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We have studied artinian right US-3 rings in [5] and right US-4 algebras
over an algebraically closed field in [7]. We shall continue, in this paper, to
study a right US-3 (resp. US-4) ring R when R is either hereditary or left serial.

In the first two sections, we shall give the characterization of a right US-3
(resp. US-4) ring R, when R satisfies a weaker condition (*, 1') (see § 1) than R
being either hereditary or left serial. In the next two sections, we shall specify
the characterizations given in the previous sections to hereditary rings and left
serial rings. We shall exhibit several examples in the final section to illutsrate
the above characterizations.

1. US-3 rings

Throughout this paper we deal with an artinian ring R and every Jf?-module
is a unitary right jR-module. We shall use the same terminologies and defini-
tions given in [2]~[8].

As a generalization of right serial rings, we considered

Every maximal submodule in a direct sum D of n hollow modules contains
(H«H« n]

' a non-zero direct summand of D [5].

It is clear that if D/J(D) is not homogeneous, D satisfies (#*, n). Hence
we may restrict ourselves to hollow modules of a form eR/E, where e is a primi-
tive idempotent and E is a submodule of eR. If (**, n) holds for any direct
sum of n hollow modules, we call R a right US-n ring [5]. Since the concept
of US-n rings is Morita equivalent, we study always a basic ring.

We studied right US-n algebras over an algebraically closed field for n=3
and 4 in [5] and [7], respectively. In this and next sections we shall give a com-
plete list of the structure of right US-3 (resp. US-4) rings with (*, 1') below.
We can give theoretically the complete structure, however as we know a few
properties of division rings, we can not give the complete examples for each
structure.
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We quote here a particular property of a semisimple module (cf. [8] and

Let e be a primitive idempotent in R and D a semisimple R-module and
(#, m) a left eRe-module. For any tzΰo R-submodules V1 and V2 with \Vl\ =

\V2\=m, there exists a unit x in eRe such that xVl—V2.

Further we consider one more property:

ι/x eJ* i$ a direct mm of hollow modules for each primitive idempotent e
' and each i.

If R satisfies (*, 1), then (*, I7) holds. Moreover, if R is hereditary or left
serial, (*, 1') holds by [11], Corollary 4.2. Under the assumption (*, 1'), we
obtain the following diagram (cf . [8]) :

Al A~2 - Am e]1

Δ ~ A A 7Γ. A ... eTt+1

ΛU Λlnι S±21 SL2n2 ej

where the A are hollow.

Let AH A2 be submodules in eR. If there exists a unit x in eRe such that
xAλdA2 or xA^Az, we indicate this situation by A^A2 [4]. We put Δ=

eRejeJe (=eRe) and Δ(AH ί*l ^Δ, xA.dA,} [2].
Let D=A1®A2; the Al are uniserial. A submodule B=Bl®B2

is called a standard submodule in D [3].

Lemma 1. Let A1 and A2 be as in (1). If Al^>A2^ A1=xA2 for some
unit element x in eRe, and hence A^A2.

Proof. Since A1^Ά29 there exists a unit x in eRe such that xA^A2 or
xAλ C A2. We may assume that xA^ dA2. If xAl φ A2, xA1 c:J(A2) C ej'+l, since
A2 is hollow. Hence A1dx~1ejt+1=ejt+1, a contradiction. Therefore xA1=A2.

Lemma 2. Let Al and A2 be as in (I). Let B be a hollow submodule in A2)

which appears on the level ejk+ί (6>0) in (1). // Δ(Λ)=Δ,

Proof. First assume Λ> 1 and A^B, i.e., there exists a unit x in eRe such

that xA^B or xA^B. In the latter case A^eJM. Hence xA^B. Since
Δ(-41)=Δ, there exists an element j in eje with (x-\-j)A1=A1. Let b be a gene-
rator of B. Then we obtain a in A1 with xa=b. b=(x-\-j—j)a=(x-\-j)a—ja.
Let pi be the projection of ej* to A±. 0—p1(b) = (x-}-j)a—p1(jά). Assume
a^ejp—ejp+1, andp(ja)^ejp+1, which is a contradiction, since x+j is a unit in
eRe. Finally assume B—A2. Then A2=^xrAl for some unit x' in eR. Hence
we obtain the same situation as above, which is a contradiction.
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From [2], Theorem 2 we have

Lemma 3. If R is a right US-n ring, then [Δ: Δ(^4)]<tf— 1 for any sub-
module A in eR.

Put R=R/Jt+k. Then !>Re/eJe^eReleJe=Δ. Let A, be as in (1). Then

we can define A(A,) = Δ((A1+Jt+k)IJt+k) = \x\ e=Δ, x(Aί+Ji+k)c:(Al+Jt+k)}.
It is clear that Δ(-4X) is a division subring of

Lemma 4. Lέtf Λ α/zJ A2 be as in (1). //
assume that A2=xA1 for some unit x in eRe. If [Δ: Δ(A1)]=2 (resp. 3),

[Δ: Δ(Λ)]=2 (resp. 3), αλβr* Άl=(Al+JM)IJt+kc:R=RIJt+k.

Proof. The first part is clear from the remark above. Assume (x-{-j)A1dA1

for some/ in eje. Since (x+j)A1c.A2+jA1aA2+eJt+1

9 (x+fiA^^+eJ'*1) Π
(A2+eJt+1)=eJt+\ a contradiction. Hence x^A(A1). Further [Δ: Δ(A)] is
prime, and so [Δ:

REMARKS. We shall study a right US-n ring and observe [Δ:

Since [Δ: Δ^)]̂ , we may assume Jt+1=Q by Lemma 4, [3], Lemma 1 and
its proof, when we observe [Δ: Δ^)] (the x in Lemma 4 exists, provided

Theorem 1. R is a right (basic) US-3 ring with (*, Γ) if and only if eR
has one of the following structures for each primitive ίdempotent e.

1) eR/eJ* is uniserialfor some t and
2) ejf=^0 or eJt=A^B, where A is simple and B is unίserίal, such that

a) [Δ :Δ(^4)]=2 or b) Δ=Δ(4)=Δ(β).
In case a) B is simple and Aξ&B satisfies (#, 1).

In case b)
i) B is simple and A^pB or
ii) B is not simple, and if A is ίsomorphίc to a simple subf actor module Bf/Bi+1

of B, Bi+1=0 (i.e., Bi is the socle of B) and this isomorphism is given by /,: the

left-sided multiplication of j in eje.

Proof. We assume that R is a right US-3 ring. From (*, lx) and [5], Pro-
position 1,3) eJ=A®B, where A and B are hollow. We may assume | A \ < | B \ .
[Δ: Δ(C)]<2 for any submodule C in eR by Lemma 3. Hence we divide
ourselves into two cases: I) [Δ: Δ(^4)]=2 and II) Δ=Δ(-4).
Case I). Since [Δ: Δ(^4)j— 2, by [5], Proposition 1,2) there exists a unit element

x in eRe such that xAdJ(A)®J(B) or xA^J(A)®J(B). However A<tejt+l

and so xA^J(A)®J(B). On the other hand, |^4| = |/(^)+l| and xAΦ
J(A)®J(B). Hence J(B)=0. Further A^B by Lemma 1 and [5], Proposition
1.2). Therefore A and B are simple and eJt+1=Q. Which means that every
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(simple) submodule C in ej* is characteristic if and only if Δ(C)— Δ. Hence

[Δ: Δ(C)]=2 and ej* satisfies (#, 1) by [5], Proposition 1,2).
Case II). We know from the above argument that Δ— Δ(^4)=Δ(jB) (note that

we did not use the assumption \A\ < \B\}. Let y be any unit element in eRe.

Since Δ=Δ(^4), there exists an element j in eje such that (y+j)A=A. Then
(y+j}(A®J(B])C.A®(y+j)J(B)c:A@eJ^ = A®J(B}. Hence Δ(A®J(B))

=Δ. Assume that B is not simple. A®J(B) or J(A)®B is hollow by [5],

Proposition l,4)-iv). Hence

J(A) = 0 , i.e., A is simple.

We shall show that B is uniserial. Assume eJt+k = BJk = C10C2φ ; the C,

are hollow. If Δ(CΊ)ΦΔ, C1^A1 by [5], Proposition 1,2), which is a contradic-

tion from Lemma 2. Hence Δ^Δ^) — Δ(C2). However {A, C19 C2} derives a

contradiction by Lemma 2 and [4], Corollary 2 of Theorem 2, provided C2ΦO.

Therefore

B is uniserial .

Next assume g: A^BflBi+l; B^B^Bi+1. Take {A, Bh B^g'1); the graph of
BI with respect ot g~1} . Since A is simple (and hence eJeBdB) and Δ(J5)^Δ,
jB is characteristic. Hence A — 'β^^""1), and so there exists a unit ̂  in eRe such

that je^C.B^-1). If JSί+1Φθ, jc^c J3ί+1Ce/*+1, a contradiction. Hence

Bi+ι= 0 and £: A^Bn, the socle of 5. Let j be an element in eje such that
(Λ?1+</)24=-4, and put x2=x1+j. Then A(g)=x1A=(x2—j)A. Put A = aR.

Then 0+£(fl)=(#2— ;)flr for some r in .R. eJeAdeJt+1 and eJt+l=BJ imply
eJeAdBn. Hence

and so g(ά) = —jx2

1a. Therefore g=(—jx21)ι and —xj 1^eje (b-ii)). Finally
assume that B is simple. If/: A<=&B, {A, B, A(f)} derives a contradiction from
[5], Lemma 1, (note ejt+1=0 and use Lemma 8 below). Hence A^B (b-i)).

Conversely, assume that eR has one of the structures given in the theorem.

Clearly (*, 1') holds. Let {Et} , iι be any set of submodules in eR. Case a):

If E^eJ* and E^eJ', Δ(J^)=Δ for ί=l, 2 and E^E2 or J^cJζ. Hence
3

D=^ΣφEf contains a non-zero direct summand of D by [4], Corollary 1 of

Theorem 2. If E^eJ* and E^eJ\ E2=xE, (^A) for some Λ? in eRe by (#, 1).
Hence D satisfies (**, 3) again by [4], Corollary 1 of Theorem 2. Case b-ii):

If EideJ*, x^Ei is a standard submodule in e]1 for a unit Xι=(e-\-j) in 7̂?̂  by
assumption. Hence E^E; for some pair i,j. Further Δ=Δ(E) by assump-

tion. Therefore D satisfies (**, 3) by [4], Corollary 1 of Theorem 2. Case b-i):

This is much simpler than the above. Thus R is right US-3.
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In the last paragraph of the proof of "only if part" in Theorem 1, we have
shown

Lemma 6. Assume that eJt=A®A'@B and 1) A and A' are simple
modules rtith Δ(A)=Δ, and 2) B is non-simple and uniserial. If g: A&Bf/Bi+i
and A~Bi(g~l), Bi+1=0 and g is given by j\\j^e]ey and hence i>l (cf. [7],
Lemma 16).

We shall illustrate the structure in Theorem 1 as the following diagram:

1) eR ej ejp

(2) 0

2) eR ej ej< ej*

:— o

ΐIB Bp — 0

where the straight line means uniserial.
It is clear that if R has the structure above, (*, 1) (and hence (*, 1')) holds.

We note that if (*, I7) does not hold, Theorem 1 is not true (see [6]). We
shall give examples of a) and b) in § 5.

2. US-4 rings

Next we shall characterize a right US-4 ring with (*, I/).

Lemma 7. Let R be a right USA ring and {A}\.\ a set of submodules in
ej. Then 1) if Δ(A{)=Δ or all ί<3 and Ak-*Ak, for &Φ&'<3, then Λ~
(some A;). 2) A^AJor some pair i,j. 3) // [Δ: Δ(Ai)]=2for /=!, 2, A^A^.

4) // [Δ: Δ(A)]=3, Aλ~Aj for all j. 5) // [Δ: Δ(^)]-2, A^A, for some

Proof. This is clear from [4], Corollary 2 of Theorem 2.

Lemma 8. Let A1 and A2 be as in (1). Assume /''+1=0. If Δ(A1)=Δ>

Aλ is characteristic.

Proof. This is clear.

Lemma 9. Let R be a right US-4 (basic} ring, and {At} \^a set of hollow
submodules on the level ej* in (1). // Δ(Ai}=Δ for all i, t <3.

Proof. This is clear from Lemmas 7, 8 and Remark 5.

From now on we assume that R is a right US-4 (basic) ring satisfying
(*, I7). Let D=(eJ'=)AΘ4»Θ Θ4, where the A{ are hollow. In the
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following lemmas, we mainly assume that D is characteristic. We note [Δ:

Δ(A )]<3 for all i by Lemma 3.

Lemma 10. Assume [Δ: Δ(Ai)]=2 for all i. Then i) t= 2. ii) There
exists a unit x in eRe such that xA1=A2. iii) Al is a uniserial module zϋith

|^41|<2. iv) If there are characteristic submodules in A^A^ they are linear
τΰith respect to the inclusion, v) // B is not a characteristic submodule in

2J [Δ: Δ(B)]=2 and those submodules are related by~.

Proof. We may assume | Al \ < | A2 \ < - < | At \ (note t > 2). By Lemmas
1 and 7, Ak=xkA1 for all k. Hence

(α) if [Δ: Δ(^4t )]>2 for all £, there exists a unit xi in eRe such that
xiA1=Ai for all i.

On the other hand, since [Δ: Δ(A1)]=2, Δ=Δ(A1)+x2Δ(A1). Assume ς/ί+1=0

from Remark 5. Since D = ΔAl = Δ(A1)Al+x2Δ(A1)A1=Alζ&A2, t = 2. We
note that from the above argument and Lemma 3 we obtain

(β) If [Δ: Δ(ΛO]>2 for all i, ί<3.
Assume that AJAtJ* is uniserial and A1J

k=B1@B2($ Q)Bs, where the JBy are
hollow and s>2. In order to show s< 1, we may assume ejt+k+1=0 by Remark
5. First we note that there exists a unit x in eRe such that xA1—A2. Hence

Δ(β,)ΦΔ for all p. On the other hand, DJ*=AJk®A2J
k=*Σ®Bp®'Σ®xBp,

P=ι ρ=ι

which is a contradiction to (β). Therefore Al and A2 are uniserial. Next as-

sume AJ*Φ 0. Δ(AJ®A2J
2) Φ Δ by existence of Λ^. Hence {

derives a contradiction by Lemma 7. Therefore \A±\ <2. Since

CΔ(A), Δ(AΘ/(A))=Δ(A) for Δ(ΛΘ/(Λ))ΦΔ. Similarly [Δ:
=2. Let £ be a submodule with [Δ: Δ(E)] = 3. Then there exists a unit
element x in d?e such that xEdAl or ΛJ.BZ)^! by Lemma 7. In the former case

[Δ: Δ(E)] = [Δ: Δ(xE)] = 2. IfxE^Aly xE=Al®Ef; E'dA2. Hence
[Δ: Δ(xE)]=2 from the above. Therefore there are no submodules E with
[Δ: Δ(JE)] = 3. Finally assume that A^®A2 contains two characteristic sub-
modules CΊ, C2 such that C!^C2. Consider {Aly A19 Q, C2} , and A1^C1 or

A~Q by Lemma 7. If ^ZίQ, ^=0 and if A^C^ C^^ΘF; Fc^2, and

so Cj-AΘΛ Hence CiZ)C2 or QcC2. Let Δ(E)=Δ. If I A I = 1> E ίs

characteristic. Assume 1^1=2. Put C1=A2®B2. Then E~Cλ from the
above. Hence Ec.Cl or EΊD Cα, and so £ is characteristic.

Lemma 11. Assume [Δ: Δ(^4f )]=3 /or β// ί. Then t <3,
simple and there exists a unit xs in eRe such that xiA1=Aifor each i. If t=3, D

satisfies (#, 1) and (#, 2) and [Δ: Δ(C)]<3 for every submodule C in D. If
ΐ=29 D satisfies (#, 1).

Proof. Since [Δ: Δ^)]— 3, there exists a unit x{ in eRe such that xiA1=Ai
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from (a) and ί<3 by (/3). Assume ΐ=3. Taking {A^ /(£))}, we know from
Lemma 7 that Al is simple and hence eji+1=0. It is clear from Lemmas 7 and
8 that there are no simple submodules B in D with Δ(5)=Δ. Hence D satisfies
(#, 1). Let C be a submodule of D with | C \ =2. Then D= C ®At for some /.
Hence Δ(C)=f=Δ by Lemma 7, and so D satisfies (#, 2). We obtain the similar
result for t=2.

Lemma 12. Assume [Δ: Δ(A)]=1 omd Δ(AO=t=Δ /^ * ̂ 2 ^^ A\
uniserial and t < 3.

// ,̂. are amp/*, [Δ: Δ(-4,)]=2/or z=2, 3, A^A2 and A2@AZ satisfies

(#, 1).
ii) t=2: a) ̂  w woί simple.

Then [Δ: Δ(^42)]— 2, #wrf A2 is a simple submodule isomorphic to B, the socle of Aλ.
If A2^Ei/Ei+1 (A^EtHEi+ά E—B and Ei+1=Q. Further B®A2 satisfies (#, 1)
except B.

b) Al is simple.
Then 1) [Δ: A(A2)]=2, A&A^A,) satisfies (#, 1) except A,.

2) A2IA2J* is uniserial for some t and
2-i). AJ^Oor
2-ii) A2J

t=B1φB2 Bl is simple and B2 is uniserial.

2-U-1-2)
2-U-1-3)

') z'ί ^zuew by jt

2-U-1-4) ///: A1^B1, vse have the same result as 2-U-1-3).
2-U-2). [Δ: Δ(JB1)]=[Δ: Δ(β2)]=2.
2-U-2-1) Bl and B2 are simple and Bλ®B2 satisfies (if, 1).

2-U-2-2) A&FtlFM (A&F&F^B&Bύ.
2-H-2-3) If A^BH then f is given byjΊ\j'<^eJe.

Proof. It is clear, from the assumption and Lemmas 1 and 7, that
[Δ: Δ(^4, )]=2 for all ί^2. Assume that A1 contains two independent sub-
modules B19 B2. If Δ(S1)=Δ(52)=Δ, {Bly B2, A2y A2} derives a contradiction
by Lemmas 7, 8 and Remark 5. On the other hand, if Δ^^ΦΔ, {Bly Blt A2,
A2} derives again a contradiction. Hence

A! is uniserial

by (*,!')•
a) /(A) =1=0: Consider {A19 A2, J (D)} . Then A^A2 by Lemma 2.

Hence J(D)^Al or J(D)^Al by Lemma 7. However J(D)*Ά2, since /(D) is
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characteristic and J(A^ Φ 0. Hence

the A{ are simple for all ί > 2 .

Since [Δ: Δ(-4f )]=2, there exists x{ in eRe such that x{A2=Af for i>2 by

Lemmas 1 and 7. Hence in order to show ΐ <3, we may assume Ji+l= 0 by

Remark 5. Noting #3<$Δ(4,)> Δ=Δ(Λ)Θ^3Δ(Λ), which implies that A2®A9=
t

Δ^^ΣΘA Hence £<3. Assume £=3. Now we resume to the original
ί = 2

situation. We note eJeA1dJ(A1)J and hence ^4X is characteristic. Since

Δ(J(A))=Δ, Δ(J(A)ΘΛ)ΦΔ. Consider {̂ , J(A)ΘA, ΛΘΛ> - Δ(A)=Δ
and Δ(J(A)Θ-42)ΦΔ imply (J^OΘ-^Ή^ΘΛ) by Lemma 7. Hence there
exists a unit A? in έ?7&? such that x(J(A1)®A2)c:(A2®AB) or

(A2®A3). However, Δ(J(A))=Δ implies #1(̂ )0: 4, 04,. Hence
Z>4>®4,. Taking R=RIJt+l

y we know that it is impossible. Therefore t=2

provided ](A1)^pOy i.e.,

Now we take the similar manner to Lemma 6. Assume /: A2^Ei/Ei+1; A ̂
EiIDEi+l. We note that Al is characteristic. {A^ A2, E^f'1)} implies A2~

Ei(f~l) from the above remark and Lemma 7. Hence Ei+1= 0 as the proof of

Lemma 6. Further since Δ^^ΦΔ, A2^En\ the socle of Aλ. Let C(Φ£n) be

a simple submodule in En@A2. Consider {A^ C, A2, A2} . It is clear that if

C~Aly CdA^ Hence C~A2 by Lemmas 2 and 7, and so Enξ&A2 satisfies
(#, 1) except En.

b) ](A1)= 0, ί>3. Assume J^)^^. Since ί>3, there exists a unit x in

eΛέ? with xA2 = A3 by Lemmas 1 and 7, and so Δ^θ J(^42)) Φ Δ. Then

A2~A1®J(A2) by Lemma 7. Assume A2^y(A1®](A2)) for some unit y. Since
A1 is simple and Δ(-4χ)=Δ, pι(yA1)=A19 where pλ\ e]i-j>Aλ the projection,

which is a contradiction. Similarly, since Al is simple and A2 is not,

](A2) for any unit / in βΛβ. Hence ^2ct ̂ '(Λθ J(Λ)) Therefore

^42 (and so A{ (ί>2)) is simple.

Accordingly ΐ= 3 from the initial paragraph of a). If/:
yJ2} derives a contradiction, since ΔA2=A2ξ&A3 as before (note £/ί+1=0).
Hence A^A2. Further if A2(&A3 contains a characteristic submodule SΦO,

•{̂ ίj, β, ^42, ^42} derives a contradiction. Therefore A2ζ&A3 satisfies (if, 1).

Case ΐ=2 and J(^41)=0 (D=A1®A2). First we shall show that A^A^I^A^

satisfies (#, 1) except Aλ. Since Δ(-42)ΦΔ, there exists a unit Λ? in eRe such that
p1(xA2)=A1, where pλ\ eJi-^Al is the projection. Further eJeA2dA2, since ̂

is simple. Hence (x+j)(A2+Ji+l)^A2+Ji+1 for any; meje, and so Δ(-42)=
Δ((A2+Ji+1)/Ji+1). Therefore we may assume //+1=0 (cf. Remark 5). Then
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satisfies (#, 1) except Aλ from Lemma 7. Now we resume the original

situation. Since A1 is simple, eJi+1 = A2J. Assume that A2/A2J' is uniserial
and £/'+/=jB1φ.β20 ®βs, where the B{ are hollow. Then from Lemmas 10~

16 below, ί<3. Further [Δ: Δ(fi,)]<2 by Lemmas 2 and 7. Assume s=3.
Then Δ(jB;)ΦΔ (resp. [Δ: Δ(fiJΦ2) for some ί (resp.j) by Lemmas 7 and 10.
Hence we remain two cases Δ(fij)=Δ, [Δ: Δ(fiy)]=2 forj=29 3 and Δ(fi, )=Δ
for ί=l, 2, [Δ: Δ(jB3)]=2. On the other hand, since Δ^^^Δ, we do not have
such cases by Lemmas 2 and 7. Therefore $<2. Similarly we do not have a
case Δ(J51)=Δ and [Δ: Δ(fi2)]=2. Thus we obtain two cases; 2-ii-l): Δ(fif)=Δ
for i=l,2 and 2-U-2): [Δ: Δ(fi,)]=2 for/-!, 2.

2-ii-l) We assume | Bλ \ < 1 52 1 . {A19 Bί9 B2, KfiJΘ J(fi,)> gives J(BO =0
from Lemmas 2 and 7. Assume B2J

k~ C10C2Θ 0C,; s>2 and the Cf are
hollow. If [Δ: Δ(C1)]>2, {A19 Bly Q, Q} derives a contradiction from Lemmas
2 and 7. Hence Δ(CΊ)=Δ(C2)=Δ. Taking R/Jl+t+k+1

9 we obtain again a con-
tradiction from {A19 B19 C19 C2} and Lemmas 2, 7 and 8. Accordingly -Z?2 i

s

uniserial. If/: B1^B2/](B2)y {Aly B19 B2, B2(f~1)} derives a contradiction.
Hence B, φ B2/ J(JS2) (2-ii-l-l)). Further if ^: Bl^GiIGi+l(B2 5 G, =) G<+1),

{Λ, fiι» fiai G^"1)} gives Bl^Gi(g^)9 since Δ(A)=Δ(fi2)=Δ. Hence Gί+1=0
and ^ is given by ji j^eje from Lemma 6. Similarly if /x: Al^Gi/Gί+1,

{Aly Gi(fΐl), A2, A2} gives A1^Gi(fT1), since Δ^^Δ. Then we can show
similarly to Lemma 6 that Gί+1— 0 and/i is given by j\ \j'€ΞeJe (2-ii-l -3)). Next
if h: A^FjIFj+aAt^Fj^Fj+^B&Bt), consider {Aly Fj(h'l)9 A2, A2} . Then

"1) for some unit x in eRe, since A2^=Fj and Δ(-4i) = Δ. Hence
jC J(Λ)> a contradiction. Accordingly A^Fj/Fj^ (Fj^A2) (2-ii-l -2)).

In the same manner given in the proof of 2-U-1-3), we have 2-U-1-4).
2-U-2) Since [Δ: Δ(fi!)]=[Δ: Δ(fi2)]=2, B^B2 by Lemmas 1 and 7.

{A19 B19 fia, JίfiOθKfiί)} gives J(fl1)=J(JBa)=0. Accordingly fi1 and S2 are
simple. Let C be any simple submodule in .B1®fi2. Then {^4j, fij, fi1? C} shows
C=Λ?jBj for some unit x in eRe by Lemmas 2 and 7. Hence B^B2 satisfies
(#, 1) (2-U-2-1).

2-U-2-2) is same to 2-ii-l -2). If/: A^B19 {A19 A^f), B19 βj gives ̂ ~
Aλ(f). Hence / is given by jt j ^eje (2-U-2-3)).

REMARK 13. We shall consider the situation of ii-b) of Lemma 12. Taking

R=R/Ji+1

y we may assume that eJ*(=V)=Al®A2: the A{ are simple, Δ(-4j)=Δ,

and [Δ: Δ(4j)]=2. Then A^A2 (^gjRg^Δ'). We shall express EndΔ/(F)
as elements of matrices (Δ')2. Since Al is characteristic, for any element x in Δ,

O x

Δ being a division ring, #2 and x3 are uniquely determined by xλ. Hence we
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obtain two monomorphisms as rings/!,/2 of Δ to Δ' such that /(#)=#,- and
a homomorphism g as additive groups of Δ to Δ' such that

i) g(™')=Mχ)g(χ')+g(χ)f2(χ').
Then Δ(A2)=g \0) (note, from i), that g \0) is a division subring of Δ).

Hence [Δ: Δ(A2)]=2 is equivalent to
ii) [Δ:r'(0)]=2.

Further (#, 1) holds if and only if, for any a. in Δ, there exists #ΦO in Δ such

that

Hi) a = -jϊί*-1)^*) (=g(*-%(*))> i.e., F: Δ-Δ' (F(X)=fl(xΓlg(^) is
surjective.

If αΦO, Λφ^O). Hence if either | Δ |, cardinal of Δ, ( |Δ| < |Δ'|) is finite or
I Δ I < I Δ71, iii) does not hold. Hence we assume that | Δ | is infinite. Further,

since/j is a monomorphism, we may assume that ΔcΔ' and/ is the inclusion.
Now assume that Δ' is commutative. Then g is a ^-linear mapping from i),

where K=g~\0). Using those facts and |Δ| >°°, for any g we can show by
computation that there exists a in Δ7 not satisfying iii) for any x&Δ. There-

fore if Δ7 is commutative, we do not have the case of ii) of Lemma 12.

REMARK 14. Next we consider the case t=2 in Lemma 11. Let K be a
field and R a ^Γ-algebra. If [Δ': K] is not divided by 3, this case does not
occur. Because, since V=Al®A2 and A^A2ί EndΔ(F) =(Δ')2 and Δd(Δ')2.

[Δ: Δ(A1)] = 3 implies that 4[Δ'r K] is divided by 3.
Finally we take division rings given by [10]. Let D~DDl be division rings

such that [D: A]r=3 and [D: A]/=2. Put D=A1+A«> and D*=HomDl(DiD,

PlA) Then [D*: A]r=2 and D* is a left Z>-vector space. Define l*eZ>* by

setting !*(!) = 1, 1*(«)=0, and putA=l*A Then Z>(AH tf I ^A dA^A,}
=u~1D1u, and so [D: D(A1)]r=3. For any A in D* and h-\Q)=D1uly we have

D=Dlul@Dlvl. Put d=h(vl). Then (ιιΓ1w)l*(κ1)=0 and (uΓ1«)l*(v1)=i/Φθ.

Hence h=(uϊlu)\*d'-ld, and so AA=(«Γ1tt)A Therefore D* satisfies (#, 1),
[D: £>( 1̂)] = 3 and [D*: A]=2. We shall use D* in §5, Example 37.

Now we resume to study the structure of right US-4 rings.

Lemma 15. If R is a US-4 ring τΰίth (*, I7). D has one of the structures

in Lemmas 10, 11, 12 and 16 below.

Proof. Assume 1) Δ(A1)=Δ(A2)=Δ(AS)=Δ. Then ί=3 by Lemmas 7
and 8 (the case of Lemma 16 below). 2) Δ(A)===A2(^)-=Δ and Δ(^)ΦΔ for

z>3. Then {^4j, ^42> 4j> 3̂} derives a contradiction from Lemmas 2 and 7.

3) Δ(Λ)=Δ and Δ(-4)f ΦΔ for z>2. This is a case of Lemma 12. 4) [Δ:

Δ(Ai)]=2 for i<some /, [Δ: Δ(^4y)] = 3 for j>/. Since [Δ: Δ(Λ)]>2 for all

ky from (α) there exists a unit Λ?, in eRe such that xiAl=Ai for all /. Hence

)Λ?71> and so we obtain the cases of Lemmas 10 and 11.
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Lemma 16. Assume A(A{)=A for all i. Then t < 3, and
1) t=3:

AS is uniserial and Aly A2 are simple, 4^4 If A3 is simple, A3f^A1 and
A3^A2. I f A 3 is not simple andf: 4»Ff /ί1

f +1 (A^F^F^), then Fi+l= 0 and
f is given by jt j e eje, and hence i > 1 .

2) t=2: i) 4
Then 4 and A2 are simple and Δ=g1Rg1^Z=Z/2.

ϋ) 4*4 (141 < |4|)
a) A2 is uniserial; A2=F1^F2^ — IDFp^Fp+1

Then A! is a uniserial module with |4I <2; Al=E1

_

a-1-1) Iff: A1/E2^fA2IF2 (^^^fe/)* Δ^gtRgit&Z. f is a unique isomor-
phism. In this case put BΊ = {x+y \ e404, /(*)= y} .

a-1-2) If AilEt^FilFt+to i>l, then i>p-l.

a-1-3) // /: E^FilF^ (~g3R/gJ) (ρ>i>2), Δ™g^>3™Z. We have
the same result as a-2-1) below, replacing A1 zΰith E2. In this case put B'i =
{x _

a-1-4) /: E2^FP. Ifp=2, Δ^gtRg^Z, where E2^F2^g^R/g4R. Further
i f f : AJE2^F2 (AZ/F^EZ), Al(f)=xAlfor some unit x in eRe.
Ifp>2, we have the same result as a-2-2) below, replacing A1 with E2. Iff is not
given by jh put B"=E2(f).

a-1-5) Further every submodule in eji except B19 B'i and B" is isomorphic
to a standard submodule in ej* via xl x is a unit in eRe.

a-2). 141=1: _
a-2-1) // 4»F,./Fί+1 (**gsRlgJ) for some i<p, Δ**gR5g5^Z. Further

A&FjIFj+Jσr any (i*)j<p.
a-2-2) Assume f l f f 2 : A^FP (~gjllgj).

If the f i are not given by JΊ in eje, there exists a unit x in eRe such that xA1=Al

and xfι—f2Xι=jι(j^eJe) In this case 4sM F|/-P1, +ι (ί<P) In particular if

b) A2/A2J
k is uniserial and A2J

k is not unίsrίal, i.e., A2J
k=B1ξ&B2® - 0jBβ,

where the B{ are hollow. Then Aλ is simple and s=2. Further

Then B^B2 ( \ Bλ \ < | B2 \ ), and Bl is simple, B2 is uniserial.
brl) Iff: 4»ίy.Fl +1 (4ZDJPloFi+1=)fi10fi2), then we obtain the same

result modulo Bl®B2 as given in a-2-1).

bΓ2) ///: 4«fiι> / ίs Sίvn given by jt j e eje.
bΓ3) ///: A^HilH^ (B^H^H^ then Hi+1=Q and f is given by

If f: B1ϊ&HiIHi+1) then Hi+1=Q andf is given by jl j
[Δ:Δ(B,)]=2fσri=l,2.
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Then Bl**B2 and Bl3 B2 are simple and V^B^Bt satisfies (#, 1).
b2-l) A&FJF^A^F&F^V).
b2-2) ///: A^B19 f is given by jt j <Ξ eje. (cf . [7], Theorem 17.)

Proof. We know t*ζ3by Lemma 9. Assume that | A1 \< \ A2 1< | A3 \

1) t=l. Consider {A, Λ,Λ,J(^)=J(Λ)ΘJ(Λ)ΘJ(Λ)}. Since
=Δ, 1(̂ )0 ](A2)@]3(A) is contained in some As by Lemmas 2 and 7. Hence
](A1)=](A2)=0 (note \AZ\ > \Af\). Assume that AS contains two independent
submodules Bl and B2 in eji+k on the same level in (1). Take R=R/Ji+k+1.
Then both [Δ: Δ^)] and [Δ: Δ(J52)] are not equal to 1 and [Δ: Δ(J3, )]Φ3 for
any i by Lemmas 2 and 7, and hence [Δ: Δ(<B, )]=2 for i=l or 2 by Lemma 3,
(say ι'=l). Then {B^ B19 A19 A2} contradicts Lemmas 2 and 7, since BfdAB.
Hence A3 is uniserial. Assume /: A^A2. Then {A19 A2, A3, A(/)} implies
A(/)~(some AO Since Af is characteristic (we may assume Ji+1=Q by Remark
5), A}(f)dA^ which is a contradiction. Finally assume g: A1*

s&Fi/Fi+1. Since
Δ(^43)=Δ and Aly A2 are simple, A3 is characteristic. Hence {Aly A2, F^g"1), A£
derives from Lemmas 2 and 7 that A1

r^Fi(g~l). Therefore g is given by// from
Lemma 6.

2) ί=2.
i) /: A^A Assume ΔΦΔ(A(/)). Then {Aly A2, Atf), A(f)} implies

Al(f)f^Ai for some i, say 1 from Lemma 7. Since A^A^A^f), Al(f)=xAl

for some unit x in &Rtf. Hence Δ(A1(f))=xΔ(Al(f))X~1=Δy a contradiction.
Accordingly Δ(Λ(/))=Δ. Consider {Al9 A2, Aλ(f\ J(Λ)Θ J(Λ)> , and J(Λ)=0
by Lemma 7 (note Δ(^4ί)=Δ(^41(/))=Δ). Hence A1 and -42

 are simple, and so
eji+1=0. Let / and /' be two isomorphisms of Aλ to A2 and consider {Alt A2,

Λ(/)> ^iC/')} Since eJi+1=Q> they are characteristic, and so A1(f)=A1(f) by
Lemmas 7 and 8. Hence /=/'. Considering an isomorphism 8f for

Δ= {0, 1} . Since Hom*(A, A)= {0> 1> , Δ7=^?= {0, 1} , where
ii) Λ ^ Λ d Λ K I Λ D Assume Λ/ΦO and

(ί>l), where the Q are hollow. Consider {Aly A2, AJ®C19 AJξ&C2} (s>2).
Then AlJ®Cl

f^AlJ®C2 by Lemmas 2 and 7, provided ^/ΦO, Assume
Δ(-41/ΘCI )=Δ for ί=l, 2 and ^(^/ΘC^C^/φCa for some unit Λ?. We
may assume Ji+k+1=0. There exists j in ς/e such that
0Q. Then jcQc^+^Q+yCjC^/H-C!. Hence tfCΊ
C2)=A1J, and so Q^ ,̂ a contradiction by Lemma 2. Hence Δ(-41/0C1)=f=Δ
for some ί, say 1. {̂ , ^42) A/ΘQ, A/ΘQ} implies either A^A^®^ or
A^AJξ&Cz by Lemma 7. Which is again a contradiction by Lemma 2.
Hence s— 1, and so

A2 is uniserial, provided

Similarly A1 is also uniserial, provided A2J Φ 0. Now assume that A2 is uniserial
(\A2\ >2 and hence so is Aλ). We shall show |4J <2. Assume Λ/2ΦO and
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hence A2J
2*0. Consider {A^AJ@A2J\ AJ2@AJ, A2} . Since Al+A2 by

Lemma 2, 1) A^AJ@A2J
2 or 2) Al—AJ2®A2J (Al and A2 are symmetry)

or3)AJ®A2J
2~AJ2®AJ.

1) It is clear that xA1I^A1JφA2Jl for a unit x. However Al is uniserial,

and so A2J*=Q (note | Al \ < | A2 1 ). 2) This is similar. 3) Aassume x(AlJ@
Ad^A^ζ&AzJ. Since Δ^^Δ, there exists; in eje such that (χ+j)Al=

Aλ. Let a2j2 be an element in A2J (a^^A^, J2^J). Then x(alj^a2j^=a2J2 f°r

some flj e A> # 2 ̂  A> /s e / and ;4 e J2. Hence (x+j)aJ3—ja}j3 + #α£;4 = αjg.
On the other hand, jaJ9> xa2j4 are contained inji+2. Take the projection of ej*
onto Λ, and a2j2^A2 ΓiJi+2=A2J

2. Hence A2J=Q. Similarly if x(AJ@A2J
2)

^>AJ2®AJ, AJ=Q. Therefore | Aλ \ < 2.
We observe isomorphisms between sub-factor modules of A1 and ^42, and

then investigate submodules X in ej\ It is well known that there exist sub-
modules A^C^C' and A21)D^D' such that h: C/C'&D/D' and J^-

A(c+C/)=έ/+β/> (cf. [3]). We denote X by C(A)Zλ
a-1) Let \A1\=2.

_
Then Δ'=gRg=Z from 2-i) and /is a unique isomorphism.

a-1-2) ([7], Theorem 17) Assume /: AJE^Fi/F^ (i>l). Consider

{A19 A2y E2 0 F2, Λ(/)^ > - Since Δ( A) = Δ(Λ) = Δ, A2 φ A(/)^ Further
E2ξ&F2 being characteristic, from Lemma 7 there exists a unit x' in &R# such
that x'Alc:Al(f)Fi. Let^ : eJi-^Aj be the projection and #'=#+./; xA1=A1,
j GΞeJe as usual. Then for a generator α in Al

j)a = ar+f(ar)+z1+z2 9 r^R, z^E2 and

Hence xa+p^jά) = ar+^ and /)20'tz) = f(ar)+z2 .

Since pl(jά)&E2y xa = ar (mod £2)- Assume i<p—l. Since
f(ar)=f(xά) = 0 (mod ̂  +1). However Λ Λ is a generator of A, and hence /=0.
Therefore i > /> — 1 .

a-1-3). See a-2-1) below.
a-1-4). £"2«F2 (^>=2). We have the situation of 2-i).
Assume further /: Al\Έ2**F2 (A2IF2^E2], and consider {Aly A2, Atf),

E2®F2} . Then A1

f^A1(f) by Lemma 7 and so A1(f)=xA1 for some unit x in
eRe, since A^^/). If ̂ )>2, see a-2-2) below.

a-1-5) Let X be a submodule in ej*.
i) X=A1(f1)Fi=Fi(fT1)(f1:A1^Fi/Fi+2). If ί=l, consider Λ//ί+3. Then

this contradicts 2-i). Hence iΦl, Fi=Fp^1 and Fί+2=0 from a-1-2). {̂ , ^42,
E2@F2, ^4ι(/ι)} shows A1(f1)=xA1 for some unit # in ^jR^.

ii) X=A1(f2)A2(f2:A1/E2~A2IF2). Then Jί-^ from a-1-1).
iii) X=A,(f3)Fi (/a : AJE^Ff/F^ i> 1) and hence z-^- 1 or ̂  by a-1-2).

Then {Λθ^+1, Λ, ^2ΘF2, Λ(/3)^ } shows A1(f3)Fi=x(A1®Fi+1).
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iv) X=A2(fτl)(f,:E2^A2/F2). {4, A2J E2 Θ F2, 4C/Γ1)} shows A* =

v) X=Fi(/51) (/5 : E2^FiIFM, i>2). In this case eJi+l=E2@F2. Hence
this is the case of a-2). Accordingly X=Bly B\ or B", provided X is not iso-

morphic to a standard submodule in eji+l via xt.

Thus we have shown that X is isomorphic to a standard submodule in ej* via

xl except B19 B< and B".

a-2) 1^1=1.

a-2-1) Lέtf /: 4»Fί/ίi

H.1 (i<p). If F^^ DxA^ for some unit x in β/fc,

xA^Fi^dAz, since ](Fi(f~l))=Fi+l, which is a contradiction from lemma 2.

We note further that A2 is characteristic, since Δ(A2) = Δ and 4 is simple.

Assume ΔCFf (/-1))ΦΔ. Then {4> 4> F^f'1)} derives a contradiction from the
above remarks and Lemma 7. It is clear that eJe(Fi(f~1))c:eJe(Fi®A1)<^Fi+1.

Hence F^f'1) is also characteristic. Let/': A^Fi/F^ be another isomor-

phism. {4, 4, Ήί/-1), ,̂ (//"1)} gives F^f-^F^f'1) since they are chara-

cteristic. Therefore/—/'. Accordingly, Δ^g^R4g^Z as given in the proof of

2-i). Further assume g: A^Fj/Fj^ (j<p). Again consider {A2, A19 F^f"1),

Fj(g~1}} τhen Fi(f~l}^Fj(g } if i< J, and so Fj(g-l)c.FM, a contradiction.
a-2-2) Assume that/!,^: A^FP and they are not given by j\ in ς/β.

Then {4, 4, 4(/ι), 4(/a)} gives> from Lemmas 6 and 7, that 4(/1)==#/4(/2)
for some unit #' in Ĵ? .̂ Since Δ(4)=Δ, there exists j in β/^ such that
(xf -\-j)A1=Al. Put x=x'-\-j. Then for a generator α in 4

Hence

Λ?α = or, xf2(ά)-ja =fl(ar) .

Next assume further that q: Aί^FiIFi+l (i<p). Consider {A2y A19

4(/)}> an(i ^1ί(?"1)^Ά(/ι) since F^q"1) is characteristic. Which is a contradic-
tion. In particular, if eJeAl=Q, 4(/) is characteristic, since Δ(4(/))=A (if

ΔΦΔ(4(/)), {A, 4, 4(/)> gives 4~4(/)). Then / is given by from

Lemma 6). Hence /— /2 from the first paragraph, and so A^g5R5g<=&Z as in

the proof of 2-i).

b) 4/4J* (fc>l) is uniserial and A2J
k = ̂ ®Bi (s>2). Then 4 is

i = l

simple from the initial paragraph of ii). Then DJk=eJi+k = A2J
k. Since

ς/ί+*=JB10 — θ-B,, *<3 from Lemma 15, and [Δ : Δ (£,-)] <2 for all i by
Lemmas 2 and 7. If [Δ: Δ(fi1)]=l and [Δ: Δ(fi2)]=2, {4, Sx, £2, £2} derives

a contradiction. Hence either [Δ: Δ(jB, )]==l f°Γ a^ e (^i)) or [̂ : Δ(jB, )] = 2 for
all / (&2)). In the former case s= 2 by Lemma 7 and in the latter case also s=2

and B2=xB1 for some unit # in eRe by Lemma 10.
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Then {Aly B19 B2, J(A)0J(*)> implies 1(̂ =0 ( I A I < I AD K /: A«^,
{-4j, fij, fi2, fiι(/)} derives a contradiction. Hence B^B2. We can show as
before that J52 is uniserial.

brl) This is the case of a-2-1).
br2) Assume /: Al »filβ {A, A(/)> fiι> #3} derives ^^^l^/), i.e.,

(x+j )Aλ =Al(f) : xAl = A! and j e ς/β. (# +;> = ar+f(ar) ^ = tfΛ, re R.
Hence xa=ar andja=f(ar). Put xa=b, and Aλ=bR. f(b)=jx~lb.

br3) Assume /: A^H^H^. {A19 Bly B2, Ht(f-1)} shows A
Hence Hi+1=0 and/ is given by j/ as above (cf. Lemma 6).

br4) Assume /: B^H^H^. {A» B19 B2, Htf-1)} derives J51

since Δ(fif)=Δ. Hence Hi+1=0 and/ is given by j/ from Lemma 6.

b2) [Δ: Δ(^)]=2 for i=l, 2, (A=*Bi)-
{Λ, Ai ^2> J( fiι)ΘJ(fi2)> shows, from Lemma 2, that J(fi2)— 0, i.e., fi2 is
simple. Further since Δ(AHΔ and [Δ: Δ(fiO]=2, [Δ: Δ(£)]=2 for all simple
submodules E in F^fiiφfig by Lemmas 2 and 8. Hence V satisfies (if, 1) by
Lemma 7.

b2-l) If A^FilFi^ Δ=Z by a-1-3). Hence Δ(fiO=Δ.
b2-2). Assume/: A^B^ {A19 filf fi^ A(/)> derives ^/^^(/J. Hence

/is given byj*/ as bj-2).

REMARK 17. If 7? is an algebra over an algebraically closed field K, ΔΦZ
and the first part of a-2-2) does not occur (take/2=Λ/i, & = f = l ; k^K). We can
express / in a- 1-2) as an element in eje, however it is little complicated (cf.
[7], Theorem 17).

In order to make the converse version clear, we illustrate the structure of
Lemmas 10~16 as follows:

1) (Lemma 10)

eR ej< eJM

•ίJ-Λ "^ί ^

A2 = xAl—B2 = xB1—0

[Δ: Δ(-4!)]=[Δ: Δ(^42)]=2, every characteristic submodule in ejl is linear
with respect to the inclusion and [Δ: Δ(C)]—2 for any non-characteristic sub-
module C in ej*. Further those C are related to one another with respect to~.

2) (Lemma 11)

eR ej*

A, -0

(3)
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[Δ: Δ(Λ)] = [Δ: Δ(Λ)] = [Δ: Δ(4,)] = 3 and ^ΘΛΘΛ satisfies (#, 1)
and (#, 2). Further [Δ: Δ(C)]<3 for every submodule C in Al®AΛ®A3. (A3

may be zero.)
3) (Lemma 12, i))

eR ef

Al -0

[Δ: Δ(Λ)]=1 and [Δ: Δ(Λ)] = [Δ: Δ(At)]=2. Further ΛΦΛ satisfies

, I)-
4) (Lemma 12, ii-a))

eR ej

A1

A-0

E.-0

[Δ: Δ( !̂)]=1. [Δ: A(4,)]=2 and A2φEn satisfies (#, 1) except En.
5) (Lemma 12, ii-b ϋ-b-2-ii-l))

B,

[Δ: Δ(A)]=1. [A: Δ(Λ)]=2 and [Δ:
satisfies (φ, 1) except Av (B2 may be zero.)

5')

eR eV el

#!-()



[Δ: Δ(BJ\=IΔ: A(B2)]=2 and B,
6) (Lemma 16, 1))

eR eΓ
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satisfies (#, 1).

801

•*•

[Δ: Δ(4)] = [Δ: Δ(Λ)] = [Δ: Δ(Λ.)]=1. If /:
j, j Se/e. (^42> -̂ 3 an(l -̂ 2 m^y be zero.)

7) (Lemma 16, 2-i))

d? e/'

n, f is given by

A-o

[Δ: Δ(A)]=[Δ: Δ(A2)]=l and
8) (Lemma 16, 2-ii-a-l))

eR eΓ e

[Δ: Δ(A)] = [A: Δ(Λ)]=1 If /• Λ/^2«Λ/^2, Δ^Δ7«Z. Every sub-
module except Bly E\ and B" is isomorphic to a standard submodule via xt. (If
n=2 and E2^F2, Δ^^Δ'ί^Z.) If £"2=0, the conditions in a-2) of Lemma 16
are fulfiled.

9) (Lemma 16, 2-ii-b,))

eR

4-0

B9

[Δ: Δ(Λ)]=[Δ: Δ(Λ)]=1, [Δ: Δ(B1)]=[Δ: Δ(JB2)]=1. If /:
is given by j/ j^eje. Similar facts hold for other cases.

10) (Lemma 16, 2-ii-b2))

,, f
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eR eΓ

Bl -0

B2=xB1-Q

[Δ: Δ(^)]=[Δ: Δ(A2)]=l, [Δ: Δ(fi2)]=2 and Bl®B2 satisfies (#, 1).
We shall show that if eR has one of the structures of the above diagrams

1)~10), then R is a right US-4 ring with (*, 1'). It is clear from the diagrams

that (#, 1') holds. Let {£/,•};-! be a set of submodules in eR.

Diagram 1). If Ul and U2 are characteristic, U^U2 or L^dL^. Hence

t/jθt/g satisfies (**, 2) by [4], Corollary 1 of Theorem 2. Hence D=Σθ t/,
i = l

satisfies (**, 4) by [2], Lemma 1. Assume that U1ΠU2IDeJi. Then Ϊ7, for

/=!, 2 is characteristic, and hence D satisfies (**, 4) from the above. Next

assume that U^eJ1 and eJ'nUj for j>l. Since Δ(Z71)=Δ, U^®U2 satisfies

(**, 2) by [4], Corollary 1 of Theorem 2. Finally assume <?/''=> Uj for all j. If

yβι is a set of non-characteristic submodules, then we may assume t/jD
for some units #,- in eRe by assumption. Since [Δ: Δ(ί7ί )]=2,

f/ιθC72ΘZ/8 satisfies (**, 3) by [4], Corollary 3 of Theorem 2. Therefore D
satisfies (##, 4).

2) As is shown in 1), we may assume that £/'H> C7y for all j. Then ^3)
x2U21)x3U3i:>x4U4 by assumption, where the xi are units in ^J?β. Then from the

assumption [Δ: Δ(C)]<3 and the argument of the proof of [4], Corollary 3 of
Theorem 2, D satisfies (**, 4).

3) Let ς/'D C/y for all /. Then Ui=Al®Bi or UidA2®A3 by assump-

tion, where B^A^A^ First assume UjdA2®A3 or UJ=A1®BJ (βyΦO) for

all j <3. Then D satisfies (**, 4) by [4], Corollary 3 of Theorem 2 (note Al

and A2®AZ are characteristic and see the remark above). If U1 = A1 and

U2=A1®B29 Ul@U2 satisfies (**, 2) by [4], Corollary 1 of Theorem 2. Thus

D satisfies (**, 4)

4) Every submodule in ej* is isomorphic to a standard submodule in ej*

via xt. Hence we may assume that all Uj are standard. Then D satisfies (*, 4)

by [4], Corollaries 1~3 of Theorem 2.

5) and 57) Let ef ID U^AJ and U^A&A*. Then U1IAJ=x(A2/AJ)9

and so xA2=U1. Further A±®A2J is characteristic. If U1 = A1®A2J and

U2dA2J, Ul®U2 satisfies (*, 2). Accordingly we may assume that t/,- is Al or

a submodule of A2 Therefore D satisfies (**, 4).

6) and 7) These are clear.
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8) First we note B1'DE2®F2^B'i (E2@F21)B") and B'i, B" do not appear
simultaneously. If the C7f are standard for all /, U^Uj for some pair i,j.

Hence D satisfies (**, 4) by [4], Corollary 2 of Theorem 2. The conditions
given in Lemma 16 show that A^A^f), Fp(f~1)^^Fp(g"1)9 ••• etc.. Hence we
obtain the desired result.

9) and 10) These are simpler than 8), (if A1e**FiIFi+1(Fi+ll}Bl®B2),
Δ^Z. Hence Δ(C)=Δ for any submodule C in eR).

Thus we obtain

Theorem 2. R is a right US-4 (basic) ring with (*, I7) if and only if eR

has one of the structures given in Lemmas 10~16 (cf. Diagrams 1)~10)) for each

primitive idempotent e.

3. Hereditary rings

In this section, we shall study a hereditary and right US-3 (resp. US-4)

ring R. If R is hereditary, (*, V) holds, and hence we can make use of the

results in the previous sections.

Lemma 18. Assume that R is basic and hereditary. Then a submodule A in

eR is characteristic if and only if Δ(-4)=Δ. Every non-zero element in HomΛ

(eR, fR) is a monomorphίsm, where e and f are primitive ίdempotents.

Proof. The second half is clear (see [9], Lemma 2). Hence, since eje=09

the first one is clear
From now on we assume that R is a hereditary and basic ring. First we

assume further that R is right US-3.

Theorem 3. Let R be a hereditary (and basic) ring. Then R is a right

US-3 ring if and onyl if eR has the following structure for each primitive idempotent

e:

i) eR/eJ* is uniserial for some t and

n) ej'=0 or eJ'=A®B such that either

a) A and B are simple and A@B satisfies (#, 1), and [Δ: Δ(-4)]=2, or

b) A is simple, B is uniserial and A is not isomorphίc to any sub-factor mod-

ules of B (and hence Δ(A)=Δ(fi)=Δ).

Proof. If R is right US-3, eR has the structure in Theorem 1. We con-

sider the case b) of Theorem 1. Assume that /: ^4«(the socle of B). Then

{A, A(f), B} derives a contradiction, since A and B are characteristic by Lemma

18. Thus we obtain the theorem from Theorem 1.

Let i? be a basic herediatry ring. Then
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Δ2

0

where the Δ, are division rings and the M{ί are left Δr and right Δy-modules [1].
We shall express explicitly the content of Theorem 3 for M^ in a row of

the above ring.

1)

(O ΔfOΔ/iO OΔfcO — Δ^O)

2)

(O Δ O Δ, 0

(4)

0)

p satisafies (#, 1).

•A

•B

0-0)

•A

•B

As is given in the proof of [9], Theorem 1, we can show a ring monomorphisms
ρrs: Δr-»Δs for r<s<k such that xur=usprs(x) for x&Δ, and ρrspsv=ρxv.

Next we shall characterize a hereditary (basic) and right US-4 ring. If R
is hereditary, some results in the previous sections may not occur as shown in
Theorem 3. We shall observe them.

In the case b) of Lemma 12, A2 is simple.
Because, since A1 is simple and [Δ: Δ(^42)]=2, Aίf&A2/](Az). Hence A^A2

by Lemma 18.
We shall observe the conditions in Lemma 16 for a hereditary ring, a-1-1),

a-1-2), a-1-3), any of b-l-l)~4) and b2-2) do not occur from Lemma 18. For
instance, if/': Aλ\Έ^Fp^\Fp (a-1-2)), /: A^Fp.λ by Lemma 18. Then A1^
A^f) by a-1-5). However, Al is characteristic, and so Al=A1(f). Therefore

/=o.
We shall use the notations after Theorem 3.

Lemma 19. In case 2-i) in Lemma 16, e^R is of the form (0, " ,Z, •••
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0 ••• Z ••• 0). In case of 2-a-l-4) in Lemma 16, Al (resp. A2)) is of the form
(0, -, Z, 0, Z, 0 •••) (resp. (0, - Z, 0, Z, 0 •••)).

(0 - OΔ. OΔ^O - Δί(0 - 0 - O - O )
WnΔ / / + 1/ \

Proof. Let E2^Fp^ekkR. Then ekkR^Z by Lemma 16. Let A2^e$sR.
Then essR is uniserial and Msk=u>kZ (^Fp). Since Msk is a left Δ5-module,
ΔscZ. Hence ΔS=Z. We have the same for 2-i).

Thus we have

Theorem 4. Let R be a hereditary (basic) ring. Then R is right USA
if and only if for each e=eih eR has one of the following structures : 1~11

!>
(0 - OΔiOΔi.OΔfcO - Δf> - 0)

2) (Lemma 10)

(ut+1Δil+1\ (ut+2Δit+Λ ...... A1

\vt+2Δit

[Δ: Δ(^4, )]=2 (t=l, 2) «wJ «/+2, u/+2 may be zero. The conditions in Lemma
10 are satisfied.

3) (Lemma 11)
/«f+ιΔ,,+1\ ...... A

(0 - Δ,0 - Δ^O ." Δ, ,0 - U,+ιΔίf+1 - 0) ...... A

WnΔ, /+1/ ...... A3

[Δ: Δ(^4, )]=3 /or eαcA i and A^A^A^ satisfies (#, 1) and (#, 2). roί+1 way
be zero.

4) (Lemma 12-i))

M+1Δ,,+1\ /O \ ...... Λ

(0 - Δ,0 - ΔflO - Δ,,0 .» 0 - cwΔ,,+1 — 0 - 0) ...... A,

\0 / W+2Δ,/+2/ ...... A

Δ(A)=Δ, [Δ: Δ(-4|)]=2 (*=1, 2) and A.ΦA^ satisfies (#, 1).

(5)
5) (Lemma 12-ii-a) and b))

(0 - Δ,0 ». Δ^O - Δί(0 -

\o / o
Δ(A)=Δ, [Δ: Δ(A)] = 2, ««</ ufΔit®vpΔίp satisfies (#, 1),

({«ί+ι, •"> «/>-ι> «αy *e zero.)
6) (Lemma 16, 1))
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(0 Δ, 0 ΔflO .Δ, ,0 0

/o
0 - 00

+,Δ,, O

/o
0

+3Δ,./+3,0 o

=Δ (t=l, 2, 3) αw</ M/+I may be zero.

Δ1CΔ,,C - cΔ,.(CΔ, / + 2

CΔ, ,+3C •» CΔ,,

7) (Lemma 16, 2-i))

(O ZO. Z-OZ O

8) (Lemma 16, 2-ii-a))

(0 ... Δ,0 - Δ. .0 ". Δ,,0 ».

0)

o / ,+2Δ,.,+2/ \o
Δ(Ai)=Δ (i=l, 2), w/+3 or {vt+4, •••, vt} may be zero

CΔ,.,+1CΔ, ,+3

ΔfCΔ^C ». CΔ, ,

CΔ,.(+2CΔί(+4C -

9) (Lemma 16, 2-ii-a')

(0 ». ZO .« Δ(10 .«• Δί(0 .»

/O
0

/O

\0
». _ ». 0

/ W,Z/ Vβ,

utZ
0 _ 0)

wm may be

10) (Lemma 16, 2-ii-bO)

(0 .- Δ.-0 .- Δ^O - Δl(0 ••

0

VO

.tH.J+1,-/+s+

\0

/o

0

A,
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=Δ(Λ,)=Δ (i=l, 2).

CΔ,

CΔfίJ..C

11) (Lemma 16, 2-ii-b))

(()... Δ.O Δ./l Δ,,0

/O
0 0

/ \ϋ<+2Δ//+2

/o
0)

•A

CΔ,,CΔ,.(+2C

Δ(A )=Δ and [Δ: Δ: (fi,)]=2 (i=l, 2).

^ (8, 1),
where Z=Z/2, ίfe Δ's αr^ division rings and
and 11). Tfe series: (O Δ O Δ^O ) orc ίAβ

except 6), 8), 10)
level means a uniserial module.

4. Left serial rings

We shall investigate the same problem for a left serial ring R. In this
case (*, 1') holds, too by [11], Corollarly 4,2. Therefore we can make use of
the results in §§ 1 and 2.

From now on we always assume that R is a left serial ring.

Lemma 20. // eJi=Al@A2 and the A{ are uniserial, every submodule E
in ej* is isomorphίc to a standard submodule Bl®B2 via xt :x is a unit in eRe, where

B,cA,.

See the proof of [3], Theorem 1.

Lemma 21. Let eJi=A1ξ&A2 and the A{ hollow. If Δ^) Φ Δ, there exists
a unit x in eRe such that xA1=A2.

Proof. Since Δ^^ΦΔ, there exists a unit y in eRe such that (y-{-jr)A1(tA1

for ally in eje. Let/) be the projection of ejl onto A2. Ύhenf=pyt\Aι is an
element in Hom^ ,̂ A2). I f/ is not an epimorphism, f=jj for somej in eje,
since A2 is a hollow module (ctς/'+1) and R is left serial. Then (y—^
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a contradiction. Hence there exists a unit x in eRe such that #/=/, and so

X<£ίΛ. - ^-M

Lemma 22. Lef eJi=Al®At be as in Lemma 21. //Δ(A)=Δ,

Proof. From Lemma 21, Δ(^42)
:=Δ. Hence we may assume k^k'. Let

x be any unit element in eRe. Since Δ^^Δ, there exists j in ς/£ such that

(x+fiA^A^ Hence (x+j)(AJk®AJk')ciAJk +(x+j)AJk'^AJ*®AJk',

and so Λ=Λ

From Theorem 1, Lemmas 21, 22 and [8], Proposition 2, we obtain

Theorem 5. Let R be a left serial ring. Then R is a right 17*5-3 ring if
and only if eR has the following structure for each primitive idempotent e :

There exists an integer t such that

i) eR/eJ* is unίserial and

ii) eJ*=Q or ejt is a direct sum of a simple module and a uniserial module.

Finally we shall give a characterization of a left serial and right US-4 ring.

As was shown in the previous section, we shall refine the results in § 2.

In Lemma 10, every submodule in ej* is standard up to xl (x is a unit in
eRe) by Lemma 20. Further since

is the set of all characteristic submodules in ej*.

From the above proof we have

REMARK 23. Let R be left serial and assume eJi=A1®A2'y the A{ are

uniserial. If [Δ: Δ(Aί)]=2, [Δ: Δ(C)]<2 for every submodule C in ej'1 and
{eji+t} is the set of characteristic submodules in ej*. Hence, if R is left serial,
i), ii) and iii) in Lemma 10 imply iv) and v). However hereditarity does not as
is shown from the following example:

Let KdL be fields such that [L: K]=2. Put

(L L L®L L®L\

_ 0 K L L

~ 0 0 L L

\0 0 0 L I

Then R is hereditary. Put L= IK+uK, eu=e, and eJ=A1@A2 A^= le12R, A2=

ue12R satisfy i), ii) and iii) in Lemma 10. Further [Δ: Δ(jB)]=2 for any sub-

module B in ej2 if ΔΦΔ(JS), since [L: K]=2. {ej, ej2, ej3,
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(\®u±u® I)e44#} is the set of characteristic submodules provided u2

e^RJ provided x
9 and

Lemma 24. Let Bl and B2 be simple submodules in ej1 and V=Bl®B2.
^B2> V always satisfies (#, 1).

Proof. Since R is left serial, every simple submodule in V is isomorphic
to B1 via #/; x is a unit in eRe. Hence V satisfies (#, 1).

In Lemma 12, we do not have the case t=2 by Lemma 21.

In Lemma 16, we have always A^A^ since Δ(-4j) = Δ(-42) — Δ. Hence
2-i), 2-a-l-l), 2-a-2-3) and p=2 in 2-a-l-4) do not occur. Similarly 2-a-2-l)
does not occur.

Thus we obtain

Theorem 6. Let R be a left serial ring. Then R is right US-4 if and
only if, for each primitive idempotent ey eR has one of the following structures:

1) eR is uniserial: eR ej ejp

2) eR ej< ejίί+1

[Δ: Δ(.4ι)]=2. In this case A1faA2 and Bl may be zero.

3) eR ej'-1 ej<

(6)

[Δ: Δ(^, )]=3 and AΦΛΦA satisfies (#, 2). In this case

4) eR ej'-1 ej'

Δ(Λ)=Δ, [Δ: Δ(^, )]=2 (i=2, 3). In this case
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eR ej'

4-0

4-0

A3

M. HARADA

Γ1 ej*

0

Δ(4)=Δ (*=!» 2, 3). In this case 44*4 and 4 may be zero.

6) eR ej'~l ej' eji+ί ej"

2-B2 0

Δ(4)=Δ (ί=l, 2).

7) eR ej'-1 ej' eji+1 ej" ej
k+l ej"

B,

Δ(4)=Δ (i=l, 2, 3) andΔ(Bj)=Δ (/=!, 2).

8) eR ej'-1 ej< eji+1 ej*'1 ej"

-"•2

#2-0

)=Δ(Λ)=Δ and [Δ: Δ(B1)]=2. In this case B^B2>

where each straight line means "uniserial".

5. Examples

We shall give examples of hereditary (resp. left serial) and right US-3
(resp. US-4) rings. Let K be a field. By L and Lr we denote extension fields
of K with [L: K]=2 and [Z/: K\=39 respectively, and Z=Z/2, where Z is the
ring of integers.

The following two rings are hereditary, left serial and right US-3 rings.
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IK K K K

K K K

K 0

\o κi
type a) of Theorem 1.

On the other hand

/L L L\

is the second type b) of Theorem 1 and I L L is the first

lθ K

IKL L\

0 L L is a hereditary, non-left serial and

\0 0 K)

right US-3 ring, and

IL L 0\

0 K K\ with e12ejj3=0 is a left

\0 0 K/

serial, non-hereditary and right US-3 ring.
Next we shall give hereditary and right US-4 rings for each structure in

Theorem 4. However, we can not construct an example of the case 5) from
the reason given in Remark 13.

IL L L L\ 3

L L L

KK

\0 K)

, where D, Dλ and Z>* are given in Remark 14.

IK K K K K\

K 0 0 0

K 0 0

K K

κl
IK K K K K\

K K 0 0

£ 0 0

K K

o κi\ o zl
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0 Z

Z Z

21

where Z is an extension of Z with [L: Z]=2. euR is of the form 2-1) in
Lemma 16 and eaR is of the form in Lemma 10.

10 IK K K K K K\

K 0 0 0 0

K K K K

K 0 0

K K

o κl

11 IL L L L\

L O O

L L

Vo K

The rings of 1)~6), 8), 10) and 11) are left serial.
If R is either hereditary or left serial, A1IE2^AtIFz implies A1<^Aί in

Lemma 16. In general this is not true for US-4 rings.
We shall give rings of the type a) in Lemma 16. Let R—"Σ®eιR and

β{βy=δ/yβi (the e{ are primitive idempotents).
1)

A, = (I, 2)Z+(1, 2)(2, 3)Z

I _
E2 = (1, 2)(2, 3)Z

I
0

A2 = (I, 2)'Z+(1, 2)'(2, 3)'Z
I

^ = (1, 2)'(2, 3)'Z
I
0

= e3Z

(2, 3)Z (2, 3)'Z υ

I I
0 0

and (1, 2) (2, 3)'=(1, 2)'(2, 3)=0. This is a type of a-1-1) and a-1-4). (R is
a finite ring.)

2)
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A, = (1, 2)Z+(1, 2)(2, 3)# A, = (1, 2)'Z+(1, 2)'(2, 4)K
I I

£2 = (1, 2)(2, 3)K F2 = (1, 2)'(2,
I I
0 0

e2R = e2K+eΐJ esR =
I I

(2,

o o
and (1,2)(2, 4) = (l,2)/(2, 3) = 0, where K is a finite field of characteristic 2.
This is a type of a-1-1).

3)

= (1, 2)Z+E2 A, = (1, l)Z+F2

I I
2 = (1, 2)(2, 3)K F2 = (1,

0 F3 = (1, 1)(1, 2)(2, 3)K
I
0

e3R = e3K

I I
(2, 3)ίC 0

I
0

This is a type of a-1-2). If K=Z, R is a left serial and finite ring.

4)

eι* =

A = (1, 2)Z+E, A2 = (1,
I I

E2 = (1, 2)(2, 4)Z ,F2 = (1, 3)(3, 5)Z+F3

I I
0 F3 = (1, 3)(3, 5)(5,

I
F< = (I, 3)(3, 5)(5, 4)(4,

I
0
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e2R = e2Z+eJ e,R = e2Z+eJ

I I I
(2, 4)Z (3, 5)Z 0

I I
0 0

/ e6R =
I _

(5, 4)Z (6,
I I
0 0

This is a type of a-1-3).
Other products among (i,j) are zero (e.g. (1, 1)(1, 1)=0). In the above

βi(k, ΐ)βj—(k, /)S,-4S,y, (δ0 is Kronecker delta).
Similarly we can construct a US-4 ring of a-2-1) in Lemma 16. Finally

we shall give an example concerning ii) of Lemma 12.
Let K be a field of characteristic 2 and L an extension of K; L=K(ά) and

a'GK. Put g(a)=bΦθ in L and g(ί)=0. Then g is a derivation of L over
/Γ. Put

as in Remark 13. Then ellJ=Al®A2 and Δ(^)=Δ, [Δ: Δ(A2)]=2. How-
ever, euj does not satisfy (iff, 1) as an L—L-module. Hence enR has the
similar form to ii) of Lemma 12, but R is not right US-4.
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