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Introduction

In this paper, we construct some classes of higher dimensional knots, and
investigate geometrical and algebraic properties of the knots.

For classical knots, many concrete examples are known and studied. On
the other hand, for higher dimensional cases, not so many examples, or con-

structions, are known. One of reasons for this difference is seemed to be de-
rived from the existence of unknotting operations for classical knots to change
into the unknot, that is, any 1-knot is changed to the unknot by exchanging the
crossings suitably. In [5], F. Hosokawa and A. Kawauchi study an unknotting

operation for 2-knots, and recently Kawauchi argues this from more general
points of view in [11].. The author does not know whether there exist simple
unknotting operations for any w-knots.

In § 1, we first give modifications which change some knots to the unknot,
and we call such knots to be of type p, then we prove that any 2-knot is of type

2 in Theorem 1.2. Thus our defining 'unknotting operation' is valid for any

2-knots. We have a relationship between w-knots of type p and some disk pairs
in Theorem 1.10, and this is very useful in the later sections.

In § 2, we show that an n-knot of type p is also of type (n—^>+l), and this is
a geometrical description of the algebraic duality.

In § 3, we first generalize the notions of semi-unknotted manifolds and
ribbon maps [24]. Then we argue relationships between bounding manifolds

of knots and immersed disks.
In § 4, we discuss knots of type p and the bounding manifolds. Combin-

ing results in §§ 3 and 4, we can conclude that any 2-knoΐ is the boundary of an

immersed disk with only double points singularities (Corollary 4.2.2).

In §§ 5 and 6, we calculate the Alexander modules of knots, and introduce

some algebras to obtain an exact sequence containing a semi-group of knots.

0. Preliminaries

Throughout the paper, we shall work in the piecewise linear category, and
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we shall assume that all submanifolds in a manifold are locally flat. The results

in the paper remain valid in smooth category.

By an n-knot Kn, we mean that K" is an embedded w-sphere in an (rc+2)-

sphere 5Λ+2, and we may also denote an n-knot by (Sn+2, Kn). We define that

a submanifold W in a manifold M is proper if WΓ\dM=dW. We say that

a proper w-disk Dn in M is unknotted if there exists an w-disk Z)' in 3M such

that QD=dD' and Z>U£>' bounds an (w+l)-disk in M.

Let {/,-} be a family of disjoint embedding of SpxD9 in a manifold M, and

Ai=fi(SpxDq). Suppose that ^4t CintΛf or J!,- is proper in M for each /.

Then we say that {/,-}, or {A}, is trivial in M, if there exists a family of

disjoint embeddings {/•} of Bp+1xDq in M such that

(1) /, I aB>+1 x !>«=/;. for each /, where we identity 9BP+1 with S>,

(2) fi(Bp+lxDq)c:mMM if ^,-cintM, and fc\dM)=Bp+lxQDq if A is

proper in M.

For two manifold pairs (X19 YJ and (X2, Y"2), we define that (Xί9 Yλ) and
(-X"2, ^2) are equivalent if there exists an orientation preserving homeomorphism
from Xl onto J5Γ2 which induces an orientation preserving homeomorphism from
YΊ onto y2.

Let/be a map from a subspace Jζ, of X to F, then X U F is defined to be a

space obtained from the disjoint union of X and Y by identifying x and /(#)
for #e.XΓ0.

Let hr be an r-handle on an w-manifold M, then we may identify hr with
an embedding hr: BrXDm~r->M U Ar. For an r-handle Ar on M, A r |9^XDm~ r

is said to be the attaching map of Ar, and denoted by a(hr). By a(hr), we denote
an attaching sphere of Ar, i.e., hr(QBrX*) for *eDw~r. For r-handles Aί, •••, hr

v

on M, by M U (J^ί we denote the manifold M U U {/# I l^i^v}y if any con-
fusion does not occur.

We say that {/,} is an ambient isotopy on M if there exists an level preserv-
ing homeomorphism F: MxI-+MxI such that/ί(Λ?)=F(jc, t) for (#, ί)eMx/,
and that /0 is the identity map on M. For two maps g, h from JSΓ to M, we

define that g and A are ambient isotopίc if there exists an ambient isotopy {/,}

on M such thatf1°g=h.
For subspaces P and Q in J\Γ, we denote the regular neighbourhood of P in

X mod Q by N(P\X mod Q), and by N(P; X) we denote the regular neighbour-

hood of P in X'(see [9]).
For other terminologies, we refer the readers to [8], [19], [22] and [25].

1. Knots and disk pairs of type p

DEFINITION 1.1. For a manifold M, a family {h}} of ^-handles on M is
trivial if the family of attaching maps {cc(hqi)} of ^-handles is trivial in 3M.
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Let/) be an integer with l^p^n, then an w-knot K" in S*+2=dDn+3 is of

typep if there exist trivial (n—p+2)-handles {WΓP*2} on Dn+3 such that

(1) K*nhΓp+2=Φ for each/,
(2) IT bounds an (w+ l)-dίsk in at/)"*3 U U AΓM2), that is, 7Γ is unknotted

in a manifold obtained from Sn+2 by 'trivial surgery' along a trivial link consist-

ing of (n— />-f-l)-spheres in Sn+2.
By JCn(p), we denote the set of equivalence classes of w-knots of type p.

Then JCn(p) naturally forms a commutative semi-group under the knot sum.

1.1.1. Examples (1) In general, a ribbon w-knot K" is obtained from a

trivial link of ^-spheres SJ, »Sϊ, •••, Sn

m in AS""*"2 by connecting with m bands (for

example, see [1]). Choose m w-spheres 2, (i=l, •••, #0 very near to 5? which is
parallel to S". Let {A?+1} be trivial handles on Dn+3 with attaching spheres

{2,-} such that A?+1 Π ^M=-0. Then ̂  is unknotted in 9(J9n+3 U U AΓ1)- (See
Fig. 1.1. for m=l) This shows that every ribbon ra-knot is of type 1.

(2) We choose a simple closed curve γ as in Fig. 1.1. Then γ is un-
knotted in Sn+2, and the band is deformed to be 'straight' in the manifold ob-
tained from Sn+2 by performing trivial surgery along 7. Hence this ribbon
rc-knot is of type n.

In the later, we will describe more general forms for ribbon knots.

K"

Fig. 1.1.

(3) Any cable knots of an w-knots [10] of type p are also of type p.

Theorem 1.2. Any 2-knot is of type 2.

Proof. Let K2 be a 2-knot in S4, then we can choose a presentation of the
knot group

πι(S*-K2) = <*0, *lf -, *J {relations})
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such that each #f is represented by a meridianal loop. Let {c{} be disjoint

simple closed curves in S4 — K2 such that c{ with a path connecting to the base
point represents x^T1 in π^S*— K2) for each i. Let dD5=S4 and {h]} trivial
2-handles on Z)5 with attaching spheres fo } such that h] is disjoint from K2

for each ί. Then it holds that

(1) lk(K2

y Cί)=0 for all i, where lk( , ) is a linking number,

(2) let V=D*\J [JA , and M=dV, then M is simply connected and

It follows from the above condition (1) that K2 is homotopic to zero in M.
Thus we can apply T. Matumoto's result [16] to assert that K2 is unknotted in

M#(#S2xS2) for some n. Hence this implies that K2 is of type 2.

We will investigate properties for handle decompositions with the follow-
ing condition:

1.3. Let {hpi} be ^-handles on an w-disk D™, and {A?+1} (/>+l)-handles

on V= Z>? U U Aί such that
(1.3.1) h1- and Af+1 are complementary handles for each i, i.e., an attaching

sphere α(A?+1) of A? +1 intersects a belt sphere of A? in one point,

(1.3.2) {hpi U A?+1} are disjoint w-disks.

We remark that V U U A?+1 is an m-disk, say Dm.
The following is trivial by the definition, and we omit the proof:

Proposition 1.4. Let D?U (JA?U LJA?+1 satisfy (1.3.1) αwrf (1.3.2), then
{hp} are trivial p-handles on D$.

Next we will show an analogy with Proposition 1.4 for (^>-|-l) -handles:

Theorem 1.5. Let V U IJAfo 1 and V \J ( jAft 1 be handle decompositions of

Dm, both of which satisfies (1.3.1) and (1.3.2). Let aio (resp. a^) be the attaching

map of hpQl (resp. hpι1}. Let q=m — p — 1. Then there exist an orientation preser-
ving homeomorphism f: F-> V and a homeomorphίsm g{ : Bp+1 X Dq-^>Bp+1 X Dq such
thatfoaio=ailo(gi \ QBP+1 X D9) for each iy and that f* : πp(V)-*πp(V} is the identity

map.

Proof. From the conditions (1.3.1) and (1.3.2), we can first assume that

hίi^BΪ X Dq) - hpi(Bp X ZΠ), and

where Bp+ddBp+1 and Dq+CidDq+1 are regarded as inclusions of hemispheres, and

Bp+ X Dq is naturally identified with BpxDq

+. For proving the theorem, it suffices

to consider the case hp

ii
1\Bp

+χDt=hp

i\BpxDί for each i. Then ψ^AJ)-^

(h^lB^xD9) is a homeomorphism from Bp+χDq onto itself. As Bp+1xDq is
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homeomorphic to (J3£ X Dq) X /, it is easily seen that ψ,- can be extended

to a homeomorphism from Bp+1χDq onto itself, thus we can find a

homeomorphism gέ: Bp+1 X Dq -> Bp+1 X Dq such that ^^(g^Bί, X Dq) is the
identity map, hence it holds that hp

ίΐ
1°(gi\Bp

+χDq) = hp

i\BpχDq+. We remark

that gi is not necessarily orientation preserving. Let Bt= d(QBp+1— Bp+). By

our identification, dBpxDq+1\jBtxDq can be identified with an (m— l)-disk, say

Δ""1. We can define an embedding φiQ of Δm~l in dD% by φίo=(A? 1 9B* X Z)ί+1) U
Similarly, we can define φrt by φ f l = (A? | QB* X Z)ί+1) U

Give an orientation to Δ"1'1 such that φ^Δ1""1) and 9Z)?
have a compatible orientation, then φ^Δ"1""1) has an orientation compatible with

that of QD™ from our construction. Then by well known fact, it is easily shown

that there exists an orientation preserving homeomorphism /' of D™ onto itself
such that ffoφio=φil for each ί. As f^(hp

i\QBpxD<l+l)=hp

i\QBpxD^\ f is

extended to an orientation preserving homeomorphism /of V=Do+3\J (Jλ? onto
itself, which is easily seen to be a required one.

DEFINITION 1.6. A handle decomposition Df U U A? U U hp

{

+1 of Dm satisfy-
ing (1.3.1) and (1.3.2) is uniquely determined in the sense of Theorem 1.5.

We say that this handle decomposition is trivial, or a trivial handle decomposition

of Z)n+3, and that {a(hpi+1)} are standard p-spheres on V.
For (^>+l)-handles {/ }̂ on the above V, we say that {hty are geometrical

cancelling handles for {Af} if there exists an ambient isotopy {ft}: V->V such
that {/ι(#(A?))} are standard ^-spheres on V.

DEFINITION 1.7. Let Z>S+3U U A ? U U*?+1 be a handle decomposition of
DΛ+3, and Δ a proper, unknotted (n+l)-disk in F^fl^U U^ Assume the
following are satisfied:

(1) hpi+1 Π 9Δ=0 for any ί, and
(2) {hpi+1} are geometrically cancelling handles for {h?} .

In general, Δ is knotted in Dn+3. Regarding Δ as a proper disk in Z)M+3, we

denote β instead of Δ. Let α, be the attaching map of hpι+1 on V, and 3) a triple

(V, {#,-}, Δ). Then we say that 3) is a p-decomposition of (Dn+3, β)y and we call

that (Z)n+3, /3) is a disk pair of type p, and we say that the dimension of a disk
pair (Dn+3, β) is w-j-1. By &n(ρ), we denote the set of equivalence classes of

w-dimensional disk pairs of type p. Then Sn(p) naturally forms a commutative
semigroup under the usual boundary connected sum for pairs.

DEFINITION 1.8. Let <D=(V, {α(Af+1)>, Δ) be a ̂ -decomposition of a disk
pair (Z)Λ+3, β). In the case of p= 1, if lk(3Δ, a(h*))=Q for each ί, then we say
that 3) is good. Let S be an (w+l)-disk in 9F such that 9Δ=9Δ. In the case
of p^2, if we can choose Δ such that each α(λf+1) intersects S transversally and

that the intersection of α(/z£+1) and Δ consists of finitely many (p— l)-spheres,
then we say that 3) is good.
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REMARK 1.8.1. (1) For a ^-decomposition 3)=(V, {#,-}), Δ), it trivially
holds that lk(9Δ, α(^+1))=0 if p^2.

(2) Under the notation of Definition 1.8, let 3) be a good 1 -decomposition.
By moving 5 in general position with respect to {a(h} )} , Δ f| a(h}) consists of
even many points, half of which have the sign +, and the other half have the
sign — , where a point has the sign + if and only if a(h2i) intersects Δ with
the intersection number +1 in a neighbourhood of the point.

Lemma 1.9. Assume that (Dn+3

y β) has a p-decomposition, and p=l> 2 or

3<^p^n—l. Then we can find a good p-decomposίtion of (D*+3, β).

Proof. Let 3)= (F,{αt }, Δ) be a ^-decomposition of (Dn+3, β), and 5 an
isk in QV such that 9Δ=9S.

In the case of p= 2, by moving Δ rel 9Δ in general position with respect to

{a(hpi+l)}y £n#(A?+1) consists of compact, closed 1-manifolds, hence finitely
many 1 -spheres.

In the case of 3^p^n — 1, we can prove Lemma 1.9 by the same argument
as D. Hacon's result (Theorem 2.4 in §2 of [3]), except the algebraic duality in

(p. 442, line 14 in [3]). But the duality is easily checked to be valid if 1^/^S
p— 2 under the notation in [3], and this restriction does not affect any argument
in the proof.

In the case of p=l, the assertion is proved in Lemma 2.2 of author's pre-
vious paper [15].

We now state the main theorem in this section:

Theorem 1.10. Let Kn be an n-knot in Sn+2, and p an integer with l^p^

n. Then Kn is of type p if and only if there exists a disk pair (Dn+3, β) of type p
such that (Sn+2, Kn)=d(Dn+3, β).

Proof. First we will prove the necessity.
Suppose K" is an w-knot of type p in Sn+2=dDϊ+3, and q=n—p+2, then

there exist trivial ^-handles {h\} on Z>ϊ+3 such that
(1) KnΓ}hpi=U for each/,

(2) K" bounds an (n+ l)-disk 5 in 9(Z>?+3 U (J *ί)
By the triviality of {hty and the contractness of Δ, there exist geometrically can-

celling handles {h^1} for {AJ} on Z>?+3U U*ί such that AJ+ 1nS = 0 for ύlj.
Then Dϊ+3U IM?U UM+1 is an (w+3)-disk, say B^ Therefore there exists an
(w+3)-handle Z)o+3 on B1 to obtain a handle decomposition of Sn+3. Turning
this handle decomposition of Sn+3 upside down, Sn+3 consists of one 0-handle
Dn

Q

+3, ̂ -handles {A/}, (^>+l)-handles {h^1} and one (ra+3)-handle Z)?+3, where

^=Af+1 and hi

p+1h=hq

i as setwise. Then Dn

Q

+3\J (JS. 'U U^ί+1 gίves a trivίal
handle decomposition of an (w+l)-disk, say Z>*+3. Let V=Do+3\J
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our construction, it holds that
(1) Sc6F and (S"+2, Kn)=(dD»+3, 8S),

(2) S Π λ/=0 and 3S n V+1-0 for each ί.

We remark that 5 n A/+1Φ0 in general. From the above (1), we obtain a proper

unknotted (w+l)-disk Δ in F such that 9Δ=9Δ. Then (F, {tf(/*/+1)}, Δ) is a

^-decomposition of a required disk pair of type p.

Next we will prove the sufficiency, and the proof is similar to that for the

necessity.

Let (F, {<*,}, Δ) be a ^-decomposition of (D"+3> β) with (QDn+3

y β) =
(Sn+\ K"), and Z)"+3 be an (w+3)-handle on Dn+3 to obtain a handle decomposi-

tion V U U ̂ +1 U -Dϊ+3 of 5Λ+3. By our assumptions, we can regard K" C (J 9Z>Ϊ+3.
Identifying λ?+1 with a ^-handle A, ? on Z)?*3, it is easy to see that {h?} are trivial

handles on Z)?"1"3, and it holds Kn Π A/=0 for each i, since {A?*1} are geometrically

cancelling for {A?} on V. From the unknottedness of Δ in V, we can choose an

(n+ l)-disk Δ in Q(Dϊ+3 U U #,*) with 8Δ=^n. Therefore ^Λ is of type )̂.

The notion of a disk pair of type p is derived from [4], [6] ,[15] and [21].

A. Omae [18] argues a relationship between ribbon 2-knots and disk pairs ob-

tained in [6] and [21]. In [1], we prove that Kn is a ribbon knot if and only
if there exists a ribbon disk pair (Z>"+3, β) such that (Sn+2, Kn)=d(Dn+3

y β).

We note that the notions of ribbon disk pairs and disk pairs of type 1 coincide.

Combining this result and Theorem 1.10, we have the following:

Corollary 1.10.1. Let Kn be an n-knot, then K* is a ribbon n-knot if and

only if K" is of type 1.

Combining Lemma 1.9 and Theorem 1.10, we have the following:

Corollary 1.10.2. Let l<^p<^n, K" an n-knot, and (Dn+3> β) a disk pair

with Q(Dn+\ β)=(Sn+2> Kn). Consider the following assertions (l)-(3):

(1) K" is an n-knot of type p}

(2) (Dn+3, β) is a disk pair of type p,

(3) (Z)Λ+3, β) is a disk pair of type p with a good p-decomposίtion.
Then (1)<^(2)<==(3). The converse of (*) holds if ρ= 1, 2 or 3

2. A relationship between n-knots of distinct types

In this section, we investigate a relationship between knots of different

types, which is a geometrical realization of the algebraic duality.

The following is well-known, but for the completeness we will give a proof.

Lemma 2.1. Let M be a (2m-\-2)-manifold, p an integer with l^p^m,

and L0 and Lλ links consisting of p-spheres in int M. If L0 and Ll are homotopic

in My then L0 and Ll are ambient isotopic in M.
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Proof. Let Σ be a disjoint union of μ ^-spheres S{, •••, Sfr, and F: ΣX

I-+M be a homotopy such that F(ΣxO)=L0 and F(2xl)=£ι. Let 5(F) be
the set of singular points of F, i.e.,

If l^p<m, then *Sr(JP)=0 by moving F in general position, thus F is an

isotopy. By [7], we can extend F to an ambient isotopy of M.

Suppose p—my then we can assume S(F) consists of finitely many points

by general position argument. Let S(F)={x19 •• ,<y1, •••} such that F(xi)=F(yi)
for each /. Then there exists a simple arc γ; in SpjXlt for each /, such that

(1) one end point of γ; is in int SpjXl, the other end point is in Sp xO,

(2) γ, passes all singular points #/s in S^-xI, but 7,- does not pass any
singular points y/s in SpjXl.

Let l?y be a regular neighbourhood of γ, in S^X/mod S$χO, J5T=y.ByU

N(ΣxO; 2x7), and JT=cl(2x7— -Y), where we choose 7V(ΣxO; 2X/) which

does not contain any singular points {y, }. Let QX= L'U(ΣxO), then dX'=
L'U(Σxl). Therefore F\X is an embedding, and X is homeomorphic to
Σx7, thus/(ΣxO) is ambient isotopic tof(L') in M. In the same way, by the

embedding/ 1 X',f(L') is ambient isotopic to /(ΣX 1) in M. Therefore L0 and

Lj are ambient isotopic in M.

Theorem 2.2. If 2^2p^n, then it holds that JCn(p)c:<Xn(n—p+l), i.e.,

an n-knot of type p is also of thpe (n — p -{-!).

Proof. Let K" be an w-knot of type p in S*+*=dD*+*, 3)=(V, {αt|, Δ) a

^-decomposition of (Dn+3, β) such that 9(DΛ+3, β)=(S*+*, K"), and F=D5+3U
\]hpi. From Lemma 1.9, we can assume that 3) is good in the case of p= 1.

Let Δ be an (#+l)-disk in QV such that 9Δ— 8Δ. By the contractness of ZL,
there exist geometrically cancelling handles {hf*1} for {hp

{} on V such that

Hf+l n Δ=0 for all /, hence it holds that 9Δ Γi X/+1=0 for all i. We can choose

{%ip+l} so that{α(A>+1)} and {α(A?+1)} are ambient isotopic on QV. Let ά{=
a(hip+1). By the general position argument and 2p^n, we may assume that

i.e., βt n«(Ay+1) = 0 for all * and;, thus we can assume that hi

p+ίnhp

j

+1=0 for all
i and/. Hence (j^ is regarded as a link consisting of ̂ -spheres in 3Dn+3—Kn.
From our choice, (J α, is a trivial link in 9Z)W+3, hence {A/+1} are trivial handles
on Dn+3.

For proving ^w to be of type (n—p+l), it suffices to show that Kn is

unknotted in 9(Z)Λ+3U U V+1) BY our construction, Z)g+3U U^U U V+1 is an
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(rc+3)-disk, say Dϊ+3. Then we can regard K" as an n-knot in 9Z)?+3. We
remark that K" is unknotted in 3Z)ϊ+3, since Δ f! hip+1=0 for all i. If jp=l, then

by the goodness of ^-decomposition, we have lk(^Λ, α(λ?+1))=0 in 9(Z>S+3U U A?)

for each 2, which holds if p>l, by Remark 1.8.1. Hence a(hpi+1) is null homo-

topic in 8D?+3-^Cn, since K" is unknotted in 8Dϊ+3 By Lemma 2.1, {α(M+1)>

is a trivial link in QDn^-K\ Therefore K" U U {*(A?+1)> is a trivial link in
aZ)ϊ+3. Hence 7£n is unknotted in 9(£>ι+3U U^+1) From the disjointness of

{M+1> and {hf+1} on Z>S+3U U*ί it follows that Z>ϊ+3U U^+1=ΰM+3U U V+1

Thus K" is unknotted in d(Dn+3 U U V+1). This completes the proof of Theo-
rem 2.2.

From Corollary 1.10.1 and the existence of non-ribbon 2-knots, the inverse

inclusion in Theorem 2.2 does not hold in general.

3. Bounding manifolds and immersed disks for knots

First, we will give some definitions used in this and the later sections.

DEFINITION 3.1. Let /,•: QBP x Dm~p+1-+mt W be disjoint embeddings,
where W is anorientable m-manifold and l^p^m. Let q~m— p+l. Assume
that the orientation offi(dBpχDq) induced from BpχDq is compatible with that

of W. We denote f{ \ dBp x QD9 by /, 1 9, then /, 1 8 is regarded as an embedding
of (QB* X dDq){ in int W. Then we define X(W\ {/,-}) as the manifold

(J fi(ΘBp x Dq)) U U (B* X

which is said to be obtained from W by performing surgeries, whose index is p.

If W is embedded in a manifold M. , and each /,- can be extended to an em-

bedding fi:B
pxDq-+M such that fi(BpxDq)Γ\W=fi(QBpxDq)> then we say

%(Λf; {//}) is obtained from W by performing ambient surgeries. In the case of
dim M=m+l, let D{= f{(Bp X *) for *eint D\ then fi(BpχD9) can be regarded

as a regular neighbourhood of Di in M mod W. In this case, we also denote

%(M; {Df}) instead of X(M; {/,•}), if any confusion does not occur.

DEFINITION 3.2. Let PFbe an orientable (/z+l)-manifold in Sn+2 such that

dW is homeomorphic to an w-sphere. Then we say that W is semί-unknotted
of type p if there exist disjoint embeddings v^. Sn~p+ly^Έ)p-*\τ& W such that

(1) %(W\ M) is an (n+l)-disk, and
(2) {j°Vi} is trivial in Sn+2, where j: W-*Sn+2 is the inclusion map.

We say that {*>,-}, or simply {vi(Sn~p+1X*)} for *eint Dp, is a trivial system of

W.

DEFINITION 3.3. (i) A map p: Dn+1^>Sn+2 is a pseudo-ribbon map for an
//-knot K* if the following are satisfied :
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(1) p I QDn+l is an embedding, and p(QDn+l)=K",
(2) for each Λ?eZ>n+1, %p~1p(x)<^2 and there exists neighbourhood V of x

in Dn+1 such that p | V is an embedding,

(3) for*!, #2 with p(#ι)=p(A?2) and a^ΦΛfe, there exist neighbourhoods F,
of Λ?, (/—I, 2) such that ρ\ Vl and p| V2 are embeddings and p^) intersects ρ(V2)
transversally.
(ii) A pseudo-ribbon map p: D*+1-*Sn+2 is of type p if the following are sat-
isfied:

each component of {#|#p~1p(#)^2} is homeomorphic to Sp~lxD*~p+1, say

Γί, ΓΓ, Γί, TV, —, which satisfy that
(1) p(Tΐ)=p(T7) for each/,
(2) Π is proper in Z)«+1, and ΓΓCint Z)«+1,
(3) y 77 is trivial in D»+1- [) Tj.

Definitions 3.2 and 3.3 are generalizations of [2], [15] and [24]. In fact,
a semi-unknotted manifold in the sense of T. Yanagawa's [24] is semi-unknotted
of type 1 in our definition.

It is easily seen that any embedded %SlxS*—int£n+1 in Sn+2 are semi-
m

unknotted of type n if n>\. In Theorem 3 of [14], the author constructs in-
finitely many fl-knots bounding semi-unknotted (/z-|-l)-manifolds of type/), and
also of type q, where 2^p^q and q=n—p+l.

First we will argue relationships between bounding manifolds and pseudo-

ribbon maps for knots.

Theorem 3.4. Let p be a pseudo-ribbon map of type p for an n-knot Kn,

then there exists a semi-unknotteu (n-\-l)-manifold of type p bounding K" in Sn+2.

Proof. We use the notation in Definitions 3.2 and 3.3. Let q=n—p+l.
By the triviality of (J 77, there exist disjoint embeddings φf : BpxDq-+
Dn+1-[jTj such that φi(dBpxDq)=Ti and φ7\dD»+l)=BpxdDq for each i.
Then p°φi are disjoint embeddings of BpχD9 in Sn+2. There exist disjoint
embeddings φ, : BpχD«+1-»Sn+2 such that

(1) φi\BpxD9=poφh where D'cint D«+1,

(2) there exists a regular neighbourhood Ff of T T in Dn+1 such that p(F, )
is the intersection of φJ(Bp X Dq+l) and p(Dn+l—φi(BpxDq)\
thus Φi(BpχDq+1) is a regular neighbourhood of poφ^xD9) in 5M+2mod
p(D»+1-φi(BpxDq)). Let W=p(D»+1- [j Ft )U \]Φi(BpxQD*+l\ then W is an
orientable (rc+l)-manifold with 9W=ρ(dDn+1). From our construction, it follows

that {(Φi\BpχdD9+l)}i is a trivial system for W to be semi-unknotted of type/).

Lemma 3.5. Let W be a semi-unknotted (n-{-\)-manifold of type p with

trivial system {vt}, and L= \Jvi(Sn~p+1X*) for *eintD*. Then there exists a
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link LO consisting of (ρ-l)-spheres in int Dn+l such that c\(Dn+1-N(LQ; Dn+l)) is

homeomorphic to d(W—N(L\ W)).

Proof. From the definition, we can put

*,}) - d(W-N(L; W)} U
-

and there exists a homeomorphism /: X(W] {z/, })-»Z)Λ+1. Then LQ =
f( U (* X dDp)i) is a desired link for *eint Bn~p+l.

The following is well-known (for example, see Theorem 8.2, page 246 in
J.F.P. Hudson's Book [8], but we remark that in his book [8] the assertion is
misprinted,):

Handle structure Theorem. Let (W; d-W, d+W) be a cobordίsm, and
(W, Q-W) be r -connected for r^n — 3 and n^5. Then W has a handle decomposi-
tion on d-W consisting of handles of index greater than or equal to r+1.

Lemma 3.6. Let L be a link consisting of p-spheres in intZ)n for l^p^
n—2. Then D" has a handle decomposition on N(L\ Dn) consisting of handles
with index less than or equal to p-\- 1.

Proof. Let W=cl(Dn— N(L\ D")), then it suffices to show our assertion
that W has a handle decomposition on dN(L'y D") consisting of handles with
index less than or equal to p-{-l.

In the case of p=n— 2, the assertion is trivial. If p~l and w^4, then L is
a trivial link. Hence the assertion is easily seen to hold. Thus we assume
2^p^n-3. Let d.W=dDn and d+W=QN(L; Z)M), then (W] Q.W, d+W) is a
connected cobordism. From the dimensional assumption, it follows that W and
(W, Q-W) is simply connected. It is easily checked that H{(W, Q_W)=Q for
l^i^n— p~ 2. Therefore (W, d.W) is (n— p~ 2)-connected. From Handle
Structure Theorem, W^has a handle decomposition on Q-W consisting of handles
of index greater than or equla to n— p— 1. Turning this handle decomposition
upside-down, we obtain a desired one.

Combining Lemmas 3.5 and 3.6, we directly have the following:

Lemma 3.7. Let W be a semi-unknotted (n-\-l)-manifold of type p vΰiih a
trivial system {v}, and L=(]vi(Sn~p+lX*), *eintZ)*. Then W has a handle
decomposition on N(L\ W) consisting of handles of index less than or equal to p.

We will show the converse of Theorem 3.4. For simplifying the proof, we
first give the following notation:

3.8. We put



770 Y. MARUMOTO

/=[-!,!],

Δ=[-l/2, 1/2] and

X = JqXjp,

where q=n — />+2. We put

T=(Jqx 9ΔO Π (Δ'-1 X Jp) = Δ*"1 x QAP ,

then T is homeomorphic to Sp~1xDΛ"p+1. Regarding Γc/^XθΔ^, we denote
T~ instead of Γ, and we denote T by T+ if we regard TdΔ,q"1xJp. Then

T+ is proper in Aq~1xjp and

Γ+ is unknotted in Aq~1xjp .

The following is the converse of theorem 3.4:

Theorem 3.9. Let W be a semi-unknotted (n+l)-manifold of type p in
Sn+2, then there exists a pseudo-ribbon map of type p for an n-knot dW,

Proof. Let {vt} be a trivial system of W, and q=n—p-{-2. Let j: W-*

Sn+2 be the inclusion map. From the triviality of {jΌy,-}, there exist disjoint
embeddings φt : B

q X Dp-+Sn+2 such that φ, | QBq X Dp=jovi for each i. First we

may assume that φf(BqX*) intersects W transversally for *e.intDp

y and that

φi(BqχDp)ΠW is homeomorphic to (φi(Bq X *) Π W)XDp. Let WΌ = d(W—

()vi(dBqχDp)), then W0 U [j(BqχdDp)i is an (w+l)-dίsk, say Dn+\ where we
{V/19}

regard z/t 19=iΊ | S "*"1 X 9^ as an embedding of (9B* X QDp)i in W. We define a
map p: Dn+1-*Sn+2 by the following:

x) if

>,-(#) if

where we regard φ, as an embedding from (BqxDp){ in Sn+2. Then p is a
pseudo-ribbon map for K"=dW. Let d+W=dWQ—K", then from Lemma 3.7

it follows that

WQ = 9+PFx/ U {handles of index }̂.

Let Bqi = φi(BqX *) for *eint Z>*. For l^j ̂ ^>-l, it holds that BΪ Π (cores of
/-handles)—0 by the general position argument, i.e., we can move W0 ambient

isotopically keeping d+Wx! fixed so that E\ Π (/-handles)=0 for each z. Thus

we can assume that φi(BqxDp)n (/-handles)—0 for each i. Then Σ = B?Π
(cores of ^-handles) consists of finitely many points. Let #e2, then there
exists a regular neighbourhood V of z in Sn+2 and a homeomorphism /2: F->-Y",

where X is defined in 3.8, such that
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(i) Λ(*H(θ,o, .,θ),
(2) /,(φ,.(β*xZ)>) n V)=JqxJp, and/,((/>-handle) Π V)=Δ -lXj*.

Let Tl=(fz°p)-\T+) and T~=(fz°p-l)(Ί '-), and repeat this construction for

each *CΞΣ. Then {^l^pO*)^}^^, Tr|*<ΞΣ}. From the argument in
3.8 it is easily concludeed that Definition 3.3-(ii) is satisfied. Hence p is a
pseudo-ribbon map of type^> for K". This completes the proof of Theorem 3.9.

4. Knots of type p and bounding manifolds

In this section, we will study a bounding manifold for a knot of type p.
We first prove the following:

Theorem 4.1. Let l^p<^n. If an n-knot bounds a semi-unknotted (n+ 1)-
manίfold of type p in Sn+2

} then the n-knot is of type p.

Proof. Let W be a semi-unknotted (#+l)-manifold of type p in Stt+1 with
dW=Kn, and q=n—p+2. We use the notation in Definition 3.2.

There exist disjoint embeddings p,: Sq~~1xDp+1-^Sn+2 such that
(1) vi\Sq-lχDp=j^vh where Dp+1 is identified with Dp x[-l, 1] and

Dp=DpxQ.

(2) 5f.(5«-1xZ)*+1)n W^ovάS^xD*),
(3) ϊ>i gives a trivial framing for Vi(Sq~l X *) for * eint Dp.

Identifying Sn+2 with 3Z)n+3, add j-handles {h\} on Dn+3 with attaching maps ρ, .
Then it is easily seen that KnΓ\h1=0 for each /, and that surgeries for IF using
{vά are realized as ambient surgeries in 3(fln+3U U^?) Hence K" is unknotted
in Q(Dn+3 U U ^/)- Therefore K" is of type p.

Next we will consider the converse of the above:

Theorem 4.2. Assume p=l, 2 or 3^p^n—l. Let K* be an n-knot of

type p in Sn+2. Then K" bounsd a semi-unknotted (n-\-V)-manifold of type p in
Sn+2.

Proof. By Lemma 1.9 and Theorem 1.10, there exists a good ^-decomposi-
tion 3) = (V, {α, }, Δ) of (Z)n+3, β) such that (Sn+2, K") = d(D»+3, /3), where

V=Dn

0

+3 U U M. We can choose an (n+ l)-disk S in 97 such that S Π U «(M+1)
consists of finitely many (p— l)-spheres, because of the goodness of 3). We
remark that 0-sρheres mean to be even many points mentioned in Remark 1.8.1.

Let ϊ&Γ\a(hp+1)={Cij\l^j^μi}, where Ci} is a (p— l)-sphere, and C{j consists
of two points with different signs if />=!, as stated in Remark 1.8.1. There
exist ^-disks dijy l^j^μiy in a(hpi+1) such that ddij=Cij for/— 1, •••,//-,-, and
CtjΓ\dik=0 if l^k<j^μh i.e., dily •••, diμ. are innermostly arranged in this
order. Note that, if p=l, the intersection number of ΛΓ(rfίV; a(hpi+1)) and S is 0
for all /, j. Hence we can perform an ambient surgery for S by using rfu to
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obtain Wlt Then dl2 determines an ambient surgery for Wl to obtain W2

Repeating this procedure over all dίjy we finally obtain Wμ. in dV, μ~μi+ - +μr,
such that 6PFμ = 9S and WμΓ\ UΛ(Aί+1) = 0» i.e., there exist embeddings

f i j : BpxDq-+QV, where q=n—p+2, such that

(1) /0<β> X D ) Π U fl(Λί)=/;/B> X *)=*„ where * eint £>«,
(3) MB* X £>') Π /fw(S> X βΰ )=0 if ;<m,

/,X5>xZ>«) Π/.,(£>X Z)f)=0 if i
(3) J7β = Δ"+1, PΓ^χίϊΓo; rfu),

where r is the number of />-handles of DS+3U U^ (See Fig. 4.1.)

Fig. 4.1.

Hence Wμ is a bounding manifold of Kn in 5Λ+2. Let ^=/^|8JB*xZ)*. For
proving Theorem 4.2 it suffices to show that {vi}} is a trivial system of W— Wμ.
From our construction, {ι/, ; } are disjoint embeddings into int W^ and
y>(Wμ. 9 {z>, /}) is an (n+l)-disk. From the definition of ^-decompositions,
there exist a homeomorphism g: V-+Vy an #-disk Eq in 3D9"1"1, and disjoint
ί-disks JS{, — , JBίl in int 5^ such that

(1) hp

i(Bpx^)dg(a(hp

i

+% for *<Ξint £*,
(2) g°(fu I fiί X QDq)=hpi I J?f X 9 ,̂ where we naturally identify Dq with E\

and fi^ with Bf. (See Fig. 4.2)
Let £' = cl(9Z>*+1-£«), and /Jy =^0 (*{ 1 5J X £')• Then /{y : BJ X E' ~>
8Γ— U«(*{+1) are disjoint embeddings such that //;-|9Bf X QEl=vij\QBpxQDq.
This implies that {ι/, y} is a trivial system of W. This completes the proof of
Theorem 4.2.

Combining Theorems 3.4, 3.9, 4.1 and 4.2, we have

Corollary 4.2.1. If p=l, 2 or 3^p^n—l, then the following (l)-(3) are

equivalent :
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h*(B*xdE*)

Fig. 4.2.

(1) K" is an n-knot of type p.
(2) There exists a pseudo-ribbon map of type p for Kn.

(3) There exists a semi-unknotted manifold of type p bounding K".
^p^ίn, then (2) and (3) are equivalent, and (3) implies (1).

For any 1-knot K1, it is well known that K1 bounds an immersed disk with
clasp singularities. As an analogy for 2-knots, Theorems 1.3 and 4.2 imply
the following:

Corollary 4.2.2. For any 2-knot, there exists a pseudo-ribbon map for the

2-knot.

In [24], T. Yanagawa gives a characterization of ribbon knots by means of

ribbon maps, we here characterize ribbon knots by a weaker condition than
Yanagawa's. We first define that:

A pseudo-ribbon map p : Dn+1-*Sn+2 is separable if there exist disjoint (Λ+ 1)-
disks Δf in int Dn+1 such that

p\(Dn+1- (JΔ,) and p| (JΔ, are embeddings.

Theorem 4.3. An n-knot is a ribbon knot if and only if there exists a separable
pseudo-ribbon map for the knot.

Proof. First we will show the sufficiency. Let p be a separable pseudo-
ribbon map for K", and Δ, be disjoint (w+l)-disks in int Dn+1 satisfying the
condition in the above definition.

Let Λ{=dΔi for each i, then we can add trivial (w+l)-handles A?"1"1 on Z)n+3

with attaching spheres Λf such that A?+1 Π ρ(ΛΓ(Δt ; D
n+l))=p(N(Άi\ Dn+1)), where

S"+2 is identified with 9ΰ"+3. We can easily deform p(DH+1) to get an («+!)-

diskin9(Z)Λ+3U IM?+1) bounding K", thus K" is an n-knot of type 1, hence
ribbon n-knot by Corollary 1.10.1.

Conversely let K" be a ribbon n-knot, hence an w-knot of type 1 by Corollary
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1.10.1. By Corollary 4.2.1, we can choose a pseudo-ribbon map p of type 1
for Kn. By the definitions, it is easily seen that p is separable. This completes
the proof of Theorem 4.3.

5. Alexander modules of knots

In this and the next secions, we may use the following notation 5.1 without
any specifications:

NOTATION 5.1. Let Kn be an n-knot of type p. By Theorem 1.10, we can
find a disk pair (Z)M+3, β) with a ^-decomposition 3)=(F, {#,-}, Δ) such that
(Sn+2, Kn)=d(Dn+*, β), where α, is the attaching map of Af+1. Let v be the
number of (^+l)-handles {Af+1} on V=Do+3\J [jh*. By Lemma 1.9, we can
assume 3) is good if p=\. Let W be an exterior of β in Z)Λ+3, i.e., W=
cl(Dn+3~N(β] Dw+3)), and X an exterior of K" in S*+2. We put q=n-p+2.
Let 1̂  be the infinite cyclic covering space of W associated with the Hurewicz
homomorphism πl(W)-^Hl(W), then the covering transformation group of J^is
isomorphic to Z, and we choose a generator t. Let Λ—Z\t, t~1]. We now
introduce some notation:

: cl(F-ΛΓ(Δ; F)),
the lift of FO in W,
standards-spheres in dV such that 9Δ is unknotted in QV— { j ξ i y

T
T
X

*•
j?i = d(XQ-Ucίik(dB»+lxDq)\

where we denote lifts of A?, α, , Af+1, ξf in PFby hp

ik, a^ A, |+1, |ίΛ respectively
such that όtik=a(hip

k

+1). Let άik=ctik(dBp+1χ *). We choose indices of &ih, ξik

etc. such that tctik=aik+1, tξik=ξik+l etc. Then ?̂ is an infinite cyclic covering
space of X associated with the Hurewicz homomorphism π^X^H^X). We
consider all homology groups for subspaces in W as Λ-modules, unless otherwise
stated.

DEFINITION 5.2. We can choose [|10], •••, [|vo] as generators of HP(V^).
Then we can represent

[<Z/o] = Σ λ/y(0 [lω] , λiy(0 e Λ ,

as an element of Λ-module HP(VQ). We note that a Laurent polynomial \ij(t)
surely exists, from Remark 1.8.1 and goodness of 3) if p=l. We say that
M(t)=(\ij(t)) is an attaching matrix of 3).

We remark that M(t) is a relation matrix of HP(W).

the lift of T in
= c\(QW-T),
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REMARK 5.2.1. In the above definition, the choice of an attaching matrix
has the following ambiguities:

(1) The choice of the indices and the orientations of ξi9 and lift ξik:
this affects an attaching matrix as permuting rows, or multiplying some rows
by units of Λ.

(2) The choice of the indices and the orientations of ah and lift aik: this
corresponds to the same modifications of columns for an attaching matrix as
the above case (1).
Thus we identify two attaching matrices which differ in the above ambiguities.

In the case of 2^p^n, an attaching matrix is easily interpreted as the
following, since

5.2.2. Another description for attaching matrices in the case of 2^p^n.
Choose a base point e in QV— 3Δ. Let ξ0 be a meridianal loop for 3Δ in QV.
Let γ, be a path in QV— 3Δ connecting ξs and e for Λ^i^v. Let ξ0=7ό1(J
foU^o, and ξi=ξi\Jfγi if iφO. Then ^(V0) is generated by t=\ξQ], and πp(VQ)
is a free ZπΊ-module with basis [fj, •••, [fv]. As τtι(VQ) is isomorphic to Z, we
identify Zπi with Λ. Let γ{ be a path in QV— 3Δ connecting ai=ai(dBp+ίx *)

V

and e, for * eint Bq, and fl$ =#f U 7ί . Then we can represent [#y]=Σ \j(t) " [?ί]

as an element of ZπΊ-module TΓ^FO), where \ij(t)^Zπl, and an attaching matrix
of 3) is (\ij(t)). The ambiguities for the choice of yf etc. correspond to Remark
5.2.1.

The above description of attaching matrices is not valid for the case of
p=lj because &i(V0) is a free group on v+l generators. A similar descrip-
tion is possible in this case, but we omit it.

REMARK 5.2.3. Let M(t) be an attaching matrix of a ^-decomposition.
Then we may assume that #(1) is the identity matrix. Conversely, assume that
M(t) is a square matrix on Λ such that M(l) is the identity matrix. By the
similar construction to that in [21], we can easily construct a ^-decomposition of
a disk apir with an attaching matrix M(t).

The following Lemmas 5.3.1-5.3.3 are easily obtained, and we omit the
proof:

Lemma 5.3.1.

H(χ X, |Λ V tf r=ttr(Λ0y Jί1)= 4
( 0 otherwise.

Ifr=q, then generators are

for l^i^
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Lemma 5.3.2. Assume p3=q, then

(Λ/(f-l) if r = 0,

fl ,(*o)« Λv */ r = j», ?,

( 0 otherwise.

If r=p, then generators are [f10], ••-, [fvo]. If r=q, then generators are

[A/o(* X dD9+1)]y for ι

Lemma 5.3.3.

) otherwise.

Ifr=p+l, then generators are [hip

Q

+1(Bp+lX*), *hip

0

+l(dBp+1X*)], for

Lemma 5.4. Ifρ=£q—l, qy then the connecting homomorphism 9^:

+Hp(X^ is represented by an attaching matrix M(t) of 3).

Proof. Let /* : Hp( J?Ί) -> Hp(XQ) be the homomorphism induced by the

inclusion map, then j* is an isomorphism by Lemma 5.3.1. Let M ^'ϊXtlfo]),
then {#,-} are generators of free Λ-module Hp(%^). It holds that

where M(t)=(\ik(t)). This completes the proof of Lemma 5.4.

Lemma 5.5. If p=£q, then i*: Hq(X0)->Hq(XQ, -Xi) iί represented by the
transposed matrix o/M(ί~1), zϋΛ^r^ z^ is induced by the inclusion map, and M(ί) is
an attaching matrix of 3).

Proof. Let i7y=[#/S(*x9#*+1)], *<Ξint.β*, be generators of Hq(XQ), and
ζiQ=[$i*(*y<Dq)yaio(*χdDq)], *eint9^+1, be generators of H,(X0, X,). By
I(u, v) we denote the algebraic intersection number of u and v in J5Γ0. We

remark that 7(ίr fs0, i7i/)=l if and only if s=j and r=0, thus we have

= I(tm\jk(t) ξio, η:)

= the coefficient of tm in

Therefore it holds that
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This completes the proof of Lemma 5.5, since Hq(J^0) and Hq(X0, J?i) are free
Λ-modules by Lemmas 5.3.1 and 5.3.2.

Lemma 5.6. Let M(t) be an attaching matrix of a p-decomposition 3). Let

γ/J)eΛ, and x(t) = (Ύ1(t), •• ,7v(0)T> where ( )τ is the transposed of ( ). //
M(t) x(t)=Q, then x(i)=Q, where 0 is the zero vector.

Proof. From the definition of attaching matrices, it follows that M(l) is the

identity matrix £"v of degree v. Then jc(l)— 0. Assume, for somej, 7y(ί)Φθ,

and put J=Min(Max-fceΛΠ7y(0*°> (*— ϊ)* is a factor of *//(*)})• Then <* isy
a positive integer. Let (t— \)dy(t)=x(t), then #(1) Φ 0 and M(t) y(t)=Q. This
contradicts M(1)=EV. Therefore γj(t)=Q for allj, hence x(t)= 0.

Theorem 5.7. Ifl^r^n and rΦp, q—l, then Hr(X) β 0. // 2ρ ̂  n, then
an attaching matrix M(t) of a p-decomposίtion is a relation matrix of

Proof. Suppose l^r^n. From Lemma 5.3.1 and the Mayer- Vietoris
Theorem for (J?0, J?Ί), we have ffr(Jζ) ^ /fr(JP0) if rΦj—1, g'. Using Lemma
5.3.3, we have Hr(%)^Hr(%^ if rΦ^>, />+!. From these results and Lemma
5.3.2, it follows that Hr(X)sχQ if rΦ/>, ^+1, j— 1, g. From Lemmas 5.4, 5.5
and 5.6, it follows that 3* is monomorphism if p^pq—1, q, and that so is i% if

Using these facts and the well-known duality [17], we have Hr(X)&£θ if

— 1, p. This completes the proof of former assertion. The latter assertion

is trivially obtained from the exact sequence :

* 0 ,

since Hp+l(X, J?Ί) and Hp(%^) are free Λ-modules.

Corollary 5.7.1. Let Kn be an n-knot of type p} and X the infinite cyclic
cofering space of the exterior of Kn in Sn+2. If 2^p^n—l, and Hp(X)^ΰ, then

Kn is unknotted.
For a disk pair (Z)n+3, /3) of type p, the same assertion as the above holds.

Proof. From our assumption, it follows that π1(X)^Zy thus J? is the

universal covering space. From the duality [17], we have HP_1(X)^0. There-
fore X is a homotopy circle, and Kn is unknotted by the unknotting theorem
of higher dimensional knots [12], [20] and [23].

For the disk pair (Dn+3

y β), we can prove the assertion by the similar manner

to the above.
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Corollary 5.7.2. Let p and p' be distinct integers with 2<2p^n and 2<

2p'^n. Assume that Kn is an n-knot of type p} and also of type p', then Kn is
unknotted.

Proof. Suppose p<p'> thus p<p'<n— p'-{-l<n— p+l. From our as-
sumption and Theorem 5.7, it follows that Hp(X)^0 for the infinite cyclic
covering space J?" of the exterior of Kn in Sn+2. By Corollary 5.7.1, Kn is

unknotted.

Corollary 5.7.3. For l^p^n, <JCn(p) is infinitely generated as a commuta-
tive semigroup.

Proof. Let \μ,(t)=μt—(μ — l) for μ,eZ, and Mμ.(t) be a Ixl-matrix
(\μ(t)). Then we can find a disk pair (Dn+3

y β) with a ̂ -decomposition having
an attaching matrix Mμ(t) from Remark 5.2.3. Let (Sn+2, K") = 9(Dn+3, β),
then ^-dimensional Alexander invariant [13] of K" is \μ.(f). It is trivial that the
sum of two knots induces the product of Alexander invariants. It is easily seen
that there are infinitely many μ such that \μ.(t) is a prime polynomial. Thus
JCn(p) is infinitely generated.

6. Disk pairs and attaching matrices

In this section, we will use the Notation 5.1 if necessary, without any speci-

fications.

DEFINITION 6.1. Let Mat(Λ) be the set of a square matrices over Λ whose
determinant is ±1 when substituting t=l. For Mly M2eMat(Λ), we define

Ml®M2 as the block sum of Mλ and M2, i.e., M10M2==Γ l . An equiva-
L \J J.τJ.2-*

lence relation on Mat(Λ) is defined to be generated by the following operations:
(7^) Permuting rows or permuting columns.
(T2) Multiplying a row or a column by a unit of Λ.
(T3) Adding a multiple of a row (resp. a column) by a unit of Λ to another

row (resp. column).

(T4) Replacing M by \M °1, or vice versa.

Then we define JM^Λ.) the set of equivalence classes of matrices of Mat(Λ).
We remark that ^^(Λ) forms a commutative semigroup with a binary operation
naturally induced from 0.

We define <3HQ(Λ) the set of equivalence classes of matrices of Mat(Λ), each
of which induces an epimorphism from Λv onto itself for some v.

Lemma 6.2. Let P be a subspace in a manifold Y, and aQ and ̂  embedd-
ίngs of P in a manifold M. Suppose that aQ(P)=al(P) and that a0 and aλ are
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ambient isotopic in M. Then there exists a homeomorphίsm g: Y-*Y such that

Proof. Let {/,} be an ambient isotopy between α0 and aly hence fι°ocQ=a1.
Let MO— MU Y. By [7], we can extend {/,} in M0 so that there exists an

<*Q

ambient isotopy {/,} : Λf0-»Λf0 which satisfies (ft\(i(M)))oi=ioft for each t^I,
where i: M->M0 is the inclusion map. We can find an embedding a0: Y-*MQ

such that #0|P=αr0. Let cίι=fι°cίQ, then aλ is an embedding ofF in Λf0. It
holds that

By definition, M0 is 'separated' into i(M) and#0(F) by α0(P). Thus
#i(y). Hence g=81~

1o&0 is a well-defined homeomorphism from Y onto itself,
and this is a required one.

Lemma 6.3. Let (Dn+3, β0) and (Dn+3, βλ) be disk pairs of type p which have
p-decompositions wlith the same attaching matrix. Assume 2<2p^n} then the two

disk pairs are equivalent.

Proof. Let 3)j be a ^-decomposition of (Dn+3, /3y), for j= 0, 1, such that
3)j has an attaching matrix M(ί) of degree v. Without loss of generality, we

can assume that 3)j=(V, {«„}, Δ) for -0, 1, where F=Z>2+SU \]hl Let v be
the number of /)-handles in V.

From Theorem 1.5, there exists an orientation preserving homeomorphism
/: V-+V and homeomorphisms g{\ Bp+1 X D9 -* Bp+1 X Dq such that /oαίo =

and /* '• **(F)-*ar*(F) is the identity. Let

and <Di=(V, {α<0}, Δ). Then j®$ is a ^-decomposition of (Z)w+3, y90) with an
attaching matrix M(ί). We now show the following sublemma:

Sublemma. We can find a ̂ -decomposition 3)Z=(V, {αί3}, Δ) of (DM+3, /30)
such that ai3(dBp+1xD9) = ail(dBp+1χDq)y and {aiz} and {αj are ambient
isotopic in QV.

Proof of Sublemma. As /(Δ) is unknotted in V, there exists an ambient

isotopy {φ(/}}: Γ-> F such that φi1)/(Δ) = Δ. Put αί2 — φ(ιυoαί0, and ^)2=
(I7, {««}, Δ). Then 3)2 is a ̂ -decomposition of (Dn+3, /S0). We first show that
an attaching matrix of 3)2 is M(f). Let V be the wedge product, C=*S1V

iSfV — VSί, and C=β2V5{V V*S$, then there exist homotopy equivalences
ψ0: Γ0->C and ^0: V-+C such that ^0|J7 0=ι/r0 and ψ 0(f,.)=Sί for each /.
Using the ambient isotopy {φί1}}, we can construct an ambient isotopy {φt\ :
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C->C such that φ^ψΌ— ̂ o°Φί1} f°r each ί^^ From our choice of /, it follows

that $ o°/(£0— Sί ίn C. Then ^0φiυ/(W — AM^)— &(Sf ) -S? in C. Thus
we can represent [ψoφi^/ίfίM^ £w'' [*Sf| in π>(Q as ^V^-module for some m{.
This means that an attaching matrix of 3)2 is obtained from M(t) by multiplying

some rows by units of Zπλ=A. From 5.2.1, we can choose M(t) as an attaching
matrix of £D2. From 5.2.2, ai2(dBp+1x*) and an(QBp+1x*) are homotopic in
QV— 8Δ. By our dimensional assumption and Lemma 2.1, it is easily seen that

ai2(dBp+1 X *) and an(dBp+1 X *) are ambient isotopic in 3F— 3Δ. Using the
uniqueness of regular neighbourhood, we can finally move aίz(dBp+lxDq) ambient
isotopically to an(dBp+1xDq) in QV— 3Δ, i.e., there exists an ambient isotopy

{φ/2)}: V-*V such that φ(,2)|Δ is the identity map for all ίe/, and that

φ?> °aΛ(QB'+l X D«)=aft(8B*+1 X ZJ ). Let αu=φ?> oαΛ> and ,̂=(Γ, {αj , Δ).
Then ?̂3 is a ^-decomposition of (Dn+\ /30) such that a/3(9jBi+1xZ)9)—

<Xn(QBp+1 X Dq). Combining ambient isotopies {φ/1J} and {φ^2)} we have an
ambient isotopy {φt}ι V-^V such that φι°αΓj3=ci£f ι. This completes the proof
of Sublemma.

By Lemma 6.2, there exist homeomorphisms #' : Bp+1 X Dq-+Bp+1 X Dq such

thataiB=ailo(g/ι\dBp+1xiy). Letj: F->Fbethe identity map, then we have
joaiB=ailog/i\dBp+1χDq. This means that j is extended to a homeomorphism

j : V \ J (KB^xD^-^VU U(£'+1X0*)ι
{Λ/3} {«ίi)

such that j \ V=j. Thus ^ is an orientation preserving homeomorphism from

Dn+3 onto itself such that ](β0)=β1.

DEFINITION 6.4. In Definition 1.7, if we change the condition (2) by the

following condition (2)', then we say that (V, {#,-}, Δ) is a weak p-decomposition
of(Dn+3^):

(2)' {hpi\ are trivial ^-handles on D"Q

+3.
For a weak ^-decomposition 3), we can define an attaching matrix of 3) by the
same manner as that in Definition 5.2. We note that the arguments in 5.2.1

and 5.2.1 are valid for weak ^-decompositions.

By Proposition 1.4, a ^-decomposition is a weak ^-decomposition. We
remark that an attaching matrix M(t) of a weak ^-decomposition satisfies

|detM(l)|=l.

Lemma 6.5. Let M(t) be an attaching matrix of a weak p-decomposition
3). If 2<2p^n and M(l) is a diagonal matrix such that each diagonal element
is -^Λy then 3) is a p -decomposition of the disk pair.

Proof. Let 3)=(V, {or/}, Δ). The assumption on Λf(l) means that at-
taching spheres {a{} of (^>+l)-handles are homotopic to standard spheres on QV
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by 5.2.2. Hence {#,-} are ambient isotopic to standard />-sρheres in QV by
Lemma 2.1, thus 3) is a /^-decomposition.

Lemma 6.6. Suppose 2<2p^n. Let 3) be a weak p-decomposίtion of a

disk pair (Dn+3, β) with an attaching matrix M(t), and M'(f) be obtained from
M(t) by one of the modifications (T^—(T^) in Definition 6.1. Then We can find
a Weak p-decomposition 3)' of (Z)n+3, β) with an attaching matrix M'(t).

Proof. In the case of (7\), let 3)' be obtained from 3) by renumbering
^-handles and (jf>+l)-handles, corresponding to the modification for M(t).

Then 3)' is a weak ^-decomposition of (Dn+3, β) with an attaching matrix M'(t).
In the case of (T2), this case corresponds to the prescribed ambiguities for

the choice of attaching matrices remarked in 6.2.1. Thus we choose 3) as 3)' .
In the case of (TΆ), we can trade a handle of 3) corresponding to the

modification for M(t), to obtain 3)' which is easily seen to be a weak ^-de-
composition of (Dn+3

> β) with an attaching matrix M'(i).
Suppose M'(t)^=M(t)®(l). Let AJ+1 and h*%\ be a pair of complementary

handles on Fsuh such that the (ra+3)-disk h*+ι (Jhξ+l is disjoint from 9Δ in dV.

Let αv+ι=α(A?ίι), and 3)'=(V \Jhξ+1, {at} Uαv+1, Δ), then 3)' is a weak ^-de-
composition of (Dn+3

y β) with an attaching matrix M'(t).
Suppose M(t}=M'(t)®(V). Let a^affi*1) be an attaching sphere for

each i. Without loss of generality, we may assume that [flv] — [?v]> under the
notation of Definition 5.2.2. Thus the attaching sphere <zv of hζ+l is homotopic

to a standard />-sρhere f v in QV— 3Δ keeping {0, }, <v fixed. By Lemma 2.1,
av is ambient isotopic to ξv in QV— 3Δ keeping {Λf }f <v fixed. Thus 3)'=
(V \Jhζ+1, {α, }f <v> A) gives a weak ^-decomposition of (Z)Λ+3, β) with an attahc-
ing matrix M'(t). This completes the proof of Lemma 6.6.

Lemma 6.7. Let 3){ be a p-decomposition of a disk pair (Dn+3, /3, ) with an
attaching matrix M^t) for i=Q, 1. Assume 2<2p^n and M0(t) is equivalent to
Mλ(t\ then (Dn+3, βQ) is equivalent to (Z>"+3, βj.

Proof. Without loss of generalise, we can assume that M^l) is the identity
matrix, from Remark 5.2.3. By applying Lemma 6.6 repeatedly, we can find a
weak ^-decomposition 3)ί of (Dn+3, β0) with an attaching matrix M^t). By
Lemma 6.5, we conclude that 3)§ is a ^-decomposition of (Dn+3, β). Hence by
Lemma 6.3, the given two disk pairs are equivalent.

Theorem 6.8. If 2<.2p^n, there exists an exact sequence of commutative
semigroups:

4.+1(p) -> {!},

where i is the inclusion map, and j is a homomorphism naturally defined by that
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j([M(t)]) is a disk pair of type p which has a p-decomposition with an attaching

matrix M(t).

Proof. By Remark 5.2.3, Lemmas 6.3 and 6.7, j is a well-defined epimor-

phism. Let M(t) be a square matrix of degree v which induces an epimor-

phism from Λv onto itself. We can choose a ^-decomposition 3) of a disk

pair (Dn+3, β) with an attaching matrix M(t) by Remark 5.2.3. Let Pϊ^be the

infinite cyclic covering space of an exterior of β in Dn+3. From the fact that

M(t) is a relation matrix for Hp(W), it follows that HP(W)<=*$. By Corollary

5.7.1, β is unknotted in Dn+3. Hence Im/cKerj. The reverse inclusion is

easily proved. This completes the proof of Theorem 6.8.

By the smae argument as in the proof of Theorem 6.8, we have the follow-

ing.

Corollary 6.8.1. The same assertion holds in Theorem 6.8 for JCn(p) instead

of &Λ(p). That is, if 2<2p^n,

c5%(Λ) - ^(Λ) Λ JCn(p) - {1}

is an exadct sequence as commutative semigroups, where i is the inclusion map, and

j is a homomorphίsm naturally defined by that j([M(t)]) is an n-knot of type p such

that there exists a disk pair with a p-decomposition having an attaching matrix

M(t).
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