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We have studied artinian right US-3 rings in [5] and right US-4 algebras
over an algebraically closed field in [7]. We shall continue, in this paper, to
study a right US-3 (resp. US-4) ring R when R is either hereditary or left serial.

In the first two sections, we shall give the characterization of a right US-3
(resp. US-4) ring R, when R satisfies a weaker condition (%, 1”) (see § 1) than R
being either hereditary or left serial. In the next two sections, we shall specify
the characterizations given in the previous sections to hereditary rings and left
serial rings. We shall exhibit several examples in the final section to illutsrate
the above characterizations.

1. US-3 rings

Throughout this paper we deal with an artinian ring R and every R-module
is a unitary right R-module. We shall use the same terminologies and defini-
tions given in [2]~[8].

As a generalization of right serial rings, we considered

Every maximal submodule in a direct sum D of n hollow modules contains
a non-zero direct summand of D [5].

(%%, n)

It is clear that if D/J(D) is not homogeneous, D satisfies (%%, ). Hence
we may restrict ourselves to hollow modules of a form eR/E, where e is a primi-
tive idempotent and E is a submodule of eR. If (%%, #) holds for any direct
sum of # hollow modules, we call R a right US-n ring [5]. Since the concept
of US-#n rings is Morita equivalent, we study always a basic ring.

We studied right US-z algebras over an algebraically closed field for n=3
and 4 in [5] and [7], respectively. In this and next sections we shall give a com-
plete list of the structure of right US-3 (resp. US-4) rings with (%, 1) below.
We can give theoretically the complete structure, however as we know a few
properties of division rings, we can not give the complete examples for each
structure.
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We quote here a particular property of a semisimple module (cf. [8] and
[D-

Let e be a primitive idempotent in R and D a semisimple R-module and
(#, m)  a left eRe-module. For any two R-submodules V, and V, with |V,|=
|V, | =m, there exists a unit x in eRe such that xV,=V,.

Further we consider one more property:

eJi is a direct sum of hollow modules for each primitive idempotent e

(s, 1) and each i.

If R satisfies (%, 1), then (%, 1’) holds. Moreover, if R is hereditary or left
serial, (*, 1’) holds by [11], Corollary 4.2. Under the assumption (*, 1’), we
obtain the following diagram (cf. [8]):

(1) | |
Ay o Ay, Ay v Ay o eJ

where the A4 are hollow.

Let A,, A, be submodules in eR. If there exists a unit x in eRe such that
xA,C A, or xA,D A4, we indicate this situation by 4,~A4, [4]. We put A=
eRejeJe (=eRe) and A(4)={&| €A, x4,C 4} [2].

Let D=A,PA,; the A, are uniserial. A submodule B=B @B, (4;DB))
is called a standard submodule in D [3].

Lemma 1. Let A, and A, be as in (1). If A,~A, A,=xA, for some
unit element x in eRe, and hence A,~A,.

Proof. Since A,~A4,, there exists a unit x in eRe such that x4, DA, or
xA4,C A,. We may assume that x4,C4,. If x4,%=4,, x4,C J(A4,)CeJ**, since
A, is hollow. Hence 4,Cx~'eJ**'=eJ**!, a contradiction. Therefore x4,=A4,.

Lemma 2. Let A, and A, be as in (1). Let B be a hollow submodule in A,,
which appears on the level eJ**' (k>=0) in (1). If A(4,)=A, A,*B.

Proof. First assume k>1 and A,~R, i.e., there exists a unit x in eRe such
that x4, DB or x4,CB. In the latter case 4,CeJ**'. Hence x4,DB. Since
A(4,)=A, there exists an element j in efe with (x+j)4,=A4,. Let b be a gene-
rator of B. Then we obtain a in A4, with xa=b. b=(x+j—j)a=(x-+j)a—ja.
Let p, be the projection of eJ* to A;. 0=p,(b)=(x+j)a—p,(ja). Assume
aceJ?—eJ**, and p(ja)EeJ?*!, which is a contradiction, since xj is a unit in
eRe. Finally assume B=4,. Then 4,=x'A4, for some unit ' in eR. Hence
we obtain the same situation as above, which is a contradiction.
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From [2], Theorem 2 we have

Lemma 3. If Ris a right US-n ring, then [A: A(4)]<n—1 for any sub-
module A in eR.

Put R=R/J**. Then eRejeje~ecReleJe=A. Let A, be as in (1). Then
we can define A(4) = A((4,+J*HJH) ={&| €A, x(4,+]*H (A +THH}).
It is clear that A(4,) is a division subring of A(4,).

Lemma 4. Let A, and A, be as in (1). If A(4)=A, A(4))=A.
Next assume that A,=xA, for some unit x in eRe. If [A: A(4,))]=2 (vesp. 3),
[A: A(A)]=2 (resp. 3), where A,=(A,+]J**)[J**c B=R|J**.

Proof. The first part is clear from the remark above. Assume (x-+j)4,C 4,
for some j in efe. Since (x+7j)4,C A4,+jA4,C A, +e]*, (x-+j)A, (A +e] )N
(A, +eJt*)=eJ**, a contradiction. Hence x&EA(4,). Further [A: A(4))] is
prime, and so [A: A(4))]=[A: A(4)].

Remark 5. We shall study a right US-z ring and observe [A: A(4,)].
Since [A: A(4,)]<3, we may assume J*'=0 by Lemma 4, [3], Lemma 1 and
its proof, when we observe [A: A(4,)] (the x in Lemma 4 exists, provided
[A: A(4)]=2).

Theorem 1. R is a right (basic) US-3 ring with (%, 1') if and only if eR
has one of the following structures for each primitive idempotent e.

1) eR/e]? is uniserial for some t and

2) eJ'=0 or eJ]'=ADB, where A is simple and B is uniserial, such that
a) [A :A(A)]=2 or b) A=A(4)=A(B).

In case a) B is simple and AP B satisfies (§, 1).

In case b)

i) B is simple and A== B or

i) B is not simple, and if A is isomorphic to a simple subfactor module B;/B,,
of B, B;.,=0 (i.e., B; is the socle of B) and this isomorphism is given by j,: the
left-sided multiplication of j in e]e.

Proof. We assume that R is a right US-3 ring. From (%, 1’) and [5], Pro-
position 1,3) eJ=A@ B, where 4 and B are hollow. We may assume | 4| <|B].
[A: A(C)]<2 for any submodule C in eR by Lemma 3. Hence we divide
ourselves into two cases: I) [A: A(4)]=2 and II) A=A(4).

Case I). Since [A: A(4)]=2, by [5], Proposition 1,2) there exists a unit element
x in eRe such that x4AC J(A)P J(B) or xAD J(A)D J(B). However Ad e+
and so 4D J(A)® J(B). On the other hand, |4|=|J(4)+1| and x4+
J(A)BJ(B). Hence J(B)=0. Further A=R by Lemma 1 and [5], Proposition
1.2). Therefore A and B are simple and ¢J**'=0. Which means that every



788 M. HArADA

(simple) submodule C in eJ? is characteristic if and only if A(C)=A. Hence
[A: A(C)]=2 and ¢]* satisfies (#, 1) by [5], Proposition 1,2).

Case II). We know from the above argument that A=A(4)=A(B) (note that
we did not use the assumption |4|<|B]|). Lety be any unit element in eRe.
Since A=A(4), there exists an element j in efe such that (y+j)A=A. Then
(y+)(ADJ (B)CAD(y+))](B)C ADe] '™ = AD J(B). Hence A(4ADJ(B))
=A. Assume that B is not simple. A J(B) or J(A)BB is hollow by [5],
Proposition 1,4)-iv). Hence

JA)=0, ie., 4 issimple.

We shall show that B is uniserial. Assume ef'**=BJ*=C,®C,P-+; the C;
are hollow. If A(C))*A, Ci~A4, by [5], Proposition 1,2), which is a contradic-
tion from Lemma 2. Hence A=A(C))=A(C;). However {4, C,, C;} derives a
contradiction by Lemma 2 and [4], Corollary 2 of Theorem 2, provided C,=0.
Therefore '

B is uniserial .

Next assume g: A~B;/B;,,; BODB;DB,,,. Take {4, B;, B(g™"); the graph of
B; with respect ot g7'}. Since A4 is simple (and hence eJeBC B) and A(B)=A,
B is characteristic. Hence A~B;(g™"), and so there exists a unit «, in eRe such
that x,ACB;(g™). If B;,*+0, x,AC B;,,CeJ**', a contradiction. Hence
B;;,=0 and g: A~B,, the socle of B. Let j be an element in efe such that
(%¢,+7)A=A4, and put x,=x,+j. Then A(g)=x,A=(x,—j)A. Put A=aR.
Then a+g(a)=(x,—j)ar for some r in R. eJeACeJ'** and eJ**'=BRB] imply
eJeACB,. Hence

a=xar and g(a)= —jar,

and so g(a)=—jx7'a. Therefore g=(—jxz'), and —x,j'Eefe (b-ii)). Finally
assume that B is simple. If f: A=~B, {4, B, A(f)} derives a contradiction from
[5], Lemma 1, (note e/**'=0 and use Lemma 8 below). Hence 4&B (b-i)).
Conversely, assume that eR has one of the structures given in the theorem.
Clearly (%, 1) holds. Let {E;};%; be any set of submodules in eR. Case a):
If E;DeJ! and E,De], A(E;)=A for i=1,2 and E,DE, or E,CE, Hence

D=$@E,. contains a non-zero direct summand of D by [4], Corollary 1 of

Theorem 2. If E\Se]’ and E,Se]*, E,=«xE, (=~A) for some x in eRe by (#, 1).
Hence D satisfies (¥#, 3) again by [4], Corollary 1 of Theorem 2. Case b-ii):
If E;CeJ!, %,E; is a standard submodule in ¢J* for a unit x,=(e-}j) in eRe by
assumption. Hence E;~E; for some pair 7, j. Further A=A(E) by assump-
tion. Therefore D satisfies (*%, 3) by [4], Corollary 1 of Theorem 2. Case b-i):
This is much simpler than the above. Thus R is right US-3.
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In the last paragraph of the proof of ‘“‘only if part” in Theorem 1, we have
shown

Lemma 6. Assume that eJ]'=ADA'DB and 1) A and A’ are simple
modules with A(A)=A, and 2) B is non-simple and uniserial. If g: A~B;/B;,,
and A~B(g™"), Biy,=0 and g is given by j,; jEeJe, and hence i>1 (cf. [7],
Lemma 16).

We shall illustrate the structure in Theorem 1 as the following diagram:

1) eR e eJ?
2) . . . 0
2) eR eJ eJt eJ?
IA—— 0
B— B,—0

where the straight line means uniserial.

It is clear that if R has the structure above, (%, 1) (and hence (¥, 1')) holds.
We note that if (*, 1) does not hold, Theorem 1 is not true (see [6]). We
shall give examples of a) and b) in § 5.

2. US4 rings

Next we shall characterize a right US-4 ring with (¥, 1’).

Lemma 7. ‘Let R be a right US-4 ring and {A;} -1 a set of submodules in
eJ. Then 1)if A(A)=A or all i<3 and A,+A,, for k+k'<3, then A~
(some A;). 2) A;~A; for some pair i,j. 3) If [A: A(4))]=2 for i=1, 2, A,~4,.
4) If [A: A(4)])=3, A~A; for all j. 5) If [A: A(4)]=2, A;~A; for some
1,j<3.

Proof. This is clear from [4], Corollary 2 of Theorem 2.

Lemma 8. Let A, and A, be as in (1). Assume Jit'=0. If A(4,)=A,

A, is characteristic.
Proof. This is clear.

Lemma 9. Let R be aright US-4 (basic) ring, and {A;}}.1 a set of hollow
submodules on the level e]* in (1). If A(A4;))=A for all i, t<3.

Proof. This is clear from Lemmas 7, 8 and Remark 5.

From now on we assume that R is a right US-4 (basic) ring satisfyin
g g g
(*, 1'). Let D=(eJ'=)4,PA,PD---PD A, where the A; are hollow. In the
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following lemmas, we mainly assume that D is characteristic. We note [A:
A(A4;)]<3 for all { by Lemma 3.

Lemma 10. Assume [A: A(4,)]=2 for all i. Then i) t=2. ii) There
exists a unit x in eRe such that xA,=A4, 1iii) A, is a uniserial module with
|41 <2. iv) If there are characteristic submodules in A,@® A,, they are linear
with respect to the inclusion. v) If B is mot a characteristic submodule in
AP A4, [A: A(B)]=2 and those submodules are related by~.

Proof. We may assume |4,|<|4,| <:-<|4,| (note £>2). By Lemmas
1 and 7, 4A,=x,4, for all k. Hence

(a) if [A: A(4;)]>2 for all 7, there exists a unit x; in eRe such that

x;4,=A; for all .

On the other hand, since [A: A(4,)]=2, A=A(4,)+%,A(4,;). Assume ¢J**'=0
from Remark 5. Since D=AA4,=A(4)A,+%A(A4)A4,=A,PA4,, t=2. We
note that from the above argument and Lemma 3 we obtain

(B) If[A: A(4;)]=2 for all 7, £<3.
Assume that 4,/4, J* is uniserial and 4, J*=B,PB,P---@ B,, where the B; are
hollow and s>2. In order to show s<1, we may assume ¢/ ***'=0 by Remark
5. First we note that there exists a unit x in eRe such that x4,=A4,. Hence

A(B,)=A for all p. On the other hand, DJ*=A4, J*® 4, J*= 31D B,H1PxB,,
p=1 =1

which is a contradiction to (8). Therefore 4, and 4, are uniserial. Next as-
sume 4, J*+=0. A(4,JPA4,]J?)=+A by existence of x,. Hence {4,, 4,JPA,]*%
derives a contradiction by Lemma 7. Therefore |4,| <2. Since A(4,JD(4,))
CA(A), A4S J(4))=A(A4) for A4S J(4))+A. Similarly [A: A(J(A)]
=2. Let E be a submodule with [A: A(E)]=3. Then there exists a unit
element x in eRe such that xEC 4, or xED A, by Lemma 7. In the former case
[A: A(E)]=[A: A(xE)]=2. If xkEDA4,, xE=A DE’; E'C 4,. Hence
[A: A(xE)]=2 from the above. Therefore there are no submodules E with
[A: A(E)]=3. Finally assume that 4,4, contains two characteristic sub-
modules C,, C, such that C,»C,. Consider {4,, 4,, C;, G}, and 4,~C, or
A,~C, by Lemma 7. If 4,0C,, C,=0and if 4,cC,, C,=A,®F; F CA,, and
so C,;=A4,p4,. Hence C;DC, or C;,CC,. Let A(E)=A. If |4,|=1, Eis
characteristic. Assume |4,|=2. Put C,=A4,PB,. Then E~C,; from the
above. Hence ECC, or E DC,, and so E is characteristic.

Lemma 11. Assume [A: A(4,)]=3 for all i. Then t <3, and the A; are
simple and there exists a unit x; in eRe such that x;A,=A; for each i. If t=3, D
satisfies (4, 1) and (8, 2) and [A: A(C)]<3 for every submodule C in D. If
t=2, D satisfies (%, 1).

Proof. Since [A: A(4,;)]=3, there exists a unit x; in eRe such that x;4,=4;
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from (e) and £<3 by (8). Assume ¢t=3. Taking {4,, J(D)}, we know from
Lemma 7 that 4, is simple and hence e¢Ji*'=0. It is clear from Lemmas 7 and
8 that there are no simple submodules B in D with A(B)=A. Hence D satisfies
(#,1). Let C be a submodule of D with |C|=2. Then D=C®A4, for some 7.
Hence A(C)=A by Lemma 7, and so D satisfies (§, 2). We obtain the similar
result for t=2.

Lemma 12, Assume [A: A(4)]=1 and A(A;)==A for i>2. Then A, is
uniserial and t <3.

1) t=3:
Then all A; are simple, [A: A(A;)]=2 for i=2, 3, A\A&A4, and A,D A, satisfies
& .

ii) ¢=2: a) A, is not simple.
Then [A: A(4,)]=2, and A, is a simple submodule isomorphic to B, the socle of A,.
If A,~E,|E;,, (A,DE;DE,,)), E;=B and E;,,;=0. Further BD A, satisfies (§, 1)
except B.

b) A, is simple.
Then 1) [A: A(4)]=2, A,DA,|]J(A4,) satisfies (§, 1) except A,.

2) A,|A, ] is uniserial for some t and

2-i). A,J'=0or

2-ii) A, J'=B,DB,; B, is simple and B, is uniserial.

2-ii-1)  A(B)=A(By)=A.

2-ii-1-1) B,=&B,/J(B,).

2-ii-1-2) A,&F,|F;,, (4,2F,DF;,,DB®B,).

2-ii-1-3) If f: A,;=G;[Gjs, (f': Bi=~G)[Gjyy) (B, D GO Gjy), then Gy =0
and f (f’) is given by j;; j Eeje.

2-ii-1-4) If f: A, ~ B,, we have the same result as 2-ii-1-3).

2-ii-2). [A: A(B)]=[A: A(By)]=2.

2-ii-2-1) B, and B, are simple and B,P B, satisfies (§, 1).

2-ii-2-2) A& F;|F;, (4,2 F,DF;;;,DB,®B,).

2-ii-2-3) If A,~B,, then f is given by ji; j' EeJe.

Proof. It is clear, from the assumption and Lemmas 1 and 7, that
[A: A(A4;)]=2 for all £>2. Assume that 4, contains two independent sub-
modules B, B,. If A(B)=A(B,)=A, {B,, B,, 4,, A,} derives a contradiction
by Lemmas 7, 8 and Remark 5. On the other hand, if A(B))=*A, {B,, B,, 4;,
A,} derives again a contradiction. Hence

A, is uniserial

by (%, 1').
a) J(4,)#+0: Consider {4, 4,, J(D)}. Then 4,~ 4, by Lemma 2.
Hence J(D)~A, or J(D)~A, by Lemma 7. However J(D)~ A4,, since J(D) is
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characteristic and J(4,)%=0. Hence
the A; are simple for all 1 >2.

Since [A: A(4;)]=2, there exists x; in eRe such that x;4,=A; for i>2 by
Lemmas 1 and 7. Hence in order to show ¢ <3, we may assume Ji*'=0 by
Remark 5. Noting &, A(4,), A=A(4,)P%,A(A4,), which implies that 4, 4,=

t
AA4,D gEBA;. Hence #<3. Assume t=3. Now we resume to the original

situation. We note efed, C J(4,), and hence A4, is characteristic. Since
A(J(A4))=A, A(J(A4,)DA,)*+=A. Consider {4,, J(4,)DPA4,, A, DA}. A(4)=A
and A(J(A4,)®4,)F+A imply (J(4,)P A4;)~(A4,A4;) by Lemma 7. Hence there
exists a unit x in eRe such that x(J(4,)P4,)C(4,PA4,) or x(J(4,)PA,)D
(4,0 A4,). However, A(J(4,))=A implies xJ(4,)E 4, A,. Hence x(J(4,)PA4,)
DA,DA, Taking R=R/J**!, we know that it is impossible. Therefore =2
provided J(4,)*0, i.e.,

D= A1®A2 (](Al)*o) .

Now we take the similar manner to Lemma 6. Assume f: 4,~E;/E;.,; A,D
E,DE;,,. We note that A, is characteristic. {4,, 4,, E,(f™")} implies 4,~
E(f™) from the above remark and Lemma 7. Hence E;.,=0 as the proof of
Lemma 6. Further since A(4,)*+A, 4A,~E,; the socle of 4. Let C(=%E,) be
a simple submodule in E,PA, Consider {4,, C, 4,, A,}. It is clear that if
C~A4,, CcA4, Hence C~A4, by Lemmas 2 and 7, and so E,PA4, satisfies
(#, 1) except E,.

b) J(4,)=0, ¢>3. Assume J(4,)#0. Since >3, there exists a unit x in
eRe with x4,= A4, by Lemmas 1 and 7, and so A(4,DJ(4,))*+A. Then
A,~A,PJ(4,) by Lemma 7. Assume A,Dy(4;,DJ(4,)) for some unit y. Since
A, is simple and A(4))=A, p(y4,)=4,, where p,: eJ]'— A, the projection,
which is a contradiction. Similarly, since 4, is simple and 4, is not, p,(y'4,)C
J(4,) for any unit y" in eRe. Hence 4,& y'(4,DJ(4,)). Therefore

A4, (and so A4; (:>2)) is simple.

Accordingly =3 from the initial paragraph of a). If f: 4,~4,, {4,, 4,(f), 4,
A,} derives a contradiction, since AA,=A,DA, as before (note eJi*'=0).
Hence A,A2A4,. Further if 4, A, contains a characteristic submodule B==0,
{4,, B, 4,, A,} derives a contradiction. Therefore 4, A, satisfies (#, 1).

Case t=2 and J(4,)=0 (D=A4,®A4,). First we shall show that 4,P 4,/](4,)
satisfies (#, 1) except 4;,. Since A(4,)= A, there exists a unit x in eRe such that
pi(x4,)=A,, where p;: e]' — A, is the projection. Further efed,C A4,, since 4,
is simple. Hence (x+j)(4,+J )£ A4,+ ]+ for any j in efe, and so A(4,)=
A((A,+JY[J*Y). Therefore we may assume Ji*'=0 (cf. Remark 5). Then
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A,P A, satisfies (§, 1) except 4, from Lemma 7. Now we resume the original
situation. Since 4, is simple, eJ**'=4,]. Assume that 4,/4,]* is uniserial
and eJi**=B @ B,P-:- D B,, where the B; are hollow. Then from Lemmas 10~
16 below, s<3. Further [A: A(B;)]<2 by Lemmas 2 and 7. Assume s=3.
Then A(B;)#A (resp. [A: A(B,]#2) for some 7 (resp. j) by Lemmas 7 and 10.
Hence we remain two cases A(B))=A, [A: A(B;)]=2 for j=2, 3 and A(B;)=A
for i=1, 2, [A: A(B;)]=2. On the other hand, since A(4,)=A, we do not have
such cases by Lemmas 2 and 7. Therefore s<2. Similarly we do not have a
case A(B))=A and [A: A(B;)]=2. Thus we obtain two cases; 2-ii-1): A(B;)=A
for i=1,2 and 2-ii-2): [A: A(B;)]=2 for j=1, 2.

2-ii-1) We assume |B,|<|B,|. {4,, B, B,, J(B,)®J(B,)} gives J(B,)=0
from Lemmas 2 and 7. Assume B, J*=C,PC,P--PC;; s=2 and the C; are
hollow. If [A: A(C)]>2, {4,, B, C,, C;} derives a contradiction from Lemmas
2and 7. Hence A(C,)=A(C,)=A. Taking R/J/+****1 we obtain again a con-
tradiction from {4,, B;; C,, C,;} and Lemmas 2, 7 and 8. Accordingly B, is
uniserial. If f: B, ~ B,[](B,), {4, By, B,, B,(f™")} derives a contradiction.
Hence B, == B,[]J(B,) (2-ii-1-1)). Further if g: B~ G;/G;,(B, 2 G; D Gyy,y),
{4,, B,, B,, G{(g™")} gives B,~G(g™"), since A(4,)=A(B,)=A. Hence G;,=0
and g is given by j;: jEefe from Lemma 6. Similarly if f: 4,~G;/Gy,,
{4,, Gi(f1h), 4,, 4;} gives A,~G(fT"), since A(4;)=A. Then we can show
similarly to Lemma 6 that G;,,=0 and f, is given by j7; j’EeJe (2-ii-1-3)). Next
if h: Ay~F;|F;. (4,2 F;DF;.,DB,®B,), consider {4,, Fj(h™"), 4;, A}. Then
xA,CFy(h7") for some unit x in eRe, since 4,#+F; and A(4,)=A. Hence
xA4,CF;,,CJ(4,), a contradiction. Accordingly A,AF;/F;,, (F;*+ A4,) (2-ii-1-2)).
In the same manner given in the proof of 2-ii-1-3), we have 2-ii-1-4).

2-ii-2) Since [A: A(B))]=[A: A(B,)]=2, B,~B, by Lemmas 1 and 7.
{4,, B,, B,, J(B)®J(B,)} gives J(B,)=J(B,)=0. Accordingly B, and B, are
simple. Let C be any simple submodule in Bi@B,. Then {4,, B, B,, C} shows
C=xB, for some unit x in eRe by Lemmas 2 and 7. Hence B,@PB, satisfies
(4, 1) (2-ii-2-1).

2-ii-2-2) is same to 2-ii-1-2). If f: A,~B,, {4,, 4\(f), B,, B} gives A;~
A,(f). Hence f is given by j;; j Eefe (2-ii-2-3)).

ReEMARK 13.  We shall consider the situation of ii-b) of Lemma 12. Taking
R=R|Ji*', we may assume that eJ(=V)=A4,PA,: the A; are simple, A(4,)=A,
and [A: A(4;)]=2. Then A,~A4, (~gRg;=A"). We shall express End, (V)

as elements of matrices (A’),. Since 4, is characteristic, for any element x in A,

X X
x=(1 3) :xeA .

0 x,

A being a division ring, x, and x, are uniquely determined by x,. Hence we
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obtain two monomorphisms as rings f;, f; of A to A’ such that f(x)=x; and
a homomorphism g as additive groups of A to A’ such that

i) glar') =f(x)e(x)Te(R().
Then A(4,)=g7*(0) (note, from i), that g7%0) is a division subring of A).
Hence [A: A(A4,;)]=2 is equivalent to

ii) [A: g Y(0)]=2.
Further (4, 1) holds if and only if, for any & in A, there exists x%=0 in A such
that

)@= —f( g (=g LR, ie, F: A& (F)=f(x)"g() is
surjective.
If @=+0, xeE g71(0). Hence if either |A|, cardinal of A, (|A|<|A’]) is finite or
|A] <|A[, iii) does not hold. Hence we assume that |A| is infinite. Further,
since f, is a monomorphism, we may assume that ACA’ and f, is the inclusion.
Now assume that A’ is commutative. Then g is a K-linear mapping from i),
where K=g~%0). Using those facts and |A|> oo, for any g we can show by
computation that there exists & in A’ not satisfying iii) for any x€A. There-
fore if A’ is commutative, we do not have the case of ii) of Lemma 12.

ReEMARK 14. Next we consider the case #=2 in Lemma 11. Let K be a
field and R a K-algebra. If [A’: K] is not divided by 3, this case does not
occur. Because, since V=4, A4, and A,~A4,, End,(V)=(A"), and AC(A'),.
[A: A(A4,)]=3 implies that 4[A": K] is divided by 3.

Finally we take division rings given by [10]. Let DD D, be division rings
such that [D: D,],=3 and [D: D,],=2. Put D=D,1+4Dyu, and D*=Hom, (,,D,
p,D1). Then [D*: D,],=2 and D* is a left D-vector space. Define 1*€D* by
setting 1*(1)=1, 1*(x)=0, and put 4,;=1*D,. Then D(4,)={d| €D, d4,C 4;}
=u"'Dyu, and so [D: D(4,)],=3. For any & in D* and A7'(0)=D,u,, we have
D=Du,®Dyv,. Put d=h(v,). Then (ur'u)l*(x,)=0 and (ui'u)1*(v,)=d’'=*0.
Hence A=(ui'u)1*d’'~'d, and so AD,=(ui'u)4,. Therefore D* satisfies (#, 1),
[D: D(A4,))]=3 and [D*: D,]=2. We shall use D* in § 5, Example 3'.

Now we resume to study the structure of right US-4 rings.

Lemma 15. If R is a US-4 ring with (%, 1). D has one of the structures
in Lemmas 10, 11, 12 and 16 below.

Proof. Assume 1) A(4,)=A(4;)=A(4;)=A. Then t=3 by Lemmas 7
and 8 (the case of Lemma 16 below). 2) A(4,)=A,(A)=A and A(4;)=*A for
:>3. Then {4,, 4,, 4,, A} derives a contradiction from Lemmas 2 and 7.
3) A(4;)=A and A(4);#A for i>2. This is a case of Lemma 12. 4) [A:
A(4;)]=2 for i <some [, [A: A(A4;)]=3 for j>I. Since [A: A(4;)]=>2 for all
k, from (&) there exists a unit x; in eRe such that x;4,=A4; for all .. Hence
A(A4;)=x;A,(A)x7", and so we obtain the cases of Lemmas 10 and 11.
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Lemma 16. Assume A(A;)=A for alli. Then t <3, and

1) ¢=3:

A, is uniserial and A,, A, are simple, A;&A, If A, is simple, A=A, and
A& A, If A, is not simple and f: Ay~F;|F;,, (4;DF;DF;,,), then F;.,=0 and
f is given by j,; j Eefe, and hence i>1.

2) t=2: i) Ai=4, (=& R/g])).

Then A, and A, are simple and A=g,Rg,~Z=Z2.

i) Ad, (14]<|4)

a) A, is umiserial; Ay=F,DF,D--DF,OF, =0
Then A, is a uniserial module with | A,| <2; A,=E,DE,DE,=0.

a-1) |4,|=2.

a-1-1) Iff: A\|E,~A,|F, (~gR|g.]), A~g,Re,~Z. fisa unique isomor-
phism. In this case put By={x+y| € A,PA4,, f()=I}.

a-1-2) If A)|E,~F;|F,,,, i>1, then i>p—1.

a-1-3) If f: E,~F;|F;,, (=gR/g:]) (p>i>2), A~g,Rg,~Z. We have
the same result as a-2-1) below, replacing A, with E,. In this case put Bi=
{x+y| EEDF;, f(x)=7}.

a-1-4) f: E,~F,. If p=2, A~g,Rg,~Z, where E,~F,~gR|g.R. Further
if f': A)|E,~F, (4,/Fy~E,), A,(f)=xA, for some unit x in eRe.

If p>2, we have the same result as a-2-2) below, replacing A, with E,. If f is not
given by j, put B =Ey(f).

a-1-5) Further every submodule in e]’ except B,, B} and B" is isomorphic
to a standard submodule in e]’ via x;; x is a unit in eRe.

a-2). |4,|=1:

a-2-1) If A,~F,|F;,, (=~g:R|g:]) for some i<p, A~gR.gs~Z. Further
AAT,F;,, for any (i%) j<p.

a-2-2) Assume f,, f,: Ai~F, (~gR|g]).

If the f; are not given by j| in eJe, there exists a unit x in eRe such that xA,=A,
and xfi—fx,=7j, (j€eJe). In this case A\AF;|F;., (:<p). In particular if
eJed, =0, A~g;Rgs~Z.

b) A,/A,]J* is uniserial and A, J* is not unisrial, i.e., A, J*=B,DB,PD---PB,,
where the B; are hollow. Then A, is simple and s=2. Further

b)) A(B;)=A(B)=A.

Then B\A<B, (| B,| < |B,|), and B, is simple, B, is uniserial.

b,-1) If f: Ai=F;/F;,, (4,DF;DF;,,DB,®B,), then we obtain the same
result modulo B,® B, as given in a-2-1).

b,-2) If f: A,~B,, f is givn given by j;; j Ee]e.

b,-3) If f: Ai=~H;|H;, (B,DH;DH,,,), then H;;,=0 and f is given by
i3 j Eee.

b,-4) If f: By~H;[H,,,, then H;,,=0 and f is given by j,; j Eeje.

by) [A: A(B)]=2 for i=1, 2.
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Then B,~B, and B,, B, are simple and V=B P B, satisfies (§, 1).
bz'l) AI*F"/F,‘.‘.I(AzDF‘DF,‘*.ID V).
b,-2) If f: A;~B,, f is given by j;; j Ee]e. (cf. [7], Theorem 17.)

Proof. We know #<3 by Lemma 9. Assume that |4,|<|4,]| <|4,].

i) t=3. Consider {4,, 4,, 4,, J(D)=]J(4)PJ(A4;)DPJ(4,)}. Since A(4;)
=A, J(4,)PJ(A4:)PJ:(A4) is contained in some A4; by Lemmas 2 and 7. Hence
J(4,)=J(A4;)=0 (note | 4;| >|A4;|). Assume that 4, contains two independent
submodules B, and B, in ¢J** on the same level in (1). Take R=R/Ji***,
Then both [A: A(B,)] and [A: A(B;)] are not equal to 1 and [A: A(B;)]=3 for
any ¢ by Lemmas 2 and 7, and hence [A: A(B;)]=2 for i=1 or 2 by Lemma 3,
(say 7=1). Then {B,, B,, 4,, 4,} contradicts Lemmas 2 and 7, since B;C 4,.
Hence 4, is uniserial. Assume f: A,~A4,. Then {4,, 4,, A;, A,(f)} implies
Ay(f)~(some 4;). Since A, is characteristic (we may assume J**'=0 by Remark
5), A,(f)c A4;, which is a contradiction. Finally assume g: 4,~F;/F;,,. Since
A(4;)=A and A,, 4, are simple, A4, is characteristic. Hence {4,, 4,, F;(g™"), 4a}
derives from Lemmas 2 and 7 that 4,~F(g™"). Therefore g is given by j; from
Lemma 6.

2) t=2.

i) f: Ay~A, Assume A%=A(4,(f)). Then {4,, 4,, A\(f), A(f)} implies
A,(f)~A; for some 7, say 1 from Lemma 7. Since A,~A,~A,(f), 4,(f)=x4,
for some unit x in eRe. Hence A(4,(f))=2A(4,(f))®'=A, a contradiction.
Accordingly A(4,(f))=A. Consider {4,, 4,, A,(f), J(4,)BJ(4,)}, and J(4,)=0
by Lemma 7 (note A(4;)=A(4,(f))=A). Hence 4, and 4, are simple, and so
eJi*'=0. Let f and f’' be two isomorphisms of 4, to 4, and consider {4,, 4,,
Ay(f), A\(f')y. Since eJ**'=0, they are characteristic, and so 4,(f)=4,(f’) by
Lemmas 7 and 8. Hence f=f'". Considering an isomorphism &f for € A,
A=1{0, 1}. Since Homg(4,, 4,)={0, 1}, A’'=gRg={0, 1}, where A~gR|g].

i) A4, (|4,1<|4,|). Assume A4,J=+0 and 4,]J*= CiDC,D---PC,
(s=>1), where the C; are hollow. Consider {4,, 4,, 4,J®C,, A,JBC3} (s=>2).
Then A4,JBC,~A,JHC, by Lemmas 2 and 7, provided A4,J=+0, Assume
A(A,JBC)=A for i=1, 2 and x(4,JBC,)CA,JBC, for some unit x. We
may assume J***1—=0. There exists j in eJe such that (x+j)(4,JDC)=4,]
@C,. Then xC,C(x+j)C,+jC,c 4, J+C,. Hence xC,C(4,JBC)N(A4,JD
C,)=A,], and so C;~A4,, a contradiction by Lemma 2. Hence A(4,JPC))+A
for some 7, say 1. {4,, 4,, 4,JDC,, A, JDC,} implies either A;~A,JPC, or
A,~A4,JBC, by Lemma 7. Which is again a contradiction by Lemma 2.
Hence s=1, and so

4, is uniserial, provided 4, J #0.

Similarly 4, is also uniserial, provided 4, J=40. Now assume that 4, is uniserial
(14;] 22 and hence so is 4;). We shall show |4;|<2. Assume 4, J?+0 and
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hence A,J*+0. Consider {4,,4,J®A4,]*, A, J*DA,], A;}. Since 4,+*A4, by
Lemma 2, 1) 4\/~4,J®A4,]*? or 2) A~A,J*PA,]J (A, and A, are symmetry)
or 3) A, JB A, J*~A,])*DA,].

1) Itis clear that x4,DA4,JPA4,], for a unit x. However 4, is uniserial,
and so 4,J*=0 (note |A4,|<|A4,|). 2) Thisis similar. 3) Aassume x(4, /D
A, J)D A, J*BA,]. Since A(4,)=A, there exists j in efe such that (x+j)4,=
A,. Let a,j, be an element in 4,] (a,E4,, j,J). Then x(a,j;+asj,)=a,j, for
some a,€4,, at€4,, ;= J and j, € J°. Hence (x-j)a,js—ja,j;+ xasj,= ayfs.
On the other hand, ja,j,, xa}j, are contained in Ji*2, Take the projection of eJ*
onto 4,, and a,j,€4, N J***=4,]*. Hence 4, J=0. Similarly if x(4, J DA, J?)
DA, J*PA,], A, J=0. Therefore |4,|<2.

We observe isomorphisms between sub-factor modules of 4, and A4,, and
then investigate submodules X in eJ’. It is well known that there exist sub-
modules 4,5CDC’ and 4,5DDD’ such that h: C/C'~D[D’ and X= {c+d |
eCP®D, h(c+C")=d+D'} (cf. [3]). We denote X by C(k)D.

a-1) Let |4,]|=2.

a-1-1) f: A\|Ey;~A,|F, (~gRJg]).

Then A’=gRg=2Z from 2-i) and f is a unique isomorphism.

a-1-2) ([7], Theorem 17) Assume f: A,/E,~F;/F;,, (i>1). Consider
{4,, 4,, E,® F,, A,(f)F;}. Since A(4,)=A(4,)=A, 4,73 A\(f)F;. Further
E,®F, being characteristic, from Lemma 7 there exists a unit x’ in eRe such
that x'4,C A,(f)F;. Letp;: eJ'*—=>A; be the projection and x'=x+j; x4,=4,,
j€eje as usual. Then for a generator @ in A4,

(x+j)a = ar+f(ar)+=z,+2,; rER, 2, €E, and z,€F,,,.
Hence xa—+py(ja) = ar+z, and p,(ja) = f(ar)+z, .

Since py(ja)EE,, xa= ar (mod E,). Assume i<<p—1. Since jac F, ,CF;,,
f(ar)= f(xa)=0 (mod F;,,). However xa is a generator of A,, and hence f=0.
Therefore 1> p—1.

a-1-3). See a-2-1) below.

a-1-4). E,=~F, (p=2). We have the situation of 2-i).

Assume further f: A,/E,~F, (4,/F,~E,), and consider {4,, 4,, 4,(f),
E,®F,}. Then A,~A,(f) by Lemma 7 and so 4,(f)=x4, for some unit x in
eRe, since A,~A,(f). If p>2, see a-2-2) below.

a-1-5) Let X be a submodule in eJ*.

iy X=A,(f)F:=F(f1") (f;: Ai=F;|F;,,). If i=1, consider R/J*3. Then
this contradicts 2-i). Hence i1, F;=F,_, and F;,,=0 from a-1-2). {4,, 4,,
E,®F,, A\(f)} shows 4,(f;)=xA, for some unit x in eRe.

i) X=A4,(f)A4, (f2: Ai/E;~A,|F;). Then X=R, from a-1-1).

i) X=A,(f;)F; (fs: 4)/E,~F,|F;,,i1>1) and hence i=p—1 or p by a-1-2).
Then {4, DF;1., 4y, E,DF,, A(fs)Fi} shows A,(f3)F;=x(4,DF,,).
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v) X=A4(f7") (fi: o= A[F,). {4, 4y, E,® F,, A(f:")} shows 4,=
xA,(f7Y).

v) X=F(f5") (fs: E;~F,;|F;.,,1>2). Inthiscase ¢J/"'=E,PF, Hence
this is the case of a-2). Accordingly X=B,, B} or B”, provided X is not iso-
morphic to a standard submodule in eJ**! via x;,.

Thus we have shown that X is isomorphic to a standard submodule in eJ¢ via
x, except B, B! and B”.

a-2) |4,|=1

a-2-1) Let f: A\~F;[F;, i<p). If F(f ")DxA4, for some unit x in eRe,
xA,C F;,,C A,, since J(F;(f™))=F;4,;, which is a contradiction from lemma 2.
We note further that A, is characteristic, since A(4,)=A and 4, is simple.
Assume A(F;(f™"))=%=A. Then {4,, 4,, F;(f ™)} derives a contradiction from the
above remarks and Lemma 7. It is clear that efe(F(f™))CeJe(F;PA,) C Fiy,.
Hence Fy(f") is also characteristic. Let f': A4,~F;/F;,, be another isomor-
phism. {4,, 4;, Fi(f™), F,(f' ")} gives F(f™)=F,(f'"") since they are chara-
cteristic. Therefore f=f’. Accordingly, A~g,R,g~Z as given in the proof of
2-i). Further assume g: A,~F;/F;,, (j<p). Again consider {4,, 4,, F,(f™),
F(g™}. Then F(f)DF;(g™) if i<j, and so Fj(g~")CF,4,, a contradiction.

a-2-2) Assume that f, f,: A;~F, and they are not given by j; in eJe.
Then {4,, 4;, A\(f)), A(f>)} gives, from Lemmas 6 and 7, that 4,(f))=x"4,(f,)
for some unit x’ in eRe. Since A(A4;)=A, there exists j in efJe such that
(#"+j)A,=A4,. Put x=x'4j. Then for a generator a in 4,

(x—7)(ayt+fo(a)) = ar+fi(ar); rER.

Hence
xa = ar, xfy(a)—ja = fy(ar) .

Next assume further that ¢: 4, ~F,/F,,, (i<p). Consider {4,, 4,, Fi(q™"),
A(f)}, and Fy(g~")~A,(f,) since F(q7") is characteristic. Which is a contradic-
tion. In particular, if efed,=0, A)(f) is characteristic, since A(4,(f))=A (if
A+AA(S)), {4, 4, A(f)} gives A;~A\(f)). Then f is given by j, from
Lemma 6). Hence f,=f, from the first paragraph, and so A~g;R;g~Z as in
the proof of 2-i).

b) A,/4,J* (k>1) is uniserial and Az_]"—-——-:z@B; (s=2). Then 4, is

simple from the initial paragraph of ii). Then DJ*=eJ***=4,J*. Since
e **=B @--DB,, s<3 from Lemma 15, and [A: A(B))]<2 for all i by
Lemmas 2 and 7. If [A: A(B))]=1 and [A: A(B,)]=2, {4,, B,, B,, B,} derives
a contradiction. Hence either [A: A(B;)]=1 for all 7 (b)) or [A: A(B;)]=2 for
all 7 (b;)). In the former case s=2 by Lemma 7 and in the latter case also s=2
and B,=xB, for some unit x in eRe by Lemma 10.
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b) A(B)=A(B)=A.

Then {4y, By, By, JB)®I(B)} implies J(B)=0 (1B, <|B,l). If f: Bi~B,
{4,, B,, B,, B\(f)} derives a contradiction. Hence B,&xB,. We can show as
before that B, is uniserial.

b,;-1) This is the case of a-2-1).

b,-2) Assume f: A, ~B, {4, A\(f), By, B} derives 4, ~A(f), ie.,
(x+7)4,=4,(f): x4,=A4, and jEeJe. (x+jla=ar+f(ar); A,=aR, rER.
Hence xa=ar and ja=f(ar). Put xa=b, and 4,=bR. f(b)=jx'b.

b,-3) Assume f: A;~H;/H,,,. {4, By, B,, H(f™")} shows A,~H(f™).
Hence H;,,=0 and f is given by j, as above (cf. Lemma 6).

b,-4) Assume f: Bi~H;/H;,,. {4, By, By, H(f™)} derives B,~H,(f™),
since A(B,)=A. Hence H;;;=0 and f is given by j; from Lemma 6.

b,) [A: A(B;)]=2 for i=1, 2, (B,=xB,).

{4,, B,, B,, ](B)®J(B,)} shows, from Lemma 2, that J(B,)=0, i.., B, is
simple. Further since A(4;)=A and [A: A(B,)]=2, [A: A(E)]=2 for all simple
submodules E in V=B,@®B, by Lemmas 2 and 8. Hence V satisfies (§, 1) by
Lemma 7.

b,-1) If Ay~F,/F;,;, A=Z by a-1-3). Hence A(B,)=A.

b,-2). Assume f: 4,~B,. {4,, B, B,, 4,(f)} derives 4,~A,(f). Hence
f is given by j, as b;-2).

RemaArk 17. If R is an algebra over an algebraically closed field K, A+Z
and the first part of a-2-2) does not occur (take f,=kf;, k==1; k€K). We can
express f in a-1-2) as an element in efe, however it is little complicated (cf.

[7], Theorem 17).
In order to make the converse version clear, we illustrate the structure of
Lemmas 10~16 as follows:

1) (Lemma 10)
eR eji e]i+1

4, — B, 0

Az = xAl—Bz == xBl—O
[A: A(4)]=[A: A(4,)]=2, every characteristic submodule in eJ* is linear
with respect to the inclusion and [A: A(C)]=2 for any non-characteristic sub-

module C in eJf. Further those C are related to one another with respect to~.
2) (Lemma 11)

eR eJ*
4, —0
3) | A—xA,—0

Ay=x,4,—0
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[A: A(4)]=[A: A(4,)]=[A: A(4,)]=3 and A4,PA4,PDA, satisfies (4, 1)
and (%, 2). Further [A: A(C)]<3 for every submodule C in 4,PA4,PA;,. (4,
may be zero.)

3) (Lemma 12, 1))

eR et
A, —0
¥
A4, —0
A=x,4,—0
[A: A(4))]=1 and [A: A(4,)] =[A: A(A,)]=2. Further 4,4, satisfies
# 1).
4) (Lemma 12, ii-a))
eR e]f e]ﬂ+i—1
A, — E,—0
4,—0

[A: A(4)]=1, [A: A(4,)]=2 and A,DE, satisfies (§, 1) except E,.
5) (Lemma 12, ii-b ii-b-2-ii-1))

eR e’ e itk eJ?
4,—0
B,—0
4,
B—————0

[A: A(4)]=1, [A: A(4y)]=2 and [A: A(B)]=[A: A(By)]=1. 4,D4,[](4,)
satisfies (#, 1) except 4,. (B, may be zero.)

5
eR et ef
4,-0
B,—0
4,

Bz_'O
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[A: A(B)]=[A: A(B,)]=2 and B,~B,. B,@B, satisfies (§, 1).
6) (Lemma 16, 1))

eR e]i e]i+n—l
4,—E,—0
AZ_O
Ly
A4,—0

[A: A(4)]=[A: A(4,)]=[A: A(4y)]=1. If f: A,~E,, f is given by
Jisj€efe. (4, A, and E;, may be zero.)
7) (Lemma 16, 2-i))
eR e’

4,—0

AZ—O

[A: A(4)]=[A: A(4,)]=1 and A~A'~Z,
8) (Lemma 16, 2-ii-a-1))

eR e]'i e]i+1 e]:‘+n—1
A,—E,—0
Az_Fz —F”_'O

[A: A4)]=[A: A(4)]=1. If f: A\|E,~ A,|F,, A~A'~Z. Every sub-
module except B,, B! and B” is isomorphic to a standard submodule via x,. (If
n=2 and E,~F, A~A'~Z) If E,=0, the conditions in a-2) of Lemma 16
are fulfiled.

9) (Lemma 16, 2-ii-b,))

eR e’ efitt efitr1
4,—0
B,—0
A, —
B,—— F,—0

[A: A(4)])=][A: A(4)]=]1, [A: AB)]=[A: A(By)]=1. If f: A,~B, f
is given by j;; jEefJe. Similar facts hold for other cases.
10) (Lemma 16, 2-ii-b,))
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eR e’ ef itk
A4,—-0
B, -0
4,
B,=xB,—0

[A: A(4)]=[A: A(4,)]=1, [A: A(B;)]=2 and B,P B, satisfies (§, 1).

We shall show that if eR has one of the structures of the above diagrams
1)~10), then R is a right US-4 ring with (%, 1). It is clear from the diagrams
that (%, 1’) holds. Let {U;}i., be a set of submodules in eR.

Diagram 1). If U, and U, are characteristic, U;D U, or U,C U,. Hence

U,® U, satisfies (¥, 2) by [4], Corollary 1 of Theorem 2. Hence Dzi @ U;

satisfies (**, 4) by [2], Lemma 1. Assume that U,NU,DeJ’. Then U; for
t=1, 2 is characteristic, and hence D satisfies (**, 4) from the above. Next
assume that U;DeJ* and e/ D U; for j>1. Since A(U,)=A, U@ U, satisfies
(**, 2) by [4], Corollary 1 of Theorem 2. Finally assume ¢/'D U, for all j. If
{U;}3.., is a set of non-characteristic submodules, then we may assume U;D
U, DU, for some units x; in eRe by assumption. Since [A: A(U;)]=2,
U, U, DU, satisfies (x*, 3) by [4], Corollary 3 of Theorem 2. Therefore D
satisfies (**, 4).

2) Asis shown in 1), we may assume that eJ/*D U; for all j. Then U;D
x%U, D x,U, D x,U, by assumption, where the x; are units in eRe. Then from the
assumption [A: A(C)]<3 and the argument of the proof of [4], Corollary 3 of
Theorem 2, D satisfies (%%, 4).

3) Lete/'D U, for all j. Then U;=A4,®B; or U;C 4, A; by assump-
tion, where B;C A, A4,. First assume U;C 4,PA, or U;=A,DB; (B;#0) for
all j<3. Then D satisfies (**, 4) by [4], Corollary 3 of Theorem 2 (note 4,
and 4,8 A4, are characteristic and see the remark above). If Uy=24, and
U,=A4,®B,, U,BU, satisfies (x*, 2) by [4], Corollary 1 of Theorem 2. Thus
D satisfies (¥, 4)

4) Every submodule in e]f is isomorphic to a standard submodule in eJ*
via x;. Hence we may assume that all U; are standard. Then D satisfies (¥, 4)
by [4], Corollaries 1~3 of Theorem 2.

5)and 5') LeteJ' DU,DA4,J and U,%+A4,P A4, Then U)/4,J=x(4,/A4,]),
and so x4,=U,. Further 4,PA4,] is characteristic. If U,=A4,PA4,J and
U,c 4,], U@ U, satisfies (%, 2). Accordingly we may assume that U; is 4, or
a submodule of 4, Therefore D satisfies (¥*, 4).

6) and 7) These are clear.
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8) First we note B,DE,F,DB! (E,F,DB”) and B}, B” do not appear
simultaneously. If the U; are standard for all ¢, U;~U; for some pair f, j.
Hence D satisfies (%, 4) by [4], Corollary 2 of Theorem 2. The conditions
given in Lemma 16 show that A,~A4,(f), F,(f~)~F,(g™"), «-* etc.. Hence we
obtain the desired result.

9) and 10) These are simpler than 8), (if 4,~ F;/F;,, (F;1,DB,®B,),
A~Z. Hence A(C)=A for any submodule C in ¢R).

Thus we obtain

Theorem 2. R is a right US-4 (basic) ring with (%, 1) if and only if eR
has one of the structures given in Lemmas 10~16 (cf. Diagrams 1)~10)) for each
primitive idempotent e.

3. Hereditary rings

In this section, we shall study a hereditary and right US-3 (resp. US-4)
ring R. If R is hereditary, (, 1’) holds, and hence we can make use of the
results in the previous sections.

Lemma 18. Assume that R is basic and hereditary. Then a submodule A in
eR is characteristic if and only if A(A)=A. Every non-zero element in Homy
(eR, fR) is a monomorphism, where e and f are primitive idempotents.

Proof. The second half is clear (see [9], Lemma 2). Hence, since eJe=0,
the first one is clear

From now on we assume that R is a hereditary and basic ring. First we
assume further that R is right US-3.

Theorem 3. Let R be a hereditary (and basic) ring. Then R is a right
US-3 ring if and onyl if eR has the following structure for each primitive idempotent
e:

i) eR[e]* is uniserial for some t and

i) eJ'=0 or eJ'*=ADB such that either

a) A and B are simple and ADR satisfies (#, 1), and [A: A(A)]=2, or

b) A is simple, B is uniserial and A is not isomorphic to any sub-factor mod-
ules of B (and hence A(A)=A(B)=A).

Proof. If R is right US-3, eR has the structure in Theorem 1. We con-
sider the case b) of Theorem 1. Assume that f: A~(the socle of B). Then
{4, A(f), B} derives a contradiction, since 4 and B are characteristic by Lemma
18. Thus we obtain the theorem from Theorem 1.

Let R be a basic herediatry ring. Then
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Ay My oeeeveees M,
AZ M23 Mzn
R= 0 S
Mn-—ln
A,

where the A, are division rings and the M;; are left A;- and right A;-modules [1].
We shall express explicitly the content of Theorem 3 for M;; in a row of
the above ring.

1)
(0 -+ ADA,0 -+ 0A,,0 -+ A,;,0)
2)
AN e A
(0 A0 «r A; 0 wes AL - (u, :) )
v,A;,) T e B
)
Uy A"p .
where =u,A;,Dv,A;, satisafies (4, 1).
v, A;
3) !
(00A;0- A0 A0 -
U NRVAVIN 0 o \ e A
0 0. 0 0)
0 Ve Ay, v A, e B

As is given in the proof of [9], Theorem 1, we can show a ring monomorphisms
prs: A=A, for r<<s<<k such that xu,—u,p,.(x) for xEA, and p,, ps=p»-

Next we shall characterize a hereditary (basic) and right US-4 ring. If R
is hereditary, some results in the previous sections may not occur as shown in
Theorem 3. We shall observe them.

In the case b) of Lemma 12, 4, is simple.

Because, since 4, is simple and [A: A(4,)]=2, A,~A4,[](4,). Hence A,~A4,
by Lemma 18.

We shall observe the conditions in Lemma 16 for a hereditary ring. a-1-1),
a-1-2), a-1-3), any of b-1-1)~4) and b,-2) do not occur from Lemma 18. For
instance, if f': 4,/E,~F,_,|F, (a-1-2)), f: Ay~F,_, by Lemma 18. Then 4,~
Ay(f) by a-1-5). However, A4, is characteristic, and so 4,=4,(f). Therefore
f=0.

We shall use the notations after Theorem 3.

Lemma 19. In case 2-i) in Lemma 16, e;R is of the form (0, --, Z, -+
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0++Z:-0). In case of 2-a-1-4) in Lemma 16, A, (resp. A;)) is of the form
0,+,Z,0,Z,0-) (resp. (0, - Z, 0, Z, 0 --+)).
Proof. Let E,~F,~euR. Then ewR~Z by Lemma 16. Let A,~e,R.

Then ¢,R is uniserial and M,,=u,Z (~F,). Since M, is a left A,-module,
A,CZ. Hence A,=Z. We have the same for 2-i).

Thus we have

Theorem 4. Let R be a hereditary (basic) ring. Then R is right US-4
if and only if for each e=e;;, eR has one of the following structures : 1~11

1) :
(0 b OA;OA"IOA;‘O b A,‘p b O)
2) (Lemma 10)

ul+1Ai(+1> 0 (ul+2Ai¢+2 e () e O)

(0 -+ 0A,04;0 +++ A0 - (

VA Vit A

it +1 it+2
[A: A(4))]=2 (1=1, 2) and u,,,, V4, may be zero. The conditions in Lemma
10 are satisfied.

3) (Lemma 11)

Ui\ e 4,
0 A0 A0 e A0 e [0y Ay, |0 0) e 4,
wt+1A’,‘+1 ...... A3

[A: A(A4,)]=3 for each i and A,P A, D A, satisfies (§,1) and (§,2). w, may
be zero.

4) (Lemma 12-i))

ut+1Ai,+1 0 O\ eeeees Al
(0 .ee A’O ...A‘.IO... A’.'O... 0-... vt+1Ai,+1 .10 .oe 0) ...... Az
0 w‘+2Ait+2 ...... A8

A(4y)=A, [A: A(4)]=2 (i=1, 2) and A,D 4, satisfies (§, 1).
Q)
5) (Lemma 12-ii-a) and b))

(0 s A0 -+ A0 -+ AL -

<u1+1Ai‘+1 ) 0 . 0 (up—lAip_1> O . <uﬂA'p) . O) ...... Al
0 0 va‘.ﬂ ...... 4,

A(A)=A, [A: A(4)]=2, and u,A;,Dv, A, satisfies (8, 1), except u,A;,
({wt41, +++, wp—i} may be zero.)
6) (Lemma 16, 1))
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(0 -+ A0 s A0 -+ A0+ 0
U Ay, (O 0 0 \  eeeees 4,
0 LY,V NURIE 0 0--10 e 0 eeeene 4,
0 /\0 Wii3li,,, wyAi,) e A,
A(4)=A (=1, 2, 3) and u,,, may be zero.
CA;,,,
Achilc o CAitCAin
CA"HaC oes CA‘I'
7) (Lemma 16, 2-i))
_ _ _ W Z\ e A,
0+ Z0 e Z - 0Z -+ 0 - REN)
vl e 4,

8) (Lemma 16, 2-ii-a))
(0 «e A0 .- Ai10 A;,O
Uty Ai, 1 0 Upia D, s 0 \  eeeees A4,
0( 0. ( - 0)
0 Uitz A,-‘ 2 0 T, A‘.ﬁ ...... Az
A(Ax):'A (121) 2)) Uy g OF {'UH.“ oy, ‘Z)p}‘ may be zero.
CA
A,'CA,'IC oo CA“
CcA

CA

it 41 it+3

CA,;,,, C s CA;

it+2 144 ip

9) (Lemma 16, 2-ii-a’)
(O -+ Z0 .. A0 AL -

0 ol 0 wZ\ e 4,
( _]o )0 ( )0

Vil 0 VypnZ v,Z) e 4,
U4, may be zero.

10) (Lemma 16, 2-ii-b,))
(0 s A0 ++ ALO -+ ALD -

U Ay, \ [0 0 0 0 O\ eeeees 4,
0 0 0)

w‘+s+1Ai‘+:+l 0 ...... Bl

0 Vi42 Ai, +2 Dits A,', s 0O 1 ] eeeees Az

B2 Dissgis B,
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A(4)=A(B)=A (i=1, 2).

CA,;,,,
ACA;C - CA;, CA,,, ..,
CA,;,,,C =+ CA,,,,
CAy s © 00 CAy,
11) (Lemma 16, 2-ii-b))
(0 s A0 o A0 +e ALO -
U Ay, 0 0 0 0\ e A4,
0 0 0 0)
Wers1Bipe,| 0000 e B,
0 Vir2 A, ., L S A N 4,
Broer1Bip,nyl e B,
CAy.L,
A;CA;C - CA,CA,;,,,C + CA;,_CA,,,,,

A(4;))=A and [A: A: (B)]=2 (=1, 2). Wirsi1Biy iy DRssr1liy,, ., Satis-
fies (&, 1),
where Z=Z[2, the A’s are division rings and A; CA; -+ CA;, except 6), 8), 10)
and 11).  The series: (0---A;0-+-A; 0-++) on the same level means a uniserial module.

4. Left serial rings

We shall investigate the same problem for a left serial ring R. In this
case (*, 1) holds, too by [11], Corollarly 4,2. Therefore we can make use of
the results in §§ 1 and 2.

From now on we always assume that R is a left serial ring.

Lemma 20. If ¢J]'=A,DA, and the A; are uniserial, every submodule E
in eJ* is isomorphic to a standard submodule B,@ B, via x,:x is a unit in eRe, where
B;C A,.

See the proof of [3], Theorem 1.

Lemma 21. Let ef'=A,D A, and the A; hollow. If A(4,)= A, there exists
a unit x in eRe such that xA,=A,.

Proof. Since A(A4,)==A, there exists a unit y in eRe such that (y-+j")4,d¢ 4,
for all ;' in efe. Let p be the projection of e¢J‘ onto 4,. Then f=py,| 4, is an
element in Homg(A4,, 4;). If f is not an epimorphism, f=j, for some j in eJe,
since 4, is a hollow module (d¢e/**') and R is left serial. Then (y—j)4,C4,,
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a contradiction. Hence there exists a unit x in eRe such that x,=f, and so
szzAl.

Lemma 22. Let ef'=A,@DA, be as in Lemma 21. If A(4)=A, A(4,]J*
GBA,]"’)=A.

Proof. From Lemma 21, A(4;)=A. Hence we may assume k<k’. Let
x be any unit element in eRe. Since A(4,)=A, there exists j in efe such that
(e+)A=4, Hence (vt AT ®ALT)C AT +x+))AJ" CAT'®ATY,
and so 2=xjEA(A,J*D4,JY).

From Theorem 1, Lemmas 21, 22 and [8], Proposition 2, we obtain

Theorem 5. Let R be a left serial ring. Then R is a right US-3 ring if
and only if eR has the following structure for each primitive idempotent e :

There exists an integer t such that

1) eR|e]* is uniserial and

il) eJ*=0 or eJ* is a direct sum of a simple module and a uniserial module.

Finally we shall give a characterization of a left serial and right US-4 ring.
As was shown in the previous section, we shall refine the results in § 2.

In Lemma 10, every submodule in eJ is standard up to x; (x is a unit in

eRe) by Lemma 20. Further since A(4,P4,))*+A,
4,04,2])(4,)D](4,) >0

is the set of all characteristic submodules in eJ".
From the above proof we have

RemMark 23. Let R be left serial and assume ef'=A,PA,; the A4; are
uniserial. If [A: A(4,)]=2, [A: A(C)]<2 for every submodule C in e/ and
{eJ**} is the set of characteristic submodules in e¢J’. Hence, if R is left serial,
i), ii) and iii) in Lemma 10 imply iv) and v). However hereditarity does not as
is shown from the following example:

Let KL be fields such that [L: K]=2. Put
L L LQL LQL
K 9

_|0K L L
00 L L
00 O L

Then R is hereditary. Put L=1K+uK, e;,=e, and eJ=A,P A4,; A,=1e,R, A,=
ue, R satisfy 1), ii) and iii) in Lemma 10. Further [A: A(B)]=2 for any sub-
module B in ¢J? if A% A(B), since [L: K]=2. {e], e]? e/? (1Qu+u®1)e,R,
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(1Qutu®1)e, R} is the set of characteristic submodules provided #*€ K, and
(1R1)e R*(1Q14uQx)e, R, provided xeE K.

Lemma 24. Let B, and B, be simple submodules in eJ' and V=B,® B,.
If By~B,, V always satisfies (§, 1).

Proof. Since R is left serial, every simple submodule in V' is isomorphic
to B, via x;; x is a unit in eRe. Hence V satisfies (%, 1).

In Lemma 12, we do not have the case #=2 by Lemma 21.

In Lemma 16, we have always 4,34, since A(4;)=A(4;)=A. Hence
2-i), 2-a-1-1), 2-a-2-3) and p=2 in 2-a-1-4) do not occur. Similarly 2-a-2-1)
does not occur.

Thus we obtain

Theorem 6. Let R be a left serial ring. Then R is right US-4 if and
only if, for each primitive idempotent e, eR has one of the following structures :

1) eR is uniserial: eR ef eJ?
———
2) eR eJi™t o]t eJi*!
A,—B,—0
| 4,—B,—0

[A: A(A)]=2. In this case A,~A, and B, may be zero.

3) eR eJi™t ¢!
A4,—-0
—e—14,—-0
(6) A4,—0

[A: A(4,)]=3 and A,DA,D A, satisfies (§, 2). In this case A,~A=~A,.

4) eR eJi™' ]!
A,—0
4,0
A,—0

A(4)=A, [A: A(4)]=2 (1=2, 3). In this case Ay~ A,.
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5) eR e o]t et g]?
A4,-0
. ¢ — Az_O

A, . . 0

A(4)=A (=1, 2, 3). In this case A\7=A, and A, may be zero.

6) eR et ]t et gJ?
4,—B,—0
4B ———0
A(4)=A (i=1, 2).
7) eR eJi™t eJ' et eJ* et g]?
4,—0
—— B,—0
4,

B——e—0
A(4)=A (i=1, 2, 3) and A(B;)=A (j=1, 2).

8) eR o™t eJi et gJ! ef?
A4,—0
—— B,—0
4,
’BZ—O

A(A)=A(A4)=A and [A: A(B,))]=2. In this case By~B,,
where each straight line means “uniserial”.

5. Examples

We shall give examples of hereditary (resp. left serial) and right US-3
(resp. US-4) rings. Let K be a field. By L and L’ we denote extension fields
of K with [L: K]=2 and [L’: K]=3, respectively, and Z=Z/2, where Z is the
ring of integers.

The following two rings are hereditary, left serial and right US-3 rings.
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K K K K
L L L
K K K| . .
xol® the second type b) of Theorem 1 and| L L|is the first
0 K
0 K
type a) of Theorem 1.
On the other hand
KL L
0 L L] is a hereditary, non-left serial and
00K

right US-3 ring, and

LLO
0 K K| with epe,=0 is a left
00K

serial, non-hereditary and right US-3 ring.

Next we shall give hereditary and right US-4 rings for each structure in
Theorem 4. However, we can not construct an example of the case 5) from
the reason given in Remark 13.

1 (KKK 2 (LLLL 3 ([L'L' L
K K L LL L' L'
0 K K K 0 K
0 K,
3’ (D D*\, where D, D, and D¥* are given in Remark 14.
(43,)
4 (LLL 6 KK KKK
L0 K O0O0O0
0 K K 00
K K
0 K,
7 |Z(Z\(Z 8 [KK KKK
(0)(z) XK 00
Z (Z K 00
0 Z 0 K]
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9 (Z(Z\(0\(Z Y (ZLL
(o)(2)z) r1
Z 0 Z 0 Z

0 Z Z

z

where L is an extension of Z with [L: Z]=2. ¢,R is of the form 2-1) in
Lemma 16 and e,R is of the form in Lemma 10.

10 K KKKKK 11 [LLLL

K 0O0O0O LO0O
K KKK LL
K 00 0 K

K K

0 K

The rings of 1)~6), 8), 10) and 11) are left serial.
If R is either hereditary or left serial, 4,/E,~ 4,/F, implies 4,~ A, in
Lemma 16. In general this is not true for US-4 rings.
We shall give rings of the type a) in Lemma 16. Let R=31@e;R and
e;e;=98;;¢; (the ¢; are primitive idempotents).
1) A,/E,~A,|F, and E,~F,

eR=eZ+e ]
|

4=, 2)Z+('1, 2)(2, 3)Z A=, 2/Z+(1, 2/(2, 3YZ
|
Ey=(1,2)2, 3)Z F=(1,2Y(2 3)Z
] )

&R =|ezZ+e2] R = e, Z
2,3)Z 2,3YZ
I |
0 0

and (1, 2) (2, 3)=(1, 2)'(2, 3)=0. This is a type of a-1-1) and a-1-4). (R is
a finite ring.)
2) A)Ey~A,[F, EAF,
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eR=eZte]
|

A, = (1, 2)Z+(1, 2)(2, 3)K A, =1, 2YZ+(1, 2)/(2, DK
E, = (|1, 2)(2, )K F,= (|1, 2)(2, 9K
0 0
&R =e,K+e,] eR=eK eR=eK
@, 3f15__|—(i, 9K | ;
b 0

and (1, 2)(2,4)=(1, 2)'(2,3)=0, where K is a finite field of characteristic 2.
This is a type of a-1-1).

3)
R = elz+elj
I
A4, = (1, Z)Z-f—E2 4,=(1, l)Z—}—F2
l l
E,=(1, 2)(2, 3)K F,=(1, 1)1, Z)Z—{—F3
| |
0 F,= (1, 1)1, 2)(2, 3)K
I
0
&R =e,Z+e,] &R = e,K
| I
(2, 3)K 0
|
0
This is a type of a-1-2). If K=2Z, R is a left serial and finite ring.
4)
aR= elZ+elj
|
A,=(1,2)Z+E, A, = (1, 3)Z+F,
I B |
E,=(1,2)(2,49Z F,= (1, 3)(3, 5)Z+F,
| I
0 F;= (1, 3)3, 5)(5, 4 Z-+F,
|

F,= (1, 3)(3, 5)(5, (4, 6)K
l
0
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R =e,Z1e] &R =e,Z+te ] e,R=e,Z
(2,l4)2 (3,| 5Z (l)
0 ;
eR = esz—(—es] &R = e K+¢6;]
(5, I4)2 (6, I4-)K
0 0

This is a type of a-1-3).

Other products among (7, j) are zero (e.g. (1, 1)(1, 1)=0). In the above
ei(k, De;j=(k, 1)8;48,;, (8;; is Kronecker delta).

Similarly we can construct a US-4 ring of a-2-1) in Lemma 16. Finally
we shall give an example concerning ii) of Lemma 12.

Let K be a field of characteristic 2 and L an extension of K; L=K(a) and
a*c€K. Put g(a)=b=+0 in L and g(1)=0. Then g is a derivation of L over

K. Put
L(L)
R= L),

0 L

where (Z) = ((l) g(ll))(Z) (h, LE L)

as in Remark 13. Then e, J=A4,PA4, and A(4,)=A, [A: A(4,)]=2. How-
ever, e, ] does not satisfy (#, 1) as an L—L-module. Hence e, R has the
similar form to ii) of Lemma 12, but R is not right US-4.
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