ON THE SEQUENCES INDUCED FROM AUSLANDER-REITEN SEQUENCES

Dedicated to Professor Hirosi Nagao on his 60th birthday

Katsuhiro UNO

(Received March 3, 1986)

0. Introduction

Let $k G$ be the group algebra of a finite group G over an algebraically closed field k of characteristic $p, p \neq 0$. Fix a normal subgroup N of G and a non-projective indecomposable $k N$-module V. Let $S V: 0 \rightarrow \Omega^{2} V \rightarrow X \rightarrow V \rightarrow 0$ be the Auslander-Reiten sequence terminating at V. Here Ω denotes the Heller operator. In this paper, we study the induced sequence $0 \rightarrow\left(\Omega^{2} V\right)^{G} \rightarrow X^{G} \rightarrow$ $V^{G} \rightarrow 0$. We shall decompose it according to the decomposition of V^{G} and investigate the relation between the sequences appearing in the decomposition and the Auslander-Reiten sequences terminating at the indecomposable direct summands of V^{G}. For example, we shall give a condition which guarantees that some Auslander-Reiten sequences appear in the decomposition of the induced sequence. This result is related to the work of Knörr [6].

Notation is standard. All the $k G$-modules considered here are finite dimensional right modules. For $k G$-modules W and W^{\prime}, we use $\left(W, W^{\prime}\right)^{G}$ to denote $\operatorname{Hom}_{k G}\left(W, W^{\prime}\right)$. An element f of $\left(W, W^{\prime}\right)^{G}$ is said to be projective if there are a projective $k G$-module P and maps $\alpha \in(W, P)^{G}$ and $\beta \in\left(P, W^{\prime}\right)^{G}$ such that $f=\beta \circ \alpha$. We denote by $\left(W, W^{\prime}\right)^{1, G}$ the factor space of $\left(W, W^{\prime}\right)^{G}$ divided by the subspace consisting of projective homomorphisms. Note that $\left(W, W^{\prime}\right)^{1, G}$ is an $\operatorname{End}_{k G}\left(W^{\prime}\right)-\operatorname{End}_{k G}(W)$-bimodule. For any k-algebra R, we denote its radical by $J R$. Unless otherwise noted, \otimes means $\otimes_{k N}$.

The author wishes to express his hearty thanks to Dr. Okuyama, who suggested him the problem and notified him that the problem is related to the work of Knörr.

1. Decomposition of the induced sequence

Throughout this paper except Theorem 2.5, we deal with the situation in the Introduction. Let $E=\operatorname{End}_{k G}\left(V^{G}\right)$ and $E_{1}=\operatorname{End}_{k N}(V)$. Then E_{1} can naturally be considered as a subalgebra of E by the injection $\iota: E_{1} \rightarrow E$ defined
by $\iota(f)=f \otimes \operatorname{Id}_{k G}$ for all $f \in E_{1}$. We denote $\left(V^{G}, V^{G}\right)^{1, G}$ and $(V, V)^{1, N}$ by \underline{E} and E_{1}, respectively.

We begin with the following lemma, which is well-known and easy to see.
Lemma 1.1. $\Omega^{n}\left(V^{G}\right) \cong\left(\Omega^{n} V\right)^{G}$ for all $n=1,2, \cdots$.
Henceforth we write the above modules without parentheses.
Let P be the projective cover of V^{G}. For any $f \in E$, we can take $f_{1} \in$ $\operatorname{End}_{k G}(P)$ and $f^{\prime} \in \operatorname{End}_{k G}\left(\Omega V^{G}\right)$ such that the following diagram is commutative.

In this case, f^{\prime} corresponds to f under the isomorphism $\underline{E} \cong\left(\Omega V^{G}, \Omega V^{G}\right)^{1, G}$. (See the discussion following [1, 2.17.2].) Likewise we can find $f^{\prime \prime} \in \operatorname{End}_{k G}\left(\Omega^{2} V^{G}\right)$ such that it corresponds to f^{\prime} via $\left(\Omega^{2} V^{G}, \Omega^{2} V^{G}\right)^{1, G} \cong\left(\Omega V^{G}, \Omega V^{G}\right)^{1, G}$. Define left actions of \underline{E} on $\left(V^{G}, \Omega V^{G}\right)^{1, G}$ and on $\operatorname{Ext}_{k G}\left(V^{G}, \Omega^{2} V^{G}\right)$ via the above isomorphisms. Recall that we have the following. ([1, 2.17.5])

$$
\begin{align*}
& \underline{E}_{1}^{*} \cong \operatorname{Ext}_{k N}\left(V, \Omega^{2} V\right) \cong(V, \Omega V)^{1, N} \text { as } \underline{E}_{1}-\underline{E}_{1} \text {-bimodules } \tag{1.2.a}\\
& \underline{E}^{*} \cong \operatorname{Ext}_{k G}\left(V^{G}, \Omega^{2} V^{G}\right) \cong\left(V^{G}, \Omega V^{G}\right)^{1, G} \text { as } \underline{E} \text { - } \underline{E} \text {-bimodules }
\end{align*}
$$

Here \underline{E}^{*} is the dual $\underline{E}-\underline{E}$-bimodule $\operatorname{Hom}(\underline{E}, k)$.
The next lemma is also easy to show.
Lemma 1.3. Let H be a subgroup of G, V_{1} and $V_{2} k H$-modules, and let $f \in\left(V_{1}, V_{2}\right)^{H}$. Then f is projective if and only if $f \otimes_{k H} \operatorname{Id}_{k G} \in\left(V_{1}{ }^{G}, V_{2}{ }^{G}\right)^{G}$ is projective.

By the above lemma \underline{E}_{1} can be regarded as a subalgebra of \underline{E}. Thus \underline{E}_{1}^{*} is a submodule of \underline{E}^{*}. Likewise we can and will regard the modules in (1.2.a) as submodules of the modules in (1.2.b).

Lemma 1.4. Let $\gamma \in \operatorname{Ext}_{k N}\left(V, \Omega^{2} V\right)$ represent an extension $0 \rightarrow \Omega^{2} V \rightarrow Y \rightarrow$ $V \rightarrow 0$. Then considering γ as an element of $\operatorname{Ext}_{k G}\left(V^{G}, \Omega^{2} V^{G}\right)$, it represents the induced sequence.

Proof. Take an element f of $(V, \Omega V)^{N}$ whose image in $(V, \Omega V)^{1, N}$ corresponds to γ under the isomorphism (1.2.a). Then we have the following pullback diagram.

Here P^{\prime} denotes the projective cover of ΩV. The above induces the following diagram, which is also pullback.

Note that $P^{\prime G}$ is the projective cover of ΩV^{G}. Thus $f \otimes \operatorname{Id}_{k G}$ gives the sequence $0 \rightarrow \Omega^{2} V^{G} \rightarrow Y^{G} \rightarrow V^{G} \rightarrow 0$. This completes the proof.

As E_{1} is local, the $E_{1}-E_{1}$-bimodules in (1.2.a) have irreducible socles which are of 1-dimensional over k. We denote the socles of those modules by L. Note that $J \underline{E}_{1}$ annihilates L from the both sides. A nonzero element γ of $\operatorname{Ext}_{k N}\left(V, \Omega^{2} V\right)$ represents the Auslander-Reiten sequence if and only if γ lies in L. (See the proof of $[1,2.17 .7]$.)

Lemma 1.5. $x l=l x$ for all $l \in L$ and $x \in E$.
Proof. We fix representatives G / N of cosets of N in G containing 1. Let T be the inertial subgroup of V in G. For any $t \in T / N$, there is a $k N$ isomorphism $\phi_{t}: V \rightarrow V \otimes t$. This gives a unit $u_{t}=\phi_{t} \otimes \operatorname{Id}_{k T}$ of $E_{T}=\operatorname{End}_{k T}\left(V^{T}\right)$. Let \underline{E}_{T} be $\left(V^{T}, V^{T}\right)^{1, T}$. Note that \underline{E}_{T} is naturally a subalgebra of \underline{E}. (See Lemma 1.3.) We first claim that;

$$
\begin{equation*}
x l=l x \quad \text { for all } l \in L \text { and } x \in \underline{E}_{T} . \tag{1.5.a}
\end{equation*}
$$

Recall that $E_{1} / J E_{1} \cong k$. For all $m \in E_{1} / J E_{1}$ and $t \in T / N$, we have $u_{t}^{-1} m u_{t}$ $=m$ in $E_{1} / J E_{1}$. Since L is dual to $E_{1} / J E_{1}$, we have $\bar{u}_{t} l=l \bar{u}_{t}$ for all $l \in L$ and $t \in T / N$, where \bar{u}_{t} is the image of u_{t} in \underline{E}_{T}. We also have $u l=l u$ for all $l \in L$ and $u \in \underline{E}_{1}$. Thus (1.5.a) holds since \underline{E}_{T} is generated by \underline{E}_{1} and $\left\{\bar{u}_{t}\right\}_{t \in T / N}$.

Now note that $V_{N}^{G}=\oplus_{g \in G / N} V \otimes g$ as $k N$-modules. So by the Frobenius reciprocity, we have the following isomorphisms.

$$
E \xrightarrow{\sim}\left(V, V_{N}^{G}\right)^{N} \longrightarrow \oplus_{g \in G / N}(V, V \otimes g)^{N}
$$

Letting E_{g} be the inverse image of $(V, V \otimes g)^{N}$ in E, we obtain $E=\bigoplus_{g \in G / N} E_{g}$. (Note: our previous E_{1} coincides with the new one.) Then it is easy to check that $E_{g} E_{g^{\prime}} \subseteq E_{g g^{\prime}}$ for all $g, g^{\prime} \in G / N$. Since $E=E_{T} \oplus\left(\oplus_{g \in G / N \backslash T / N} E_{g}\right)$ as k-spaces, to complete the proof, it suffices to show that

$$
\begin{equation*}
\bar{x} l=l \bar{x}=0 \quad \text { for all } l \in L \text { and } x \in E_{g} \text { with } g \notin T / N \tag{1.5.b}
\end{equation*}
$$

where x is the image of x in E.
Fix $g \in G / N \backslash T / N$ and $x \in E_{g}$. Then for any $g^{\prime} \in G / N$ and any $y \in E_{g^{\prime}}$, it follows that
$x y$ and $y x$ lie in $J E_{1}$, if $N g^{\prime}=N g^{-1}$, and $x y$ and $y x$ lie in $\oplus_{g \neq 1} E_{g}$, otherwise.

Now consider $l \in L$ as an element of E^{*}, i.e., as a k-linear map from \underline{E} into k. Since $l \in \underline{E}_{1}^{*}$, for all $z \in \oplus_{g \neq 1} E_{g}, l$ takes \bar{z} to zero. Further, l vanishes on $J \underline{E}_{1}$. Hence by (1.5.c) we can conclude that, for all $y \in E, l$ maps both $x \bar{y}$ and $\bar{y} \bar{x}$ to zero. By the definition of the action of \underline{E} on \underline{E}^{*}, this means that the elements $l \bar{x}$ and $\overline{x l}$ of \underline{E}^{*} both send \bar{y} to zero for all $y \in E$. Therefore, we can conclude that (1.5.b) holds. This completes the proof.

Now we decompose the sequence $0 \rightarrow \Omega^{2} V^{G} \rightarrow X^{G} \rightarrow V^{G} \rightarrow 0$. Let e_{1}, \cdots, e_{n} be orthogonal primitive idempotents of E with $\mathrm{Id}_{V^{\sigma}}=e_{1}+\cdots+e_{n}$. We can find orthogonal primitive idempotents $e_{i}^{\prime \prime}, \cdots, e_{n}^{\prime \prime}$ of $\operatorname{End}_{k G}\left(\Omega^{2} V^{G}\right)$ such that each $\bar{e}_{i}^{\prime \prime}$ corresponds to \bar{e}_{i} via $\underline{E} \cong\left(\Omega^{2} V^{G}, \Omega^{2} V^{G}\right)^{1, G}$. Remark that the left actions of \bar{e}_{i} and $\bar{e}_{i}^{\prime \prime}$ on the modules in (1.2.b) are equal to each other.

Theorem 1.6. For each $i, 1 \leq i \leq n$, there exists a non-sprit exact sequence $S_{i}: 0 \rightarrow e_{i}^{\prime \prime} \Omega^{2} V^{G} \rightarrow Y_{i} \rightarrow e_{i} V^{G} \rightarrow 0$ such that their direct sum $0 \rightarrow \Omega^{2} V^{G} \rightarrow \oplus Y_{i} \rightarrow V^{G}$ $\rightarrow 0$ is equivalent to the induced sequence $(S V)^{G}: 0 \rightarrow \Omega^{2} V^{G} \rightarrow X^{G} \rightarrow V^{G} \rightarrow 0$. Moreover, this gives the unique (up to equivalence) decomposition of $(S V)^{G}$ with respect to e_{1}, \cdots, e_{n}.

Proof. It follows from Lemma 1.5 that $\bar{e}_{i} l=l \bar{e}_{i}$ for all $l \in L$ and $i, 1 \leq$ $i \leq n$. Hence we have

$$
l=\left(\sum_{i} \bar{e}_{i}\right) l\left(\sum_{j} \bar{e}_{j}\right)=l \sum_{i, j} \bar{e}_{i} \bar{e}_{j}=\sum_{i} \bar{e}_{i} l \bar{e}_{i}
$$

for all $l \in L$. For each i, the element $\bar{e}_{i} l \bar{e}_{i}$ gives an extension $S_{i}: 0 \rightarrow e_{i}^{\prime \prime} \Omega^{2} V^{G}$ $\rightarrow Y_{i} \rightarrow e_{i} V^{G} \rightarrow 0$ and their sum $\sum_{i} \bar{e}_{i} l \bar{e}_{i}$ corresponds to the direct sum of those sequences. Hence it follows by Lemma 1.4 that the direct sum $0 \rightarrow \Omega^{2} V^{G} \rightarrow$ $\oplus Y_{i} \rightarrow V^{G} \rightarrow 0$ is equivalent to $(S V)^{G}$ if l represents $S V$.

Now suppose that some S_{i} splits, i.e., $l \bar{e}_{i}=0$. Then we have $l \underline{\underline{e}} \bar{e}_{i}=0$ by Lemma 1.5. This implies that the following sequence is exact.

$$
0 \rightarrow\left(e_{i} V^{G}, \Omega^{2} V^{G}\right)^{G} \rightarrow\left(e_{i} V^{G}, X^{G}\right)^{G} \rightarrow\left(e_{i} V^{G}, V^{G}\right)^{G} \rightarrow 0
$$

By the Frobenius reciprocity law, there holds

$$
0 \rightarrow\left(e_{i} V^{G}, \Omega^{2} V\right)^{N} \rightarrow\left(e_{i} V^{G}, X\right)^{N} \rightarrow\left(e_{i} V^{G}, V\right)^{N} \rightarrow 0 \quad \text { (exact). }
$$

Since V is isomorphic to a direct summand of $\left(e_{i} V^{G}\right)_{N}$, the above contradicts our assumption that $S V$ is an Auslander-Reiten sequence. Therefore each S_{i} does not split.

To see that this gives the unique decomposition, note that if we have
$l=\sum_{i} \bar{e}_{i} x_{i} \bar{e}_{i}$ for some $x_{i} \in \operatorname{Ext}_{k G}\left(V^{G}, \Omega^{2} V^{G}\right)$, then $\bar{e}_{i} x_{i} \bar{e}_{i}=\bar{e}_{i} l \bar{e}_{i}$ for all $i, 1 \leq i \leq n$. Now the proof is complete.

2. The sequences appearing in the decomposition of $(S V)^{G}$

In this section, we shall discuss how S_{i} in Theorem 1.6 is far from $S\left(e_{i} V^{G}\right)$, the Auslander-Reiten sequence terminating at $e_{i} V^{G}$.

For any subgroup H of G and any $k G$-module W, let $\operatorname{Tr}_{H}^{G}:(W, W)^{H} \rightarrow$ $(W, W)^{G}$ denote the trace map. We begin with the following general result.

Lemma 2.1. For an indecomposable $k G$-module W, suppose that $J\left(\operatorname{End}_{k G}(W)\right)=\sum_{H<^{G v t x}(W)} \operatorname{Im}^{\prime} \mathrm{Tr}_{H}^{G}$. Then a short exact sequence $S: 0 \rightarrow \Omega^{2} W \rightarrow$ $Z \rightarrow W \rightarrow 0$ is an Auslander-Reiten sequence if and only if the following two conditions $\stackrel{\sigma}{\sigma}$
(i) S does not split.
(ii) S splits on the restriction to H for all $H<_{G} v t x(W)$.

Proof. It is well known that the above two hold if S is an AuslanderReiten sequence ($[1,2.17 .10]$). To see the converse, we first prove that any map f in $J\left(\operatorname{End}_{k G}(W)\right)$ factors through σ. By the assumption, we may assume that $f=\operatorname{Tr}_{H}^{G}(h)$ for some $H<_{G} v t x(W)$ and $h \in \operatorname{End}_{k H}(W)$. We can take $h^{\prime} \in$ $\left(W_{H}{ }^{G}, W\right)^{G}$ corresponding to h by the Frobenius reciprocity law. Also, let ξ be the element of $\left(W, W_{H}^{G}\right)^{G}$ corresponding to $\operatorname{Id}_{W} \in \operatorname{End}_{k H}(W)$. Then it is routine to check that $f=\operatorname{Tr}_{H}^{G}(h)=\operatorname{Tr}_{H}^{G}\left(h \circ \operatorname{Id}_{W}\right)=h^{\prime} \circ \xi$. Since $W_{H}{ }^{G}$ is H-projective, the condition (ii) yields that there exists $\phi \in\left(W_{H}{ }^{G}, Z\right)^{G}$ such that $\sigma \circ \phi=h^{\prime}$. Thus we obtain $f=\sigma^{\circ} \phi \circ \xi$. Therefore f factors through σ. Now by (i), the only elements of $\operatorname{End}_{k G}(W)$ that factor through σ are precisely those that lie in $J\left(\operatorname{End}_{k G}(W)\right)$.

Let γ be the element of $\operatorname{Ext}_{k g}\left(W, \Omega^{2} W\right)$ corresponding to S. Then the above shows that $J\left(\operatorname{End}_{k G}(W)\right)$ annihilates γ from the right. Hence γ generates a semisimple module. Because $\operatorname{Ext}_{k G}\left(W, \Omega^{2} W\right)$ has a simple socle, γ must be a generator of the socle. This completes the proof. (See also the proof of [1, 2.17.7].)

The above lemma implies the following.
Theorem 2.2. Suppose that $J\left(\operatorname{End}_{k G}\left(e_{i} V^{G}\right)\right)=\sum_{H<_{G} v \operatorname{vtx}(V)} \operatorname{ImTr}_{H}^{G}$. Then the sequence S_{i} is an Auslander-Reiten sequence.

Proof. Note that $v \operatorname{tx}(V)=v t x\left(e_{i} V^{G}\right)$. If $H<_{G} v t x(V)$, then since $v t x(V) \leq N$, it easily follows from [1, 2.17.10] that $0 \rightarrow\left(\Omega^{2} V^{G}\right)_{H} \rightarrow X^{G}{ }_{H} \rightarrow V_{H}^{G} \rightarrow 0$ splits. (Note that $0 \rightarrow \Omega^{2} V \otimes g \rightarrow X \otimes g \rightarrow V \otimes g \rightarrow 0$ is an Auslander-Reiten sequence for all $g \in G$.) Thus by Theorem 1.6 each S_{i} is H-split. Moreover,
$S_{\boldsymbol{i}}$ itself does not split. Therefore the result follows from Lemma 2.1.
For any exact sequence $S: 0 \rightarrow \Omega^{2} W \rightarrow Z \stackrel{\sigma}{\rightarrow} W \rightarrow 0$, let $V^{G} \cdot S$ denote the cokernel of $\sigma_{*}:\left(V^{G}, Z\right)^{G} \rightarrow\left(V^{G}, W\right)^{G}$. So $V^{G} \cdot S$ is naturally a right E-module.

Let I be the two-sided ideal of E generated by $J E_{1}$. In the case where V is G-invariant, $\bar{E}=E / I$ is isomorphic to a twisted group algebra of G / N over k. Now we have;

Proposition 2.3. Suppose that V is G-invariant. Then;
(i) For each $i, 1 \leq i \leq n, V^{G} \cdot S_{i}$ is a projective indecomposable right \bar{E}-module.
(ii) A sequence $S: 0 \rightarrow e_{i}^{\prime \prime} \Omega^{2} V^{G} \rightarrow Z \rightarrow e_{i} V^{G} \rightarrow 0$ is an Auslander-Reiten sequence if and only if $V^{G} \cdot S$ is a simple E-module. Hence in this case $V^{G} \cdot S$ is a simple \bar{E}-module.

Proof. (i) We first claim that $V^{G} \cdot(S V)^{G}$ is isomorphic to \bar{E}. By the Frobenius reciprocity law, we have $V^{G} \cdot(S V)^{G} \cong\left(V^{G}\right) \cdot S V$ as $E_{1}-E$-bimodules. Since V is G-invariant, $\left(V_{N}^{G}\right) \cdot S V \cong(V \cdot S V)^{|G: N|}$ as $E_{1}-E_{1}$-bimodules. Thus $J E_{1}$ annihilates $V^{G} \cdot(S V)^{G}$ from the right, and hence $V^{G} \cdot(S V)^{G}$ is an \bar{E}-module. Since it is a factor module of E having the dimension $|G: N|$ over k, it must coincide with \bar{E}. Now Theorem 1.6 yields that $V^{G} \cdot S_{i}$ is a direct summand of $V^{G} \cdot(S V)^{G}$. Therefore $V^{G} \cdot S_{i}$ is projective. Since $I \subseteq J E$, the image of e_{i} in \bar{E} is a nonzero idempotent of \bar{E} for all $i, 1 \leqq i \leqq n$. Hence $V^{G} \cdot S_{i}$ is an indecomposable \bar{E}-module.
(ii) Note that $V^{G} \cdot S_{i}$ is a factor module of a projective indecomposable E-module $e_{i} E=\left(V^{G}, e_{i} V^{G}\right)^{G}$. On the other hand, S is an Auslander-Reiten sequence if and only if $e_{i} J E e_{i}$ is contained in the kernel of the epimorphism $e_{i} E \rightarrow V^{G} \cdot S$ and $V^{G} \cdot S \neq 0$. These hold if and only if $V^{G} \cdot S$ is simple. Now the proof is complete.

Now we give an application of the above results, which is related to the work of Knörr [6].

Corollary 2.4. Suppose that N is a p-group. Let $H=N C_{G}(N)$ and let B_{i} be the block of $k G$ containing $e_{i} V^{G}$. Then, if S_{i} is an Auslander-Reiten sequence, the blocks of H covered by B_{i} have N as their defect groups.

Proof. By [5, Satz 2.2] and [2, §6, Exercise 14], we may assume that each e_{i} lies in $E_{T}=\operatorname{End}_{k T}\left(V^{T}\right)$, where T is the inertial subgroup of V in G. Let S_{i}^{\prime} be the sequence $0 \rightarrow \Omega^{2} e_{i} V^{T} \rightarrow Y_{i}^{\prime} \rightarrow e_{i} V^{T} \rightarrow 0$ appearing in the decomposition of $(S V)^{T}$. (By Theorem 1.6, S_{i}^{\prime} is determined uniquely up to equivalence.) We claim that S_{i}^{\prime} is also an Auslander-Reiten sequence. Let $\bar{e}_{i} l \bar{e}_{i} \in$ $\operatorname{Ext}_{k T}\left(e_{i} V^{T}, \Omega^{2} e_{i} V^{T}\right)$ represent S_{i}^{\prime}. By the proof of Theorem 1.6, $\bar{e}_{i} l \bar{e}_{i}$ also represents S_{i}. Now $\operatorname{End}_{k T}\left(e_{i} V^{T}\right)$ is naturally considered as a subalgebra of $\operatorname{End}_{k G}\left(e_{i} V^{G}\right)$, and hence $J\left(\operatorname{End}_{k T}\left(e_{i} V^{T}\right)\right) \subseteq J\left(\operatorname{End}_{k G}\left(\left(e_{i} V^{G}\right)\right)\right.$. Since $J\left(\operatorname{End}_{k G}\left(e_{i} V^{G}\right)\right)$
annihilates $\bar{e}_{i} l \bar{e}_{i}$ by the assumption, so does $J\left(\operatorname{End}_{k T}\left(e_{i} V^{T}\right)\right)$. This implies that S_{i}^{\prime} is an Auslander-Reiten sequence. Thus by Proposition 2.3, $V^{T} \cdot S_{i}^{\prime}$ is a simple projective E_{T} / I^{\prime}-module, where I^{\prime} is the ideal of E_{T} generated by $J E_{1}$. Therefore the result follows by [6, Cor. 2.2].

Our final result concerns relative projectivity of Auslander-Reiten sequences. Recall that each Auslander-Reiten sequence gives a (finitely presented) simple object of the category $\operatorname{MMod}(k G)$ of contravariant k-linear functors from the category of $k G$-modules into the category of k-spaces. (See [4, §1], for example.) In [4], Green defined relative projectivity of finitely presented objects of $\operatorname{MMod}(k G)$ and showed that each of those indecomposable objects S has vertex $v t x(S)$, which is a p-subgroup of G determined uniquely up to G-conjugate. (See $[4, \S 4]$ for detail.) He also proved that for any nonprojective indecomposable $k G$-module W, there holds $v t x(S W) \geq_{G} v t x(W)$, [4, Theorem 5.12]. Here we identify the sequence $S W$ with the corresponding simple object. The following was suggested by the referee.

Theorem 2.5. Let W be a non-projective indecomposable $k G$-module. Suppose that $J\left(\operatorname{End}_{k G}(W)\right)=\sum_{H<_{G} \mathrm{vtx}(W)} \operatorname{ImTr}_{H}^{G} . \quad$ Then $v t x(W)={ }_{G} v t x(S W)$. In particular, if W is simple, then $v t x(W)={ }_{G} v t x(S W)$.

Proof. Let P be a vertex of $W, M=N_{G}(P)$, and W^{\prime} the Green correspondent of W with respect to (G, P, M). Since $J\left(\operatorname{End}_{k M}\left(W^{\prime}\right)\right)=\sum_{H<\boldsymbol{H} v \operatorname{vxx}\left(W^{\prime}\right)} \operatorname{Im} \operatorname{Tr}_{H}^{M}$ by [3, Chap. III, Lemma 5.10 (i)], Theorem 2.2 yields that $S\left(W^{\prime}\right)$ appears in the decomposition of $\left(S V_{0}\right)^{M}$, where V_{0} is the P-source of W. This shows that $S\left(W^{\prime}\right)$ is P-projective. On the other hand, it follows from [4, Theorem 7.8] that $v t x(S W) \leq_{G} v t x\left(S\left(W^{\prime}\right)\right)$. Hence we have $v t x(S W) \leqq{ }_{G} P=v t x(W)$.

Therefore, the proof is completed by [4, Theorem 5.12].

References

[1] D.J. Benson: Modular representation theory: new trends and methods, Springer Lecture Note 1081, Springer-Verlag, 1984.
[2] C.W. Curtis and I. Reiner: Methods of representation theory, vol. I, WileyInterscience, 1982.
[3] W. Feit: The representation theory of finite groups, North-Holland, 1982.
[4] J.A. Green: Functors on categories of finite group representations, J. Pure Appl. Algebra 37 (1985), 265-298.
[5] B. Huppert and W. Willems: Bemerkungen zur modularen Darstellungstheorie 2. Darstellungen von Normalteilern, Arch. Math. 26 (1975), 486-496.
[6] R. Knörr: On the vertices of irreducible modules, Ann. of Math. 110 (1979), 487499.

[^0]
[^0]: Department of Mathematics Osaka University Toyonaka, Osaka 560
 Japan

