 8), (if $A_{1} \approx F_{i} / F_{i+1}\left(F_{i+1} \supset B_{1} \oplus B_{2}\right)$, $\Delta \approx \bar{Z}$. Hence $\Delta(C)=\Delta$ for any submodule C in $e R)$.

Thus we obtain
Theorem 2. R is a right US-4 (basic) ring with (*, 1^{\prime}) if and only if eR has one of the structures given in Lemmas 10~16 (cf. Diagrams 1)~10)) for each primitive idempotent e.

3. Hereditary rings

In this section, we shall study a hereditary and right US-3 (resp. US-4) ring R. If R is hereditary, $\left(*, 1^{\prime}\right)$ holds, and hence we can make use of the results in the previous sections.

Lemma 18. Assume that R is basic and hereditary. Then a submodule A in $e R$ is characteristic if and only if $\Delta(A)=\Delta$. Every non-zero element in Hom_{R} $(e R, f R)$ is a monomorphism, where e and f are primitive idempotents.

Proof. The second half is clear (see [9], Lemma 2). Hence, since $e J e=0$, the first one is clear

From now on we assume that R is a hereditary and basic ring. First we assume further that R is right US-3.

Theorem 3. Let R be a hereditary (and basic) ring. Then R is a right $U S-3$ ring if and onyl if $e R$ has the following structure for each primitive idempotent e :
i) $e R / e J^{t}$ is uniserial for some t and
ii) $e J^{t}=0$ or $e J^{t}=A \oplus B$ such that either
a) A and B are simple and $A \oplus B$ satisfies (\#, 1), and $[\Delta: \Delta(A)]=2$, or
b) A is simple, B is uniserial and A is not isomorphic to any sub-factor modules of B (and hence $\Delta(A)=\Delta(B)=\Delta)$.

Proof. If R is right US-3, $e R$ has the structure in Theorem 1. We consider the case b) of Theorem 1. Assume that $f: A \approx($ the socle of $B)$. Then $\{A, A(f), B\}$ derives a contradiction, since A and B are characteristic by Lemma 18. Thus we obtain the theorem from Theorem 1.

Let R be a basic herediatry ring. Then

$$
R=\left(\begin{array}{ccccc}
\Delta_{1} & M_{12} & \cdots & \cdots & \cdots
\end{array} M_{1 n} \begin{array}{cccc}
& \Delta_{2} & M_{23} & \cdots
\end{array} M_{2 n}\right)
$$

where the Δ_{i} are division rings and the $M_{i j}$ are left Δ_{i} - and right Δ_{j}-modules [1].
We shall express explicitly the content of Theorem 3 for $M_{i j}$ in a row of the above ring.
1)
$\left(0 \cdots \Delta_{i} 0 \Delta_{i_{1}} 0 \cdots 0 \Delta_{i_{t}} 0 \cdots \Delta_{i_{p}} 0\right)$
2)

$$
\left(0 \cdots \Delta_{i} 0 \cdots \Delta_{i_{1}} 0 \cdots \Delta_{i_{t}} 0 \cdots\binom{u_{p} \Delta_{i_{t}}}{v_{p} \Delta_{i_{p}}} \cdots 0\right)
$$

(4)
where $\binom{u_{p} \Delta_{i_{p}}}{v_{p} \Delta_{i_{p}}}=u_{p} \Delta_{i_{p}} \oplus v_{p} \Delta_{i_{p}}$ satisafies (\#, 1).
3)

$$
\begin{align*}
& \left(00 \Delta_{i} 0 \cdots \Delta_{i_{1}} 0 \cdots \Delta_{i_{t}} 0 \cdots\right. \\
& \left.\cdots\binom{u_{t+1} \Delta_{i_{t+1}}}{0} 0\binom{0}{v_{t+2} \Delta_{i_{t+2}}} 0 \cdots\binom{0}{v_{p} \Delta_{i_{p}}} 0 \cdots 0\right)
\end{align*}
$$

As is given in the proof of [9], Theorem 1, we can show a ring monomorphisms $\rho_{r s}: \Delta_{r} \rightarrow \Delta_{s}$ for $r<s<k$ such that $x u_{r}=u_{s} \rho_{r s}(x)$ for $x \in \Delta_{r}$ and $\rho_{r s} \rho_{s v}=\rho_{x v}$.

Next we shall characterize a hereditary (basic) and right US-4 ring. If R is hereditary, some results in the previous sections may not occur as shown in Theorem 3. We shall observe them.

In the case b) of Lemma 12, A_{2} is simple.
Because, since A_{1} is simple and $\left[\Delta: \Delta\left(A_{2}\right)\right]=2, A_{1} \approx A_{2} / \mathrm{J}\left(A_{2}\right)$. Hence $A_{1} \approx A_{2}$ by Lemma 18.

We shall observe the conditions in Lemma 16 for a hereditary ring. a-1-1), $\mathrm{a}-1-2$), a-1-3), any of $\mathrm{b}-1-1) \sim 4$) and $\mathrm{b}_{2}-2$) do not occur from Lemma 18. For instance, if $\left.f^{\prime}: A_{1} / E_{2} \approx F_{p-1} / F_{p}(\mathrm{a}-1-2)\right), f: A_{1} \approx F_{p-1}$ by Lemma 18. Then $A_{1} \sim$ $A_{1}(f)$ by a-1-5). However, A_{1} is characteristic, and so $A_{1}=A_{1}(f)$. Therefore $f=0$.

We shall use the notations after Theorem 3.
Lemma 19. In case 2-i) in Lemma $16, e_{i i} R$ is of the form ($0, \cdots, \bar{Z}, \cdots$
$0 \cdots \bar{Z} \cdots 0)$. In case of 2-a-1-4) in Lemma 16, $A_{1}\left(\right.$ resp. $\left.A_{2}\right)$) is of the form $(0, \cdots, \bar{Z}, 0, \bar{Z}, 0 \cdots)($ resp. $(0, \cdots \bar{Z}, 0, \bar{Z}, 0 \cdots))$.

Proof. Let $E_{2} \approx F_{p} \approx e_{k k} R$. Then $\overline{e_{k k} R} \approx \bar{Z}$ by Lemma 16. Let $A_{2} \approx e_{s s} R$. Then $e_{s s} R$ is uniserial and $M_{s k}=u_{s k} \bar{Z}\left(\approx F_{p}\right)$. Since $M_{s k}$ is a left Δ_{s}-module, $\Delta_{s} \subset \bar{Z}$. Hence $\Delta_{s}=\bar{Z}$. We have the same for 2-i).

Thus we have
Theorem 4. Let R be a hereditary (basic) ring. Then R is right US-4 if and only if for each $e=e_{i i}, e R$ has one of the following structures: 1~11
1)
$\left(0 \cdots 0 \Delta_{i} 0 \Delta_{i_{1}} 0 \Delta_{i_{t}} 0 \cdots \Delta_{i_{p}} \cdots 0\right)$
2) (Lemma 10)
$\left(0 \cdots 0 \Delta_{i} 0 \Delta_{i_{1}} 0 \cdots \Delta_{i_{t}} 0 \cdots\binom{u_{t+1} \Delta_{i_{t+1}}}{v_{t+1} \Delta_{i_{t+1}}} 0\binom{u_{t+2} \Delta_{i_{t+2}}}{v_{t+2} \Delta_{i_{t+2}}} \cdots 0 \cdots 0\right)$
$\cdots \cdots \cdot A_{1}$
$\left[\Delta: \Delta\left(A_{i}\right)\right]=2(i=1,2)$ and u_{t+2}, v_{t+2} may be zero. The conditions in Lemma 10 are satisfied.
3) (Lemma 11)

$$
\left(0 \cdots \Delta_{i} 0 \cdots \Delta_{i_{1}} 0 \cdots \Delta_{i_{t}} 0 \cdots\left(\begin{array}{c}
u_{t+1} \Delta_{i_{t+1}} \\
v_{t+1} \Delta_{i_{t+1}} \\
w_{t+1} \Delta_{i_{t+1}}
\end{array}\right) \cdots 0\right) \quad \cdots \cdots A_{1} \quad \cdots \cdots A_{2} \quad \cdots \cdots A_{3}
$$

$\left[\Delta: \Delta\left(A_{i}\right)\right]=3$ for each i and $A_{1} \oplus A_{2} \oplus A_{3}$ satisfies (\#, 1) and (\#, 2). w_{t+1} may be zero.
4) (Lemma 12-i))
$\left(0 \cdots \Delta_{i} 0 \cdots \Delta_{i_{1}} 0 \cdots \Delta_{i_{t}} 0 \cdots 0 \cdots\left(\begin{array}{l}u_{t+1} \Delta_{i_{t+1}} \\ v_{t+1} \Delta_{i_{t+1}} \\ 0\end{array}\right) \cdots\left(\begin{array}{l}0 \\ 0 \\ w_{t+2} \Delta_{i_{t+2}}\end{array}\right) \cdots 0\right) \begin{aligned} & \cdots \cdots A_{1} \\ & \cdots \cdots A_{2} \\ & \cdots \cdots A_{3}\end{aligned}$
$\Delta\left(A_{3}\right)=\Delta,\left[\Delta: \Delta\left(A_{i}\right)\right]=2(i=1,2)$ and $A_{1} \oplus A_{2}$ satisfies $(\#, 1)$.
(5)
5) (Lemma 12-ii-a) and b))
$\left(0 \cdots \Delta_{i} 0 \cdots \Delta_{i_{1}} 0 \cdots \Delta_{i_{t}} 0 \cdots\right.$
$\left.\binom{u_{t+1} \Delta_{i_{t+1}}}{0} 0 \cdots 0\binom{u_{p-1} \Delta_{i_{p-1}}}{0} 0 \cdots\binom{u_{p} \Delta_{i_{p}}}{v_{p} \Delta_{i_{b}}} \cdots 0\right) \quad \cdots \cdots A_{1}$
$\Delta\left(A_{1}\right)=\Delta,\left[\Delta: \Delta\left(A_{2}\right)\right]=2$, and $u_{p} \Delta_{i_{p}} \oplus v_{p} \Delta_{i_{p}}$ satisfies (\#, 1), except $u_{p} \Delta_{i_{p}}$ $\left(\left\{u_{t+1}, \cdots, u_{p-1}\right\}\right.$ may be zero.)
6) (Lemma 16, 1))

$$
\begin{aligned}
& \left(\begin{array}{l}
0 \\
\Delta_{i} 0 \cdots \Delta_{i_{1}} 0 \cdots \Delta_{i t} 0
\end{array} \cdots 0\right. \\
& \binom{u_{t+1} \Delta_{i_{t+1}}}{0}\left(\begin{array}{l}
0 \\
v_{t+2} \Delta_{i_{t+2}} \\
0
\end{array}\right) 0 \cdots\left(\begin{array}{l}
0 \\
0 \\
w_{t+3} \Delta_{i_{t+3}}
\end{array}\right) 0 \cdots\left(\begin{array}{l}
\cdots \cdots A_{1} \\
0 \\
w_{p} \Delta_{i_{p}}
\end{array}\right) \cdots 0 \begin{array}{l}
\cdots \cdots A_{2} \\
\cdots \cdots A_{3}
\end{array}
\end{aligned}
$$

$\Delta\left(A_{i}\right)=\Delta(i=1,2,3)$ and u_{t+1} may be zero.

$$
\begin{aligned}
& \subset \Delta_{i_{t+1}} \\
& \Delta_{1} \subset \Delta_{i_{1}} \subset \cdots \subset \Delta_{i_{t}} \subset \Delta_{i_{t+2}} \\
& \subset \Delta_{i_{t+3}} \subset \cdots \subset \Delta_{i_{p}}
\end{aligned}
$$

7) (Lemma 16, 2-i))
$\left(0 \cdots \bar{Z} 0 \cdots \bar{Z} \cdots 0 \bar{Z} \cdots 0 \cdots\binom{u_{t+1} \bar{Z}}{v_{t+1} \bar{Z}} \cdots 0\right) \quad \cdots \cdots \cdot A_{2}$
8) (Lemma 16, 2-ii-a))
($0 \cdots \Delta_{i} 0 \cdots \Delta_{i_{1}} 0 \cdots \Delta_{i_{t}} 0 \cdots$
$\left.\binom{u_{t+1} \Delta_{i_{t+1}}}{0} \cdots 0 \cdots\binom{0}{v_{t+2} \Delta_{i_{t+2}}} 0 \cdots\binom{u_{t+3} \Delta_{i_{t+3}}}{0} \cdots\binom{0}{v_{p} \Delta_{i_{p}}} \cdots 0\right) \begin{array}{ll}\cdots \cdots A_{1} \\ \cdots \cdots A_{2}\end{array}$
$\Delta\left(A_{i}\right)=\Delta(i=1,2), u_{t+3}$ or $\left\{v_{t+4}, \cdots, v_{p}\right\}$ may be zero.

$$
\subset \Delta_{i_{t+1}} \subset \Delta_{i_{t+3}}
$$

$$
\begin{aligned}
\Delta_{i} \subset \Delta_{i_{1}} \subset \cdots \subset \Delta_{i_{t}} \\
\subset \Delta_{i_{t+2}} \subset \Delta_{i_{t+4}} \subset \cdots \subset \Delta_{i_{p}}
\end{aligned}
$$

9) (Lemma 16, 2-ii-a')

$$
\begin{aligned}
& \left(0 \cdots \bar{Z} 0 \cdots \Delta_{i_{1}} 0 \cdots \Delta_{i_{t}} 0 \cdots\right. \\
& \left.\binom{0}{v_{t+1} \bar{Z}} 0\binom{u_{t+2} \bar{Z}}{0} \cdots\binom{0}{v_{p-1} \bar{Z}} \cdots 0\binom{u_{p} \bar{Z}}{v_{p} \bar{Z}} 0\right)
\end{aligned}
$$

u_{t+2} may be zero.
10) (Lemma 16, 2-ii- b_{1}))

$$
\begin{aligned}
& \left(0 \cdots \Delta_{i} 0 \cdots \Delta_{i_{1}} 0 \cdots \Delta_{i t} 0 \cdots\right.
\end{aligned}
$$

$$
\begin{array}{ll}
\Delta\left(A_{i}\right)=\Delta\left(B_{i}\right)=\Delta(i=1,2) . & \\
\qquad \Delta_{1} \subset \Delta_{i_{1}} \subset \cdots \subset \Delta_{i_{t}} & \subset \Delta_{i_{t+1}} \\
& \subset \Delta_{i_{t+2}} \subset \cdots \subset \Delta_{i_{t+s}} \\
& \subset \Delta_{i_{t+s+1}} \\
& \subset \Delta_{i_{t+s+2}} \subset \cdots \subset \Delta_{i_{p}}
\end{array}
$$

11) (Lemma 16, 2-ii-b))

$$
\begin{aligned}
& \left(0 \cdots \Delta_{i} 0 \cdots \Delta_{i_{1}} 0 \cdots \Delta_{i_{i}} 0 \cdots\right. \\
& \left.\binom{u_{t+1} \Delta_{i_{t+1}}}{0} 0\binom{0}{0} 0\left(\begin{array}{l}
0 \\
v_{t+2} \Delta_{i_{t+2}} \\
w_{t+s+1} \Delta_{i_{t+s+1}} \\
v_{t+s} \Delta_{i_{t+s}}
\end{array}\right) 0\right) \\
& \left.\qquad z_{z_{t+s+1} \Delta_{i_{t+s+1}}}\right) \\
& \cdots \Delta_{i_{t+1}} \\
& \cdots \cdots A_{1} \\
& \cdots \cdots A_{2} \\
& \cdots \cdots B_{2}
\end{aligned}
$$

$$
\Delta\left(A_{i}\right)=\Delta \text { and }\left[\Delta: \Delta:\left(B_{i}\right)\right]=2(i=1,2) . \quad w_{t+s+1} \Delta_{i_{t+s+1}} \bigoplus z_{t+s+1} \Delta_{i_{t+s+1}} \text { satis- }
$$ fies (\#, 1),

where $\bar{Z}=Z / 2$, the Δ^{\prime} 's are division rings and $\Delta_{i_{1}} \subset \Delta_{i_{1}} \cdots \subset \Delta_{i_{p}}$ except 6), 8), 10) and 11). The series: $\left(0 \cdots \Delta_{i} 0 \cdots \Delta_{i_{1}} 0 \cdots\right)$ on the same level means a uniserial module.

4. Left serial rings

We shall investigate the same problem for a left serial ring R. In this case ($*, 1^{\prime}$) holds, too by [11], Corollarly 4,2. Therefore we can make use of the results in $\S \S 1$ and 2.

From now on we always assume that R is a left serial ring.
Lemma 20. If eJ ${ }^{i}=A_{1} \oplus A_{2}$ and the A_{i} are uniserial, every submodule E in eJ ${ }^{i}$ is isomorphic to a standard submodule $B_{1} \oplus B_{2}$ via $x_{l}: x$ is a unit in eRe, where $B_{i} \subset A_{i}$.

See the proof of [3], Theorem 1.
Lemma 21. Let eJ $J^{i}=A_{1} \oplus A_{2}$ and the A_{i} hollow. If $\Delta\left(A_{1}\right) \neq \Delta$, there exists a unit x in eRe such that $x A_{1}=A_{2}$.

Proof. Since $\Delta\left(A_{1}\right) \neq \Delta$, there exists a unit y in $e R e$ such that $\left(y+j^{\prime}\right) A_{1} \nsubseteq A_{1}$ for all j^{\prime} in $e J e$. Let p be the projection of $e J^{i}$ onto A_{2}. Then $f=p y_{l} \mid A_{1}$ is an element in $\operatorname{Hom}_{R}\left(A_{1}, A_{2}\right)$. If f is not an epimorphism, $f=j_{l}$ for some j in eJe, since A_{2} is a hollow module $\left(\nsubseteq e J^{i+1}\right)$ and R is left serial. Then $(y-j) A_{1} \subset A_{1}$,
a contradiction. Hence there exists a unit x in $e R e$ such that $x_{l}=f$, and so $x_{2} A=A_{1}$.

Lemma 22. Let eJ ${ }^{i}=A_{1} \oplus A_{2}$ be as in Lemma 21. If $\Delta\left(A_{1}\right)=\Delta, \Delta\left(A_{1} J^{k}\right.$ $\left.\oplus A_{2} J^{k^{\prime}}\right)=\Delta$.

Proof. From Lemma 21, $\Delta\left(A_{2}\right)=\Delta$. Hence we may assume $k \leqslant k^{\prime}$. Let x be any unit element in $e R e$. Since $\Delta\left(A_{1}\right)=\Delta$, there exists j in $e J e$ such that $(x+j) A_{1}=A_{1}$. Hence $(x+j)\left(A_{1} J^{k} \oplus A_{2} J^{k^{\prime}}\right) \subset A_{1} J^{k}+(x+j) A_{2} J^{k^{\prime}} \subset A_{1} J^{k} \oplus A_{2} J^{k^{\prime}}$, and so $\bar{x}=\overline{x+j} \in \Delta\left(A_{1} J^{k} \oplus A_{2} J^{k^{\prime}}\right)$.

From Theorem 1, Lemmas 21, 22 and [8], Proposition 2, we obtain
Theorem 5. Let R be a left serial ring. Then R is a right US-3 ring if and only if eR has the following structure for each primitive idempotent e :

There exists an integer t such that
i) $e R / e J^{t}$ is uniserial and
ii) $e J^{t}=0$ or $e J^{t}$ is a direct sum of a simple module and a uniserial module.

Finally we shall give a characterization of a left serial and right US-4 ring. As was shown in the previous section, we shall refine the results in $\S 2$.

In Lemma 10, every submodule in $e J^{i}$ is standard up to $x_{l}(x$ is a unit in $e R e)$ by Lemma 20. Further since $\Delta\left(A_{1} \oplus A_{2} J\right) \neq \Delta$,

$$
A_{1} \oplus A_{2} \supset \mathrm{~J}\left(A_{1}\right) \oplus \mathrm{J}\left(A_{2}\right) \supset 0
$$

is the set of all characteristic submodules in $e J^{i}$.
From the above proof we have
Remark 23. Let R be left serial and assume $e J^{i}=A_{1} \oplus A_{2}$; the A_{i} are uniserial. If $\left[\Delta: \Delta\left(A_{1}\right)\right]=2,[\Delta: \Delta(C)] \leq 2$ for every submodule C in $e J^{i}$ and $\left\{e J^{i+t}\right\}$ is the set of characteristic submodules in $e J^{i}$. Hence, if R is left serial, i), ii) and iii) in Lemma 10 imply iv) and v). However hereditarity does not as is shown from the following example:

Let $K \subset L$ be fields such that $[L: K]=2$. Put

$$
R=\left(\begin{array}{cccc}
L & L & L \otimes L & L \otimes L \\
0 & K & L & L \\
0 & 0 & L & L \\
0 & 0 & 0 & L
\end{array}\right)
$$

Then R is hereditary. Put $L=1 K+u K, e_{11}=e$, and $e J=A_{1} \oplus A_{2} ; A_{1}=1 e_{12} R, A_{2}=$ $u e_{12} R$ satisfy i), ii) and iii) in Lemma 10. Further $[\Delta: \Delta(B)]=2$ for any submodule B in $e J^{2}$ if $\Delta \neq \Delta(B)$, since $\left.[L: K]=2 .\{e\rfloor, e J^{2}, e\right\}^{3},(1 \otimes u \pm u \otimes 1) e_{33} R$,
$\left.(1 \otimes u \pm u \otimes 1) e_{44} R\right\}$ is the set of characteristic submodules provided $u^{2} \in K$, and $(1 \otimes 1) e_{44} R \nsim(1 \otimes 1+u \otimes x) e_{44} R$, provided $x \notin K$.

Lemma 24. Let B_{1} and B_{2} be simple submodules in ef ${ }^{i}$ and $V=B_{1} \oplus B_{2}$. If $B_{1} \approx B_{2}, V$ always satisfies (\#, 1).

Proof. Since R is left serial, every simple submodule in V is isomorphic to B_{1} via $x_{l} ; x$ is a unit in $e R e$. Hence V satisfies (\#, 1).

In Lemma 12, we do not have the case $t=2$ by Lemma 21.
In Lemma 16, we have always $A_{1} \approx A_{2}$, since $\Delta\left(A_{1}\right)=\Delta\left(A_{2}\right)=\Delta$. Hence $2-\mathrm{i}), 2-\mathrm{a}-1-1$), 2-a-2-3) and $p=2$ in $2-\mathrm{a}-1-4$) do not occur. Similarly $2-\mathrm{a}-2-1$) does not occur.

Thus we obtain
Theorem 6. Let R be a left serial ring. Then R is right $U S-4$ if and only if, for each primitive idempotent $e, e R$ has one of the following structures:

1) $e R$ is uniserial: $e R \quad e J \quad e J^{p}$
2) $\quad e R e J^{i-1} \quad e J^{i} e J^{i+1}$

$$
\cdot-\cdot-\left\lvert\, \begin{aligned}
& A_{1}-B_{1}-0 \\
& A_{2}-B_{2}-0
\end{aligned}\right.
$$

$\left[\Delta: \Delta\left(A_{1}\right)\right]=2$. In this case $A_{1} \approx A_{2}$ and B_{1} may be zero.
3)
(6)

$$
e R^{e} \quad J^{i-1} \quad e J^{i}
$$

$$
\cdot--\left\lvert\, \begin{aligned}
& A_{1}-0 \\
& A_{2}-0 \\
& A_{3}-0
\end{aligned}\right.
$$

$\left[\Delta: \Delta\left(A_{i}\right)\right]=3$ and $A_{1} \oplus A_{2} \oplus A_{9}$ satisfies $(\#, 2)$. In this case $A_{1} \approx A_{2} \approx A_{3}$.
4) $\quad e R e J^{i-1} e J^{i}$
$.-\longrightarrow \left\lvert\, \begin{aligned} & A_{1}-0 \\ & A_{2}-0 \\ & A_{3}-0\end{aligned}\right.$
$\Delta\left(A_{1}\right)=\Delta,\left[\Delta: \Delta\left(A_{i}\right)\right]=2(i=2,3)$. In this case $A_{2} \approx A_{3}$.
5)

$$
e R^{e} \quad J^{i-1} \quad e J^{i} \quad e J^{i+1} \quad e J^{p}
$$

$\Delta\left(A_{i}\right)=\Delta(i=1,2,3)$. In this case $A_{1} \not \approx A_{2}$ and A_{2} may be zero.
6)

$$
e R^{e} e J^{i-1} e J^{i} e J^{i+1} e J^{p}
$$

$$
.-\left.\right|_{0} \begin{aligned}
& A_{1}-B_{1}-0 \\
& A_{2}-B_{2}-.-
\end{aligned}
$$

$\Delta\left(A_{i}\right)=\Delta(i=1,2)$.
7)

$$
e R \quad e J^{i-1} \quad e J^{i} \quad e J^{i+1} \quad e J^{k} e J^{k+1} e J^{p}
$$

$\Delta\left(A_{i}\right)=\Delta(i=1,2,3)$ and $\Delta\left(B_{j}\right)=\Delta(j=1,2)$.
8)

$$
e R_{e J^{i-1}} \quad e J^{i} \quad e J^{i+1} \quad e J^{p-1} \quad e J^{p}
$$

$\Delta\left(A_{1}\right)=\Delta\left(A_{2}\right)=\Delta$ and $\left[\Delta: \Delta\left(B_{1}\right)\right]=2$. In this case $B_{1} \approx B_{2}$, where each straight line means "uniserial".

5. Examples

We shall give examples of hereditary (resp. left serial) and right US-3 (resp. US-4) rings. Let K be a field. By L and L^{\prime} we denote extension fields of K with $[L: K]=2$ and $\left[L^{\prime}: K\right]=3$, respectively, and $\bar{Z}=Z / 2$, where Z is the ring of integers.

The following two rings are hereditary, left serial and right US-3 rings.

$$
\left(\begin{array}{rrrr}
K & K & K & K \\
& K & K & K \\
& & K & 0 \\
0 & & & K
\end{array}\right) \text { is the second type b) of Theorem } 1 \text { and }\left(\begin{array}{rrr}
L & L & L \\
& L & L \\
0 & & K
\end{array}\right) \text { is the first }
$$

type a) of Theorem 1.
On the other hand

$$
\left(\begin{array}{lll}
K & L & L \\
0 & L & L \\
0 & 0 & K
\end{array}\right) \text { is a hereditary, non-left serial and }
$$

right US-3 ring, and

$$
\left(\begin{array}{ccc}
L & L & 0 \\
0 & K & K \\
0 & 0 & K
\end{array}\right) \text { with } e_{12} e_{23}=0 \text { is a left }
$$

serial, non-hereditary and right US-3 ring.
Next we shall give hereditary and right US-4 rings for each structure in Theorem 4. However, we can not construct an example of the case 5) from the reason given in Remark 13.
$1\left(\begin{array}{rrr}K & K & K \\ & K & K \\ 0 & & K\end{array}\right)$
$2\left(\begin{array}{rrrr}L & L & L & L \\ & L & L & L \\ & & K & K \\ 0 & & & K\end{array}\right)$
$3\left(\begin{array}{lll}L^{\prime} & L^{\prime} & L^{\prime} \\ & L^{\prime} & L^{\prime} \\ 0 & & K\end{array}\right)$
$3^{\prime}\left(\begin{array}{cc}D & D^{*} \\ 0 & D_{1}\end{array}\right)$, where D, D_{1} and D^{*} are given in Remark 14.

$$
4\left(\begin{array}{rrr}
L & L & L \\
& L & 0 \\
0 & & K
\end{array}\right)
$$

$6\left(\begin{array}{ccccc}K & K & K & K & K \\ & K & 0 & 0 & 0 \\ & & K & 0 & 0 \\ & & & K & K \\ 0 & & & & K\end{array}\right)$
$7\left(\begin{array}{c}\bar{Z}\binom{\bar{Z}}{0}\binom{\bar{Z}}{\bar{Z}} \\ \\ \\ \\ \\ 0\end{array} \begin{array}{c}\binom{\bar{Z}}{\bar{Z}} \\ \end{array}\right.$
$8\left(\begin{array}{rrrrr}K & K & K & K & K \\ & K & K & 0 & 0 \\ & & K & 0 & 0 \\ & & & K & K \\ 0 & & & & K\end{array}\right)$

$$
\begin{aligned}
& 9\left(\begin{array}{c}
\bar{Z}\binom{\bar{Z}}{0}\binom{0}{\bar{Z}}\binom{\bar{Z}}{\bar{Z}} \\
\\
\bar{Z} \\
0
\end{array}\right. \\
& 9^{\prime}\left(\begin{array}{rrr}
\bar{Z} & L & L \\
& L & L \\
0 & \bar{Z}
\end{array}\right)
\end{aligned}
$$

where L is an extension of \bar{Z} with $[L: \bar{Z}]=2 . \quad e_{11} R$ is of the form $\left.2-1\right)$ in Lemma 16 and $e_{22} R$ is of the form in Lemma 10.

$$
10\left(\begin{array}{rrrrrr}
K & K & K & K & K & K \\
& K & 0 & 0 & 0 & 0 \\
& & K & K & K & K \\
& & K & 0 & 0 \\
& & & & K & K \\
0 & & & & & K
\end{array}\right) \quad 11 \quad\left(\begin{array}{rrrr}
L & L & L & L \\
& L & 0 & 0 \\
& & L & L \\
0 & & & K
\end{array}\right)
$$

The rings of 1)~6), 8), 10) and 11) are left serial.
If R is either hereditary or left serial, $A_{1} / E_{2} \approx A_{2} / F_{2}$ implies $A_{1} \approx A_{2}$ in Lemma 16. In general this is not true for US-4 rings.

We shall give rings of the type a) in Lemma 16. Let $R=\Sigma \oplus e_{i} R$ and $e_{i} e_{j}=\delta_{i j} e_{i}$ (the e_{i} are primitive idempotents).

1) $A_{1} / E_{2} \approx A_{2} / F_{2}$ and $E_{2} \approx F_{2}$
and $(1,2)(2,3)^{\prime}=(1,2)^{\prime}(2,3)=0$. This is a type of a-1-1) and a-1-4). $\quad(R$ is a finite ring.)
2) $A_{1} / E_{2} \approx A_{2} / F_{2}, E_{2} \approx F_{2}$

$$
\begin{gathered}
e_{1} R=e_{1} \bar{Z}+e_{1} J \\
A_{1}=(1,2) \bar{Z}+(1,2)\left(2, \frac{1}{3}\right) K \\
E_{2}=(1,2)(2,3) K \\
\mid \\
0
\end{gathered}
$$

and $(1,2)(2,4)=(1,2)^{\prime}(2,3)=0$, where K is a finite field of characteristic 2 . This is a type of a-1-1).
3)

$$
\begin{aligned}
& \begin{aligned}
& e_{1} R=e_{1} \bar{Z}+e_{1} J \\
& A_{1}=(1,2) \bar{Z}+\frac{1}{\mid}+E_{2} A_{2} \\
& E_{2}=(1,1) \bar{Z}+F_{2} \\
&\left.E_{2}, 2\right)(2,3) K F_{2}=(1,1)(1,2) \bar{Z}+F_{3} \\
& 0 F_{3}=(1,1)(1,2)(2,3) K \\
& \\
&
\end{aligned} \\
& \begin{array}{cc}
e_{2} R=e_{2} \bar{Z}+e_{2} J & e_{3} R=e_{3} K \\
(2,3) K & 0 \\
\mid &
\end{array}
\end{aligned}
$$

This is a type of a-1-2). If $K=\bar{Z}, R$ is a left serial and finite ring.
4)

$$
\begin{aligned}
& e_{1} R=e_{1} \bar{Z}+e_{1} J \\
& A_{1}=(1,2) \bar{Z}+\frac{1}{E_{2}} A_{2}=(1,3) \bar{Z}+F_{2} \\
& E_{2}=(1,2)(2,4) \bar{Z} F_{2}=(1,3)(3,5) \bar{Z}+F_{3} \\
& \mid F_{3}=(1,3)(3,5)(5,4) \bar{Z}+F_{4} \\
& 0 F_{4}=(1,3)(3,5)(5,4)(4,6) K \\
&
\end{aligned}
$$

This is a type of a-1-3).
Other products among (i, j) are zero (e.g. $(1,1)(1,1)=0$). In the above $e_{i}(k, l) e_{j}=(k, l) \delta_{i k} \delta_{l j},\left(\delta_{i j}\right.$ is Kronecker delta).

Similarly we can construct a US-4 ring of a-2-1) in Lemma 16. Finally we shall give an example concerning ii) of Lemma 12.

Let K be a field of characteristic 2 and L an extension of $K ; L=K(a)$ and $a^{2} \in K$. Put $g(a)=b \neq 0$ in L and $g(1)=0$. Then g is a derivation of L over K. Put

$$
R=\left(\begin{array}{c}
L \\
\\
\\
L \\
L
\end{array}\right) .
$$

where $l\binom{l_{1}}{l_{2}}=\left(\begin{array}{cc}l & g(l) \\ 0 & l\end{array}\right)\binom{l_{1}}{l_{2}} \quad\left(l_{1}, l_{2} \in L\right)$
as in Remark 13. Then $e_{11} J=A_{1} \oplus A_{2}$ and $\Delta\left(A_{1}\right)=\Delta,\left[\Delta: \Delta\left(A_{2}\right)\right]=2$. However, $e_{11} J$ does not satisfy ($\#, 1$) as an $L-L$-module. Hence $e_{11} R$ has the similar form to ii) of Lemma 12, but R is not right US-4.

References

[1] M. Harada: Semiprimary hereditary rings and generalized triangular matrix rings, Nagoya Math. J. 27 (1966), 463-489.
[2] \qquad : On maximal submodules of a finite direct sum of hollow modules II, Osaka J. Math. 21 (1984), 671-677.
[3] \qquad : On maximal submodules of a finite direct sum of hollow modules III, Osaka J. Math. 22 (1985), 81-98.
[4] - and Y. Yukimoto: IV, ibid. 22 (1985), 321-326.
[5] M. Harada : Generalizations of Nakayama ring I, ibid. 23 (1986), 181-200.
[6] —: Generalizations of Nakayama ring II, ibid. 23 (1986), 509-521.
[7] —: Generalizations of Nakayama ring III, ibid. 23 (1986), 523-539.
[8] -: Generalizations of Nakayama ring V, ibid. 24 (1987), 373-389.
[9] -: Generalizations of Nakayama ring VII, to appear.
[10] A.H. Schofield: Representations of rings over skew fields, London Math. Soc. Lect. Note series 92, 1985.
[11] T. Sumioka: Tachikawa's theorem on algebras of left colocal type, Osaka J. Math. 21 (1984), 629-648.

Department of Mathematics Osaka City University
Sugimoto-3, Sumiyoshi-ku
Osaka 558, Japan

