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0. Introduction

Let kG be the group algebra of a finite group G over an algebraically closed
field k of characteristic py p 4= 0. Fix a normal subgroup N of G and a non-pro-
jective indecomposable &iV-module V. Let SV: 0->Q?V-+X-+V->0 be the
Auslander-Reiten sequence terminating at V. Here £2 denotes the Heller
operator. In this paper, we study the induced sequence 0-^(£l2V)G->XG->
VG->0. We shall decompose it according to the decomposition of VG and
investigate the relation between the sequences appearing in the decomposition
and the Auslander-Reiten sequences terminating at the indecomposable direct
summands of VG. For example, we shall give a condition which guarantees
that some Auslander-Reiten sequences appear in the decomposition of the
induced sequence. This result is related to the work of Kndrr [6].

Notation is standard. All the AG-modules considered here are finite
dimensional right modules. For &G-modules W and W, we use (W, W')G

to denote HomkG(W, W). An element/ of (W, W')G is said to be projective
if there are a projective &G-module P and maps a^(W, P)G and /3^(P, W')G

such t h a t / = £ o a . We denote by (Wy Wff'G the factor space of (W, W'f di-
vided by the subspace consisting of projective homomorphisms. Note that
(W, W'fG is an EndAG(^/)-End^(WO-bimodule. For any ^-algebra Ry we
denote its radical by JR. Unless otherwise noted, ® means ®kN-

The author wishes to express his hearty thanks to Dr. Okuyama, who sug-
gested him the problem and notified him that the problem is related to the
work of Kntfrr.

1. Decomposition of the induced sequence

Throughout this paper except Theorem 2.5, we deal with the situation
in the Introduction. Let E=EndkG(VG) and E1=EndkN(V). Then EY can
naturally be considered as a subalgebra of E by the injection c: EX-^>E defined
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by c(f)=f ®ldkG for all f^Ev We denote (FG, VG)l>G and (V, VfN by E
and El9 respectively.

We begin with the following lemma, which is well-known and easy to see.

Lemma 1.1. an(VG)^(anV)G for all n= l , 2, •••.

Henceforth we write the above modules without parentheses.
Let P be the projective cover of VG. For any f^E, we can take/jG

EndkG(P) and f ^EndkG(£lVG) such that the following diagram is commutative.

0 > Q,VG • P > VG • 0 (exact)

f\ A A
0 • nVG > P > VG > 0 (exact)

In this case, / ' corresponds to / under the isomorphism E^(£lVG
y

(See the discussion following [1, 2.17.2].) Likewise we can find / / /eEndJkG(fl2rG)
such that it corresponds to / ' via (n2VG, a2VG)l>G^(ClVG, nVGf>G. Define
left actions of E on (VG, aVG)l>G and on Ext*G(FG, D?VG) via the above iso-
morphisms. Recall that we have the following. ([1, 2.17.5])

as ^ - ^ -

y as £-£-

Here £* is the dual Z?-i?-bimodule Hom(E, k).
The next lemma is also easy to show.

Lemma 1.3. Let H be a subgroup of Gy Vx and V2 kH-modulesy and let
f^(Vu V2)

H. Then f is projective if and only ^7 /®^Id^G(^ 1
G , V2

G)G is pro-
jective.

By the above lemma Ex can be regarded as a subalgebra of E. Thus E*
is a submodule of Z?*. Likewise we can and will regard the modules in (1.2.a)
as submodules of the modules in (1.2.b).

Lemma 1.4. Let yeExt^CF, CL2V) represent an extension 0->Q?V->Y->
V-*0. Then considering <y as an element of ExtkG(VG, fl2VG), it represents the
induced sequence.

Proof. Take an element / of (V, £1V)N whose image in (V, CIV)1'" cor-
responds to 7 under the isomorphism (1.2.a). Then we have the following
pullback diagram.

If
p' —> av
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Here P' denotes the protective cover of £IV. The above induces the following
diagram, which is also pullback.

V
G

/3®ldkG\

pIG

Note that P'G is the protective cover of £1VG. T h u s / ® I d ^ G gives the sequence
0->n2FG-»YG->VG->0. This completes the proof.

As Ex is local, the i^-Z^-bimodules in (1.2.a) have irreducible socles which
are of 1-dimensional over k. We denote the socles of those modules by L.
Note that JEX annihilates L from the both sides. A nonzero element 7 of
ExtAiV(F, Q?V) represents the Auslander-Reiten sequence if and only if 7 lies
in L. (See the proof of [1, 2.17.7].)

Lemma 1.5. xl=lx for all l^L and

Proof. We fix representatives GjN of cosets of N in G containing 1.
Let T be the inertial subgroup of V in G. For any t €E T/N, there is a kN-
isomorphism <f>t: V —>V ®t. This gives a unit ut=<l> t®IdkT of ET=T2,ndkT(VT).
Let ET be (VT, VTfT. Note that ET is naturally a subalgebra of K (See
Lemma 1.3.) We first claim that;

(1.5.a) xl = Ix for all / G i and x&ET .

Recall that EJJE^k. For all m^EljJEl and t<=T/N, we have ujlmut

=m in EX\JEV Since L is dual to ExjJEly we have utl=lut for all l^L and
tEiT/Ny where ut is the image of ut in ET. We also have ul=lu for all l€=L
and u^Ev Thus (1.5.a) holds since ET is generated by Ex and {ttt}t&T/N-

Now note that VG
N=®g^G/NV®g as AiV-modules. So by the Frobenius

reciprocity, we have the following isomorphisms.

Letting Eg be the inverse image of (F , V®g)N in E, we obtain E=(Bg(EG/NEg.
(Note: our previous Ex coincides with the new one.) Then it is easy to check
that EgEg^Eggr for allg, g'<=GjN. Since E=ET®{®g&GlN\TlNEg) as ^-spaces,
to complete the proof, it suffices to show that

(1.5.b) ffZ = 1% = 0 for all / e L and x<=Eg wi

where X is the image of x in E.
Fix g^GIN\T/N and x(=Eg. Then for any g'<=G/N and any j / G ^ / , it

follows that
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(1.5.c) xy and yx lie in JEly if Ng' = Ng~*y and

xy and yx lie in © ^ i Egy otherwise.

Now consider / G L as an element of £*, i.e., as a ^-linear map from E
into k. Since l^Ef, for all # € 0 ^ , 2 ? , , / takes z to zero. Further, / vanishes
on JEX. Hence by (1.5.c) we can conclude that, for all y^Ey I maps both xy
and y% to zero. By the definition of the action of E on E*9 this means that
the elements 1% and xl of £* both send y to zero for all y^E. Therefore, we
can conclude that (1.5.b) holds. This completes the proof.

Now we decompose the sequence 0-*£l2VG->XG-j>VG-*0. Let ely •••,£„
be orthogonal primitive idempotents of E with Idyfl

f=£1+•••+£„. We can
find orthogonal primitive idempotents £;',•••,£" of EndkG(Cl2VG) such that
each a" corresponds to e{ via Esz(Cl2VG

y £l2VGf'G. Remark that the left ac-
tions of e{ and e" on the modules in (1.2.b) are equal to each other.

Theorem 1.6. For each i, \<i<ny there exists a non-sprit exact sequence
Sr. 0->e'i'n

2VG-*Yi->eiV
G-*0 such that their direct sum 0->Q2VG-*®Yi->VG

-*0 is equivalent to the induced sequence (SV)G: 0->Q?VG->XG->VG->0. More-
over, this gives the unique (up to equivalence) decomposition of (SV)G with respect
to ely •••, en.

Proof. It follows from Lemma 1.5 that 'eil^=l'ei for all / e L and /, 1<
i <n. Hence we have

/ = (S 2,)/(2 ej) = / 2 hh = 2 hih

for all ZeL. For each iy the element if-/i,- gives an extension *S,-: Q->e
—*• Y",—>eiVG—>0 and their sum 2 i,-/i$- corresponds to the direct sum of those

sequences. Hence it follows by Lemma 1.4 that the direct sum 0->I22FG-»
© y,->rG-*0 is equivalent to (SV)G if / represents SV.

Now suppose that some St splits, i.e., / i ,=0. Then we have /££,•=0 by
Lemma 1.5. This implies that the following sequence is exact.

0 - * (etVG, n2VG)G -> {eiV
G

y XG)G — (e{V
G

y VG)G -> 0

By the Frobenius reciprocity law, there holds

0 -> (e,FG, n2F)^ -* (^rG , -Y)^ -> (^-FG, V)N -> 0 (exact).

Since F* is isomorphic to a direct summand of (^,FG)^, the above contradicts
our assumption that SV is an Auslander-Reiten sequence. Therefore each
S{ does not split.

To see that this gives the unique decomposition, note that if we have
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f°r some Xi^ExtkG(VG, I22FG), then eixiei=eilei for all i9 \<i<n.

Now the proof is complete.

2. The sequences appearing in the decomposition of (SV)G

In this section, we shall discuss how S{ in Theorem 1.6 is far from S(ejVG),
the Auslander-Reiten sequence terminating at e{V°.

For any subgroup H of G and any AG-module W, let Tr#: (W, W)H->
(W, W)G denote the trace map. We begin with the following general result.

Lemma 2.1. For an indecomposable kG-module Wy suppose that
J(EndkG(W))=^ff<(}Vtx(W)ImTr{gr. Then a short exact sequence S: 0-»flW->
Z->PF->0 is an Auslander-Reiten sequence if and only if the following two conditions

hold.
(i) S does not split.
(ii) S splits on the restriction to Hfor all H<G vtx(W).

Proof. It is well known that the above two hold if S is an Auslander-
Reiten sequence ([1, 2.17.10]). To see the converse, we first prove that any
map / in J(EndkG(W)) factors through o\ By the assumption, we may assume
that/==Trg(A) for some H<Gvtx{W) and h<=EndkH(W). We can take A'e
(Wff

G, W)G corresponding to h by the Frobenius reciprocity law. Also, let £
be the element of (W, WH

G)G corresponding to lAw^EndkH{W). Then it is
routine to check that/=Trg(A)=Trg(AoIdIF)=A/of. Since WH

G is i/-projective,
the condition (ii) yields that there exists <f)^(WH

G, Z)G such that <r°(j)=h'.
Thus we obtain f=o-°(j>0f;. Therefore / factors through o\ Now by (i), the
only elements of EndkG(W) that factor through a are precisely those that lie
in J(EndkG(W)).

Let 7 be the element of ExtkG(W, £12W) corresponding to S. Then the
above shows that J(EndkG(W)) annihilates y from the right. Hence 7 generates
a semisimple module. Because ExtkG(W, CtfW) has a simple socle, 7 must be
a generator of the socle. This completes the proof. (See also the proof of
[1, 2.17.7].)

The above lemma implies the following.

Theorem 2.2. Suppose that J(EndkG(eiV
G))=^H<GVtx(v)ImTrG. Then

the sequence Sf is an Auslander-Reiten sequence.

Proof. Note that vtx(V) = vtx(eiV
G). If H<Gvtx(V), then since

vtx(V)<N,it easily follows from [1,2.17.10] that Q-*{a2VG)H-+XG
H-*VG

H-*Q
splits. (Note that Q->£l2V®g-*X®g->V®g->$ is an Auslander-Reiten
sequence for all^eG.) Thus by Theorem 1.6 each S{ is i7-split. Moreover,
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{ itself does not split. Therefore the result follows from Lemma 2.1.

<rFor any exact sequence S: 0->Q?W-+Z->W->0, let VG-S denote the
cokernel of <r*: (VG, Z)G->(VG, W)G. So VG-S is naturally a right ^-module.

Let / be the two-sided ideal of E generated by JEV In the case where V
is G-invariant, E=E/I is isomorphic to a twisted group algebra of GjN over
k. Now we have;

Proposition 2.3. Suppose that V is G-invariant. Then;
(i) For each i, l<i<n, VG'St is a projective indecomposable right E-module.
(ii) A sequence S: 0-+e'i'£l2VG->Z-+eiV

G-+0 is an Auslander-Reiten
sequence if and only if V°*S is a simple E-module. Hence in this case VG*S is a
simple E-module.

Proof, (i) We first claim that VG*(SV)G is isomorphic to E. By the
Frobenius reciprocity law, we have VG*(SV)G^(VG

N)*SV as El
1-.E-bimodules.

Since V is G-invariant, (VG
N)-SV^(V-SVyG:N\ as ^-^-bimodules. Thus

JEy annihilates VG'(SV)G from the right, and hence VG*(SV)G is an Z?-module.
Since it is a factor module of E having the dimension \G: N\ over k, it must
coincide with E. Now Theorem 1.6 yields that VG*Si is a direct summand
of VG'(SV)G. Therefore VG*Si is projective. Since I^JE, the image of e{

in E is a nonzero idempotent of E for all i, l^i^n. Hence VG*Si is an inde-
composable ^-module.

(ii) Note that VG'St is a factor module of a projective indecomposable
^-module eiE=(VG, e{V

G)G. On the other hand, S is an Auslander-Reiten
sequence if and only if eiJEei is contained in the kernel of the epimorphism
e{E^VG-S and F G - 5 # 0 . These hold if and only if VG-S is simple. Now
the proof is complete.

Now we give an application of the above results, which is related to the
work of KnOrr [6].

Corollary 2.4. Suppose that N is a p-group. Let H=NCG(N) and let
Bi be the block of kG containing e{V

G. Then, if S{ is an Auslander-Reiten se-
quence, the blocks of H covered by B{ have N as their defect groups.

Proof. By [5, Satz 2.2] and [2, § 6, Exercise 14], we may assume that
each e{ lies in ET=EndkT(VT), where T is the inertial subgroup of F in G. Let
Si be the sequence 0-^fl2eiV

T->Y/
i-^eiV

T-^0 appearing in the decomposition
of (SV)T. (By Theorem 1.6, Si is determined uniquely up to equivalence.)
We claim that Si is also an Auslander-Reiten sequence. Let eje^
Ext*r(e,Fr, Cl2eiV

T) represent Si. By the proof of Theorem 1.6, £,/£,• also
represents St. Now EndkT(eiVT) is naturally considered as a subalgebra of
End,G(*,FG), and hence /(End, r(^F r))e/(End,G((^FG)) . Since /(End,G(e,FG))
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annihilates £,-/£,• by the assumption, so does J(En&kT{eiV
T)). This implies

that SI is an Auslander-Reiten sequence. Thus by Proposition 2.3, VT»Si is a
simple projective ^//'-module, where / ' is the ideal of ET generated by JEV

Therefore the result follows by [6, Cor. 2.2].

Our final result concerns relative projectivity of Auslander-Reiten se-
quences. Recall that each Auslander-Reiten sequence gives a (finitely pre-
sented) simple object of the category MMod(AG) of contravariant ^-linear
functors from the category of AG-modules into the category of ^-spaces. (See
[4, §1], for example.) In [4], Green defined relative projectivity of finitely
presented objects of MMod(AG) and showed that each of those indecomposable
objects S has vertex vtx(S), which is a ̂ -subgroup of G determined uniquely
up to G-conjugate. (See [4, § 4] for detail.) He also proved that for any non-
projective indecomposable ^G-module W> there holds vtx(SW)>G vtx(W),
[4, Theorem 5.12]. Here we identify the sequence SW with the corresponding
simple object. The following was suggested by the referee.

Theorem 2.5. Let W be a non-projective indecomposable kG-module.
Suppose that J(EndkG(W))=^H<giVtx(w) ImTrg. Then vtx(W)=G vtx(SW). In
particular, if W is simple, then vtx(W)=G vtx(SW).

Proof. Let P be a vertex of W, M=NG(P), and W the Green correspond-
ent of PFwith respect to (G, P, M). Since J(EndkM(W')) = 5]H<xviai(W') ImTr^
by [3, Chap. Ill , Lemma 5.10 (i)], Theorem 2.2 yields that S(W) appears in
the decomposition of (SV0)

M, where Vo is the P-source of W. This shows that
S(W) is P-projective. On the other hand, it follows from [4, Theorem 7.8]
that vtx{SW)<G vtx(S(W')). Hence we have vtx(SW)^G P=vtx(W).

Therefore, the proof is completed by [4, Theorem 5.12].
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