Kobayashi T. Osaka J. Math. 24 (1987), 739-743

PSEUDO-ANOSOV HOMEOMORPHISMS WHICH EXTEND TO ORIENTATION REVERSING HOMEOMORPHISMS OF S³

TSUYOSHI KOBAYASHI

(Received June 25, 1986)

1. Introduction

Let F be the orientable closed surface of genus g(>1), and $\{l_1, \dots, l_g\}$ be a system of mutually disjoint, non-parallel essential loops on F such that $\cup l_i$ cuts F into a 2g punctured sphere. Let f be a self-homeomorphism of F. Then \overline{M}_f denotes the 3-manifold which is obtained from $F \times [0, 1]$ by attaching 2-handles along the simple loops $l_1 \times \{0\}, \dots, l_g \times \{0\}, f(l_1) \times \{1\}, \dots, f(l_g) \times \{1\}$. We note that $\partial \overline{M}_f$ consists of two 2-spheres. Then M_f denotes the closed 3manifold which is obtained from \overline{M}_f by capping off the boundary by 3-cells. It is easy to see that if g is isotopic to f, then M_g is homeomorphic to M_f . Then, in [7], T. Yoshida posed the following question.

Question (Yoshida). Suppose that f is a pseudo-Anosov homeomorphism. Does there exist a constant n_f such that $\pi_1(M_{f^n}) \neq \{1\}$ for all $n > n_f$?

In this note we will give a negative answer to this question.

Theorem. For each g(>1) there exist infinitely many pseudo-Anosov homeomorphisms f such that

> $M_{f^{2n}} = \bigoplus_{i=1}^{d} (S^2 \times S^1)_i$, and $M_{f^{2n+1}} = S^3$, where S^m denotes the m-dimensional sphere.

Actually we will show that there are infinitely many pseudo-Anosov homeomorphisms of Heegaard surfaces of S^3 which have the property described in the title of this note (Theorem 2.1).

In the following, we assume that the reader is familiar with [2]. For the definitions of standard terms in the 3-dimensional topology, we refer to [4].

2. Proof of Theorem

In this section we will give the proof of Theorem.

T. KOBAYASHI

Theorem 2.1. Let $(V_1, V_2; F)$ be a genus g(>1) Heegaard splitting of the 3-sphere S^3 (Figure 1). Then there exist infinitely many orientation reversing self-homeomorphisms g' of S^3 such that $g'(V_1) = V_2$, $g'(V_2) = V_1$, and $g'|_F : F \rightarrow F$ has mutually distinct classes of pseudo-Anosov homeomorphisms.

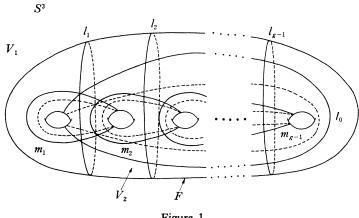


Figure 1

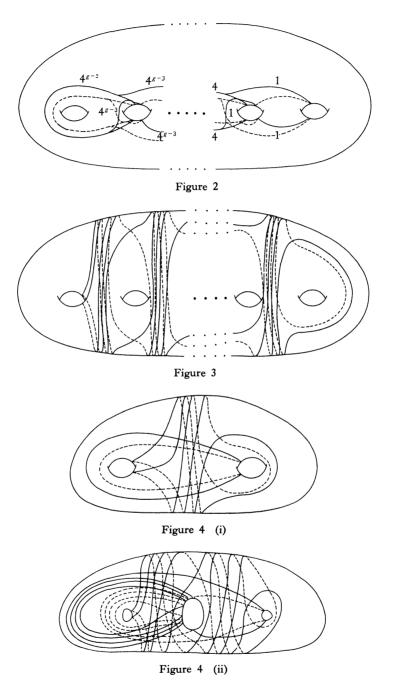
The key of the proof of Theorem 2.1 is Lemma 2.2, which is a generalization of a result of I. Aitchison [1].

Lemma 2.2. There exist infinitely many ambient isotopies f_t $(0 \le t \le 1)$ of S³ such that $f_1(V_1) = V_1$, $f_1(V_2) = V_2$, and $f_1|_F : F \rightarrow F$ has mutually distinct classes of pseudo-Anosov homeomorphisms.

Proof. Let $l_0, l_1, \dots, l_{g-1}, m_1, \dots, m_{g-1}$ be the system of simple loops on F as in Figure 1. We note that each simple loop bounds a disk in $V_i(i=1, 2)$. If p is a simple loop on F, then T_p denotes a right hand Dehn twist along p. Let *m* be the image of m_{g-1} by the homeomorphism $T_{m_1} \circ T_{m_2} \circ \cdots \circ T_{m_{g-2}}$: $F \rightarrow F$, and *l* be the image of l_0 by the homeomorphism $T_{l_1} \circ T_{l_2} \circ \cdots \circ T_{l_{\ell-1}}$: $F \to F$. Then we may suppose that l, m intersect transversely, and the number of the intersections is minimal.

l, m fill up F i.e. each component of $F(l \cup m)$ is an open disk. Assertion.

Proof. By [2, Theorem 5.13], we see that m is carried by the train track τ as in Figure 2, where the numbers in Figure 2 denote the weights which represent m. On the other hand, we draw a picture of l as in Figure 3. Then we directly see that $\tau \cup l$ cuts F into a system of disks. Moreover, by seeing the weights on τ , we easily verify that the assertion holds. We show pictures of $l \cup m$ in the case of g=2, 3 to convince the reader that the assertion holds (Figure 4).



We note that l,m bound disks in $V_i(i=1,2)$. Hence, there are homeomorphisms $f_i, f_m: S^3 \rightarrow S^3$ such that f_i, f_m are ambient isotopic to the identity map, $f_i(V_i)=f_m(V_i)=V_i$ and $f_i|_F=T_i, f_m|_F=T_m$. By [3, Expose 13], we see that

T. Kobayashi

 $T_{l} \circ T_{m}^{-n}$ is a pseudo-Anosov class of F provided n > 0. Moreover $T_{l} \circ T_{m}^{-n}$ and $T_{l} \circ T_{m}^{-n'}$ have pairwise distinct invariant laminations if $n \neq n'$. Hence, we have infinitely many ambient isotopies of S^{3} which satisfies the conclusions of Lemma 2.2.

We need two more lemmas for the proof of Theorem 2.1.

Lemma 2.3 ([5, Lemma 2.4]). Let $f: F \rightarrow F$ be a pseudo-Anosov homeomorphism with invariant laminations L^+ , $L^- \in PL(F)$. Suppose that $R: F \rightarrow F$ is an infinite order reducible map. Then $R(L^+) \neq L^+$, L^- .

Lemma 2.4 ([6, Theorem A]). Let f, L^+, L^- be as in Lemma 2.3. Let $g: F \rightarrow F$ be a homeomorphism such that $g(L^-) \neq L^+$. Then there exists a number k_0 such that $f^k \circ g$ is isotopic to a pseudo-Anosov homeomorphism for all $k \ge k_0$.

Proof of Theorem 2.1. Let $a_1, \dots, a_g, b_1, \dots, b_g$, c be a system of oriented simple loops on F as in Figure 5. Then there exists an ambient isotopy h_t $(0 \le t \le 1)$ of S^3 such that $h_1(V_1) = V_2$, $h_1(V_2) = V_1$, and $h_1(a_i) = b_i$, $h_1(b_i) = a_i$ $(i=1, \dots, g)$, $h(c) = \overline{c}$ (Figure 6), where $\overline{}$ means the specified loop with the opposite orientation.

On the other hand, there exists an orientation reversing involution $g: S^3 \rightarrow S^3$ such that $g(V_i) = V_i$, and $g(a_j) = \bar{a}_j$, $g(b_j) = b_j(j=1, \dots, g)$. If needed, by adding twists along c to h_1 , we may suppose that $h_1 \circ g|_F$ is an infinite order re-

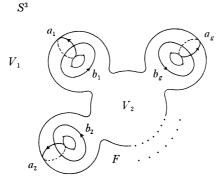


Figure 5

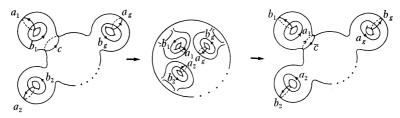


Figure 6

742

ducible map. Then, by Lemmas 2.3, 2.4, we see that $g'=(f_1)^n \circ h_1 \circ g$ satisfies the conclusion of Theorem 2.1 for sufficiently large *n*, where f_1 is a homeomorphism obtained in Lemma 2.2. Moreover, if *n* grows larger, then the stable lamination of $g'|_F$ tends to that of $f_1|_F$. Hence we have infinitely many g''s with mutually distinct invariant laminations.

Proof of Theorem. Let g' be a homeomorphism obtained in Theorem 2.1. Then clearly the homeomorphism $g'|_F$ with the system of loops $\{a_1, \dots, a_g\}$ satisfies the conclusion of Theorem.

References

- [1] I. Aitchson: Isotoping and twisting knots and ribbons, thesis, University of California, Berkeley, 1985.
- [2] A. Casson: Automorphisms of surfaces after Nielsen and Thurston, Lecture Note, University of Texas at Austin.
- [3] A. Fathi, F. Laudenbach, & V. Poenaru: Travaux de Thurston sur les surfaces, Astérisque, 66–67 (1979).
- [4] J. Hempel: 3-manifolds, Ann. of Math. Studies No. 86, Princeton University Press, Princeton N.J., 1976.
- [5] D. Long: A note on the normal subgroups of mapping class groups, Math. Proc. Cambridge Philos. Soc. 99 (1986), 79-87.
- [6] A. Papadopoulos: Reseaux ferroviaires, diffeomorphismes pseudo-Anosov et automorphismes symplectiques de l'homologie d'une surface, Publ. Math. Orsay, 1983.
- [7] T. Yoshida: in Problems, Proc. Sympos. Res. Inst. Math. Sci. 568 (1985).

Department of Mathematics Osaka University Toyonaka, Osaka 560 Japan