GENERALIZATIONS OF NAKAYAMA RING V

(LEFT SERIAL RINGS WITH (*, 2))

MANABU HARADA

(Received February 3, 1986)

We have studied a left serial algebra over an algebraically closed field with (*, n) as right modules in [4] and further investigated an artinian left serial ring R with (*, 1) in [7], when eJ/eJ^2 is square-free for each primitive idempotent e, where J is the Jacobson radical of R. On the other hand, we have given a characterization of a certain artinian ring with (*, 3) in [6].

For a left serial ring R, we shall obtain, in the second section of this paper, a characterization of R with (*, 1) (Theorem 1), and one of R with (*, 2) (Theorem 2) in the third section. We shall study hereditary rings with (*, 2) in the forthcoming paper.

In order to give a complete study of a left serial ring with (*, 1), we need deep properties of a division ring (much more difficult than Artin problem, see (#)).

We shall use the same terminologies given in [7] and every ring R is a both-sided artinian ring with identity, unless otherwise stated.

1. Left serial rings

In this section, we assume that R is a left serial ring. Then $eJ^i = \sum_k \bigoplus A_k$, where the A_k are hollow right R-modules by [8], Corollary

4.2. We shall describe this situation as the following diagram:

or

where A, B, \cdots are hollow modules. (cf. [3], §2).

Let e be a primitive idempotent and put $\Delta = eRe/eJe$, and for a submodule A of eR, $\Delta(A) = \{x \mid x \in eRe, xA \subset A\}$, where x is the coset of x in Δ . Then $\Delta(A)$ is a division subring of Δ (see [1]). It is clear that $\Delta(A) = \Delta(\bar{A}) = \{x \mid x \in eRe, xA \subset A \text{ and } x\bar{A} \subset \bar{A}\}$ provided A is hollow; $\bar{A} = A/J(A)$.

Let $A_1 \supset A_{i_1}$ be as in the diagram above. We put $\widetilde{R} = R/J^t$ (t > i) and $\widetilde{A}_{i_1} = (A_{i_1} + eJ^t)/eJ^t$. Then we can express $A_{i_1} + eJ^t$ as a direct sum $A_{i_1} \oplus C$, where $C \subset eJ^t - A_{i_1}$ (see the diagram above). Let p and q be the projections of $A_{i_1} + eJ^t$ to A_{i_1} and C respectively. We can define $\Delta(A_{i_1})$ and $\Delta(\widetilde{A}_{i_1})$. Since $eRe/eJe \approx (eRe/eJ^te)/(eJe/eJ^te)$, $\Delta(A_{i_1})$ is canonically contained in $\Delta(\widetilde{A}_{i_1})$. Conversely, let \overline{x} be an element in Δ such that $x(A_{i_1} + eJ^t) \subset A_{i_1} + eJ^t$. Put $f = qx_l \mid A_{i_1}$ and f is in $\operatorname{Hom}_R(A_{i_1}, eJ^t)$, where x_l means the left-sided multiplication of x. Let $A_{i_1} = aR$ and ag = a for some primitive idempotent g. Since b = f(a) = f(a)g, there exists d in eJe such that da = b (note i > t), since R is left serial. Then $x_l \mid A_{i_1} = (px_l + qx_l) \mid A_{i_1} = px_l \mid A_{i_1} + f = px_l \mid A_{i_1} + d_l \mid A_{i_1}$ and $px_l \mid A_{i_1} \in \operatorname{Hom}_R(A_{i_1}, A_{i_1})$. Hence $(\bar{x} - \bar{d}) = \bar{x} \in \Delta(A_{i_1})$. Thus we have (from now on A_{ij} means always a hollow module in the diagram above)

Lemma 1. Let R be a left serial ring, and let A_{i_1} and \tilde{A}_{i_1} be as above. Then $\Delta(A_{i_1}) = \Delta(\tilde{A}_{i_1})$.

Lemma 2. Let R be a left serial ring. Let A_{i1} contain A_{j1} and A_{jk} . Then $\Delta(A_{j1}) \subset \Delta(A_{i1})$, and if $f: A_{j1} \approx A_{jk}$, there exists a unit δ in eRe which induces f and $\delta A_{i1} = A_{i1}$.

Proof. Assume $f: A_{j1} \approx A_{jk}$. There exists a unit x in eRe such that $xA_{j1}=A_{jk}$ from [7], Lemma 2, and x_l induces f, since R is left serial. For x, we employ the similar argument given in the proof of Lemma 1. Let $eJ^i=A_{i1}\oplus E$ and p, q the projections. Consider $qx_l|A_{i1}$ (=g). Since $g(A_{j1})=qxA_{j1}=qA_{jk}=0$, g is not a monomorphism. Hence $g=d_l$ for some d in eJe and so $(x-d)A_{i1}\subset A_{i1}$. Hence $(x-d)_l$ induces f. If we put k=1 in the above, we obtain the first half of the lemma.

2. (*, 1)

First we recall the definition of (*, n)

(*, n) Every maximal submodule of a direct sum of n hollow modules is also a direct sum of hollow modules [5].

We shall study, in this section, left serial rings R with (*, 1). We obtained a characterization of a left serial ring with (*, 1), when eJ/eJ^2 is square-free, i.e., $\bar{A}_1 \approx \bar{B}_1 \approx \cdots \approx \bar{N}_1$ in [7], Theorem. Hence we may consider eR satisfying $A_1 \approx B_1$.

Now we shall study such a ring with (*, 1).

Lemma 3. Let R be left serial. Assume that $A_1 \approx B_1$ and (*, 1) holds. Then, for any submodules $C_i \supset D_i$ in A_1 such that C_i/D_i is simple and f; $C_1/D_1 \approx C_2/D_2$, f or f^{-1} is extendible to an element g in $\operatorname{Hom}_R(A_1/D_1, A_1/D_2)$ or $\operatorname{Hom}_R(A_1/D_2, A_1/D_1)$.

Proof. There exists a unit element u in eRe such that $B_1 = uA_1$. Put $C'_2 = uC_2$, $D'_2 = uD_2$ and $f' = u_I f$. Then f' (or $f^{-1}u_I^{-1}$) is extendible to an element g' in $\operatorname{Hom}_R(A_1/D_1, B_1/D'_2)$ (or $\operatorname{Hom}_R(B_1/D'_2, A_1/D_1)$) by [6], Theorem 4. Then $g = u_I^{-1}g'$ (or $g = g'u_I$) is the desired extension of f (or f^{-1}).

Proposition 1. Let R, A_1 and B_1 be as in Lemma 3. If there are three non-zero hollow modules A_{i1} , A_{i2} , A_{i3} ($\subset A_1$) for some i, they are isomorphic to one another.

Proof. First we shall show $\bar{A}_{i1}\approx\bar{A}_{i2}$. Put $C_1=A_{i1}\oplus A_{i3}$ and $C_2=A_{i2}\oplus A_{i3}$. Considering R/J^{i+1} from [3], Lemma 1, we may assume that the A_{ij} are simple. Now $f\colon C_1/A_{i1}\approx A_{i3}\approx C_2/A_{i2}$. Then by Lemma 3, there exists an element x in eRe which induces f or f^{-1} , i.e., $f(a+A_{i1})=xa+A_{i2}$ for $a\in A_1$. Since C_1 , C_2 are contained in eJ^i but not in eJ^{i+1} , x is a unit, and $xA_{i1}=A_{i2}$ (or $xA_{i2}=A_{i1}$) from the argument of the proof of [4], Theorem 3. Therefore $\bar{A}_{i1}\approx \bar{A}_{i2}$. Since R is left serial and A_{ij} are hollow, $A_{i1}\approx A_{i2}$ from [7], Lemma 2.

Let $\Delta \supset \Delta_1$ be division rings. [], ([],) means the dimension of Δ over Δ_1 as a right (left) Δ_1 -module.

Proposition 2. Let A_1 , B_1 be as in Lemma 3. Then for $A_{i1} \supset A_{j1}$ $[\Delta(A_{i1}): \Delta(A_{j1})]_r = |A_{i1}J^{j-i}|A_{i1}J^{j-i+1}|$, except $A_{i1}J^{j-i} = A_{j1} \oplus A_{j2}$ and $A_{j1} \approx A_{j2}$ (in the exceptional case $\Delta(A_{i1}) = \Delta(A_{j1})$, cf. Example 2 below).

Proof. We may assume from Lemma 1 and [3], Lemma 1 that $J^{j+1}=0$, and hence $A_{1i}J^{j-i+1}=0$, and so A_{j1} is simple. Let $A_{j1}=aR$ and $\{\bar{e}, \delta_2, \delta_3, \cdots, \delta_i\}$ be a linearly independent set in $\Delta_i = \Delta(A_{i1})$ over $\Delta_j = \Delta(A_{j1})$ such that $\delta_k A_{i1} \subset A_{i1}$ for all k. We shall show $A_{j1} + \delta_2 A_{j1} + \delta_3 A_{j1} + \cdots + \delta_t A_{j1} = A_{j1} \oplus \delta_2 A_{j1} \oplus \delta_3 A_{j1} \oplus \cdots \oplus \delta_t A_{j1}$. If $(A_{j1} + \delta_2 A_{j1} + \cdots + \delta_{t-1} A_{j1}) \cap \delta_t A_{j1} = 0$, $\delta_t A_{j1} \subset A_{j1} + \cdots + \delta_{t-1} A_{j1}$, since $\delta_t A_{j1}$ is simple. Then $\delta_t a = a_1 + \delta_2 a_2 + \cdots + \delta_{t-1} a_{t-1}$, where $a_j \in A_{j1}$. The mapping; $a \to a_i$ gives an endomorphism of A_{j1} . Hence $a_i = k_i a$ for some $\bar{k}_i \in \Delta_j$ by Lemma 2. Accordingly $\delta_i = \bar{k}_1 + \delta_2 \bar{k}_2 + \cdots + \delta_{t-1} \bar{k}_{t-1}$, since $J^{j+1} = 0$, a contradiction. From the similar argument we can show that $\{A_{j1}, \delta_2 A_{j1}, \cdots, \delta_t A_{j1}\}$ is independent. Hence $[\Delta(A_{i1}): \Delta(A_{j1})]_r \leqslant |A_{i1}J^{j-i}|$. Assume $|A_{i1}J^{j-i}| \geqslant 3$. Then by Proposition 1 $A_{i1}J^{j-i} = A_{j1} \oplus A_{j2} \oplus \cdots \oplus A_{jp}$; $p \geqslant 3$ and $A_{j1} \approx A_{jk}$ for $2 \leqslant k \leqslant p$. There exists \bar{x}_k in Δ_i $(x_k \in eRe)$ such that $x_k A_{j1} = \bar{x}_k A_{j1} = A_{jk}$. We shall show that $\{\bar{e}, \bar{x}_2, \cdots, \bar{x}_p\}$ is linearly independent

over Δ_j . Assume $\bar{x}_p = \bar{k}_1 + \bar{x}_2 \bar{k}_2 + \cdots + \bar{x}_{p-1} \bar{k}_{p-1}$, where $\bar{k}_i A_{j1} \subset A_{j1}$ and $k_i \in eRe$. Since $JA_{j1} = 0$, $A_{jp} = x_p A_{j1} = \bar{x}_p A_{j1} \subset \bar{k}_1 A_{j1} + \bar{x}_2 \bar{k}_2 A_{j1} + \cdots + \bar{x}_{p-1} \bar{k}_{p-1} A_{j1} = \sum_{i=1}^{p-1} \bigoplus A_{jk}$, a contradiction. Hence $|A_{i1}J^{j-i}| \leq [\Delta(A_{i1}):\Delta(A_{j1})]_r$. Finally assume $|A_{i1}J^{j-i}| \leq 2$. If $A_{j1} \approx A_{j2}$, we have the same result. If $A_{j1} \approx A_{j2}$, $p \leq 2$ from Proposition 1, and $\Delta_i = \Delta_j$ from the initial argument. If $A_{j2} = \cdots = A_{jp} = 0$, it is clear that $\Delta_i = \Delta_j$. Hence $[\Delta(A_{i1}):\Delta(A_{j1})]_r = 1$.

We consider the situation in Proposition 2 and $J^{n+1}=0$. Let $A_{k1}J^{n-k}=\sum_{j=1}^{p}\oplus A_{nj}$. If $p\geqslant 3$, $A_{n1}\approx A_{nj}$ for all j by Proposition 1. Put $\Delta_k=\Delta(A_{k1})$ and $\Delta_n=\Delta(A_{n1})$. Then $[\Delta_k\colon\Delta_n]_r=p$ by Proposition 2. Further $A_{k1}J^{n-k}=A_{n1}\oplus\delta_2A_{n1}\oplus\cdots\oplus\delta_pA_{n1}=\Delta_na\oplus\delta_2\Delta_na\oplus\cdots\oplus\delta_p\Delta_na$, where $A_{n1}=aR$, and every simple submodule in $A_{k1}J^{n-k}$ is of a form $\delta\Delta_na$ for some δ in Δ_k . Now we shall identify $A_{k1}J^{n-k}=\Delta_na\oplus\delta_2\Delta_na\oplus\cdots\oplus\delta_p\Delta_na=(\Delta_k\oplus\delta_2\Delta_n\oplus\cdots\oplus\delta_p\Delta_n)a$ with $\Delta_k=\Delta_n\oplus\delta_2\Delta_n\oplus\cdots\oplus\delta_p\Delta_n$, i.e., $\mathrm{Hom}_R(A_{n1},A_{k1}J^{n-k})\approx\Delta_k(\Delta_ka=A_{k1}J^{n-k})$ as left Δ_k , right Δ_n -modules. Let $T_1\supset T_2$ and $S_1\supset S_2$ be submodules in $A_{k1}J^{n-k}$ such that $f\colon T_1/T_2\approx S_1/S_2$ and $|T_1|=|S_1|(|T_1|\leqslant|S_1|),|T_1/T_2|=1$. Then f is extendible to an element h in $\mathrm{Hom}_R(A_1/T_2,A_1/S_2)$. Since S_1 , S_1 are contained in S_1 , S_2 is given by a unit element S_1 in S_2 . As given in the proof of Lemma 2, S_1 , S_2 is in S_2 , and S_3 , and S_4 , and an S_4 , a

For any Δ_n -subspace V_1 , V_2 in Δ_k with $|V_1| = |V_2|(|V_1| \le |V_2|)$ and (\sharp) $v_1\Delta_n \oplus V_1$, $v_2\Delta_n \oplus V_2$ ($v_i \in \Delta_k$), there exists x in Δ_k such that $xV_1 = V_2$ ($xV_1 \subset V_2$) and $xv_1 \equiv v_2$ (mod V_2).

Lemma 4. Let $\Delta \supset \Delta_1$ be division rings. Assume that (#) holds for Δ and Δ_1 . Then $[\Delta: \Delta_1]_I \leq 2$.

Proof. We may assume $\Delta \neq \Delta_1$. Let δ be a fixed element in $\Delta - \Delta_1$ and δ' an element in $\Delta - \Delta_1$. Put $V_1 = V_2 = \Delta_1$, $v_1 = \delta$ and $v_2 = \delta' y$ for any $y \in \Delta_1$ in (#). Then there exists x in Δ_1 such that $x\delta = \delta' y + z$ for some z in Δ_1 . Hence $\delta' \Delta_1 \subset \Delta_1 \oplus \Delta_1 \delta$. Since δ' is arbitrary, $\Delta = \Delta_1 + \Delta_1 \delta$, and so $[\Delta: \Delta_1]_I \leq 2$.

Proposition 3. Let R, A_1 and B_1 be as in Lemma 3. Then for $A_{i_1} \supset A_{j_1}$, $\Delta(A_{i_1})$ and $\Delta(A_{j_1})$ satisfy (\sharp) and so $[\Delta(A_{i_1}): \Delta(A_{j_1})]_i \leq 2$.

Proof. It is clear by Proposition 2 that if $A_{j1}\approx A_{j2}$, $\Delta(A_{i1})=\Delta(A_{j1})$. If $A_{j1}\approx A_{j2}$, $A_{j1}\approx A_{j2}\approx \cdots \approx A_{jt}$ by Proposition 1, where $t=[\Delta(A_{i1}):\Delta(A_{j1})]_r$. Then $\Delta(A_{i1})$ and $\Delta(A_{j1})$ satisfy (#) from the remark before Lemma 4. Hence $[\Delta(A_{i1}):\Delta(A_{j1})]_l\leqslant 2$ from Lemma 4.

Corollary 4. Let A_1 and B_1 be as above. Assume either $\Delta(A_1)$ is commutative or R is an algebra over a field with finite dimension. Then $A_1J^{i-1}=A_{i1}\oplus A_{i2}$ for all $i\geq 2$, i.e., $[\Delta(A_1):\Delta(A_{i1})]_{r}\leq 2$.

Proof. From the assumption and Proposition 3, $[\Delta(A_1): \Delta(A_{i1})]_r \leq 2$.

Proposition 5. Let A_1 , B_1 be as in Lemma 3. Assume $J(A_{i1})=A_{i+11} \oplus A_{i+12} \oplus \cdots \oplus A_{i+1p}$. If $p \ge 2$, A_{i+1k} is uniserial for all k.

Proof. Assume that $J(A_{j-11})$ is not uniserial, i.e., $J(A_{j-11}) = A_{j1} \oplus A_{j2} \oplus \cdots$ for j > i+1. We shall divide ourselves into two cases.

- i) $A_{i+11} \not\approx A_{i+12}$. Then $p \leqslant 2$ by Proposition 1, and $A_{i+12}J^{j-i-1} = 0$ by assumption: $A_1 \approx B_1$, Proposition 1 and [7], Lemma 3. Put $D_1 = A_{j1} \oplus J(A_{j2})$, $D_2 = A_{i+12} \oplus J(A_{j2})$, $C_1 = A_{j2} + D_1$ and $C_2 = A_{j2} + D_2$. Then $f: C_1/D_1 \approx \overline{A}_{j2} \approx C_2/D_2$. Since (*, 1) is satisfies, f or f^{-1} is extendible to x_i for some x in eRe by Lemma 3. Being $f(A_{j2} + D_1) = A_{j2} + D_2$, x is a unit. Hence $xD_1 \subset D_2$ or $xD_2 \subset D_1$ (see the proof of [4], Theorem 3). However, by [7], Lemma 3, it is impossible.
- ii) $A_{i+11} \approx A_{i+12} \approx \cdots \approx A_{i+1p}$. Then $A_{j1} \approx A_{j2}$ by Proposition 1. Since $A_{i+11} \approx A_{i+12}$, $\Delta(A_1) = \Delta(A_{i+11})$ by Proposition 2. Similarly $\Delta(A_{j-11}) = \Delta(A_{j1})$. Hence $[\Delta(A_1): \Delta(A_{i+11})]_I = [\Delta(A_1): \Delta(A_{j1})]_I = [\Delta(A_{j-11}): \Delta(A_{j1})]_I = 2$ by Proposition 3 and Lemma 4. However $\Delta(A_1) \supset \Delta(A_{i+11}) \supset \Delta(A_{j-11}) \supset \Delta(A_{j1})$ by Lemma 2, which is impossible.

We shall give the structure of A_1 . From Propositions 1 and 5 we obtain the following diagrams (a) and (b').

Assume $t\geqslant 3$ and $J(A_{i1})=A_{i+11}\neq 0$. Put $D_1=A_{i+11}\oplus A_{i2}$, $D_2=A_{i+11}\oplus A_{i+12}\oplus A_{i+13}$, $C_1=A_{i1}+D_1$ and $C_2=A_{i1}+D_2$. Then $C_1/D_1\approx \overline{A}_{i1}\approx C_2/D_2$. However, $xD_1\oplus D_2$ $(xD_2\oplus D_1)$. Hence we obtain a contradiction as above. Thus we

have from Corollary 5

Lemma 5. Let R be left serial. Then in the diagram (a), any two distinct simple sub-factor modules (e.g. A_s/A_{s+1} , A_{t1}/A_{t+11}) are not isomorphic to one another.

Proof. Assume $\bar{A}_k \approx \bar{A}_{p2}$ for $k \leqslant i-1$ and $p \geqslant i$. Put $A_k = a_k R$, $A_{p2} = a_{p2} R$ and $a_k g = a_k$, $a_{p2} g = a_{p2}$ for a primitive idempotent g. Since $A_1 \approx B_1$, $A_k \approx B_k$ and $A_{p2} \approx B_{p2} = b_{p2} R$; $b_{p2} g = b_{p2}$. Then there exists d in B_1 such that $da_k = b_{p2}$ by [7], Lemma 2, and $d \in T(eJ^{p-k}e)$. Since $0 \neq b_{p2} \in J^p g$, $db_k \in T(eJ^p g)$. Let $db_k = x_1 + x_2$; $x_j = x_j g \in B_{ij}$ (j = 1, 2). Assume $x_2 \in T(eJ^p g)$. Then $b_{p2} = x_2 u$ for some unit u in gRg, and so $d(a_k - b_k u) = -x_1 u$. Hence $-x_1 u = -x_1 u g \in T(B_{p1})$. Accordingly, $B_{p1} \approx B_{p2}$, which contradicts [7], Lemma 3. Therefore $x_2 \notin T(eJ^p g)$, and so $x_1 = x_1 g \in T(eJ^p g)$. Again we obtain the same contradiction from [7], Lemma 3. Thus $\bar{A}_k \approx \bar{A}_{p2}$. We can use the same argument for other cases (note that, for the case $\bar{A}_k \approx \bar{A}_{k'}$, (k < k' < i-1), use [7], Lemma 7).

Lemma 6. Assume that R is a left serial ring. Then in (b_1) we have the same situation as in Lemma 5 for simple sub-factor modules between A_1 and $J(A_{i-1})$. Further $\Delta(A_1)$ and $\Delta(A_{i1})$ satisfy (\sharp) , provided $(*\ 1)$ holds. For (b_2) any two of simple sub-factor modules between A_1 and $J(A_{i-1})$ (and of A_{i1}) are not isomorphic to one another, respectively. (Some simple sub-factor modules between A_1 and $J(A_{i-1})$ may be isomorphic to one of A_{i1} .)

Proof. The first halves of (b_1) and (b_2) are obtained from the argument similarly to Lemma 5. The last one of (b_1) is clear from Proposition 3.

Lemma 7. Let R be left serial, and consider the diagram (a). Let $C_1 \supset D_1$ and $C_2 \supset D_2$ be submodules in A_1 such that $f: C_1/D_2 \approx C_2/D_2$ and $|C_1/D_1| = 1$. Then f or f^{-1} is extendible to an element in $\operatorname{Hom}_R(A_1/D_1, A_1/D_2)$ or $\operatorname{Hom}_R(A_1/D_2, A_1/D_1)$.

Proof. We may assume $C_i = c_i R + D_i$ and $c_i g = c_i$ for i = 1, 2. If $c_1 \in T(A_k)$ $(k \le i - 1)$, $C_1 = A_k$ and $D_1 = J(C_1) = A_{k+1}$. Then $c_2 \in T(A_k)$ by Lemma 5. Hence there exists a unit d in eRe such that $dc_1 = c_2$. We may

assume $dA_1=A_1$ by Lemma 2. Then $dD_1=dA_kJ\subset C_2J=D_2$. Therefore d_I is an extension of f. Thus we may assume that $J(A_{i-1})$ contains C_1 and C_2 . From Lemma 5 every submodule in $J(A_{i-1})$ is standard (see the definition before Lemma 10 below). Let $C_1=A_{j1}\oplus A_{k2}$, $D_1=A_{j+1}\oplus A_{k2}$. Since $C_1/D_1\approx C_2/D_2$, $C_2=A_{j1}\oplus A_{k'2}$, $D_2=A_{j+11}\oplus A_{k'2}$. If $k\leqslant k'$ (resp. k>k'), f is extendible to an element d_I in $\operatorname{Hom}_R(A_1/D_2, A_1/D_1)(\operatorname{Hom}_R(A_1/D_1, A_1/D_2))$ as above by Lemmas 2 and 5.

Lemma 8. Let R be left serial. In the diagram (b_1) , we assume that $\Delta(A_1)$ and $\Delta(A_{i1})$ satisfy (\sharp) . Further we assume $[\Delta(A_1): \Delta(A_{i1})]_i=2$ in (b_2) . Then we obtain the same result as in Lemma 7.

Proof. Let c_j be as in the proof of Lemma 7. If c_j is in $T(A_{s_j})$ ($s_j \le i-1$), then $C_1 = C_2 = A_{s_1}$ and $D_1 = D_2 = A_{s_1+1}$ by Lemma 6. Hence we can prove the lemma as in the proof of Lemma 7. Similarly if $C_1 = A_{s_1}$ and C_2 is contained in $J(A_{i-1})$, we can easily prove the lemma, since $D_1 = J(C_1)$. Therefore we may assume $J(A_{i-1})$ contains C_1 and C_2 .

- (b₁) Since C_i is in $J(A_{i-1})$, we have the lemma from (#).
- (b₂) Let $J(A_{i-1})=A_{i1}\oplus A_{i2}\supset C_1\supset D_1$ be submodules with $|C_1/D_1|=1$. Let p_j be the projection of $J(A_{i-1})$ to A_{ij} . We shall show for $C(=C_1)$ and $D(=D_1)$ that there exists a unit x in eRe such that
 - (1) $xA_1=A_1$ and $xC=A_{k-1}\oplus A_{s2}\supset xD=A_{k1}\oplus A_{s2}$.

First we remark the following fact: for $C=A_{r1}\oplus A_{r2}$, there exists a unit y in eRe such that $yA_1=A_1$ and $yC=A_{r1}\oplus A_{r2}$.

- i) $t \geqslant r$. There exists y in eRe such that $yA_1 = A_1$ and $yA_{i1} = A_{i2}$ by Lemma 2. Since $yA_{i2} \neq A_{i2}$, $p_1(yA_{i2}) \neq 0$, and so $p_1y(A_{i2}) = A_{i1}$ by Lemma 6. Hence $yC = A_{i1} \oplus A_{i2}$.
 - ii) t < r. Take a unit y' such that $y'A_{i2} = A_{i1}$ and $y'A_1 = A_1$.

Put $D_{(j)}=D\cap A_{ij}$ and $D^{(j)}=p_j(D)$ (j=1,2). Then $g':D^{(1)}/D_{(1)}\approx D^{(2)}/D_{(2)}$. Let $D_{(1)}=A_{k1}$, $D_{(2)}=A_{s2}$, $D^{(1)}=A_{k-11}$ and $D^{(2)}=A_{s-12}$. We may assume $k\leqslant s$ from the remark (actually k=s by Lemma 6). There exists x in eRe such that x_l induces g. Hence $xD_{(1)}\subset D_{(2)}$. Putting $\alpha=e+x$, $\alpha(D_{(1)}\oplus D_{(2)})\subset D_{(1)}\oplus D_{(2)}$ and $\alpha(A_{k-11}+D_{(1)}\oplus D_{(2)})\subset \alpha A_{k-11}+D_{(1)}\oplus D_{(2)}=D$. α is clearly a unit, and so $\alpha^{-1}D=A_{k-11}+D_{(1)}\oplus D_{(2)}=A_{k-11}\oplus A_{s2}$. Now $\alpha^{-1}C\supset \alpha^{-1}D=A_{k'1}\oplus A_{s2}$, where k'=k-t. Since |C/D|=1, $\alpha^{-1}C$ is one of the following: $A_{k'-11}\oplus A_{s2}$, $A_{k'1}\oplus A_{s-12}$ and $(e+y)A_{k'-11}\oplus \alpha^{-1}D$ (in the last case k'=s), where $y\in eRe$ and $yA_{k'-11}=A_{s-12}$. Noting $yA_{k'1}=A_{s2}$ and $k\leqslant s$, we obtain (1) from the initial remark.

Next we assume that $C_i \supset D_i$ are of the form (1). Put $C_i = A_{k_i-11} \oplus A_{si2}$ and $D_i = A_{k_i1} \oplus A_{si2}$ for i = 1, 2. Since $f: C_1/D_1 \approx C_2/D_2$, $k_1 = k_2$ (=k) by Lemma 6. We shall divide ourselves to the following cases:

 (α) $k \leq \min(s_1, s_2)$. We may assume $s_1 \geqslant s_2$. Let $A_{k-1} = aR$. Then there

exists a unit z in eRe such that $f(a+D_1)=za+D_2$ and $zA_{k-11}=A_{k-11}$, $zA_1=A_1$ by Lemma 2. Since $k \le s_2 \le s_1$, $zD_1=z(A_{k_11} \oplus A_{s_12}) \subset A_{k_1} \oplus A_{s_12}=D_2$. Hence z_1 is an extension of f.

- (β) $s_2 \leqslant k \leqslant s_1$ ($s_1 \leqslant k \leqslant s_2$). We obtain the same result as in (α). (Take f^{-1} .)
- (γ) $k < \max(s_1, s_2)$. We may assume $s_1 \ge s_2$. Let $A_{k-12} = aR$ and $\delta A_{i2} = A_{i1}$ ($\delta A_1 = A_1$) for some unit δ by Lemma 2. Then $A_{k-11} = \delta aR$ and $f(\delta a + D_1) = \delta wa + D_2$ for some w with $wA_1 = A_1$ and $wA_{k-12} = A_{k-12}$. Since $[\Delta(A_1): \Delta(A_{i2})]_i = 2$, there exist y_1 and y_2 in eRe such that $\delta \overline{w} = \overline{y}_1 + \overline{y}_2 \delta$ and $y_j A_{i2} = A_{i2}$, and $y_j A_1 = A_1$ for j = 1, 2, i.e., $\delta w = y_1 + y_2 \delta + j$; $j \in eJe$. Then $jA_1 = (\delta w y_1 y_2 \delta)A_1 \subset A_1$, and so $y_2(\delta a) = (\delta w y_1 j)a = \delta wa (y_1 + j)a \equiv \delta wa \pmod{D_2}$ and $y_2D_1 \subset D_2$, since $s_2 \le s_1 \le k$ and $j \in eJe$. Hence $(y_2)_l$ is an extension of f.

Finally we consider the general case. Let $f: C_1/D_1 \rightarrow C_2/D_2$ be as before. Then there exist u_1 , u_2 in eRe as in (1). Take

$$f': (A_{k_1-11} \oplus A_{s_12})/(A_{k_11} \oplus A_{s_12}) \xrightarrow{u_1^{-1}} C_1/D_1 \xrightarrow{f} C_2/D_2 \xrightarrow{u_2} (A_{k_2-11} \oplus A_{s_22})/(A_{k_31} \oplus A_{s_22}).$$

Applying the above argument to f', we can find v in eRe such that v_l induces f' (or f'^{-1}) and $vA_1=A_1$. Therefore $(u_1vu_2^{-1})_l$ $((u_2vu_1^{-1})_l)$ induces f (or f^{-1}). Thus we obtain

Theorem 1. Let R be a left serial ring, and $eJ = A_1 \oplus B_1 \oplus \cdots \oplus N_1$ a direct sum of hollow modules. Then (*, 1) holds for any hollow right R-module if and only if the following conditions are satisfied:

- 1) If $A_1 \approx B_1$, A_1 has the structure of (a), (b₁) or (b₂) such that (#) holds for $\Delta(A_1)$ and $\Delta(A_{i1})$ if $t \geq 3$ in (b₁), and $[\Delta(A_1): \Delta(A_{i1})]_i = 2$ if t = 2 in (b₁) and (b₂).
 - 2) The condition in [7], Theorem is satisfied.

Proof. If $A_1 \approx B_1$, we obtain 2). Assume $A_1 \approx B_1$. We have studied an isomorphism $f: C_1/D_2 \approx C_2/D_2$ for submodules $C_i \supset D_i$ in A_1 . If C_2 is a submodule of B_1 , xC_2 is a submodule in A_1 , where $xB_1 = A_1$ for some unit x. Then using the manner given in the proof of Lemma 8, we can extend f to an element in $\operatorname{Hom}_R(A_1/D_1, B_1/D_2)$ or $\operatorname{Hom}_R(B_1/D_2, A_1/D_1)$.

Proposition 6. Let R be as above. Assume $A_1 \approx B_1 \approx \cdots \approx N_1$ for each primitive idempotent. Then (*, 1) holds for any hollow right R-module if and only if 1) in Theorem 1 holds.

REMARK. If R is left serial, eR has the structure in § 1. Under this assumption, for a fixed primitive idempotent e, we have studied a problem: when is eJ/K a direct sum of hollow modules for any submodule K? Hence Theorem 1 gives a characterization of such e, provided R is left serial. This remark

is applicable to the next section, in particular to Proposition 7 below.

We shall give some algebras concerning Theorem and Propositions.

1 Let $L\supset K'\supset K$ be fields with [L:K']=[K':K]=2. Let L=K'+K'uand K'=K+Kv. We construct a similar example to ones in [4].

where $B=(12)(23)K\oplus(12)(23)vK$ and $le_1=e_1l$ for any l in L, $k'e_2=e_2k'$ for any k' in K'. Then $R = \sum_{i=1}^{3} \bigoplus e_i R$ is a left serial algebra. Further we can show from Theorem 1 that (*, 1) holds for any hollow right R-module ((12)(23) $K \approx$ $(12)(23)vK\approx(12)(23)uK$). This example shows that [7], Lemma 6 is not true if i=j.

2

where $B = (12)(23)K \oplus (12)(24)K$ and $k'e_1 = e_1k'$ for any k' in K'. Then $R = \stackrel{4}{\Sigma} \oplus e_i R$ is a left serial algebra with (*, 1) $((12)(23)K \approx (12)(24)K)$.

3 In Example 1, we replace K' by an extension K'_0 over $K(K'_0=K(v))$ and $[K'_0: K] \ge 3$). We add further semisimple modules $(12)(23)v^2K \oplus$ $(12)(23)v^3K \oplus \cdots$ to B and $(23)v^2K \oplus (23)v^3K \oplus \cdots$ to e_2R . Then (*, 1) does not hold by Corollary 4.

382 M. Harada

3 (*, 2)

We shall give a characterization of left serial rings with (*, 2).

Proposition 7. Let R be a right artinian ring and e a fixed primitive idempotent. Assume that (*, 2) holds for any two hollow modules of form eR/K. Then eI is a direct sum of uniserial modules.

Since $eR \oplus eJ$ is a maximal submodule of $eR \oplus eR$, $eJ = \sum_{i=1}^{n} \bigoplus A_i$ by assumption, where the A_i are hollow. We shall show by induction that $A_i|A_iJ^k$ is uniserial for all i. If k=0, $A_i|A_iJ^0=0$. Assume that $A_i|A_iJ^m$ is uniserial for all i. Let $A_m J^n / A_m J^{n+1} = B_{m1} \oplus B_{m2} \oplus \cdots \oplus B_{ms_m}$, where the \bar{B}_{mj} are simple. We shall show $s_m=1$. Otherwise, $\bar{B}_{m1} \neq 0$ and $\bar{B}_{m2} \neq 0$. Put $B_j^*=$ $\sum_{i=1}^{m-1} \bigoplus A_i J^n \bigoplus B_j, \text{ where } A_m J^{n+1} \subset B_j \subset A_m J^n \text{ for } j=1, 2 \text{ and } B_1 / A_m J^{n+1} = \overline{B}_{m2} \bigoplus$ $B_{m3} \oplus \cdots \oplus \bar{B}_{ms_m}$, $B_2/A_mJ^{n+1} = \bar{B}_{m1} \oplus \bar{B}_{m3} \oplus \cdots \oplus \bar{B}_{ms_m}$, and $D = eR/B_1^* \oplus eR/B_2^*$. We shall show, in this case, that D does not satisfy (*, 2). Contrarily assume that D satisfies (*, 2). Then D contains a maximal submodule M with a direct summand M_1 isomorphic to $eR = eR/(B_1^* \cap (e+j)B_3^*)$ where $j \in eIe$ by [3], Lemma 3. Since $eJ^{n+1} \supset B_2^* \supset eJ^{n+2}$ and $jB_2^* \subset eJ^{n+2}$, $(e+j)B_2^* = B_2^*$. Hence $M_1 \approx eR/(B_1^* \cap B_2^*)$ ($= \widetilde{eR}$). We shall denote A_i/A_iJ^n ($i \neq m$) and A_m/B_3' by A_i and A_m , respectively, where $B_3'/A_mJ^{n+1} = \sum_{i \geq 3} \oplus \bar{B}_{mj}$. Let $M = M_1 \oplus M^*$ and $|\tilde{A}_i| = n_i$ and $|\tilde{A}_m| = n_m + 1$, where $n_i \leq n_m$ and $n_m = n + 1$. Then $|\tilde{eR}| = |M_1|$ $=\sum_{i=1}^{m}n_i+2$ and $|D|=2\sum_{i=1}^{m}n_i+2$. Put $\bar{D}=D/J(D)\supset \bar{M}=M/J(D)$. We note that $\overline{M} = (\overline{e} + \overline{e})eR/eJ$ in \overline{D} (see [3], Lemma 3). Since $|\overline{D}| = 2$, \overline{M} is a simple module. Now $M^* = \sum_{i \ge 2} \bigoplus M_i$; M_i are hollow by (*, 2). If $\overline{M}_2 = (M_2 + J(D))/(M_2 + M_1)$ $J(D)=\overline{M}$, eR/B_1^* is an epimorphic image of M_2 by the remark above. $|M_2| \geqslant |\widetilde{eR}| - 1$ and so $|M| \geqslant |M_1| + |M_2| \geqslant |D|$, a contradiction. Hence $M^*\subset J(D)$. Let φ be the given isomorphism of \widetilde{eR} to M_1 . It is clear that $\varphi(eJ) \subset J(D)$, and hence

(2)
$$J(D) = \varphi(\widetilde{eJ}) \oplus M^*$$

(note $M \supset J(D)$). Put $Q = \tilde{A}_1 \oplus \cdots \oplus \tilde{A}_{m-1}$, and $e\tilde{f} = Q \oplus \tilde{A}_m$. Then

$$J(D) = Q_1 \oplus L_1 \oplus Q_2 \oplus L_2,$$

where $Q_1 \approx Q_2 \approx Q$, $L_1 = \tilde{A}_m / \bar{B}_{m1}$ and $L_2 = \tilde{A}_m / \bar{B}_{m2}$. From (3) $\varphi(Q) = \{q + 0 + q + 0 | q \in Q\}$. Hence

$$\mathsf{J}(D) = \varphi(Q) \oplus L_1 \oplus Q_2 \oplus L_2.$$

On the other hand, $\operatorname{Soc}(\varphi(\tilde{A}_m)) = \operatorname{Soc}(L_1) \oplus \operatorname{Soc}(L_2)$, and $\operatorname{Soc}(\varphi(\tilde{eJ})) = \operatorname{Soc}(\varphi(Q))$

 $\bigoplus \operatorname{Soc}(\varphi(\tilde{A}_m))$. Let p be the projection of J(D) onto Q_2 in (4). Then $p \mid \operatorname{Soc}(M^*)$ is a monomorphism from the above observation (note $\operatorname{soc}(M^*) \cap \operatorname{Soc}(\varphi(\tilde{eJ})) = 0$), and hence so is $p \mid M^*$. Hence $\mid M^* \mid \leq \mid Q_2 \mid = \sum_{i=1}^m n_i$. Therefore $\mid M \mid = \mid M_1 \mid + \mid M^* \mid \leq \sum_{i=1}^m n_i + 2 + \sum_{i=1}^{m-1} n_i = 2 \sum_{i=1}^m n_i + 2 - n_m \langle 2 \sum_{i=1}^m n_i + 1 = \mid D \mid -1$ (note $n_m = n + 1 \geqslant 2$), which is a contradiction. Hence $A_m J^n \mid A_m J^{n+1}$ is simple.

The following lemma is substantially due to T. Sumioka [9].

Lemma 9. Let R be left serial and eJ a direct sum of uniserial modules A_i and A'_i , i.e., $eJ = \sum \bigoplus A_i = \sum \bigoplus A'_i$. Let d' be an element in eJe such that $d'A_{1\omega} = A'_{1\beta}$, for $A_{1\omega} \subset A_1$ and $A'_{1\beta} \subset A'_1$. Then there exists d in $A'_1 \cap eJe$ such that $d_1|A_{1\omega} = d'_1|A_{1\omega}$. Further for such d $dA_i = 0$ ($i \neq 1$).

Proof. Put $A_{1\alpha}=a_{\alpha}R$, $A_1=a_1R$ and $A'_{1\beta}=a'_{\beta}R$ ($d'a_{\alpha}=a'_{\beta}$). Assume that $a_{\alpha}g=a_{\alpha}$ and $a'_{\beta}g=a'_{\beta}$ for a primitive idempotent g. Let $d'=\sum d'_{r}$; $d'_{r}\in A'_{r}$. Since $A'_{1}\supset A'_{1\beta}\ni a'_{\beta}=d'a_{\alpha}=\sum d'_{r}a_{\alpha}$, $a'_{\beta}=d'_{1}a_{\alpha}$. Put $d=d'_{1}\in A'_{1}\cap eJe$. Since $da_{\alpha}=a'_{\beta}$, $d\in T(J^{\beta-\alpha}g)$. Assume $da_{i}\neq 0$ for some $A_{i}=a_{i}R$ ($i\neq 1$). Then da_{1} ($\neq 0$) and da_{i} are elements in $T(A'_{1\beta-\alpha+1})$, which is a contradiction to [7], Lemma 7. Hence $dA_{i}=0$ for $i\neq 1$.

Let $M = \sum_{i=1}^{t} \bigoplus M_i$. For $N_i \subset M_i$, $i = 1, 2, \dots, t$, we call $\sum_{i=1}^{t} \bigoplus N_i$ a standard submodule of M (with respect to the decomposition $\sum_{i=1}^{t} \bigoplus M_i$).

Lemma 10 ([9], Lemma 3.3) Let R be a left serial ring such that eJ is a direct sum of uniserial modules A_i . Then every submodule in eJ is a standard submodule with respect to some direct decomposition of eJ, whose direct summands are all uniserial.

Proposition 8. Let R be left serial and eJ a direct sum of uniserial modules. Then (*, 2) holds for any direct sum of two hollow modules of form eR/K.

Proof. We may consider a maximal submodule M' in $D'=eR/E_1\oplus eR/E_2$, where E_i are submodules in eJ. There exists a maximal submodule M in $D=eR\oplus eR$ such that $M\supset E_1\oplus E_2$ and $M/(E_1\oplus E_2)=M'$. From [0], Theorem 2 there exists a decomposition $D=eR(f)\oplus eR$ such that $M=eR(f)\oplus eJ$, where $f\in \operatorname{Hom}_R(eR,eR)$. Since $E_2\subset 0\oplus eJ$, $D/E_2=eR(f)\oplus eJ/E_2$. Hence $M'=M/(E_1\oplus E_2)=(eR(f)\oplus eJ/E_2)/\varphi(E_1)$, where φ ; $E_1\to eR(f)\oplus eJ/E_2$ is the natural mapping. Accordingly, since $eR\approx eR(f)$, we may show for submodules X_i in eJ (i=1, 2) and Y in $D^*=eR/X_1\oplus eJ/X_2$

(5) D^*/Y is a direct sum of hollow modules.

First assume $X_1 \subseteq eJ$. Let S' be a submodule in $eJ \oplus eJ$ such that $(Y \supset)S' \supset X_1 \oplus X_2$ and $S'/(X_1 \oplus X_2)$ (=S) is simple. We shall show

(6)
$$D^*/S \approx eR/X_1' \oplus eJ/X_2',$$
 where $X_1' \subset eR$ and $X_2' \subset eJ$.

Put $X_1 = A_{\omega_1} \oplus \cdots \oplus A_{m\omega_m}$, $X_2 = A'_{1\beta_1} \oplus \cdots \oplus A'_{m\beta_m}$ by Lemma 10, where $eJ = \sum_{i=1}^m \oplus A_i = \sum_{i=1}^m \oplus A'_i$, $A_{i\omega_i} \subset A_i$ and $A'_{j\beta_j} \subset A'_j$. Then $S \subset A_1/A_{1\omega_1} \oplus \cdots \oplus A_m/A_{m\omega_m} \oplus A'_1/A'_{1\beta_1} \oplus \cdots \oplus A'_m/A'_{m\beta_n}$. If $S \subset \sum_{i=1}^m \oplus A'_i/A'_{i\beta_i}$, $D^*/S = eR/X_1 \oplus eJ/S'$. Since eJ/S' is a direct sum of uniserial modules by Lemma 10, D^*/S is a direct sum of hollow modules. We obtain the same result for a case $S \subset \sum_{i=1}^m \oplus A_i/A_{i\omega_i}$. Let $p_i : eJ/X_1 \oplus eJ/X_2 \to A_i/A_{i\omega_i}$ and $q_j : eJ/X_1 \oplus eJ/X_2 \to A'_j/A'_{j\beta_j}$ be the projections. We shall show (6) by induction on t, where $t = (\text{the number of } \{p_i \text{ and } q_j \mid p_i(S) \neq 0 \text{ and } q_j(S) \neq 0\}$. If t = 1, we are done from the observation above. Now we may assume that $S = \{s_1 + f_2(s_1) + \cdots + f_m(s_1) + f'_1(s_1) + \cdots + f'_m(s_1) \mid s_1 \in A_{1\omega_1-1}/A_{1\omega_1}$, $f_i \in \text{Hom}_R(A_{1\omega_1-1}/A_{1\omega_1}, A_{i\omega_i-1}/A_{i\omega_i})$ and $f'_j \in \text{Hom}_R(A_{1\omega_1-1}/A_{1\omega_1}, A'_{j\beta_j-1}/A'_{j\beta_j})\}$. From the above assumption, we may assume $f'_1 \neq 0$. If $\alpha_1 = \beta_1$, then there exists a unit x in eRe such that $x_1 \mid A'_{1\beta_1-1}/A'_{1\beta_1} \to A_{1\omega_1-1}/A_{1\omega_1} = f'_1$. Accordingly $xA'_{1\beta_1} = A_{1\omega_1}$, and so

$$(7) x_l (=h) \in \operatorname{Hom}_{\mathbb{R}}(A_1'/A_{1\beta_1}', eR/X_1).$$

Next assume $\alpha_1 > \beta_1$ or $\alpha_1 < \beta_1$. In the former case we obtain d in eJe as the above x. Let $\alpha_1 < \beta_1$. Then there exists d' in eJe such that $d'_i | A_{1\alpha_1-1} / A_{1\alpha_1}$ induces f'_i . From Lemma 9, we may assume $d' \in A'_i$ and $d'A_k = 0$ for $k \neq 1$. Further, since $d'(eR) \subset A'_i$

$$(8) d'_{l}(=h') \in \operatorname{Hom}_{R}(eR/X_{1}, A'_{1}/A'_{1\beta_{1}}).$$

Case (7)

(9)
$$eR/X_1 \oplus eJ/X_2 = eR/X_1 \oplus (A'_1/A'_{1\beta_1})(h) \oplus \sum_{j\geqslant 2} \oplus A'_j/A'_{j\beta_j}$$
.

Then $S \subset (\sum_{k \neq 1} p'_k + \sum_{i \neq j} q'_i)(S)$, where p'_i and q'_j are the projections of (9). It is clear that (the number of $\{p'_k, q'_i\}$)=(the number of $\{p_i, q_j\}$)-1. Case (8)

(10)
$$eR/X_1 \oplus eJ/X_2 = (eR/X_1)(h') \oplus eJ/X_2.$$

Then $S \subset (\sum p'_i + \sum_{1 \neq j} q'_j)(S)$. Hence we obtain the same situation. If $X_1 = eJ$, eR/X_1 is simple. This is a special case in the above argument. In case (9), since $(A'_1/A'_{1\beta_1})(h) \approx A'_1/A'_{1\beta_1}$, we obtain the isomorphism f_1 : $eR/X_1 \oplus (A'_1/A'_{1\beta_1})(h) \oplus \sum_{j \geq 2} \oplus A'_j/A'_{j\beta_j} \rightarrow eR/X_1 \oplus eJ/X_2$. Similarly in case (10) we have f_2 : $(eR/X_1)(h') \oplus eJ/X_2 \rightarrow eR/X_1 \oplus eJ/X_2$. Then (the number of $\{p_i, q_j \mid p_i(f_k(S)) \neq 0, q_j(f_k(S)) \neq 0\}$)

=(the number of q_j , $p_i | \{p_i(S) \neq 0, q_j(S) \neq 0\}\} - 1$ for k=1, 2 (note $f(J((eR/X_1)(h')) = J(eR/X_1))$). Further $D^*/S \approx f_k(D^*)/f_k(S) = D^*/f_k(S)$. Therefore (6) holds by induction on t. If we take a chain $Y = S'_{p+1} \supset S'_p \supset \cdots \supset S'_1 \supset X_1 \oplus X_2 = S'_0$ such that S'_i/S'_{i+1} is simple, we can show (5).

From the above proof and Proposition 7 we have

Theorem 2. Let R be a left serial ring and e a primitive idempotent. Then the following conditions are equivalent:

- 1) (*, 2) holds for a direct sum of any two hollow right R-modules of form eR/K.
 - e J is a direct sum of uniserial modules.
- 3) Every factor module of $eR \oplus eJ$ is a direct sum of hollow modules (direct sum of a hollow module and uniserial modules).
- 4) Every factor module of $eR \oplus eJ^{(n)}$ is a direct sum of hollow modules, where $eJ^{(n)}$ is a direct sum of n-copies of eJ.

We shall study further structures of R with (*, 2) when $e\overline{f}$ is square-free.

Lemma 11. Let R be a left serial ring. Let $\alpha = e + d$ ($d \in eJe$) be a unit in eRe. Assume $\bar{A}_i \approx \bar{A}_j$ if $i \neq j$. Then if $\alpha A_1 \neq A_1$, $\alpha A_i = A_i$ for $i \neq 1$, where $eJ = \sum \bigoplus A_i$ and the A_i are uniserial.

Proof. From [7], Lemma 5 $d \in A_j$ for some j. Since $\alpha A_1 \neq A_1$, $j \neq 1$, and so $dA_1 \neq 0$. Therefore $dA_k = 0$ for $k \neq 1$ by Lemma 9.

Proposition 9. Let R be left serial. Assume that eJ is a direct sum of uniserial modules A_i : $eJ = \sum_{i=1}^m \bigoplus A_i$ and that eJ is square-free. Let X be a submodule of eJ. Then there exist uniquely k and k' (not depending on X) such that $X = \alpha$ $(\sum_{j=1}^m \bigoplus A_{ij}) = A_{1i_1} \bigoplus \cdots \bigoplus A_{k-1i_{k-1}} \bigoplus \alpha A_{ki_k} \bigoplus A_{k+1i_{k+1}} \bigoplus \cdots \bigoplus A_{ni_n}$, where $A_{ji_j} \subset A_j$, and $\alpha A_k \subset A_k \bigoplus A_{k'}$. Further all A_i except A_k are characteristic and the number of hollow modules of form eR/K is finite up to isomorphism

Proof. Let $eJ = \sum_{i=1}^{m} \bigoplus A_i$ be as in the proposition. Assume that a subfactor module of A_1 is isomorphic to one of A_2 . Then from [7], Lemma 2 there exists d in A_2 (or A_1) which induces this isomorphism. If we have the same situation between A_i and A_j , we obtain d' in A_i (or A_j). Then i=2 by assumption and [7], Lemma 4. Since A_2 is uniserial, $\operatorname{Soc}(A_2) \approx A_{1k}/A_{1k+1} \approx A_{js}/A_{js+1}$ for some k and s. Hence j=1 by [7], Lemmas 2 and 4. Therefore, for $j \neq 1$, 2, any sub-factor modules of A_j are not isomorphic to any one of A_k for all $k \neq j$. Put $F_1 = A_1 \oplus A_2$ and $F_2 = \sum_{j \geqslant 3}^{m} \oplus A_j$. Then we can easily show by induction on m that every submodule of F_2 is standard. Further from

the argument after (1) in the proof of Lemma 8, every submodule of F_1 is of a form $\alpha(A_{1i_1} \oplus A_{2i_2})$; $\alpha = e + d$, $d \in A_2$. Let p_i be the projection of eJ onto F_i , and X a submodule of eJ. Put $X^{(i)} = p_j(X)$ and $X_{(j)} = X \cap F_j$. Assume $X^{(1)} \neq X_{(1)}$, and $X_{(1)} = \alpha(A_{1k_1} \oplus A_{2k_2})$. $A_1 \oplus A_2 = \alpha^{-1}(A_1 \oplus A_2) \supset \alpha^{-1}X^{(1)} \supset \alpha^{-1}X_{(1)} = A_{1k_1} \oplus A_{2k_2}$. Hence some simple sub-factor module T of $X^{(1)}/X_{(1)}$ is isomorphic to one of A_1 or A_2 . Since $X^{(1)}/X_{(1)} \approx X^{(2)}/X_{(2)}$, T is isomorphic to a sub-factor module of $X^{(2)}/X_{(2)}$. On the other hand, every submodule of F_2 is standard, and so T is isomorphic to a sub-factor module of some A_j ($j \geq 3$), which is impossible from the initial observation. Hence $X^{(1)} = X_{(1)}$, and $X = X_{(1)} \oplus X_{(2)} = \alpha(A_{1k_1} \oplus A_{2k_2}) \oplus \sum_{j \geq 3} \oplus A_{jk_j} = \alpha(\sum_{i=1}^m \oplus A_{ik_1})$ by Lemma 11. The remaining part is clear from the above.

Lemma 12. Let R be a right artinian ring with (*, 2). Let D be a direct sum of two hollow modules and M a maximal submodule of D. Then M has the following decomposition: $M=M_1\oplus M_2$; M_1 is a hollow module not contained in $J(D)=J(M_1)\oplus M_2$.

Proof. Let $D=eR/E \oplus e'R/E'$. If $eR \approx e'R$, $M=eR/E \oplus e'J/E'$ (or $eJ/E \oplus e'R/E'$). If $eR \approx e'R$, we can obtain the lemma for any M similarly to (2) in the proof of Proposition 7.

For two integers $\alpha(1)$ and $\alpha(2)$, we denote max $\{\alpha(1), \alpha(2)\}$ (resp. min $\{\alpha(1), \alpha(2)\}$) by $\underline{\alpha}$ (resp. $\overline{\alpha}$). If R is a right artinian ring with (*, 2),

(11)
$$eJ = \sum_{i=1}^{m} \bigoplus A_i$$
; the A_i are uniserial

from Proposition 7.

Proposition 10. Let R be a left serial ring with (*, 2) and let eJ and A_i be as above. We assume that eJ is square-free. Put $E_i = A_{1\alpha_1(i)} \oplus \cdots \oplus A_{n\alpha_n(i)}$; $A_{k\alpha_k(i)} \subset A_k$ for i=1, 2 and all k. Then every maximal submodule M of $D=eR/E_1 \oplus eR/E_2$ is isomorphic to $eR/(A_{\underline{\alpha_1}} \oplus A_{\underline{\alpha_2}} \oplus \cdots \oplus A_{\underline{\alpha_n}}) \oplus A_1/A_{\overline{\alpha_1}} \oplus A_2/A_{\overline{\alpha_2}} \oplus \cdots \oplus A_n/A_{\overline{\alpha_n}}$, unless $M \approx eR/E_1 \oplus eJ/E_2$ or $\approx eJ/E_1 \oplus eR/E_2$.

Proof. We may assume that R is basic. Assume $\overline{M} = (\overline{e} + \overline{e}\alpha)eRe/eJe$, $0 \pm \overline{\alpha} \in eRe/eJe$. Then $(A_1/A_{1\alpha_1(1)} \oplus \cdots \oplus A_n/A_{n\alpha_n(1)}) \oplus (A_1/A_{1\alpha_1(2)} \oplus \cdots \oplus A_n/A_{n\alpha_n(2)}) = J(D) \approx eJ/(E_1 \cap (\alpha+j)E_2) \oplus M_2$ by Lemma 12 and [3], Lemma 3. On the other hand, $E_1 \cap (\alpha+j)E_2 = \gamma(A_{1\alpha_1(3)} \oplus \cdots \oplus A_{n\alpha_n(3)})$ by Proposition 9. Hence $eJ/(E_1 \cap (\alpha+j)E_2) \approx A_1/A_{1\alpha_1(3)} \oplus \cdots \oplus A_n/A_{n\alpha_n(3)}$. Since $e\overline{J}$ is square-free, either $A_1/A_{1\alpha_1(3)} \approx A_1/A_{1\alpha_1(1)}$ or $A_1/A_{1\alpha_1(2)}$. Therefore $\alpha_i(3) = \alpha_i(1)$ or $\alpha_i(2)$. Further $A_{1\alpha_1(1)} \oplus \cdots \oplus A_{n\alpha_n(1)} \supset \gamma(A_{1\alpha_1(3)} \oplus \cdots \oplus A_{n\alpha_n(3)})$ implies $\gamma A_{i\alpha_i(3)} \subset A_{1\alpha_1(1)} \oplus \cdots \oplus A_{n\alpha_n(1)}$. Considering the projection of eJ to A_i , we obtain $\alpha_i(3) \geqslant \alpha_i(1)$ (note $A_i \approx \gamma A_i$

 $\subset eJ$). Similarly $\alpha_i(3) \geqslant \alpha_i(2)$, and so $\alpha_i(3) = \underline{\alpha}_i$. Therefore $M_2 \approx \sum_{i=1}^n \bigoplus A_i / A_{i\bar{\alpha}i}$.

Corollary 11. Let R be as above. Then the number of isomorphism classes of maximal submodules in a direct sum of (fixed) two hollow modules is at most three.

REMARK. Assume in (11) that \overline{eJ} is not square-free. Then we can show, by direct computation, the following fact:

Let $D=eR/E_1\oplus eR/E_2$ be a direct sum of hollow modules eR/E_i . Then the number of isomorphism classes of maximal submodules in D at most three for any E_1 and E_2 if and only if one of the following occurs.

- i) $m=2, A_1 \approx A_2 \text{ and } |A_1| \leq 2.$
- ii) m=3, $A_1 \approx A_2 \approx A_3$ and $|A_1|=1$.
- iii) m=3, $A_1 \approx A_2 \approx A_3$ and $|A_1|=1$.

For example, m=2, $A_1 \approx A_2$ and $|A_1| \geqslant 3$: $D=eR/A_1 \oplus eR/(A_{12} \oplus A_{23})$. Then D contains the following maximal submodules:

 $eJ/A_1 \oplus eR/(A_{12} \oplus A_{23})$, $eR/A_1 \oplus eJ/(A_{12} \oplus A_{23})$, $eR/A_{12} \oplus A_1/A_{13}$ and $eR/A_{13} \oplus A_1/A_{12}$ (cf. the proof of [6], Lemma 3). Therefore Corollary 11 characterizes almost left serial rings with (*, 2) and $e\overline{J}$ being square-free.

Lemma 13. Let R be a left serial ring. Assume that $e\overline{J}$ is square-free and eJ is a direct sum of uniserial modules; $eJ = \sum_{i=1}^{m} \bigoplus A_i$. Let x be a unit in eRe and $xA_1 \neq A_1$. Then there exists d in eJe such that $(x+d)A_i = A_i$ for all i.

Proof. Let p_i be the projection of eJ onto A_i , and $A_j = a_j R$ for $j = 1, 2, \cdots$, m. Since $e\overline{J}$ is square-free, $p_i x A_1 \subset J(A_i)$ for $i \neq 1$. Hence $p_i x_l | A_1 = (d_i)_l$ for some d_i in $J(A_i)$ by [7], Lemma 2. By assumption and [7], Lemma 4, only one d_i , say d_2 , is non-zero, since $xA_1 \neq A_1$. Similarly for $j \neq 1, 2$ and $i \neq j$, $p_i x_l | A_j = (d_{ji})_l$ for some $d_{ji} \in J(A_i)$. Then $d_{jk} = 0$ $(k \neq 2)$ by [7], Lemma 4. Assume $d_{j2} \neq 0$, and so $d_{j2}a_j \neq 0$. Since $d_2 \neq 0$, $0 \neq d_2 a_1 R \subset d_{j2} a_j R$ (or $d_{j2}a_j R \subset d_2 a_1 R$). Let $d_2 a_1 = d_{j2} a_j r$ (and $a_1 g = a_1$ and rg = r for a primitive idempotent g). Hence there exist non-zero three elements $a_1 g$, $a_j rg$ and $d_2 a_1 g$. This is a contradiction to [7], Lemma 5. Hence $xA_j = A_j$ $(j \neq 1, 2)$. If $xA_2 \neq A_2$, we obtain again a contradiction to [7], Lemma 2 and 4. Finally, since $0 \neq d_2 A_1 \subset A_2$, $d_2 A_j = 0$ for $j \neq 1$ from Lemma 9. Therefore $(x - d_2)A_i = A_i$ for all i.

From Proposition 10 we know the form of maximal submodules in eR/E_1 $\oplus eR/E_2$ up to isomorphism, provided (*, 2) holds and $e\overline{J}$ is square-free. We shall show explicitly such an isomorphism. Let $eJ = A_1 \oplus A_2 \oplus \cdots \oplus A_n$ be a direct sum of uniserial submodules. Put $E_i = A_{1\alpha_1(i)} \oplus A_{2\alpha_2(i)} \oplus \cdots \oplus A_{n\alpha_n(i)}$ for i=1, 2, where $A_{j\alpha_j(i)} \subset A_j$. Set $D = eR/E_1 \oplus eR/E_2$ and let M be a maximal submodule in D. Put $M^* = eR/(A_{1\alpha_1} \oplus A_{2\alpha_2} \oplus \cdots \oplus A_{n\alpha_n}) \oplus A_1/A_{1\overline{\alpha_1}} \oplus A_2/A_{2\overline{\alpha_2}} \oplus \cdots$

388 M. Harada

 $\bigoplus A_n/A_{n\bar{e}_n}$ and $\bar{D}=D/J(D)\supset \bar{M}=M/J(D)$. We may assume $\bar{M}=(\bar{e}+\bar{e}\bar{k})\Delta$ (cf. [2], p. 93), where $\bar{k}\pm 0\in\Delta$ (R is basic). From Lemma 13, we may assume $kA_i=A_i$ for all i. We define a mapping $\varphi\colon M^*\to D$ by setting for $x\in eR$, $a_i\in A_i$,

(12)
$$\varphi(x+(A_{1\underline{\omega}_{1}}\oplus\cdots\oplus A_{n\underline{\omega}_{n}})+(a_{1}+A_{1\overline{\omega}_{1}})+\cdots+(a_{n}+A_{n\overline{\omega}_{n}}))$$

$$=(x+a_{1}\delta_{\overline{\omega}_{1}\omega_{1}(1)}+\cdots+a_{n}\delta_{\overline{\omega}_{n}\omega_{n}(1)})+(A_{1\omega_{1}(1)}\oplus\cdots\oplus A_{n\omega_{n}(1)})$$

$$+(kx+a_{1}\delta_{\overline{\omega}_{1}\omega_{1}(2)}+\cdots+a_{n}\delta_{\overline{\omega}_{n}\omega_{n}(2)})+(A_{1\omega_{1}(2)}\oplus\cdots\oplus A_{n\omega_{n}(2)}),$$

where the δ , δ' are Kronecker deltas such that $\delta'_{\vec{a}_i \vec{\omega}_i(2)} = 0$ provided $\alpha_i(1) = \alpha_i(2)$. Since $(A_{1\alpha_1(1)} \oplus \cdots \oplus A_{n\alpha_n(1)}) \cap (A_{1\alpha_1(2)} \oplus \cdots \oplus A_{n\alpha_n(2)}) = A_{1\underline{\alpha}_1} \oplus \cdots \oplus A_{n\underline{\alpha}_n}$, φ is an R-homomorphism. $(\varphi(M^*) + J(D))/J(D) = \overline{M}$ means $\varphi(M^*) \subset M$, and so $\varphi(M^*) = M$, since $|M^*| = |S| - 1 = |M|$.

Finally we shall give a property of a right artinian ring with (*, 2). Put $P = \sum_{k=1}^{i} \oplus A_k$ and $Q = \sum_{k=i+1}^{m} \oplus A_k$ in (11). Assume $\bar{A}_k \approx \bar{A}_{k'}$ for all k, k' such that $k \leq i < k'$.

Proposition 12. Let R, P and Q be as above. Let L be a direct summand of eJ such that $L/LJ \approx P/PJ$. Then there exists a unit $\alpha = e+j$ $(j \in eJe)$ such that $\alpha P = L$.

Proof. From the assumption $L/LJ \approx P/PJ$ and Krull-Remak-Schmidt theorem, $L\approx P$. We apply the exchange property of L to $eJ=P\oplus Q$. Then $eJ=L\oplus P'\oplus Q'$, where $P'\subset P$ and $Q'\subset Q$. Since no one of indecomposable direct summands of L is isomorphic to any one in Q, $eJ=L\oplus Q$. Put $D=eR/P\oplus eR/L$. We shall employ the similar argument to the proof of Proposition 7. From [3], Lemma 3 and its proof, D contains a maximal submodule M such that $M=M_1\oplus M^*$ with $M_1\approx eR/K$, where $K=P\cap \alpha L$, $\alpha=e+j$. Now

(13)
$$J(D) = Q_1 \oplus Q_2, \quad \text{where } Q_i \approx Q.$$

Further, as in the proof of Proposition 7,

 $J(D) = \varphi(eJ/K) \oplus M^*$, $\varphi: eR/K \to D$ is the given injection. On the other hand, $\varphi((Q+K)/K) = Q_1(f)$, where $f: Q_1 \to Q_2$. Hence

(14)
$$J(D) = \varphi((Q+K)/K) \oplus Q_2 \text{ and } \varphi(P/K) \subset Q_2.$$

Let p be the projection of J(D) onto Q_2 in (14), and x an element in $p(\operatorname{Soc}(M^*)) \cap \varphi(P/K)$; x = p(y) for some y in $\operatorname{Soc}(M^*)$. Then y = (1-p)y + py and $(1-p)y \in \varphi((Q+K)/K)$. Hence $y \in \varphi(eJ/Q) \cap M^* = 0$, and so x = 0. Similarly, we know $p \mid \operatorname{Soc}(M^*)$ is a monomorphism. Hence

(15)
$$p(M^*) \oplus (P/K) \subset Q_2$$
 and $p(M^*) \approx M^*$.

Now
$$|M| = |M_1| + |M^*| = |eR/K| + |M^*| = 1 + |Q| + |P/K| + |M^*| \le 1$$

 $1+|Q|+|Q_2|=|D|-1=|M|$ from (15). Hence $p(M^*)\oplus \varphi(P/K)=Q_2=\sum_{k=i+1}^m \oplus A_k$, and so $\varphi(P/K)$ is isomorphic to a direct sum of some A_k $(k\geqslant i+1)$ by Krull-Remak-Schmidt theorem. On the other hand, $\bar{A}_s \approx \bar{A}_k$ for $s\leqslant i < k$, and hence $P=K=P\cap \alpha L$. Therefore $\alpha L=P$.

EXAMPLE 4. Let Q be the field of rationals. We regard $Q(\sqrt[4]{-1})$ (=L) as a Q-space. Then we can directly compute that $V = Q \oplus Q(\sqrt{-1} + \sqrt[4]{-1})$ is not transferred to a standard submodule of $L = Q \oplus Q\alpha \oplus Q\alpha^2 \oplus Q\alpha^3$ by a unit, where $\alpha = \sqrt[4]{-1}$. Hence

$$\begin{pmatrix} L & L \\ 0 & Q \end{pmatrix}$$

is a left serial ring with (*, 2) by [3], Proposition 3, however (0, V) is not transferred to a standard submodule of a decomposition $eJ = (0, Q) \oplus (0, Q\alpha) \oplus (0, Q\alpha^2) \oplus (0, Q\alpha^3)$, (cf. Lemma 10 and Proposition 9).

References

- [0] M. Harada: On lifting property on direct sums of hollow modules, Osaka J. Math. 17 (1980), 783-791.
- [1] —: Serial rings and direct decompositions, J. Pure Appl. Algebra 41 (1984), 55-61.
- [2] ——: On maximal submodules of a finite direct sum of hollow modules I, Osaka J. Math. 21 (1984), 649-670.
- [3] —: On maximal submodules of a finite direct sum of hollow modules III, Osaka J. Math. 22 (1985), 81-98.
- [4] ----: Note on left serial algebras, Tsukuba J. Math. 10 (1986), 193-197.
- [5] ——: Generalizations of Nakayama ring I, Osaka J. Math. 23 (1986), 181–200.
- [6] ———: Generalizations of Nakayama ring II, Osaka J. Math. 23 (1986), 509-521.
- [7] ——— and Y. Baba: Generalizations of Nakayama ring IV (Left serial rings with (*, 1)), Osaka J. Math. 24 (1987), 139-145.
- [8] T. Sumioka: Tachikawa's theorem on algebras of left colocal type, Osaka J. Math. 21 (1984), 629-648.
- [9] ----: On Artinian rings of right local type, to appear.

Department of Mathematics Osaka City University Sugimoto-3, Sumiyoshi-ku Osaka 558, Japan