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We have studied a left serial algebra over an algebraically closed field with
(%, n) as right modules in [4] and further investigated an artinian left serial
ring R with (%, 1) in [7], when eJ/eJ? is square-free for each primitive idem-
potent e, where ] is the Jacobson radical of R. On the other hand, we have
given a characterization of a certain artinian ring with (x, 3) in [6].

For a left serial ring R, we shall obtain, in the second section of this paper,
a characterization of R with (%, 1) (Theorem 1), and one of R with (*, 2) (Theo-
rem 2) in the third section. We shall study hereditary rings with (%, 2) in
the forthcoming paper.

In order to give a complete study of a left serial ring with (%, 1), we need
deep properties of a division ring (much more difficult than Artin problem,
see (#)).

We shall use the same terminologies given in [7] and every ring R is a
both-sided artinian ring with identity, unless otherwise stated.

1. Left serial rings

In this section, we assume that R is a left serial ring. Then

e]i=>1PA,, where the A, are hollow right R-modules by [8], Corollary
k

4.2. We shall describe this situation as the following diagram:

eR
o | o
A, A, “ A, ef
L e 1
Ay e Aml Ay -+ A?ng Ay e Ann,, 3]2
| | | l | l
or
eR
L.
4, B, Ny e

Az?‘ﬁztl B}m—'—“—B]ztz R Ny - Nzt,, er
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where 4, B, -+ are hollow modules. (cf. [3], §2).

Let e be a primitive idempotent and put A=eRe/e]e, and for a submodule
A of eR, A(A)={x|x=eRe, xAC A}, where % is the coset of x in A. Then
A(4) is a division subring of A (see [1]). It is clear that A(A)=A(4)=
{%|x=eRe, xAC A and 2AC A} provided A is hollow; A=A[J(A4).

Let A,DA; be as in the diagram above. We put R=R/J* (¢>1i) and
A;=(A;,+eJY)/eJ!. Then we can express A;-+eJ' as a direct sum 4;,BC,
where C CeJ!—A4;, (see the diagram above). Let p and ¢ be the projections
of A;,+eJ* to A; and C respectively. We can define A(4;,) and A(4;;). Since
eReleJe~(eRe[e]'e)/(e]ele]'e), A(A;) is canonically contained in A(4;;). Con-
versely, let ® be an element in A such that x(4;+eJ*)CA4;+eJ'. Put f=
gx;|Ay; and f is in Homg(4;, eJf), where x; means the left-sided multiplica-
tion of x. Let A;=aR and ag=a for some primitive idempotent g. Since
b=f(a)=f(a)g, there exists d in eJe such that da=b (note i>>t), since R is left
serial. Then xz|Ai1=(sz+qx1)LAi1=thlAu'i-f:szlAn—f‘dzlAn and px;| 4y
€Homg(4;,, A;y). Hence (#—d)=x=A(A4;;). Thus we have (from now on
A4;; means always a hollow module in the diagram above)

Lemma 1. Let R be a left serial ring, and let A; and A;, be as above.
Then A(A;I)ZA(A,'I).

Lemma 2. Let R be a left serial ring. Let A;, contain Aj, and Aj,. Then
A(4j))C A(4y), and if f: A;~Aj, there exists a unit 8 in eRe which induces f
and BA,‘I"—"A,'].

Proof. Assume f: A;~A4;. There exists a unit x in eRe such that
xAj=A, from [7], Lemma 2, and x, induces f, since R is left serial. For x,
we employ the similar argument given in the proof of Lemma 1. Let eJ=
A;®BE and p, q the projections. Consider gx;|4;; (=g). Since g(4;)=g¢x4;
=¢A;=0, g is not a monomorphism. Hence g=d,; for some d in efe and
so (x—d)A;;,CA4;,. Hence (x—d), induces f. If we put k=1 in the above,
we obtain the first half of the lemma.

2. (%1)

First we recall the definition of (%, 7)

(*, n) Every maximal submodule of a direct sum of n hollow modules is also
a direct sum of hollow modules [5].

We shall study, in this section, left serial rings R with (%, 1). We ob-
tained a characterization of a left serial ring with (%, 1), when eJ/eJ? is square-
free, i.e., 4,4 B,Ax---A& N, in [7], Theorem. Hence we may consider eR
satisfying A,~B,.
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Now we shall study such a ring with (%, 1).

Lemma 3. Let R be left serial. Assume that A,~B, and (*, 1) holds.
Then, for any submodules C;DD; in A, such that C;/D; is simple and
[ Ci/Dy~Cy|D,, f or f~ is extendible to an element g in Homg(A,/D,, A,/D,) or
Homyg(A4,/D,, 4,/Dy).

Proof. There exists a unit element % in eRe such that B,=uA,. Put
Ci=uC,, Dj=uD, and f'=u,f. Then f’ (or f'u;") is extendible to an element
g’ in Homg(4,/D,, B,/D3) (or Homg(B,/D%, A,/D,)) by [6], Theorem 4. Then
g=ur'g’ (or g=g'u;) is the desired extension of f (or f 7).

Proposition 1. Let R, A, and B, be as in Lemma 3. If there are three
non-ero hollow modules A;, A;y, Au (CA) for some i, they are isomorphic to
one another.

Proof. First we shall show A;~A4;, Put C;=A;PA;; and C,=A;,;DA;.
Considering R/J#*' from [3], Lemma 1, we may assume that the A4;; are simple.
Now f: C)/A;~A;3~C,/A;,,. Then by Lemma 3, there exists an element x in
eRe which induces f or f7, ie., f(a+A;)=xa+A;, for acA,. Since C,, C,
are contained in e/ but not in eJ**', x is a unit, and x4;=4;, (or x4,,=A;))
from the argument of the proof of [4], Theorem 3. Therefore A4;;~A,,. Since
R is left serial and A4;; are hollow, A;;~A4,, from [7], Lemma 2.

Let ADA, be division rings. [ ], ([ ];) means the dimension of A over A,
as a right (left) A;-module.

Proposition 2. Let A,, B, be as in Lemma 3. Then for A;DA; [A(4;):
A(Ajl)]r: lAiljj_i/Au]j_i_'—l | 5 except A,'ljj_i:Aﬂ@Ajz and Ajld;’AjZ (1” the
exceptional case A(A;)=A(4};,), cf. Example 2 below).

Proof. We may assume from Lemma 1 and [3], Lemma 1 that J/+'=0,
and hence 4,; J?"*'=0, and so 4}, is simple. Let 4j,;=aR and {e, 3,, &, ***, &;}
be a linearly independent set in A;=A(4;) over A;=A(Aj) such that
8,4;,C A;, for all k. We shall show A4;+8,4;,+ 8:;4;,++8,4;,=A;,D
8,4,P8:4,,P - P8, A4, If (A+68,4;+ -+ 48,-,4;1) N 6:4;+0, §,4;,CA;,
+e+e48,.,4;, since 8,4, is simple. Then 8,a=a,+8,a,+ -+ 8,-,a,-;, where
a;€A;. 'The mapping; a—a; gives an endomorphism of 4;,. Hence a;=k;a
for some E;€A; by Lemma 2. Accordingly §==F,+8k,+---+8,_.k;_;, since

i*1=0, a contradiction. From the similar argument we can show that
{4;,, 8,4, ---, 8,A;} is independent. Hence [A(4;): A(4;)], <|4,]7|.
Assume |A4;,J77*| >3. Then by Proposition 1 A, ]/ =A4;PA;,;P - BAj,;
p=3 and A;~A; for 2<k<p. There exists X, in A; (x,EeRe) such that
oA =%A4,=A4;. We shall show that {e, &,, -+, ®,} is linearly independent
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over A;. Assume X,=Fk, &kt +&, K, ,, where E,A;;CA4; and k;EeRe.
- _ p-1
Since JA;=0, A;,=x,A;=8,A;Ckdj+8kAu+ 48y iRy A= 204
a contradiction. Hence |A4;J77'| <[A(4y): A(4j)],. Finally assume
|4, 71| <2. If Ay~Aj, we have the same result. If 444, p<2 from

Proposition 1, and A;=A; from the initial argument. If 4,=---=A4;,=0, it is
clear that A;=A;. Hence [A(4;): A(4;1)],=1.

We consider the situation in Proposition 2 and J**'=0. Let 4, J"*=
DA, If p>3, Ay~A,, for all j by Proposition 1. Put A,=A(d,,) and
i=1

A,=A(4,). Then [A,: A,],=p by Proposition 2. Further 4, J**=A4,&
8,4,,P D8 ,A,=21,aP8A,aP - PDS,A,a, where A,;=aR, and every simple
submodule in A, J*~*is of a form 8A,a for some § in A,. Now we shall identify
A ] =A,aP8,A,0P - DS,Aa=(AD AP BS,A,)a with A,=A,B3,A,
@D DS,A,, i.e.,, Homg(4,,, AunJ" ) ~A, (Ara=A4,J*7%) as left A, right A,-
modules. Let 7,0 T, and S,D.S, be submodules in 4, J*~* such that f: T\/T,
~8,/S, and |Ty|=|S,|(|T1| <|Si]); |Ty/T,|=1. Then f is extendible to an
element % in Homg(A4,/T,, A4,/S,). Since S;, T; are contained in A, J*™* h
is given by a unit element x in eRe. As given in the proof of Lemma 2,
(%+7)i1 4y is in Homg(A4,,, A) for some j in efe. Since JT,=0, x+j
induces f, and x+jEA(4y), which means (x+j)T,=S, ((x+j)T,CS,) and
[+ T)=(x+))t,+S, for any ¢, in T;. We translate the above fact to A,=
Homg(A4p, AuJ* ™).

For any A,-subspace V,, V, in A, with |V,|=|V,|(|V,|<|V,]|) and
(#) 9A,BV, 0,A,BV, (ViEA,), there exists x in A, such that xV,=17V,
(xV,CV,) and xv,=v, (mod V).

Lemma 4. Let ADA, be division rings. Assume that (#) holds for A
and A,. Then [A: A, <2.

Proof. We may assume A=A,;. Let § be a fixed element in A—A, and
8’ an element in A—A,. Put V,=V,=A,, v,=38 and v,=38y for any yEA,
in (#). Then there exists x in A, such that x§=0"y-=2 for some 2in A;. Hence
8'AJCADPAS. Since &' is arbitrary, A=A+ A8, and so [A: A]],<2.

Proposition 3. Let R, A, and B, be as in Lemma 3. Then for A;DA;,
A(A4;y) and A(A}j,) satisfy (B) and so [A(Ay): A{A;)],<2.

Proof. It is clear by Proposition 2 that if Aj;AxA4;,, A(4;,)=A(4j). If
Aj~Aj, Ajj~Ap~---~A; by Proposition 1, where t=[A(4;;): A(4;)],-
Then A(4;;) and A(4},) satisfy (#) from the remark before Lemma 4. Hence
[A(4;)): A(4;)];<2 from Lemma 4.
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Corollary 4. Let A, and B, be as above. Assume either A(A,;) is com-
mutative or R is an algebra over a field with finite dimension. Then A,J''=
AnDA;, for alli =2, ie., [A(A): A4y)],<2.

Proof. From the assumption and Proposition 3, [A(4,): A(4:y)], <2.

Proposition 5. Let A, B, be as in Lemma 3. Assume J(A;)=A;nD
Ais 2P BAivsy If p=2, Ay is uniserial for all k.

Proof. Assume that J(4;_,;) is not uniserial, i.e., J(4;-;,)=A4 ;DA ;D -
for j>i+1. We shall divide ourselves into two cases.

i) Ajn®Airp. Then p<2 by Proposition 1, and A;.,J"*"'=0 by
assumption: 4,~B,, Proposition 1 and [7], Lemma 3. Put D,=A4,PJ(4},),
D,=4;1x®J(4,,), C,=4,+D, and C,=A4;,+D,. Then f: C,/Dy~A4,;,~C,|D,.
Since (%, 1) is satisfies, f or f~! is extendible to x, for some x in eRe by
Lemma 3. Being f(4;,+D,)=A,+D,, x is a unit. Hence xD,CD, or xD,C D,
(see the proof of [4], Theorem 3). However, by [7], Lemma 3, it is impossible.

i) Apyn~Airp~-+~AH4;, Then A;~A;, by Proposition 1. Since
Aisn=~Ais, AA)FA(Aivy) by Proposition 2. Similarly A(4;-n)+A(4;)-
Hence [A(4): A(din)li=[A(A): A(A)]=[A(4;-n): A(Aj)];=2 by Pro-
position 3 and Lemma 4. However A(4,)DA(Aitn)DAAj-1)DA(4;;) by
Lemma 2, which is impossible.

We shall give the structure of 4;. From Propositions 1 and 5 we obtain
the following diagrams (a) and (b").

3 g
| I
(a) A,y & Ay B, &= B, el]i
I | I I
| | i |
0 0 0 0
1?1 =~ II?I e
®) i i
A= =4, By=~--- ~By eJ*!

Assume £>3 and J(4y)=AinF0. Put Dy=A4;,,DAs, Dy=A;nDAis1P
A, Ci=Ay+D, and Cy=A;+D, Then C/D,~ A, ~ C,/D,. However,
xD,& D, (xD,4¢D;). Hence we obtain a contradiction as above. Thus we
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have from Corollary 5

Lemma 5. Let R be left serial. Then in the diagram (a), any two dis-
tinct simple sub-factor modules (e.g. A,|Asry, AnlAiin) are mot isomorphic to one
another.

Proof. Assume A~A4, for k<i—1 and p=>i. Put A,=a;R, Ap=a,R
and a,g=a;, apg=a, for a primitive idempotent g. Since 4,~B,, A,~B,
and Ap~By=>b,R; byg=b,. 'Then there exists d in B, such that da,=b,
by [7], Lemma 2, and d&T(eJ? *¢). Since 0%byc J?g, db,cT(eJ?g). Let
dby=x,-+%,; x;=x;g €B;; (j=1, 2). Assume x,ET(eJ?g). Then b,=xu for
some unit % in gRg, and so d(a,—bu)=—xu. Hence —xu=—xugET(B,).
Accordingly, B, ~B,;, which contradicts [7], Lemma 3. Therefore x,4T(e] %),
and so x;=x,8€T(ef?%). Again we obtain the same contradiction from [7],
Lemma 3. Thus A,,*ffﬂ. We can use the same argument for other cases
(note that, for the case A~ A4, (k<<k’<<i—1), use [7], Lemma 7).

Lemma 6. Assume that R is a left serial ring. Then in (b,) we have the
same situation as in Lemma 5 for simple sub-factor modules between A, and J(A4;-,).
Further A(A4,) and A(A;) satisfy (#), provided (x 1) holds. For (b,) any two
of simple sub-factor modules between A, and J(A;-,) (and of A;,) are. not isomorphic
to one another, respectively. (Some simple sub-factor modules between A, and
J(A4;-,) may be isomorphic to one of A;.)

Proof. The first halves of (b;) and (b,) are obtained from the argument
similarly to Lemma 5. 'The last one of (b;) is clear from Proposition 3.

Lemma 7. Let R be left serial, and consider the diagram (a). Let
C,DD, and C,DD, be submodules in A, such that f: Cy/D,~C,/D, and
|Cy/Dy|=1. Then f or f~* is extendible to an element in Hom x(A4,/D,, A,/D,)
or Homg(4,/D,, 4,/D)).

Proof. We may assume C;=c¢;R+D; and c¢,g=c; for i=1, 2. If
aeT4y) (k<i—1), C,=A4, and D,=](C,)= A4, Then c,€T(4,) by
Lemma 5. Hence there exists a unit d in eRe such that dc;=c,, We may
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assume dA,=A4, by Lemma 2. Then dD,=dA,]J]cC,J=D, Therefore
d; is an extension of.f. Thus we may assume that J(4;_,) contains C; and
C,. From Lemma 5 every submodule in J(4;_,) is standard (see the defini-
tion before Lemma 10 below). Let C,=A4;®A4,, D,=A4;.,®A4;. Since
C/Dy=C,|D,, Co=A;;P Ay, Dy=A;1,PAy,. If k<K' (resp. k>F'), f is
extendible to an element d; in Homg(4,/D,, A,/D,)(Homg(A4,/D,, 4,/D,)) as
above by Lemmas 2 and 5.

Lemma 8. Let R be left serial. In the diagram (b,), we assume that A(A,)
and A(A;) satisfy (§). Further we assume [A(A4,): A(4:)]),)=2 in (b,). Then

we obtain the same result as in Lemma 7.

Proof. Let ¢; be as in the proof of Lemma 7. If ¢; is in T(4,)) (s;<¢—1),
then C,=C,=4, and D;=D,=4, ,, by Lemma 6. Hence we can prove the
lemma as in the proof of Lemma 7. Similarly if C;=4, and C, is contained
in J(A4;-,), we can easily prove the lemma, since D,=]J(C,). Therefore we may
assume J(4;_,) contains C, and C,.

(b)) Since C; is in J(A4;-,), we have the lemma from (#).

(by) Let J(A;-)=A4:PA;,DC,DD, be submodules with |C,/D,|=1. Let
p; be the projection of J(4;_,) to 4;;. We shall show for C (=C),) and D (=D,)
that there exists a unit x in eRe such that

(1) x4,=A4, and xC=A4,_,,PA,DxD=A4,,PA,.

First we remark the following fact: for C=A4,,P A, there exists a unit
y in eRe such that yA4,=A4, and yC=A4,PA4,,.

i) t>7r. There exists y in eRe such that y4,=A4, and yA4,=A; by
Lemma 2. Since yA;,;#+ Az, pi(yAi,)*+0, and so p,y(A,)=A; by Lemma 6.
Hence yC=A4,PA,,.

ii) t<r. Take a unity’ such that y'4,,=4;, and y'4,=A4,.

Put Dy=DNA4;; and DY=pyD) (j=1, 2). Then g': DO[Dyy=~D®|Dy,.
Let Dy=Ay, Dpy=A,,, DO¥=A4,_,, and DP=4,_ ,. We may assume R<s
from the remark (actually k=s by Lemma 6). There exists x in eRe such that
x, induces g. Hence xD;C D). Putting a@=e+x, a(Dy@D ) Dyy@ Dy
and a(4,-n+DyyPDy)Cad, n+Dy®Dy=D. e« is clearly a unit, and so
a'D=A4, ,+Dyy®Dy=A, DA, Now a'COaD=A,,PA, where
k'=k—t. Since |C/D|=1, a™'C is one of the following: Ay _,,P Ay, Aw,®
Asyy and (e+y)Ay-n@Pa™'D (in the last case k'=s), where yEeRe and
YAy_n=A, . Noting yA4y,=A, and k<s, we obtain (1) from the initial
remark.

Next we assume that C;DD; are of the form (1). Put C;=4 ,,_;P4,,
and D;=A4,,DA,, for i=1, 2. Since f: C,/D,~C,/D,, k,=Fk, (=k) by Lemma
6. We shall divide ourselves to the following cases:

(a) k<min(s;, 5;). We may assume s,>s5,. Let 4, ,=aR. Then there
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exists a unit 2 in eRe such that f(a+D,)==za+D, and 24,_,=A4;-n, 24,=4,
by Lemma 2. Since k<5,<$y, 3Dy =2(As,DA4,2) CAuDA,,=D,. Hence 3,
is an extension of f.

(B) $<k<s (5;<k<s;). We obtain the same result as in (a). (Take f.)

(v) k<max(s;, s;). We may assume §;>s,. Let 4;_p,=aR and 84;,=4;,
(84,=A,) for some unit § by Lemma 2. Then A4,_;,=38aR and f(8a-+D,)=
dwa—+D, for some w with wA,=A4, and wA,_;,—=A4,_,. Since [A(4,): A(4y)]
=2, there exist y; and y, in eRe such that §w=y,+,8 and y;4;,—A,, and
y;jA,=A4, for j=1, 2, i.e.,, Sw=y,+y,0+j; jEefe. Then jA,=(dw—y,—y,8)4,
C4,, and so yy(8a)=(dw—y,—j)a=0wa—(y,+j)a=dwa (mod D,) and y,D,C
D,, since 5,<<5;<k and jeefJe. Hence (y,); is an extension of f.

Finally we consider the general case. Let f: C,/D,—C,/D, be as before.
Then there exist ;, #, in eRe as in (1). Take

ur’ f Uy
J: (A -uD A 2) (A DA4,2) G\/D, G/D, —
(Akz-11®A322)/ (AkzleaA&Z) .

Applying the above argument to f', we can find v in eRe such that v, induces

f" (or fY) and vA4,=A4, Therefore (uouz'); ((4vur');) induces f (or 7).
Thus we obtain

Theorem 1. Let R be a left serial ring, and e] = A,PB,P--DN, a
direct sum of hollow modules. Then (%, 1) holds for any hollow right R-module
if and only if the following conditions are satisfied:

1) If Ai=B,, A, has the structure of (a), (b,) or (b,) such that (#) holds
for A(4,) and A(A;) if t23 in (by), and [A(A,): A(4;y)],)=2 if t=2 in (b,) and
(by).

2) The condition in [7], Theorem is satisfied.

Proof. If A,A<B,, we obtain 2). Assume A,~B,. We have studied
an isomorphism f: C,/D,~C,/D, for submodules C;DD; in A4, If C,is a
submodule of B;, xC, is a submodule in A4,, where xB;=A, for some unit x.
Then using the manner given in the proof of Lemma 8, we can extend f to an
element in Homg(4,/D,, B,/D,) or Homg(B,/D,, A,/D,).

Proposition 6. Let R be as above. Assume A~B~---~N, for each
primitive idempotent. Then (%, 1) holds for any hollow right R-module if and
only if 1) in Theorem 1 holds.

Remark. If R is left serial, eR has the structure in § 1. Under this as-
sumption, for a fixed primitive idempotent e, we have studied a problem: when
is eJ/K a direct sum of hollow modules for any submodule K? Hence Theo-
rem 1 gives a characterization of such e, provided R is left serial. This remark
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is applicable to the next section, in particular to Proposition 7 below.

We shall give some algebras concerning Theorem and Propositions.

1 Let LDK'DK be fields with [L: K']=[K': K]=2. Let L=K'4-K'u
and K'=K+Kv. We construct a similar example to ones in [4].

R = eIL—I—eJ

(12)KI’—|—B ~ (12)uK'I+uB e
(12)(2|3)K ~ (12)(2‘3)7;K (12)(213)u1<‘ ~ (12)(21|3)uvK eJ’

0 0 0 0
e;,R=e,K'+e,] eR=eK
| I

(2|3)K (213)1)K 0

where B=(12)(23)K ®(12)(23)vK and le,=e,l for any ! in L, k'e,=ek’ for
any k' in K’. Then RzieaeiR is a left serial algebra. Further we can show

from Theorem 1 that (%, 1) holds for any hollow right R-module ((12)(23)K ~
(12)(23)vK=~(12)(23)uK). This example shows that [7], Lemma 6 is not true
if i=j.
2
e1R=Ie1K "+e ]

(IZI)K—[—B ~ (12)v€<+vB eJ

(12|)(23)K * (12')(24)K (12)l(23)~vK_ 5—(12)|(24)@K e.J?

0 0 0 0
e;R=e,K+-6,] esR=eK e,R=e,K
(23)K“|—(24)K (l) (I)
(I) |

where B=(12)(23)KP(12)(24)K and k'e;=ek’ for any k' in K’. Then
R=i‘,6§e,~R is a left serial algebra with (%, 1) ((12)(23)Ka%(12)(24)K).

3 In Example 1, we replace K’ by an extension K§ over K (K{=K(v)
and [K¢: K]>3). We add further semisimple modules (12)(23)2°K @
(12)(23)s°K @+ to B and (23)v’K B(23)0° K -+ to eR. Then (%, 1) does
not hold by Corollary 4.
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3 %2
We shall give a characterization of left serial rings with (%, 2).

Proposition 7. Let R be a right artinian ring and e a fixed primitive idem-
potent. Assume that (%, 2) holds for any two hollow modules of form eR|K. Then
ef is a direct sum of uniserial modules.

Proof. Since eR@eJ is a maximal submodule of eR@PeR, ejzﬁ@A;

by assumption, where the A4; are hollow. We shall show by induction that
A;/A;J* is uniserial for all i. If k=0, A;/4;]J°=0. Assume that A;/A4;]J"
is uniserial for all . Let A,J*/4,]""'=Buy®B,,D--BB,,,, where the B,;
are simple. We shall show s,=1. Otherwise, B,;=+0 and B,,+0. Put B*=

’”E—IGBA,-]”GBB,-, where A4, J*"CB;CA4,]J* for j=1,2 and B,/A4,]J"*= B,,®
i=1

B,s®-+@B,,,, Bo/A,J*'=B,,®B,;®--®B,, , and D=eR|B¥®eR/B¥. We
shall show, in this case, that D does not satisfy (*, 2). Contrarily assume
that D satisfies (*, 2). Then D contains a maximal submodule M with a direct
summand M, isomorphic to eR=eR/(B¥N (e+j)Bf) where j€eje by [3],
Lemma 3. Since ef*"'DBfDeJ**? and jBfCeJ**?, (e+j)Bf=B¥. Hence
M,~eR|(B¥ N Bf) (=¢R). We shall denote A;/A;]J" (i+m) and A,|B} by
A4; and A, respectively, where Bé/A,,,]”“:Z@Emj. Let M=M,®M* and

j=3
|4;|=n; and |A4,|=n,+1, where n;<n,, and n,=n-+1. Then |eR|=|M,]
=31m+2 and |D|=231n+2. Put D=D/J(D)>M=M|J(D). We note
i=1 i=1

that M=(e+é)eR/eJ in D (see [3], Lemma 3). Since |D|=2, M is a simple

module. Now M*=>X@M;; M, are hollow by (x, 2). If M,=(M,+]J(D))/
i>2

J(D)=M, eR|B¥ is an epimorphic image of M, by the remark above. Then

|M,|>|eR|—1 and so |M|>|M,|+|M,|>|D|, a contradiction. Hence

M*CJ(D). Let @ be the given isomorphism of eR to M,. It is clear that

@(e])J(D), and hence

(2) (D) = p(efydM*
(note M DJ(D)). Put Q=A,®-D4,_,, and ] =QDA,. Then
(3) JD) = 0SLDODL,,

where 0,~Q,~Q, L,=A4,/B,, and L,=A4,/B,,. From (3) »(Q)={g+0+¢
+0|gesQ}. Hence

(4) I(D) = p(Q)S LSO, DL, -
On the other hand, Soc(@(4,,))=Soc(L,)@Soc(L,), and Soc(gp(ef))=Soc(o(Q))
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@Soc(e(4,)). Let p be the projection of J(D) onto O, in (4). Then
p|Soc(M*) is a monomorphism from the above observation (note soc(M*)N

Soc(¢(q7))=0), and hence so is p|M*. Hence |M*| < |0,| ='é n;. Therefore

| M| = | M|+ | M*]| <§n,~+2—{—m§ m=2 3 m+2—np<2 3 mi+1=|D| 1

(note n,,=n-+1>2), which is a contradiction. Hence 4,,]"/4, J*** is simple.
The following lemma is substantially due to T. Sumioka [9].

Lemma 9. Let R be left serial and e] a direct sum of uniserial modules
A; and A}, ie., e]=3BA;=3PA!. Let d' be an element in efe such that
d'4,,=Aig, for A,,CA, and AjgCA]. Then there exists d in AiNefe such
that d;)|A,,=d}|A,,. Further for such d dA;=0 (i=%1).

Proof. Put A,=a,R, A;=a,R and A{g=a}R (d'a,=a}). Assume that
a,g=a, and agg—=a} for a primitive idempotent g. Let d'=>1d;; d;€ 4].
Since A1DAlz2ap=d'a,=>d}a,, af=dla,. Put d=di€AiNeJe. Since
da,=a}, d=T(JP"g). Assume da;+0 for some A;=a;R (i+1). Then da,
(#0) and da; are elements in T(A{g_,+;), Which is a contradiction to [7],
Lemma 7. Hence dA4;=0 for ¢ 1.

Let M=3Y®M,. For N,CM,, i=1,2, -, ¢, we call SYBN; a standard
i=1 i=1
submodule of M (with respect to the decomposition ﬁ]@M,-).
i=1

Lemma 10 ([9], Lemma 3.3) Let R be a left serial ring such that e] is a
direct sum of uniserial modules A;. Then every submodule in ef is a standard
submodule with respect to some direct decomposition of e], whose direct summands
are all uniserial.

Proposition 8. Let R be left serial and e] a direct sum of uniserial modules.
Then (*, 2) holds for any direct sum of two hollow modules of form eR|K.

Proof. We may consider a maximal submodule M’ in D'=eR/E,@eR|E,,
where E; are submodules in eJ. There exists a maximal submodule M in
D=eR®eR such that M DE,PE, and M/(E,PE,)=M'. From [0], Theorem
2 there exists a decomposition D=eR(f)@eR such that M=eR(f)Pe], where
fEHomg(eR, eR). Since E,C0&e], D/E,=eR(f)PeJ/E,, Hence M =
M|(E\BE,)=(eR(f)De]|E,)|p(E,), where @; E,—eR(f)Pe]|E, is the natural
mapping. Accordingly, since eR~eR(f), we may show for submodules X; in
ef (i=1, 2) and Y in D*=eR/X ,PeJ| X,

(5) D*|Y is a direct sum of hollow modules.

First assume X,SeJ. Let S’ be a submodule in ¢f@PeJ such that (Y D)S’
DX,PX, and S'/(X,DX,) (=S) is simple. We shall show



384 M. Harapa

(6) D*/S=~eR|X ®e]| X},
where X{CeR and XjCe] .
Put X,=A4,D - DApa,, Xo=Als,D @©Ans, by Lemma 10, where e]=

i m

g@A;:;@A?, Ay, CA; and Ajg,C A} Then SCA|A,, B BAplAna, D
Zi/A{ﬂ‘GB'Z-GBAI,,/A{,,p”. If SCi}@Aﬁ/Afp,., D*|S=eR|X,@Pe]|S’. Since e]/S’
is a direct sum of uniserial m(;;ilules by Lemma 10, D*/S is a direct sum of
hollow modules. We obtain the same result for a case SCi_;\"L‘_I,GBA;/A;,,,..

Let p;: ¢J| X,@e]|X,— A;/A;,; and gq;: e]|X,De]|X,— A}[Ajg,; be the projec-
tions. We shall show (6) by induction on #, where t=(the number of {p; and
g;1 p:(S)=*0 and ¢;(S)=#0}). If t=1, we are done from the observation above.
Now we may assume that S={s,4fy(s;)+ = +fw(s)+f1(s)+ - +fm(s) |5, €
Alwl—I/Alwp ﬁEHomR(Alwl—l/Alap Aia.’-l/Aia,') and f§EH0mR(A1¢1—1/A1u1) A;ﬂj—l/

’s;)}. From the above assumption, we may assume f{#0. If a,=43,, then
there exists a unit ¥ in eRe such that x;|Ais,_,/Als—>A10,-1/ A1, =f1"". Ac-
cordingly xAig=A,,, and so

(7) %, (=h)&Homg(4}/Alp,, eR| X)) .

Next assume a;>; or a;<<B,. In the former case we obtain d in efe as the
above x. Let ay<<@;. Then there exists d' in efe such that d7|A,, /A4,
induces f{. From Lemma 9, we may assume d'€A4{ and d'4,=0 for k1.
Further, since d'(eR)C A}

(8) d} (=h')€Homg(eR|X,, A/ Alp,) .
Case (7)
(9)  eR[X\@e]/X, = eR[X, @ (Ai/dip)()D 3 D A} Afp; -

Then SC(E P22 ¢%)(S), where pf and ¢ are the projections of (9). Itis

clear that (the number of {pf, ¢7})=(the number of {p;, ¢;})—1.
Case (8)

(10) eR|X,®De]| X, = (eR|X,)(h")De]| X, .
Then Sc(X] pf—l—%}. ¢7)(S). Hence we obtain the same situation. If X;=e],

eR/X,is simple. This is a special case in the above argument. In case (9), since
(Ai/Als,) (h)~A1i|Alg,, we obtain the isomorphism f;: eR/X,B(A4]/Alp,)(h)D
D Aj/Ajp;—~eR|X,Pe]|X;. Similarly in case (10) we have f,: (eR/X,)(h")D
>z

eJ| X,—eR/X,@e]J|X,. Then (the number of {p;, ¢;| p:(fi(:S)) 0, ¢;(fu(S))=+0})
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=(the number of g;, p;| {pi(S)=*0, ¢;(S)%=0})—1 for k=1, 2 (note f( J((eR/X})
('))=J(eR/X),)). Further D*|.S =~ f(D¥*)/f(S)=D*/fy(S). Therefore (6) holds
by induction on t. If we take a chain Y=S},,05;D:-DS{DX,PX,=S7%
such that S7/S7,, is simple, we can show (5).

From the above proof and Proposition 7 we have

Theorem 2. Let R be a left serial ring and e a primitive idempotent. Then
the following conditions are equivalent :

1) (%, 2) holds for a direct sum of any two hollow right R-modules of form
eR/K.

/ 2) e] is a direct sum of uniserial modules.

3) Ewvery factor module of eRPe] is a direct sum of hollow modules (direct
sum of a hollow module and uniserial modules).

4)  Every factor module of eR@e] ™ is a direct sum of hollow modules, where
eJ ™ is a direct sum of n-copies of e].

We shall study further structures of R with (%, 2) when eJ is square-free.

Lemma 11. Let R be a left serial ring. Let a—=e+d (d EeJe) be a unit
in eRe. Assume AiAxA; if i%j. Then if aA,+A4, ad;=A; for i=+1, where
eJ=1DA; and the A; are uniserial.

Proof. From [7], Lemma 5 d=A4; for some j. Since ad,+4,, j=*1,
and so d4,%0. Therefore d4,=0 for k=1 by Lemma 9.

Proposition 9. Let R be left serial. Assume that e] is a direct sum of
uniserial modules A;: ef =ﬁEBA,- and that e] is square-free. Let X be a sub-
module of e]. Then there :a:ist uniquely k and k' (not depending on X) such that
X=a (é@A;,-Q:AI,-l@---@A,,_l,-k_leaaA,z;kGBA,,H,-MEB---eBAm-”, where Aj;,C

A;, and oA, CA,DAy. Further all A; except A, are characteristic and the
number of hollow modules of form eR|K is finite up to isomorphism

Proof. Let ej:ﬁ‘,EBA,— be as in the proposition. Assume that a sub-

factor module of A, is isomorphic to one of 4,. Then from [7], Lemma 2
there exists d in A, (or 4;) which induces this isomorphism. If we have the
same situation between 4; and A4;, we obtain d’ in A4; (or A;). Then =2
by assumption and [7], Lemma 4. Since A4, is uniserial, Soc(4)~Ayu/A+
~A;|A;e4 for some k and s. Hence j=1 by [7], Lemmas 2 and 4. There-
fore, for j=1, 2, any sub-factor modules of 4; are not isomorphic to any one

of A, for all k%j. Put F,=A,®A4, and F2=_§3 @A;. Then we can easily

show by induction on m that every submodule of F, is standard. Further from
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the argument after (1) in the proof of Lemma 8, every submodule of F; is of
a form a(A4;;,@A4,,); a=etd, d€4,. Let p; be the projection of ¢ onto
F;, and X a submodule of ¢J. Put X9=p;(X) and X=X NF;. Assume
XO%Xy, and Xo=a(4y,BAu,). APA,=a (4,BA4)Da ' XPDa™ X,
=A4,;,P Ay, Hence some simple sub-factor module T' of X®/X(, is iso-
morphic to one of 4, or 4, Since X/ X ~X®|X,, T is isomorphic to
a sub-factor module of X®/X,. On the other hand, every submodule of
F, is standard, and so T is isomorphic to a sub-factor module of some A4; (j=3),
which is impossible from the initial observation. Hence X®=X,, and

XZX(“)@X(Z):a(Alkl@Azkz)®§3@Aﬂ?i:a(2}®Aikl) by Lemma 11. The re-

i=

maining part is clear from the above.

Lemma 12. Let R be a right artinian ring with (%, 2). Let D be a direct
sum of two hollow modules and M a maximal submodule of D. Then M has the
following decomposition : M=M,PM,; M, is a hollow module not contained in

J(D) and J(D)=](M)DM,.

Proof. Let D=eR/E@e'R|E’. If eRAve'R, M=eR|E®e’J|E' (or eJ]|[ED
e¢'R|E’). If eR=~e¢'R, we can obtain the lemma for any M similarly to (2) in
the proof of Proposition 7.

For two integers a(1) and «(2), we denote max {a(1), a(2)} (resp. min{a(1),
a(2)}) by a (resp. &@). If R is a right artinian ring with (*, 2),

(11) e] = gEBA,-; the A; are uniserial

from Proposition 7.

Proposition 10. Let R be a left serial ring with (%, 2) and let e] and A;
be as above. We assume that e] is square-free. Put E;=A4y®D DA pa,s
Apayy Ay for i=1,2 and all k. Then every maximal submodule M of D=
eR|E\DeR|E, is isomorphic to eR[(AyPBAu,D  DAy,)D A/ Az, DA/ A5,D
@A4,/4;,, unless M~eR|E\De]|E, or ~eJ|E,DeR|E,.

Proof. We may assume that R is basic. Assume M=(é-}¢éa)eRe/e]e,
O+ac<eRelefe. Then (4,41, D D AulAne,0) D(Ar/ A1y D+ D Au| Ay, ()
=](D)=eJ|(E,N (a+))E,)PM, by Lemma 12 and [3], Lemma 3. On the
other hand, E;N(a+7)E,=v (A P+ ® Apu,w) by Proposition 9. Hence
eJ|(E.N(a+7)E)~ Ay A1y DA/ Apar.  Since e] is square-free, either
Ay Asay i~ Ay Arayy OF AyfAiy . Therefore a;(3)=a;(l) or ay2). Further
A1y D -+ DA D V(A1 D * DB A o, () imniplies ¥ A ;05 C Ay 9D ** B A0+
Considering the projection of eJ to 4;, we obtain a;(3)>a;(1) (note 4;~v4;
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CeJ). Similarly a;(3)>a;(2), and so a;(3)=a;. Therefore Mzwg‘, D A;/A;z-

Cdrollary 11. Let R be as above. Then the number of isomorphism classes
of maximal submodules in a direct sum of (fixed) two hollow modules is at most
three.

REMARK. Assume in (11) that ] is not square-free. Then we can show,
by direct computation, the following fact:

Let D=eR/E\@eR|E, be a direct sum of hollow modules eR/E;. Then
the number of isomorphism classes of maximal submodules in D at most three
for any E, and E, if and only if one of the following occurs.

1) m=2, A;~A4,and |4,| <2.

i) m=3, Ay~A,~Azand |4,|=1.

i) m=3, A;~A,A4A; and | 4,|=1.

For example, m=2, A;~A, and |4,| >3: D=eR|A,PeR|(A,PA;;). Then D
contains the following maximal submodules:

]| A\ DPeR[(A1PAx), eR|A,De]|(A1DPAy), eR[AD A A3 and eR[A ;D
A,/Ay (cf. the proof of [6], Lemma 3). Therefore Corollary 11 characterizes

almost left serial rings with (%, 2) and eJ being square-free.

Lemma 13. Let R be a left serial ring. Assume that e] is square-free
and e is a direct sum of uniserial modules; e] =§@A,~. Let x be a unit in eRe
=1

and xA %= A,. Then there exists d in efe such that (x+d)A;=A; for all 1.

Proof. Let p; be the projection of eJ onto 4;, and 4;=a,R for j=1, 2, -,
m. Since ef is square-free, p;xA,CJ(4;) for i+1. Hence px;|A,=(d;), for
some d; in J(4;) by [7], Lemma 2. By assumption and [7], Lemma 4, only
one d;, say d,, is non-zero, since xA4,== A,. Similarly for j==1, 2 and 7 =},
pixi| Aj=(d};), for some dj;]J(A4;). Then d;=0 (k=+2) by [7], Lemma 4.
Assume dj;#+0, and so dja;#0. Since d,=0, 0=d,a,RCdja;R (or djpa;RC
da,R). Let dya,=da;r (and a,g=a, and rg=r for a primitive idempotent g).
Hence there exist non-zero three elements a,g, a;7g and dya,g. This is a
contradiction to [7], Lemma 5. Hence x4d;=A; (j=+1, 2). If xA,+4,, we
obtain again a contradiction to [7], Lemmas 2 and 4. Finally, since 0%=d,4,
CA4,, d,A;=0 for j =1 from Lemma 9. Therefore (x—d,)A4;=4, for all .

From Proposition 10 we know the form of maximal submodules in eR/E,
@eR/E, up to isomorphism, provided (%, 2) holds and eJ is square-free. We
shall show explicitly such an isomorphism. Let eJ=A,PA4A,D---PA, be a
direct sum of uniserial submodules. Put E;=A4,,,:D AzayyD *** B A pa,(ny for
i=1, 2, where 4;,,»CA4;. Set D=eR/E,@PeR[E, and let M be a maximal
submodule in D. Put M*=eR/(A4,D A3p,D*** DA ya,) DA/ A15,D Ao A25,D
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®A,/A,s, and D=D|J(D)DM=M][J(D). We may assume M=(é+zek)A (cf.
[2], p. 93), where k+0€A (R is basic). From Lemma 13, we may assume
kA;=A, for allz. We define a mapping @: M*—D by setting for xEeR, a;EA4;,

(12) ¢(x+(Alg,@ e @Angn)+(01+A1a1)+ " '+(an‘|‘Ana,,))
= (x"l’ a18E1m1(1)+ e +an83”w”(l))+(Ala1(l)® e eaAnml(l))
+ (kx+ alaglml(z)‘{' o +an8é,,m,,(2))+(Alm1(2)@ ot @Anm,,(z)) )

where the §, §’ are Kronecker deltas such that 87,,,,»=0 provided a;(1)=a;(2).
Since (Aml(x)@'"@Am,,(l)) n(Alml(z)@"'@Anmn(z)):AlgléB"' GBA@,,, @ is an R-
homomorphism. (@(M*)-J(D))/J(D)=M means o(M*)CM, and so @(M*)
=M, since |M*|=|S|—1=|M|.
Finally we shall give a property of a right artinian ring with (%, 2). Put
P=31®4, and 0= 3} @4, in (11). Assume A,A Ay for all &, k' such that
k=1 k=i+1
R<i<k'.

Proposition 12. Let R, P and Q be as above. Let L be a direct summand
of eJ such that L|L] ~P|P]. Then there exists a unit a=e—+j (j Eefe) such that
aP=L.

Proof. From the assumption L/LJ~P|P] and Krull-Remak-Schmidt
theorem, L~P. We apply the exchange property of L to eJ=P@Q. Then
eJ=L®P'PQ’, where P'CP and Q'CQ. Since no one of indecomposable
direct summands of L is isomorphic to any one in Q, eJ=L@Q. Put D=eR/P
@eR/L. We shall employ the similar argument to the proof of Proposition 7.
From [3], Lemma 3 and its proof, D contains a maximal submodule M such
that M=M,M* with M,~eR|K, where K=PNaL, a=e+j. Now

(13) J(D) = 0:®Q,,  where O;~0Q.

Further, as in the proof of Proposition 7,

JD)=@(e]|K)YPM*, ¢: eR[K—D is the given injection. On the other
hand, p((Q+K)/K)=0i(f), where f: 0,~0;. Hence

(14) ID) = p(Q+K)K)DQ, and p(P/K)CQ,.

Let p be the projection of J(D) onto Q, in (14), and x an element in p(Soc(M *))
Ne(P/K); x=p(y) for some y in Soc(M*). Then y=(1—p)y+py and
(1—-p)yEp((Q+K)/K). Hence yep(e]/Q)NM*=0, and so x=0. Similarly,
we know p|Soc(M*) is a monomorphism. Hence

(15) PM*)BPIK)CQ, and p(M*)~M*.
Now [M|=|M,|+ [M*|= [eR|K|+ |[M*|=1+|Q|+ |P[K|+ |M*| <
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1+10|+10;|=|D|—1=|M]| from (15). Hence p(M*)P @(P/K)=0Q,=
élEBA,,, and so @(P/K) is isomorphic to a direct sum of some 4, (k=>i+1)

P
by Krull-Remak-Schmidt theorem. On the other hand, AA&A4, for s<<i<k,
and hence P=K=P Nal. Therefore aL=P.

ExampLE 4. Let Q be the field of rationals. We regard Q(# —1) (=L)
as a Q-space. Then we can directly compute that V=0P O/ —1+¥ —1)
is not transferred to a standard submodule of L=0@®QadQa*PQa’® by a
unit, where a=4#"—1. Hence
( L L )
00

is a left serial ring with (*, 2) by [3], Proposition 3, however (0, V) is not trans-
ferred to a standard submodule of a decomposition ef = (0, Q)PD(0, Qa)P
(0, Qa®)d(0, Qa®), (cf. Lemma 10 and Proposition 9).
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