GENERALIZATIONS OF NAKAYAMA RING V

(LEFT SERIAL RINGS WITH (*, 2))

Manabu HARADA

(Received February 3, 1986)

We have studied a left serial algebra over an algebraically closed field with ($*, n$) as right modules in [4] and further investigated an artinian left serial ring R with $(*, 1)$ in [7], when $e J / e J^{2}$ is square-free for each primitive idempotent e, where J is the Jacobson radical of R. On the other hand, we have given a characterization of a certain artinian ring with ($*, 3$) in [6].

For a left serial ring R, we shall obtain, in the second section of this paper, a characterization of R with ($*, 1$) (Theorem 1), and one of R with ($*, 2$) (Theorem 2) in the third section. We shall study hereditary rings with $(*, 2)$ in the forthcoming paper.

In order to give a complete study of a left serial ring with $(*, 1)$, we need deep properties of a division ring (much more difficult than Artin problem, see (\#)).

We shall use the same terminologies given in [7] and every ring R is a both-sided artinian ring with identity, unless otherwise stated.

1. Left serial rings

In this section, we assume that R is a left serial ring. Then
$e J^{i}=\sum_{k} \oplus A_{k}$, where the A_{k} are hollow right R-modules by [8], Corollary
4.2. We shall describe this situation as the following diagram:

or

where A, B, \cdots are hollow modules. (cf. [3], §2).
Let e be a primitive idempotent and put $\Delta=e R e / e J e$, and for a submodule A of $e R, \Delta(A)=\{\bar{x} \mid x \in e R e, x A \subset A\}$, where \bar{x} is the coset of x in Δ. Then $\Delta(A)$ is a division subring of Δ (see [1]). It is clear that $\Delta(A)=\Delta(\bar{A})=$ $\{\bar{x} \mid x \in e R e, x A \subset A$ and $\bar{x} \bar{A} \subset \bar{A}\}$ provided A is hollow; $\bar{A}=A / \mathrm{J}(A)$.

Let $A_{1} \supset A_{i 1}$ be as in the diagram above. We put $\tilde{R}=R / J^{t}(t>i)$ and $\widetilde{A}_{i 1}=\left(A_{i 1}+e J^{t}\right) / e J^{t}$. Then we can express $A_{i 1}+e J^{t}$ as a direct sum $A_{i 1} \oplus C$, where $C \subset e J^{t}-A_{i 1}$ (see the diagram above). Let p and q be the projections of $A_{i 1}+e J^{t}$ to $A_{i 1}$ and C respectively. We can define $\Delta\left(A_{i 1}\right)$ and $\Delta\left(\widetilde{A}_{i 1}\right)$. Since $e \operatorname{Re} / e J e \approx\left(e R e / e J J^{t} e\right) /\left(e J e / e J^{t} e\right), \Delta\left(A_{i 1}\right)$ is canonically contained in $\Delta\left(\tilde{A}_{i 1}\right)$. Conversely, let \bar{x} be an element in Δ such that $x\left(A_{i 1}+e J^{t}\right) \subset A_{i 1}+e J^{t}$. Put $f=$ $q x_{l} \mid A_{1 i}$ and f is in $\operatorname{Hom}_{R}\left(A_{i 1}, e J^{t}\right)$, where x_{l} means the left-sided multiplication of x. Let $A_{i 1}=a R$ and $a g=a$ for some primitive idempotent g. Since $b=f(a)=f(a) g$, there exists d in $e J e$ such that $d a=b$ (note $i>t$), since R is left serial. Then $x_{l}\left|A_{i 1}=\left(p x_{l}+q x_{l}\right)\right| A_{i 1}=p x_{l}\left|A_{i 1}+f=p x_{l}\right| A_{i 1}+d_{l} \mid A_{i 1}$ and $p x_{l} \mid A_{i 1}$ $\in \operatorname{Hom}_{R}\left(A_{i 1}, A_{i 1}\right)$. Hence $(\bar{x}-\bar{d})=\bar{x} \in \Delta\left(A_{i 1}\right)$. Thus we have (from now on $A_{i j}$ means always a hollow module in the diagram above)

Lemma 1. Let R be a left serial ring, and let $A_{i 1}$ and $\tilde{A}_{i 1}$ be as above. Then $\Delta\left(A_{i 1}\right)=\Delta\left(\tilde{A}_{i 1}\right)$.

Lemma 2. Let R be a left serial ring. Let $A_{i 1}$ contain $A_{j 1}$ and $A_{j k}$. Then $\Delta\left(A_{j 1}\right) \subset \Delta\left(A_{i 1}\right)$, and if $f: A_{j 1} \approx A_{j k}$, there exists a unit δ in eRe which induces f and $\delta A_{i 1}=A_{i 1}$.

Proof. Assume $f: A_{j 1} \approx A_{j k}$. There exists a unit x in $e R e$ such that $x A_{j 1}=A_{j k}$ from [7], Lemma 2, and x_{l} induces f, since R is left serial. For x, we employ the similar argument given in the proof of Lemma 1. Let $e J^{i}=$ $A_{i_{1}} \oplus E$ and p, q the projections. Consider $q x_{l} \mid A_{i_{1}}(=g)$. Since $g\left(A_{j 1}\right)=q x A_{j 1}$ $=q A_{j k}=0, g$ is not a monomorphism. Hence $g=d_{l}$ for some d in $e J e$ and so $(x-d) A_{i 1} \subset A_{i 1}$. Hence $(x-d)_{l}$ induces f. If we put $k=1$ in the above, we obtain the first half of the lemma.

2. (*, 1)

First we recall the definition of ($*, n$)
(*, n) Every maximal submodule of a direct sum of n hollow modules is also a direct sum of hollow modules [5].

We shall study, in this section, left serial rings R with (*, 1). We obtained a characterization of a left serial ring with $(*, 1)$, when $e J / e J^{2}$ is squarefree, i.e., $\bar{A}_{1} \approx \bar{B}_{1} \approx \cdots \not \approx \bar{N}_{1}$ in [7], Theorem. Hence we may consider $e R$ satisfying $A_{1} \approx B_{1}$.

Now we shall study such a ring with $(*, 1)$.
Lemma 3. Let R be left serial. Assume that $A_{1} \approx B_{1}$ and (*, 1) holds. Then, for any submodules $C_{i} \supset D_{i}$ in A_{1} such that C_{i} / D_{i} is simple and $f ; C_{1} / D_{1} \approx C_{2} / D_{2}, f$ or f^{-1} is extendible to an element g in $\operatorname{Hom}_{R}\left(A_{1} / D_{1}, A_{1} / D_{2}\right)$ or $\operatorname{Hom}_{R}\left(A_{1} / D_{2}, A_{1} / D_{1}\right)$.

Proof. There exists a unit element u in $e R e$ such that $B_{1}=u A_{1}$. Put $C_{2}^{\prime}=u C_{2}, D_{2}^{\prime}=u D_{2}$ and $f^{\prime}=u_{l} f$. Then $f^{\prime}\left(\right.$ or $\left.f^{-1} u_{l}^{-1}\right)$ is extendible to an element g^{\prime} in $\operatorname{Hom}_{R}\left(A_{1} / D_{1}, B_{1} / D_{2}^{\prime}\right)\left(\right.$ or $\left.\operatorname{Hom}_{R}\left(B_{1} / D_{2}^{\prime}, A_{1} / D_{1}\right)\right)$ by [6], Theorem 4. Then $g=u_{l}^{-1} g^{\prime}\left(\right.$ or $\left.g=g^{\prime} u_{l}\right)$ is the desired extension of $f\left(\right.$ or $\left.f^{-1}\right)$.

Proposition 1. Let R, A_{1} and B_{1} be as in Lemma 3. If there are three non-zero hollow modules $A_{i 1}, A_{i 2}, A_{i 3}\left(\subset A_{1}\right)$ for some i, they are isomorphic to one another.

Proof. First we shall show $\bar{A}_{i 1} \approx \bar{A}_{i 2}$. Put $C_{1}=A_{i 1} \oplus A_{i 3}$ and $C_{2}=A_{i 2} \oplus A_{i 3}$. Considering R / J^{i+1} from [3], Lemma 1, we may assume that the $A_{i j}$ are simple. Now $f: C_{1} / A_{i 1} \approx A_{i 3} \approx C_{2} / A_{i 2}$. Then by Lemma 3, there exists an element x in $e R e$ which induces f or f^{-1}, i.e., $f\left(a+A_{i 1}\right)=x a+A_{i 2}$ for $a \in A_{1}$. Since C_{1}, C_{2} are contained in $e J^{i}$ but not in $e J^{i+1}, x$ is a unit, and $x A_{i 1}=A_{i 2}$ (or $x A_{i 2}=A_{i 1}$) from the argument of the proof of [4], Theorem 3. Therefore $\bar{A}_{i 1} \approx \bar{A}_{i 2}$. Since R is left serial and $A_{i j}$ are hollow, $A_{i 1} \approx A_{i 2}$ from [7], Lemma 2 .

Let $\Delta \supset \Delta_{1}$ be division rings. [] $]_{r}\left([]_{l}\right)$ means the dimension of Δ over Δ_{1} as a right (left) Δ_{1}-module.

Proposition 2. Let A_{1}, B_{1} be as in Lemma 3. Then for $A_{i 1} \supset A_{j 1}\left[\Delta\left(A_{i 1}\right)\right.$: $\left.\Delta\left(A_{j 1}\right)\right]_{r}=\left|A_{i 1} J^{j-i} / A_{i 1} J^{j-i+1}\right|$, except $A_{i 1} J^{j-i}=A_{j 1} \oplus A_{j 2}$ and $A_{j 1} \neq A_{j 2}$ (in the exceptional case $\Delta\left(A_{i 1}\right)=\Delta\left(A_{j_{1}}\right)$, cf. Example 2 below).

Proof. We may assume from Lemma 1 and [3], Lemma 1 that $J^{j+1}=0$, and hence $A_{1 i} j^{j-i+1}=0$, and so $A_{j 1}$ is simple. Let $A_{j 1}=a R$ and $\left\{\bar{e}, \bar{\delta}_{2}, \bar{\delta}_{3}, \cdots, \bar{\delta}_{i}\right\}$ be a linearly independent set in $\Delta_{i}=\Delta\left(A_{i 1}\right)$ over $\Delta_{j}=\Delta\left(A_{j 1}\right)$ such that $\delta_{k} A_{i 1} \subset A_{i 1}$ for all k. We shall show $A_{j 1}+\delta_{2} A_{j 1}+\delta_{3} A_{j 1}+\cdots+\delta_{t} A_{j 1}=A_{j 1} \oplus$ $\delta_{2} A_{j 1} \oplus \delta_{3} A_{j 1} \oplus \cdots \oplus \delta_{t} A_{j 1}$. If $\left(A_{j 1}+\delta_{2} A_{j 1}+\cdots+\delta_{t-1} A_{j 1}\right) \cap \delta_{t} A_{j 1} \neq 0, \delta_{t} A_{j 1} \subset A_{j 1}$ $+\cdots+\delta_{t-1} A_{j 1}$, since $\delta_{t} A_{j 1}$ is simple. Then $\delta_{t} a=a_{1}+\delta_{2} a_{2}+\cdots+\delta_{t-1} a_{t-1}$, where $a_{j} \in A_{j 1}$. The mapping; $a \rightarrow a_{i}$ gives an endomorphism of $A_{j 1}$. Hence $a_{i}=k_{i} a$ for some $\bar{k}_{i} \in \Delta_{j}$ by Lemma 2. Accordingly $\bar{\delta}_{t}=\bar{k}_{1}+\bar{\delta}_{2} \bar{k}_{2}+\cdots+\bar{\delta}_{t-1} \bar{k}_{t-1}$, since $J^{j+1}=0$, a contradiction. From the similar argument we can show that $\left\{A_{j 1}, \delta_{2} A_{j 1}, \cdots, \delta_{t} A_{j 1}\right\}$ is independent. Hence $\left[\Delta\left(A_{i 1}\right): \Delta\left(A_{j 1}\right)\right]_{r} \leqslant\left|A_{i 1} J^{j-i}\right|$. Assume $\left|A_{i 1} J^{j-i}\right| \geqslant 3$. Then by Proposition $1 A_{i 1} J^{j-i}=A_{j 1} \oplus A_{j 2} \oplus \cdots \oplus A_{j p}$; $p \geqslant 3$ and $A_{j 1} \approx A_{j k}$ for $2 \leqslant k \leqslant p$. There exists \bar{x}_{k} in $\Delta_{i}\left(x_{k} \in e R e\right)$ such that $x_{k} A_{j 1}=\bar{x}_{k} A_{j 1}=A_{j k}$. We shall show that $\left\{\bar{e}, \bar{x}_{2}, \cdots, \bar{x}_{p}\right\}$ is linearly independent
over Δ_{j}. Assume $\bar{x}_{p}=\bar{k}_{1}+\bar{x}_{2} \bar{k}_{2}+\cdots+\bar{x}_{p-1} \bar{k}_{p-1}$, where $\bar{k}_{i} A_{j 1} \subset A_{j 1}$ and $k_{i} \in e R e$. Since $J A_{j 1}=0, A_{j p}=x_{p} A_{j 1}=\bar{x}_{p} A_{j 1} \subset \bar{k}_{1} A_{j 1}+\bar{x}_{2} \bar{k}_{2} A_{j 1}+\cdots+\bar{x}_{p-1} \bar{k}_{p-1} A_{j 1}=\sum_{i=1}^{p-1} \oplus A_{j k}$, a contradiction. Hence $\left|A_{i 1} J^{j-i}\right| \leqslant\left[\Delta\left(A_{i 1}\right): \Delta\left(A_{j 1}\right)\right]_{r}$. Finally assume $\left|A_{i 1} J^{j-i}\right| \leqslant 2$. If $A_{j 1} \approx A_{j 2}$, we have the same result. If $A_{j 1} \approx A_{j 2}, p \leqslant 2$ from Proposition 1, and $\Delta_{i}=\Delta_{j}$ from the initial argument. If $A_{j 2}=\cdots=A_{j p}=0$, it is clear that $\Delta_{i}=\Delta_{j}$. Hence $\left[\Delta\left(A_{i 1}\right): \Delta\left(A_{j 1}\right)\right]_{r}=1$.

We consider the situation in Proposition 2 and $J^{n+1}=0$. Let $A_{k 1} J^{n-k}=$ $\sum_{j=1}^{p} \oplus A_{n j}$. If $p \geqslant 3, A_{n 1} \approx A_{n j}$ for all j by Proposition 1. Put $\Delta_{k}=\Delta\left(A_{k 1}\right)$ and $\Delta_{n}=\Delta\left(A_{n 1}\right)$. Then $\left[\Delta_{k}: \Delta_{n}\right]_{r}=p$ by Proposition 2. Further $A_{k 1} J^{n-k}=A_{n 1} \oplus$ $\delta_{2} A_{n 1} \oplus \cdots \oplus \delta_{p} A_{n 1}=\Delta_{n} a \oplus \delta_{2} \Delta_{n} a \oplus \cdots \oplus \delta_{p} \Delta_{n} a$, where $A_{n 1}=a R$, and every simple submodule in $A_{k 1} J^{n-k}$ is of a form $\delta \Delta_{n} a$ for some δ in Δ_{k}. Now we shall identify $A_{k 1} J^{n-k}=\Delta_{n} a \oplus \delta_{2} \Delta_{n} a \oplus \cdots \oplus \delta_{p} \Delta_{n} a=\left(\Delta_{k} \oplus \delta_{2} \Delta_{n} \oplus \cdots \oplus \delta_{p} \Delta_{n}\right) a$ with $\Delta_{k}=\Delta_{n} \oplus \delta_{2} \Delta_{n}$ $\oplus \cdots \oplus \delta_{p} \Delta_{n}$, i.e., $\operatorname{Hom}_{R}\left(A_{n 1}, A_{k 1} J^{n-k}\right) \approx \Delta_{k}\left(\Delta_{k} a=A_{k 1} J^{n-k}\right)$ as left Δ_{k}, right $\Delta_{n}{ }^{-}$ modules. Let $T_{1} \supset T_{2}$ and $S_{1} \supset S_{2}$ be submodules in $A_{k 1} J^{n-k}$ such that $f: T_{1} / T_{2}$ $\approx S_{1} / S_{2}$ and $\left|T_{1}\right|=\left|S_{1}\right|\left(\left|T_{1}\right| \leqslant\left|S_{1}\right|\right),\left|T_{1}\right| T_{2} \mid=1$. Then f is extendible to an element h in $\operatorname{Hom}_{R}\left(A_{1} / T_{2}, A_{1} / S_{2}\right)$. Since S_{1}, T_{1} are contained in $A_{k 1} J^{n-k}, h$ is given by a unit element x in $e R e$. As given in the proof of Lemma 2, $(x+j)_{l} \mid A_{k 1}$ is in $\operatorname{Hom}_{R}\left(A_{k 1}, A_{k 1}\right)$ for some j in eJe. Since $J T_{2}=0, x+j$ induces f, and $\overline{x+j} \in \Delta\left(A_{k 1}\right)$, which means $(x+j) T_{2}=S_{2}\left((x+j) T_{2} \subset S_{2}\right)$ and $f\left(t_{1}+T_{2}\right)=(x+j) t_{1}+S_{2}$ for any t_{1} in T_{1}. We translate the above fact to $\Delta_{k}=$ $\operatorname{Hom}_{R}\left(A_{n 1}, A_{k 1} J^{n-k}\right)$.

For any Δ_{n}-subspace V_{1}, V_{2} in Δ_{k} with $\left|V_{1}\right|=\left|V_{2}\right|\left(\left|V_{1}\right| \leqslant\left|V_{2}\right|\right)$ and (\#) $\quad v_{1} \Delta_{n} \oplus V_{1}, v_{2} \Delta_{n} \oplus V_{2}\left(v_{i} \in \Delta_{k}\right)$, there exists x in Δ_{k} such that $x V_{1}=V_{2}$ $\left(x V_{1} \subset V_{2}\right)$ and $x v_{1} \equiv v_{2}\left(\bmod V_{2}\right)$.

Lemma 4. Let $\Delta \supset \Delta_{1}$ be division rings. Assume that (\#) holds for Δ and Δ_{1}. Then $\left[\Delta: \Delta_{1}\right]_{l} \leqslant 2$.

Proof. We may assume $\Delta \neq \Delta_{1}$. Let δ be a fixed element in $\Delta-\Delta_{1}$ and δ^{\prime} an element in $\Delta-\Delta_{1}$. Put $V_{1}=V_{2}=\Delta_{1}, v_{1}=\delta$ and $v_{2}=\delta^{\prime} y$ for any $y \in \Delta_{1}$ in (\#). Then there exists x in Δ_{1} such that $x \delta=\delta^{\prime} y+z$ for some z in Δ_{1}. Hence $\delta^{\prime} \Delta_{1} \subset \Delta_{1} \oplus \Delta_{1} \delta$. Since δ^{\prime} is arbitrary, $\Delta=\Delta_{1}+\Delta_{1} \delta$, and so $\left[\Delta: \Delta_{1}\right]_{l} \leqslant 2$.

Proposition 3. Let R, A_{1} and B_{1} be as in Lemma 3. Then for $A_{i 1} \supset A_{j 1}$, $\Delta\left(A_{i 1}\right)$ and $\Delta\left(A_{j 1}\right)$ satisfy (\#) and so $\left[\Delta\left(A_{i 1}\right): \Delta\left(A_{j 1}\right)\right]_{l} \leqslant 2$.

Proof. It is clear by Proposition 2 that if $A_{j 1} \not \approx A_{j 2}, \Delta\left(A_{i 1}\right)=\Delta\left(A_{j 1}\right)$. If $A_{j 1} \approx A_{j 2}, A_{j 1} \approx A_{j 2} \approx \cdots \approx A_{j t}$ by Proposition 1, where $t=\left[\Delta\left(A_{i 1}\right): \Delta\left(A_{j 1}\right)\right]_{r}$. Then $\Delta\left(A_{i 1}\right)$ and $\Delta\left(A_{j 1}\right)$ satisfy (\#) from the remark before Lemma 4. Hence $\left[\Delta\left(A_{i 1}\right): \Delta\left(A_{j 1}\right)\right]_{l} \leqslant 2$ from Lemma 4.

Corollary 4. Let A_{1} and B_{1} be as above. Assume either $\Delta\left(A_{1}\right)$ is commutative or R is an algebra over a field with finite dimension. Then $A_{1} J^{i-1}=$ $A_{i 1} \oplus A_{i 2}$ for all $i \geqslant 2$, i.e., $\left[\Delta\left(A_{1}\right): \Delta\left(A_{i 1}\right)\right]_{r} \leqslant 2$.

Proof. From the assumption and Proposition 3, $\left[\Delta\left(A_{1}\right): \Delta\left(A_{i 1}\right)\right]_{r} \leqslant 2$.
Proposition 5. Let A_{1}, B_{1} be as in Lemma 3. Assume $\mathrm{J}\left(A_{i 1}\right)=A_{i+11} \oplus$ $A_{i+12} \oplus \cdots \oplus A_{i+1 p}$. If $p \geqslant 2, A_{i+1 k}$ is uniserial for all k.

Proof. Assume that $\mathrm{J}\left(A_{j-11}\right)$ is not uniserial, i.e., $\mathrm{J}\left(A_{j-11}\right)=A_{j 1} \oplus A_{j 2} \oplus \cdots$ for $j>i+1$. We shall divide ourselves into two cases.
i) $A_{i+11} \approx A_{i+12}$. Then $p \leqslant 2$ by Proposition 1, and $A_{i+12} J^{j-i-1}=0$ by assumption: $A_{1} \approx B_{1}$, Proposition 1 and [7], Lemma 3. Put $D_{1}=A_{j 1} \oplus \mathrm{~J}\left(A_{j 2}\right)$, $D_{2}=A_{i+12} \oplus \mathrm{~J}\left(A_{j 2}\right), C_{1}=A_{j 2}+D_{1}$ and $C_{2}=A_{j 2}+D_{2}$. Then $f: C_{1} / D_{1} \approx \bar{A}_{j 2} \approx C_{2} / D_{2}$. Since ($*, 1$) is satisfies, f or f^{-1} is extendible to x_{l} for some x in eRe by Lemma 3. Being $f\left(A_{j 2}+D_{1}\right)=A_{j 2}+D_{2}, x$ is a unit. Hence $x D_{1} \subset D_{2}$ or $x D_{2} \subset D_{1}$ (see the proof of [4], Theorem 3). However, by [7], Lemma 3, it is impossible.
ii) $A_{i+11} \approx A_{i+12} \approx \cdots \approx A_{i+1 p}$. Then $A_{j 1} \approx A_{j 2}$ by Proposition 1. Since $A_{i+11} \approx A_{i+12}, \Delta\left(A_{1}\right) \neq \Delta\left(A_{i+11}\right)$ by Proposition 2. Similarly $\Delta\left(A_{j-11}\right) \neq \Delta\left(A_{j 1}\right)$. Hence $\left[\Delta\left(A_{1}\right): \Delta\left(A_{i+11}\right)\right]_{l}=\left[\Delta\left(A_{1}\right): \Delta\left(A_{j 1}\right)\right]_{l}=\left[\Delta\left(A_{j-11}\right): \Delta\left(A_{j 1}\right)\right]_{l}=2$ by Proposition 3 and Lemma 4. However $\Delta\left(A_{1}\right) \supset \Delta\left(A_{i+11}\right) \supset \Delta\left(A_{j-11}\right) \supset \Delta\left(A_{j 1}\right)$ by Lemma 2, which is impossible.

We shall give the structure of A_{1}. From Propositions 1 and 5 we obtain the following diagrams (a) and (b^{\prime}).
(a)

(b')

Assume $t \geqslant 3$ and $\mathrm{J}\left(A_{i 1}\right)=A_{i+11} \neq 0$. Put $D_{1}=A_{i+11} \oplus A_{i 2}, D_{2}=A_{i+11} \oplus A_{i+12} \oplus$ $A_{i+13}, C_{1}=A_{i 1}+D_{1}$ and $C_{2}=A_{i 1}+D_{2}$. Then $C_{1} / D_{1} \approx \bar{A}_{i 1} \approx C_{2} / D_{2}$. However, $x D_{1} \subseteq D_{2}\left(x D_{2} \nsubseteq D_{1}\right)$. Hence we obtain a contradiction as above. Thus we
have from Corollary 5

Lemma 5. Let R be left serial. Then in the diagram (a), any two distinct simple sub-factor modules (e.g. $A_{s} / A_{s+1}, A_{t 1} \mid A_{t+11}$) are not isomorphic to one another.

Proof. Assume $\bar{A}_{k} \approx \bar{A}_{p 2}$ for $k \leqslant i-1$ and $p \geqslant i$. Put $A_{k}=a_{k} R, A_{p 2}=a_{p 2} R$ and $a_{k} g=a_{k}, a_{p 2} g=a_{p 2}$ for a primitive idempotent g. Since $A_{1} \approx B_{1}, A_{k} \approx B_{k}$ and $A_{p 2} \approx B_{p 2}=b_{p 2} R ; b_{p 2} g=b_{p 2}$. Then there exists d in B_{1} such that $d a_{k}=b_{p 2}$ by [7], Lemma 2, and $d \in \mathrm{~T}\left(e J^{p-k} e\right)$. Since $0 \neq b_{p 2} \in J^{p} g, d b_{k} \in \mathrm{~T}\left(e J^{p} g\right)$. Let $d b_{k}=x_{1}+x_{2} ; x_{j}=x_{j} g \in B_{i j}(j=1,2)$. Assume $x_{2} \in \mathrm{~T}\left(e J^{p} g\right)$. Then $b_{p 2}=x_{2} u$ for some unit u in $g R g$, and so $d\left(a_{k}-b_{k} u\right)=-x_{1} u$. Hence $-x_{1} u=-x_{1} u g \in \mathrm{~T}\left(B_{p 1}\right)$. Accordingly, $B_{p 1} \approx B_{p 2}$, which contradicts [7], Lemma 3. Therefore $x_{2} \notin \mathrm{~T}\left(e J^{p} g\right)$, and so $x_{1}=x_{1} g \in \mathrm{~T}\left(e J^{p} g\right)$. Again we obtain the same contradiction from [7], Lemma 3. Thus $\bar{A}_{k} \approx \bar{A}_{p 2}$. We can use the same argument for other cases (note that, for the case $\bar{A}_{k} \approx \bar{A}_{k^{\prime}},\left(k<k^{\prime}<i-1\right)$, use [7], Lemma 7).

Lemma 6. Assume that R is a left serial ring. Then in $\left(b_{1}\right)$ we have the same situation as in Lemma 5 for simple sub-factor modules between A_{1} and $\mathrm{J}\left(A_{i-1}\right)$. Further $\Delta\left(A_{1}\right)$ and $\Delta\left(A_{i_{1}}\right)$ satisfy (\#), provided (*1) holds. For $\left(\mathrm{b}_{2}\right)$ any two of simple sub-factor modules between A_{1} and $\mathrm{J}\left(A_{i-1}\right)$ (and of $A_{i 1}$) are not isomorphic to one another, respectively. (Some simple sub-factor modules between A_{1} and $\mathrm{J}\left(A_{i-1}\right)$ may be isomorphic to one of $A_{i 1}$.)

Proof. The first halves of $\left(b_{1}\right)$ and $\left(b_{2}\right)$ are obtained from the argument similarly to Lemma 5. The last one of $\left(b_{1}\right)$ is clear from Proposition 3.

Lemma 7. Let R be left serial, and consider the diagram (a). Let $C_{1} \supset D_{1}$ and $C_{2} \supset D_{2}$ be submodules in A_{1} such that $f: C_{1} / D_{2} \approx C_{2} / D_{2}$ and $\left|C_{1}\right| D_{1} \mid=1$. Then f or f^{-1} is extendible to an element in $\operatorname{Hom}_{R}\left(A_{1} / D_{1}, A_{1} / D_{2}\right)$ or $\operatorname{Hom}_{R}\left(A_{1} / D_{2}, A_{1} / D_{1}\right)$.

Proof. We may assume $C_{i}=c_{i} R+D_{i}$ and $c_{i} g=c_{i}$ for $i=1,2$. If $c_{1} \in \mathrm{~T}\left(A_{k}\right) \quad(k \leqslant i-1), \quad C_{1}=A_{k} \quad$ and $\quad D_{1}=\mathrm{J}\left(C_{1}\right)=A_{k+1}$. Then $c_{2} \in \mathrm{~T}\left(A_{k}\right)$ by Lemma 5. Hence there exists a unit d in $e R e$ such that $d c_{1}=c_{2}$. We may
assume $d A_{1}=A_{1}$ by Lemma 2. Then $d D_{1}=d A_{k} J \subset C_{2} J=D_{2}$. Therefore d_{l} is an extension of f. Thus we may assume that $J\left(A_{i-1}\right)$ contains C_{1} and C_{2}. From Lemma 5 every submodule in $\mathrm{J}\left(A_{i-1}\right)$ is standard (see the definition before Lemma 10 below). Let $C_{1}=A_{j 1} \oplus A_{k 2}, D_{1}=A_{j+1} \oplus A_{k 2}$. Since $C_{1} / D_{1} \approx C_{2} / D_{2}, \quad C_{2}=A_{j 1} \oplus A_{k^{\prime} 2}, D_{2}=A_{j+11} \oplus A_{k^{\prime} 2}$. If $k \leqslant k^{\prime}$ (resp. $k>k^{\prime}$), f is extendible to an element d_{l} in $\operatorname{Hom}_{R}\left(A_{1} / D_{2}, A_{1} / D_{1}\right)\left(\operatorname{Hom}_{R}\left(A_{1} / D_{1}, A_{1} / D_{2}\right)\right)$ as above by Lemmas 2 and 5 .

Lemma 8. Let R be left serial. In the diagram $\left(\mathrm{b}_{1}\right)$, we assume that $\Delta\left(A_{1}\right)$ and $\Delta\left(A_{i 1}\right)$ satisfy $(\#)$. Further we assume $\left[\Delta\left(A_{1}\right): \Delta\left(A_{i 1}\right)\right]_{l}=2$ in $\left(\mathrm{b}_{2}\right)$. Then we obtain the same result as in Lemma 7.

Proof. Let c_{j} be as in the proof of Lemma 7. If c_{j} is in $\mathrm{T}\left(A_{s_{j}}\right)\left(s_{j} \leqslant i-1\right)$, then $C_{1}=C_{2}=A_{s_{1}}$ and $D_{1}=D_{2}=A_{s_{1}+1}$ by Lemma 6. Hence we can prove the lemma as in the proof of Lemma 7. Similarly if $C_{1}=A_{s_{1}}$ and C_{2} is contained in $\mathrm{J}\left(A_{i-1}\right)$, we can easily prove the lemma, since $D_{1}=\mathrm{J}\left(C_{1}\right)$. Therefore we may assume $\mathrm{J}\left(A_{i-1}\right)$ contains C_{1} and C_{2}.
$\left(\mathrm{b}_{1}\right)$ Since C_{i} is in $\mathrm{J}\left(A_{i-1}\right)$, we have the lemma from (\#).
$\left(\mathrm{b}_{2}\right)$ Let $\mathrm{J}\left(A_{i-1}\right)=A_{i 1} \oplus A_{i 2} \supset C_{1} \supset D_{1}$ be submodules with $\left|C_{1} / D_{1}\right|=1$. Let p_{j} be the projection of $\mathrm{J}\left(A_{i-1}\right)$ to $A_{i j}$. We shall show for $C\left(=C_{1}\right)$ and $D\left(=D_{1}\right)$ that there exists a unit x in $e R e$ such that
(1) $x A_{1}=A_{1}$ and $x C=A_{k-11} \oplus A_{s 2} \supset x D=A_{k 1} \oplus A_{s 2}$.

First we remark the following fact: for $C=A_{r 1} \oplus A_{t 2}$, there exists a unit y in $e R e$ such that $y A_{1}=A_{1}$ and $y C=A_{t 1} \oplus A_{r 2}$.
i) $t \geqslant r$. There exists y in $e R e$ such that $y A_{1}=A_{1}$ and $y A_{i 1}=A_{i 2}$ by Lemma 2. Since $y A_{i 2} \neq A_{i 2}, p_{1}\left(y A_{i 2}\right) \neq 0$, and so $p_{1} y\left(A_{i 2}\right)=A_{i 1}$ by Lemma 6 . Hence $y C=A_{t 1} \oplus A_{r 2}$.
ii) $t<r$. Take a unit y^{\prime} such that $y^{\prime} A_{i 2}=A_{i 1}$ and $y^{\prime} A_{1}=A_{1}$.

Put $D_{(j)}=D \cap A_{i j}$ and $D^{(j)}=p_{j}(D)(j=1,2)$. Then $g^{\prime}: D^{(1)} / D_{(1)} \approx D^{(2)} / D_{(2)}$. Let $D_{(1)}=A_{k 1}, D_{(2)}=A_{s 2}, D^{(1)}=A_{k-t 1}$ and $D^{(2)}=A_{s-t 2}$. We may assume $k \leqslant s$ from the remark (actually $k=s$ by Lemma 6). There exists x in $e R e$ such that x_{l} induces g. Hence $x D_{(1)} \subset D_{(2)}$. Putting $\alpha=e+x, \alpha\left(D_{(1)} \oplus D_{(2)}\right) \subset D_{(1)} \oplus D_{(2)}$ and $\alpha\left(A_{k-t 1}+D_{(1)} \oplus D_{(2)}\right) \subset \alpha A_{k-t 1}+D_{(1)} \oplus D_{(2)}=D . \quad \alpha$ is clearly a unit, and so $\alpha^{-1} D=A_{k-t 1}+D_{(1)} \oplus D_{(2)}=A_{k-t 1} \oplus A_{s 2}$. Now $\quad \alpha^{-1} C \supset \alpha^{-1} D=A_{k^{\prime} 1} \oplus A_{s 2}$, where $k^{\prime}=k-t$. Since $|C / D|=1, \alpha^{-1} C$ is one of the following: $A_{k^{\prime}-11} \oplus A_{s 2}, A_{k^{\prime} 1} \oplus$ A_{s-12} and $(e+y) A_{k^{\prime}-11} \oplus \alpha^{-1} D$ (in the last case $k^{\prime}=s$), where $y \in e R e$ and $y A_{k^{\prime}-11}=A_{s-12}$. Noting $y A_{k^{\prime} 1}=A_{s 2}$ and $k \leqslant s$, we obtain (1) from the initial remark.

Next we assume that $C_{i} \supset D_{i}$ are of the form (1). Put $C_{i}=A_{k_{i}-11} \oplus \cdot A_{s i 2}$ and $D_{i}=A_{k_{i} 1} \oplus A_{s_{i} 2}$ for $i=1,2$. Since $f: C_{1} / D_{1} \approx C_{2} / D_{2}, k_{1}=k_{2}(=k)$ by Lemma 6. We shall divide ourselves to the following cases:
(α) $k \leqslant \min \left(s_{1}, s_{2}\right)$. We may assume $s_{1} \geqslant s_{2}$. Let $A_{k-1}=a R$. Then there
exists a unit z in $e R e$ such that $f\left(a+D_{1}\right)=z a+D_{2}$ and $z A_{k-11}=A_{k-11}, z A_{1}=A_{1}$ by Lemma 2. Since $k \leqslant s_{2} \leqslant s_{1}, z D_{1}=z\left(A_{k_{1} 1} \oplus A_{s_{1}}\right) \subset A_{k 1} \oplus A_{s_{1} 2}=D_{2}$. Hence z_{l} is an extension of f.
(β) $\quad s_{2} \leqslant k \leqslant s_{1}\left(s_{1} \leqslant k \leqslant s_{2}\right)$. We obtain the same result as in (α). (Take f^{-1}.)
($\gamma) \quad k<\max \left(s_{1}, s_{2}\right)$. We may assume $s_{1} \geqslant s_{2}$. Let $A_{k-12}=a R$ and $\delta A_{i 2}=A_{i 1}$ ($\delta A_{1}=A_{1}$) for some unit δ by Lemma 2. Then $A_{k-11}=\delta a R$ and $f\left(\delta a+D_{1}\right)=$ $\delta w a+D_{2}$ for some w with $w A_{1}=A_{1}$ and $w A_{k-12}=A_{k-12}$. Since $\left[\Delta\left(A_{1}\right): \Delta\left(A_{i 2}\right)\right]_{l}$ $=2$, there exist y_{1} and y_{2} in $e R e$ such that $\bar{\delta} \bar{w}=\bar{y}_{1}+\bar{y}_{2} \delta$ and $y_{j} A_{i 2}=A_{i 2}$, and $y_{j} A_{1}=A_{1}$ for $j=1,2$, i.e., $\delta w=y_{1}+y_{2} \delta+j ; j \in e J e$. Then $j A_{1}=\left(\delta w-y_{1}-y_{2} \delta\right) A_{1}$ $\subset A_{1}$, and so $y_{2}(\delta a)=\left(\delta w-y_{1}-j\right) a=\delta w a-\left(y_{1}+j\right) a \equiv \delta w a\left(\bmod D_{2}\right)$ and $y_{2} D_{1} \subset$ D_{2}, since $s_{2} \leqslant s_{1} \leqslant k$ and $j \in e J e$. Hence $\left(y_{2}\right)_{l}$ is an extension of f.

Finally we consider the general case. Let $f: C_{1} / D_{1} \rightarrow C_{2} / D_{2}$ be as before. Then there exist u_{1}, u_{2} in $e R e$ as in (1). Take

$$
\left.\begin{array}{rl}
f^{\prime} & :\left(A_{k_{1}-11} \oplus A_{s_{1}}\right) /\left(A_{k_{1} 1} \oplus A_{s_{1} 2}\right) \\
\\
& \left(A_{k_{2}-11} \oplus A_{s_{2}}\right) /\left(A_{k_{2} 1} \oplus A_{s_{2}}\right)
\end{array}\right) .
$$

Applying the above argument to f^{\prime}, we can find v in $e R e$ such that v_{l} induces $f^{\prime}\left(\right.$ or $\left.f^{\prime-1}\right)$ and $v A_{1}=A_{1}$. Therefore $\left(u_{1} v u_{2}^{-1}\right)_{l}\left(\left(u_{2} v u_{1}^{-1}\right)_{l}\right)$ induces f (or f^{-1}).

Thus we obtain
Theorem 1. Let R be a left serial ring, and eJ $=A_{1} \oplus B_{1} \oplus \cdots \oplus N_{1}$ a direct sum of hollow modules. Then $(*, 1)$ holds for any hollow right R-module if and only if the following conditions are satisfied:

1) If $A_{1} \approx B_{1}, A_{1}$ has the structure of (a), $\left(\mathrm{b}_{1}\right)$ or $\left(\mathrm{b}_{2}\right)$ such that (\#) holds for $\Delta\left(A_{1}\right)$ and $\Delta\left(A_{i 1}\right)$ if $t \geqslant 3$ in $\left(\mathrm{b}_{1}\right)$, and $\left[\Delta\left(A_{1}\right): \Delta\left(A_{i 1}\right)\right]_{l}=2$ if $t=2$ in $\left(\mathrm{b}_{1}\right)$ and (b_{2}).
2) The condition in [7], Theorem is satisfied.

Proof. If $A_{1} \approx B_{1}$, we obtain 2). Assume $A_{1} \approx B_{1}$. We have studied an isomorphism $f: C_{1} / D_{2} \approx C_{2} / D_{2}$ for submodules $C_{i} \supset D_{i}$ in A_{1}. If C_{2} is a submodule of $B_{1}, x C_{2}$ is a submodule in A_{1}, where $x B_{1}=A_{1}$ for some unit x. Then using the manner given in the proof of Lemma 8, we can extend f to an element in $\operatorname{Hom}_{R}\left(A_{1} / D_{1}, B_{1} / D_{2}\right)$ or $\operatorname{Hom}_{R}\left(B_{1} / D_{2}, A_{1} / D_{1}\right)$.

Proposition 6. Let R be as above. Assume $A_{1} \approx B_{1} \approx \cdots \approx N_{1}$ for each primitive idempotent. Then $(*, 1)$ holds for any hollow right R-module if and only if 1) in Theorem 1 holds.

Remark. If R is left serial, $e R$ has the structure in $\S 1$. Under this assumption, for a fixed primitive idempotent e, we have studied a problem: when is $e J / K$ a direct sum of hollow modules for any submodule K ? Hence Theorem 1 gives a characterization of such e, provided R is left serial. This remark
is applicable to the next section, in particular to Proposition 7 below.
We shall give some algebras concerning Theorem and Propositions.
1 Let $L \supset K^{\prime} \supset K$ be fields with $\left[L: K^{\prime}\right]=\left[K^{\prime}: K\right]=2$. Let $L=K^{\prime}+K^{\prime} u$ and $K^{\prime}=K+K v$. We construct a similar example to ones in [4].

where $B=(12)(23) K \oplus(12)(23) v K$ and $l e_{1}=e_{1} l$ for any l in $L, k^{\prime} e_{2}=e_{2} k^{\prime}$ for any k^{\prime} in K^{\prime}. Then $R=\sum_{i=1}^{3} \oplus e_{i} R$ is a left serial algebra. Further we can show from Theorem 1 that ($*, 1$) holds for any hollow right R-module ((12)(23) $K \approx$ (12)(23) $v K \approx(12)(23) u K)$. This example shows that [7], Lemma 6 is not true if $i=j$.

2

where $B=(12)(23) K \oplus(12)(24) K$ and $k^{\prime} e_{1}=e_{1} k^{\prime}$ for any k^{\prime} in K^{\prime}. Then $R=\sum_{i=1}^{4} \oplus e_{i} R$ is a left serial algebra with (*, 1) ((12)(23)K $\left.\approx(12)(24) K\right)$.

3 In Example 1, we replace K^{\prime} by an extension K_{0}^{\prime} over $K\left(K_{0}^{\prime}=K(v)\right.$ and $\left[K_{0}^{\prime}: K\right] \geqslant 3$). We add further semisimple modules (12)(23) $v^{2} K \oplus$ (12)(23) $v^{3} K \oplus \cdots$ to B and $(23) v^{2} K \oplus(23) v^{3} K \oplus \cdots$ to $e_{2} R$. Then $(*, 1)$ does not hold by Corollary 4.

3 (*, 2)

We shall give a characterization of left serial rings with $(*, 2)$.
Proposition 7. Let R be a right artinian ring and e a fixed primitive idempotent. Assume that $(*, 2)$ holds for any two hollow modules of form $e R / K$. Then eJ is a direct sum of uniserial modules.

Proof. Since $e R \oplus e J$ is a maximal submodule of $e R \oplus e R, e J=\sum_{i=1}^{u} \oplus A_{i}$ by assumption, where the A_{i} are hollow. We shall show by induction that $A_{i} / A_{i} J^{k}$ is uniserial for all i. If $k=0, A_{i} / A_{i} J^{0}=0$. Assume that $A_{i} / A_{i} J^{n}$ is uniserial for all i. Let $A_{m} J^{n} / A_{m} J^{n+1}=B_{m 1} \oplus B_{m 2} \oplus \cdots \oplus B_{m s_{m}}$, where the $\bar{B}_{m j}$ are simple. We shall show $s_{m}=1$. Otherwise, $\bar{B}_{m 1} \neq 0$ and $\bar{B}_{m 2} \neq 0$. Put $B_{j}^{*}=$ $\sum_{i=1}^{m-1} \oplus A_{i} J^{n} \oplus B_{j}$, where $A_{m} J^{n+1} \subset B_{j} \subset A_{m} J^{n}$ for $j=1,2$ and $B_{1} / A_{m} J^{n+1}=\bar{B}_{m 2} \oplus$ $B_{m 3} \oplus \cdots \oplus \bar{B}_{m s_{m}}, B_{2} / A_{m} J^{n+1}=\bar{B}_{m 1} \oplus \bar{B}_{m 3} \oplus \cdots \oplus \bar{B}_{m s_{m}}$, and $D=e R / B_{1}^{*} \oplus e R / B_{2}^{*}$. We shall show, in this case, that D does not satisfy ($*, 2$). Contrarily assume that D satisfies $(*, 2)$. Then D contains a maximal submodule M with a direct summand M_{1} isomorphic to $\widetilde{e R}=e R /\left(B_{1}^{*} \cap(e+j) B_{3}^{*}\right)$ where $j \in e J e$ by [3], Lemma 3. Since $e J^{n+1} \supset B_{2}^{*} \supset e J^{n+2}$ and $j B_{2}^{*} \subset e J^{n+2},(e+j) B_{2}^{*}=B_{2}^{*}$. Hence $M_{1} \approx e R /\left(B_{1}^{*} \cap B_{2}^{*}\right)(=e \widetilde{R})$. We shall denote $A_{i} / A_{i} J^{n}(i \neq m)$ and A_{m} / B_{3}^{\prime} by \tilde{A}_{i} and \tilde{A}_{m}, respectively, where $B_{3}^{\prime} / A_{m} J^{n+1}=\sum_{j \geqslant 3} \oplus \bar{B}_{m j}$. Let $M=M_{1} \oplus M^{*}$ and $\left|\tilde{A}_{i}\right|=n_{i}$ and $\left|A_{m}\right|=n_{m}+1$, where $n_{i} \leqslant n_{m}$ and $n_{m}=n+1$. Then $|e \widetilde{R}|=\left|M_{1}\right|$ $=\sum_{i=1}^{m} n_{i}+2$ and $|D|=2 \sum_{i=1}^{m} n_{i}+2$. Put $\bar{D}=D / \mathrm{J}(D) \supset \bar{M}=M / \mathrm{J}(D)$. We note that $\bar{M}=(\bar{e}+\bar{e}) e R / e J$ in \bar{D} (see [3], Lemma 3). Since $|\bar{D}|=2, \bar{M}$ is a simple module. Now $M^{*}=\sum_{i \geqslant 2} \oplus M_{i} ; M_{i}$ are hollow by (*, 2). If $\bar{M}_{2}=\left(M_{2}+\mathrm{J}(D)\right) /$ $\mathrm{J}(D)=\bar{M}, e R / B_{1}^{*}$ is an epimorphic image of M_{2} by the remark above. Then $\left|M_{2}\right| \geqslant|\widetilde{e R}|-1$ and so $|M| \geqslant\left|M_{1}\right|+\left|M_{2}\right| \geqslant|D|$, a contradiction. Hence $M^{*} \subset \mathrm{~J}(D)$. Let φ be the given isomorphism of $\widetilde{e R}$ to M_{1}. It is clear that $\varphi(\widetilde{e J}) \subset \mathrm{J}(D)$, and hence

$$
\begin{equation*}
\mathrm{J}(D)=\varphi(\widetilde{e J}) \oplus M^{*} \tag{2}
\end{equation*}
$$

(note $M \supset \mathrm{~J}(D))$. Put $Q=\tilde{A}_{1} \oplus \cdots \oplus \widetilde{A}_{m-1}$, and $\widetilde{e J}=Q \oplus \tilde{A}_{m}$. Then

$$
\begin{equation*}
\mathrm{J}(D)=Q_{1} \oplus L_{1} \oplus Q_{2} \oplus L_{2} \tag{3}
\end{equation*}
$$

where $Q_{1} \approx Q_{2} \approx Q, L_{1}=\tilde{A}_{m} \mid \bar{B}_{m 1}$ and $L_{2}=\tilde{A}_{m} \mid \bar{B}_{m 2}$. From (3) $\varphi(Q)=\{q+0+q$ $+0 \mid q \in Q\}$. Hence

$$
\begin{equation*}
\mathrm{J}(D)=\varphi(Q) \oplus L_{1} \oplus Q_{2} \oplus L_{2} \tag{4}
\end{equation*}
$$

On the other hand, $\operatorname{Soc}\left(\varphi\left(\widetilde{A}_{m}\right)\right)=\operatorname{Soc}\left(L_{1}\right) \oplus \operatorname{Soc}\left(L_{2}\right)$, and $\operatorname{Soc}(\varphi(\widetilde{e J}))=\operatorname{Soc}(\varphi(Q))$
$\oplus \operatorname{Soc}\left(\varphi\left(A_{m}\right)\right)$. Let p be the projection of $\mathrm{J}(D)$ onto Q_{2} in (4). Then $p \mid \operatorname{Soc}\left(M^{*}\right)$ is a monomorphism from the above observation (note $\operatorname{soc}\left(M^{*}\right) \cap$ $\operatorname{Soc}(\varphi(\widetilde{e J}))=0$), and hence so is $p \mid M^{*}$. Hence $\left|M^{*}\right| \leqslant\left|Q_{2}\right|=\sum_{i=1}^{m} n_{i}$. Therefore $|M|=\left|M_{1}\right|+\left|M^{*}\right| \leqslant \sum_{i=1}^{m} n_{i}+2+\sum_{i=1}^{m-1} n_{i}=2 \sum_{i=1}^{m} n_{i}+2-n_{m}<2 \sum_{i=1}^{m} n_{i}+1=|D|-1$ (note $n_{m}=n+1 \geqslant 2$), which is a contradiction. Hence $A_{m} J^{n} / A_{m} J^{n+1}$ is simple.

The following lemma is substantially due to T. Sumioka [9].
Lemma 9. Let R be left serial and eJ a direct sum of uniserial modules A_{i} and A_{i}^{\prime}, i.e., eJ $=\Sigma \oplus A_{i}=\Sigma \oplus A_{i}^{\prime}$. Let d^{\prime} be an element in eJe such that $d^{\prime} A_{1 \alpha}=A_{1 \beta}^{\prime}$, for $A_{1 \alpha} \subset A_{1}$ and $A_{1 \beta}^{\prime} \subset A_{1}^{\prime}$. Then there exists d in $A_{1}^{\prime} \cap e J e$ such that $d_{l}\left|A_{1 \alpha}=d_{l}^{\prime}\right| A_{1 \alpha}$. Further for such $d \quad d A_{i}=0 \quad(i \neq 1)$.

Proof. Put $A_{1 \alpha}=a_{\alpha} R, A_{1}=a_{1} R$ and $A_{1_{\beta}}^{\prime}=a_{\beta}^{\prime} R\left(d^{\prime} a_{\alpha}=a_{\beta}^{\prime}\right)$. Assume that $a_{\alpha} g=a_{\alpha}$ and $a_{\beta}^{\prime} g=a_{\beta}^{\prime}$ for a primitive idempotent g. Let $d^{\prime}=\sum d_{r}^{\prime} ; d_{r}^{\prime} \in A_{r}^{\prime}$. Since $A_{1}^{\prime} \supset A_{1 \beta}^{\prime} \ni a_{\beta}^{\prime}=d^{\prime} a_{\alpha}=\sum d_{r}^{\prime} a_{\alpha}, a_{\beta}^{\prime}=d_{1}^{\prime} a_{\alpha}$. Put $d=d_{1}^{\prime} \in A_{1}^{\prime} \cap e J e$. Since $d a_{\alpha}=a_{\beta}^{\prime}, d \in \mathrm{~T}\left(J^{\beta-\infty} g\right)$. Assume $d a_{i} \neq 0$ for some $A_{i}=a_{i} R \quad(i \neq 1)$. Then $d a_{1}$ $(\neq 0)$ and $d a_{i}$ are elements in $\mathrm{T}\left(A_{1 \beta-\alpha+1}^{\prime}\right)$, which is a contradiction to [7], Lemma 7. Hence $d A_{i}=0$ for $i \neq 1$.

Let $M=\sum_{i=1}^{t} \oplus M_{i} . \quad$ For $N_{i} \subset M_{i}, i=1,2, \cdots, t$, we call $\sum_{i=1}^{t} \oplus N_{i}$ a standard submodule of M (with respect to the decomposition $\sum_{i=1}^{t} \oplus M_{i}$).

Lemma 10 ([9], Lemma 3.3) Let R be a left serial ring such that eJ is a direct sum of uniserial modules A_{i}. Then every submodule in eJ is a standard submodule with respect to some direct decomposition of eJ, whose direct summands are all uniserial.

Proposition 8. Let R be left serial and eJ a direct sum of uniserial modules. Then $(*, 2)$ holds for any direct sum of two hollow modules of form $e R / K$.

Proof. We may consider a maximal submodule M^{\prime} in $D^{\prime}=e R / E_{1} \oplus e R / E_{2}$, where E_{i} are submodules in $e J$. There exists a maximal submodule M in $D=e R \oplus e R$ such that $M \supset E_{1} \oplus E_{2}$ and $M /\left(E_{1} \oplus E_{2}\right)=M^{\prime}$. From [0], Theorem 2 there exists a decomposition $D=e R(f) \oplus e R$ such that $M=e R(f) \oplus e J$, where $f \in \operatorname{Hom}_{R}(e R, e R)$. Since $E_{2} \subset 0 \oplus e J, D / E_{2}=e R(f) \oplus e J / E_{2}$. Hence $M^{\prime}=$ $M /\left(E_{1} \oplus E_{2}\right)=\left(e R(f) \oplus e J / E_{2}\right) / \varphi\left(E_{1}\right)$, where $\varphi ; E_{1} \rightarrow e R(f) \oplus e J / E_{2}$ is the natural mapping. Accordingly, since $e R \approx e R(f)$, we may show for submodules X_{i} in $e J(i=1,2)$ and Y in $D^{*}=e R / X_{1} \oplus e J / X_{2}$
(5) $\quad D^{*} / Y$ is a direct sum of hollow modules.

First assume $X_{1} \subsetneq e J$. Let S^{\prime} be a submodule in $e J \oplus e J$ such that $(Y \supset) S^{\prime}$ $\supset X_{1} \oplus X_{2}$ and $S^{\prime} /\left(X_{1} \oplus X_{2}\right)(=S)$ is simple. We shall show
$D^{*} / S \approx e R / X_{1}^{\prime} \oplus e J / X_{2}^{\prime}$, where $X_{1}^{\prime} \subset e R$ and $X_{2}^{\prime} \subset e J$.

Put $X_{1}=A_{\alpha_{1}} \oplus \cdots \oplus A_{m \alpha_{m}}, X_{2}=A_{1_{1}}^{\prime} \oplus \cdots \oplus A_{m \beta_{m}}^{\prime}$ by Lemma 10 , where $e J=$ $\sum_{i=1}^{m} \oplus A_{i}=\sum_{i=1}^{m} \oplus A_{i}^{\prime}, A_{i \alpha_{i}} \subset A_{i}$ and $A_{j \beta_{j}}^{\prime} \subset A_{j}^{\prime}$. Then $S \subset A_{1} / A_{1 \alpha_{1}} \oplus \cdots \oplus A_{m} / A_{m \alpha_{m}} \oplus$ $A_{1}^{\prime} / A_{1 \beta_{1}}^{\prime} \oplus \cdots \oplus A_{m}^{\prime} / A_{m \beta_{n}}^{\prime} . \quad$ If $S \subset \sum_{i=1}^{m} \oplus A_{i}^{\prime} / A_{i \beta_{i}}^{\prime}, D^{*} / S=e R / X_{1} \oplus e J / S^{\prime}$. Since $e J / S^{\prime}$ is a direct sum of uniserial modules by Lemma $10, D^{*} / S$ is a direct sum of hollow modules. We obtain the same result for a case $S \subset \sum_{i=1}^{m} \oplus A_{i} / A_{i \alpha_{i}}$. Let $p_{i}: e J / X_{1} \oplus e J / X_{2} \rightarrow A_{i} / A_{i \alpha_{i}}$ and $q_{j}: e J / X_{1} \oplus e J / X_{2} \rightarrow A_{j}^{\prime} / A_{j \beta_{j}}^{\prime}$ be the projections. We shall show (6) by induction on t, where $t=$ (the number of $\left\{p_{i}\right.$ and $q_{j} \mid p_{i}(S) \neq 0$ and $\left.q_{j}(S) \neq 0\right\}$). If $t=1$, we are done from the observation above. Now we may assume that $S=\left\{s_{1}+f_{2}\left(s_{1}\right)+\cdots+f_{m}\left(s_{1}\right)+f_{1}^{\prime}\left(s_{1}\right)+\cdots+f_{m}^{\prime}\left(s_{1}\right) \mid s_{1} \in\right.$ $A_{1 \alpha_{1}-1} / A_{1 \alpha_{1}}, f_{i} \in \operatorname{Hom}_{R}\left(A_{1 \alpha_{1}-1} / A_{1 \alpha_{1}}, A_{i \alpha_{i}-1} / A_{i \alpha_{i}}\right)$ and $f_{j}^{\prime} \in \operatorname{Hom}_{R}\left(A_{1 \alpha_{1}-1} / A_{1 \alpha_{1}}, A_{j \beta_{j}-1}^{\prime} /\right.$ $\left.\left.A_{j_{j} j}^{\prime}\right)\right\}$. From the above assumption, we may assume $f_{1}^{\prime} \neq 0$. If $\alpha_{1}=\beta_{1}$, then there exists a unit x in $e R e$ such that $x_{l} \mid A_{1 \beta_{1}-1}^{\prime} / A_{1 \beta_{1} \rightarrow}^{\prime} \rightarrow A_{1 \alpha_{1}-1} / A_{1 \alpha_{1}}=f_{1}^{\prime-1}$. Accordingly $x A_{1_{1}}^{\prime}=A_{1 \alpha_{1}}$, and so

$$
\begin{equation*}
x_{l}(=h) \in \operatorname{Hom}_{R}\left(A_{1}^{\prime} / A_{1_{1}}^{\prime}, e R / X_{1}\right) . \tag{7}
\end{equation*}
$$

Next assume $\alpha_{1}>\beta_{1}$ or $\alpha_{1}<\beta_{1}$. In the former case we obtain d in eJe as the above x. Let $\alpha_{1}<\beta_{1}$. Then there exists d^{\prime} in eJe such that $d_{l}^{\prime} \mid A_{1 \alpha_{1}-1} / A_{1 \alpha_{1}}$ induces f_{1}^{\prime}. From Lemma 9, we may assume $d^{\prime} \in A_{1}^{\prime}$ and $d^{\prime} A_{k}=0$ for $k \neq 1$. Further, since $d^{\prime}(e R) \subset A_{1}^{\prime}$

$$
d_{l}^{\prime}\left(=h^{\prime}\right) \in \operatorname{Hom}_{R}\left(e R / X_{1}, A_{1^{\prime}}^{\prime} / A_{\beta_{1}}^{\prime}\right) .
$$

Case (7)

$$
\begin{equation*}
e R / X_{1} \oplus e J / X_{2}=e R / X_{1} \oplus\left(A_{1}^{\prime} / A_{1 \beta_{1}}^{\prime}\right)(h) \oplus \sum_{j \geqslant 2} \oplus A_{j}^{\prime} / A_{j \beta_{j}}^{\prime} \tag{9}
\end{equation*}
$$

Then $S \subset\left(\sum_{k \neq 1} p_{k}^{\prime}+\sum q_{j}^{\prime}\right)(S)$, where p_{i}^{\prime} and q_{j}^{\prime} are the projections of (9). It is clear that (the number of $\left.\left\{p_{k}^{\prime}, q_{i}^{\prime}\right\}\right)=\left(\right.$ the number of $\left.\left\{p_{i}, q_{j}\right\}\right)-1$.
Case (8)

$$
\begin{equation*}
e R / X_{1} \oplus e J / X_{2}=\left(e R / X_{1}\right)\left(h^{\prime}\right) \oplus e J / X_{2} \tag{10}
\end{equation*}
$$

Then $S \subset\left(\sum p_{i}^{\prime}+\sum_{i \neq j} q_{j}^{\prime}\right)(S)$. Hence we obtain the same situation. If $X_{1}=e J$, $e R / X_{1}$ is simple. This is a special case in the above argument. In case (9), since $\left(A_{1}^{\prime} / A_{1 \beta_{1}}^{\prime}\right)(h) \approx A_{1}^{\prime} / A_{1 \beta_{1}}^{\prime}$, we obtain the isomorphism $f_{1}: e R / X_{1} \oplus\left(A_{1}^{\prime} / A_{1_{1}}^{\prime}\right)(h) \oplus$ $\sum_{j \geqslant 2} \oplus A_{j}^{\prime} \mid A_{j \beta_{j}}^{\prime} \rightarrow e R / X_{1} \oplus e J / X_{2}$. Similarly in case (10) we have $f_{2}:\left(e R / X_{1}\right)\left(h^{\prime}\right) \oplus$ $e J / X_{2} \rightarrow e R / X_{1} \oplus e J / X_{2}$. Then (the number of $\left.\left\{p_{i}, q_{j} \mid p_{i}\left(f_{k}(S)\right) \neq 0, q_{j}\left(f_{k}(S)\right) \neq 0\right\}\right)$
$=\left(\right.$ the number of $\left.q_{j}, p_{i} \mid\left\{p_{i}(S) \neq 0, q_{j}(S) \neq 0\right\}\right)-1$ for $k=1$, 2 (note $f\left(J\left(\left(e R / X_{1}\right)\right.\right.$ $\left.\left.\left(h^{\prime}\right)\right)=\mathrm{J}\left(e R / X_{1}\right)\right)$. Further $D^{*} / S \approx f_{k}\left(D^{*}\right) / f_{k}(S)=D^{*} / f_{k}(S)$. Therefore (6) holds by induction on t. If we take a chain $Y=S_{p+1}^{\prime} \supset S_{p}^{\prime} \supset \cdots \supset S_{1}^{\prime} \supset X_{1} \oplus X_{2}=S_{0}^{\prime}$ such that $S_{i}^{\prime} / S_{i+1}^{\prime}$ is simple, we can show (5).

From the above proof and Proposition 7 we have
Theorem 2. Let R be a left serial ring and e a primitive idempotent. Then the following conditions are equivalent:

1) (*,2) holds for a direct sum of any two hollow right R-modules of form $e R / K$.
2) eJ is a direct sum of uniserial modules.
3) Every factor module of $e R \oplus e J$ is a direct sum of hollow modules (direct sum of a hollow module and uniserial modules).
4) Every factor module of $e R \oplus e J^{(n)}$ is a direct sum of hollow modules, where $e J^{(n)}$ is a direct sum of n-copies of eJ.

We shall study further structures of R with $(*, 2)$ when $\overline{J J}$ is square-free.
Lemma 11. Let R be a left serial ring. Let $\alpha=e+d(d \in e J e)$ be a unit in e Re. Assume $\bar{A}_{i} \not \approx \bar{A}_{j}$ if $i \neq j$. Then if $\alpha A_{1} \neq A_{1}, \alpha A_{i}=A_{i}$ for $i \neq 1$, where $e J=\Sigma \oplus A_{i}$ and the A_{i} are uniserial.

Proof. From [7], Lemma $5 d \in A_{j}$ for some j. Since $\alpha A_{1} \neq A_{1}, j \neq 1$, and so $d A_{1} \neq 0$. Therefore $d A_{k}=0$ for $k \neq 1$ by Lemma 9 .

Proposition 9. Let R be left serial. Assume that eJ is a direct sum of uniserial modules $A_{i}:$ eJ $=\sum_{i=1}^{m} \oplus A_{i}$ and that $\overline{e J}$ is square-free. Let X be a submodule of eJ. Then there exist uniquely k and k^{\prime} (not depending on X) such that $X=\alpha\left(\sum_{j=1}^{m} \oplus A_{i j_{i}}\right)=A_{1 i_{1}} \oplus \cdots \oplus A_{k-1 i_{k-1}} \oplus \alpha A_{k i_{k}} \oplus A_{k+1 i_{k+1}} \oplus \cdots \oplus A_{n i_{n}}$, where $A_{j i_{j}} \subset$ A_{j}, and $\alpha A_{k} \subset A_{k} \oplus A_{k^{\prime}}$. Further all A_{i} except A_{k} are characteristic and the number of hollow modules of form $e R / K$ is finite up to isomorphism

Proof. Let $e J=\sum_{i=1}^{m} \oplus A_{i}$ be as in the proposition. Assume that a subfactor module of A_{1} is isomorphic to one of A_{2}. Then from [7], Lemma 2 there exists d in A_{2} (or A_{1}) which induces this isomorphism. If we have the same situation between A_{i} and A_{j}, we obtain d^{\prime} in A_{i} (or A_{j}). Then $i=2$ by assumption and [7], Lemma 4. Since A_{2} is uniserial, $\operatorname{Soc}\left(A_{2}\right) \approx A_{1 k} / A_{1 k+1}$ $\approx A_{j s} / A_{i s+1}$ for some k and s. Hence $j=1$ by [7], Lemmas 2 and 4. Therefore, for $j \neq 1,2$, any sub-factor modules of A_{j} are not isomorphic to any one of A_{k} for all $k \neq j$. Put $F_{1}=A_{1} \oplus A_{2}$ and $F_{2}=\sum_{j \geqslant 3}^{m} \oplus A_{j}$. Then we can easily show by induction on m that every submodule of F_{2} is standard. Further from
the argument after (1) in the proof of Lemma 8, every submodule of F_{1} is of a form $\alpha\left(A_{1 i_{1}} \oplus A_{2 i_{2}}\right) ; \alpha=e+d, d \in A_{2}$. Let p_{i} be the projection of $e J$ onto F_{i}, and X a submodule of $e J$. Put $X^{(j)}=p_{j}(X)$ and $X_{(j)}=X \cap F_{j}$. Assume $X^{(1)} \neq X_{(1)}$, and $X_{(1)}=\alpha\left(A_{1 k_{1}} \oplus A_{2 k_{2}}\right) . \quad A_{1} \oplus A_{2}=\alpha^{-1}\left(A_{1} \oplus A_{2}\right) \supset \alpha^{-1} X^{(1)} \supset \alpha^{-1} X_{(1)}$ $=A_{1 k_{1}} \oplus A_{2 k_{2}}$. Hence some simple sub-factor module T of $X^{(1)} / X_{(1)}$ is isomorphic to one of A_{1} or A_{2}. Since $X^{(1)} / X_{(1)} \approx X^{(2)} / X_{(2)}, T$ is isomorphic to a sub-factor module of $X^{(2)} \mid X_{(2)}$. On the other hand, every submodule of F_{2} is standard, and so T is isomorphic to a sub-factor module of some $A_{j}(j \geqslant 3)$, which is impossible from the initial observation. Hence $X^{(1)}=X_{(1)}$, and $X=X_{(1)} \oplus X_{(2)}=\alpha\left(A_{1 k_{1}} \oplus A_{2 k_{2}}\right) \oplus \sum_{j \geqslant 3} \oplus A_{j k_{j}}=\alpha\left(\sum_{i=1}^{m} \oplus A_{i k_{1}}\right)$ by Lemma 11. The remaining part is clear from the above.

Lemma 12. Let R be a right artinian ring with (*, 2). Let D be a direct sum of two hollow modules and M a maximal submodule of D. Then M has the following decomposition: $M=M_{1} \oplus M_{2} ; M_{1}$ is a hollow module not contained in $\mathrm{J}(D)$ and $\mathrm{J}(D)=\mathrm{J}\left(M_{1}\right) \oplus M_{2}$.

Proof. Let $D=e R / E \oplus e^{\prime} R / E^{\prime}$. If $e R \approx e^{\prime} R, M=e R / E \oplus e^{\prime} J / E^{\prime}$ (or $e J / E \oplus$ $e^{\prime} R / E^{\prime}$). If $e R \approx e^{\prime} R$, we can obtain the lemma for any M similarly to (2) in the proof of Proposition 7.

For two integers $\alpha(1)$ and $\alpha(2)$, we denote $\max \{\alpha(1), \alpha(2)\}$ (resp. $\min \{\alpha(1)$, $\alpha(2)\})$ by $\underline{\alpha}(\operatorname{resp} . \bar{\alpha})$. If R is a right artinian ring with (*, 2),

$$
\begin{equation*}
e J=\sum_{i=1}^{m} \oplus A_{i} ; \text { the } A_{i} \text { are uniserial } \tag{11}
\end{equation*}
$$

from Proposition 7.
Proposition 10. Let R be a left serial ring with (*, 2) and let eJ and A_{i} be as above. We assume that $\overline{e J}$ is square-free. Put $E_{i}=A_{1 \omega_{1}(i)} \oplus \cdots \oplus A_{n \omega_{n}(i)}$; $A_{k \alpha_{k}(i)} \subset A_{k}$ for $i=1,2$ and all k. Then every maximal submodule M of $D=$ $e R / E_{1} \oplus e R / E_{2}$ is isomorphic to $e R /\left(A_{\underline{\alpha}_{1}} \oplus A_{\underline{\alpha}_{2}} \oplus \cdots \oplus A_{\underline{\alpha}_{n}}\right) \oplus A_{1} / A_{\bar{\alpha}_{1}} \oplus A_{2} / A_{\bar{\alpha}_{2}} \oplus \cdots$ $\oplus A_{n} \mid A_{\bar{\alpha}_{n}}$, unless $M \approx e R / E_{1} \oplus e J / E_{2}$ or $\approx e J / E_{1} \oplus e R / E_{2}$.

Proof. We may assume that R is basic. Assume $\bar{M}=(\bar{e}+\bar{e} \alpha) e R e / e J e$, $0 \neq \bar{\alpha} \in e R e / e J e$. Then $\left(A_{1} / A_{1 \omega_{1}(1)} \oplus \cdots \oplus A_{n} \mid A_{n \alpha_{n}(1)}\right) \oplus\left(A_{1} / A_{1 \alpha_{1}(2)} \oplus \cdots \oplus A_{n} \mid A_{n \alpha_{n}(2)}\right)$ $=\mathrm{J}(D) \approx e J /\left(E_{1} \cap(\alpha+j) E_{2}\right) \oplus M_{2}$ by Lemma 12 and [3], Lemma 3. On the other hand, $E_{1} \cap(\alpha+j) E_{2}=\gamma\left(A_{1 a_{1}(3)} \oplus \cdots \oplus A_{n \alpha_{n}(3)}\right)$ by Proposition 9. Hence $e J /\left(E_{1} \cap(\alpha+j) E_{2}\right) \approx A_{1} / A_{1 \alpha_{1}(3)} \oplus \cdots \oplus A_{n} / A_{n \omega_{n}(3)}$. Since $\overline{e J}$ is square-free, either $A_{1} / A_{1 \omega_{1}(3)} \approx A_{1} / A_{1 \omega_{1}(1)}$ or $A_{1} / A_{1 \alpha_{1}(2)}$. Therefore $\alpha_{i}(3)=\alpha_{i}(1)$ or $\alpha_{i}(2)$. Further $A_{1 \omega_{1}(1)} \oplus \cdots \oplus A_{n \alpha_{n}(1)} \supset \gamma\left(A_{1 \omega_{1}(3)} \oplus \cdots \oplus A_{n \omega_{n}(3)}\right)$ implies $\gamma A_{i \omega_{i}(3)} \subset A_{1 \alpha_{1}(1)} \oplus \cdots \oplus A_{n \alpha_{n}(1)}$. Considering the projection of $e J$ to A_{i}, we obtain $\alpha_{i}(3) \geqslant \alpha_{i}(1)$ (note $A_{i} \approx \gamma A_{i}$
$\subset e J)$. Similarly $\alpha_{i}(3) \geqslant \alpha_{i}(2)$, and so $\alpha_{i}(3)=\underline{\alpha}_{i}$. Therefore $M_{2} \approx \sum_{i=1}^{n} \oplus A_{i} / A_{i \bar{\alpha} i}$.
Corollary 11. Let R be as above. Then the number of isomorphism classes of maximal submodules in a direct sum of (fixed) two hollow modules is at most three.

Remark. Assume in (11) that $\overline{e J}$ is not square-free. Then we can show, by direct computation, the following fact:

Let $D=e R / E_{1} \oplus e R / E_{2}$ be a direct sum of hollow modules $e R / E_{i}$. Then the number of isomorphism classes of maximal submodules in D at most three for any E_{1} and E_{2} if and only if one of the following occurs.
i) $m=2, A_{1} \approx A_{2}$ and $\left|A_{1}\right| \leqslant 2$.
ii) $m=3, A_{1} \approx A_{2} \approx A_{3}$ and $\left|A_{1}\right|=1$.
iii) $m=3, A_{1} \approx A_{2} \approx A_{3}$ and $\left|A_{1}\right|=1$.

For example, $m=2, A_{1} \approx A_{2}$ and $\left|A_{1}\right| \geqslant 3: D=e R / A_{1} \oplus e R /\left(A_{12} \oplus A_{23}\right)$. Then D contains the following maximal submodules:
$e J / A_{1} \oplus e R /\left(A_{12} \oplus A_{23}\right), e R / A_{1} \oplus e J /\left(A_{12} \oplus A_{23}\right), e R / A_{12} \oplus A_{1} / A_{13}$ and $e R / A_{13} \oplus$ A_{1} / A_{12} (cf. the proof of [6], Lemma 3). Therefore Corollary 11 characterizes almost left serial rings with $(*, 2)$ and $\overline{e J}$ being square-free.

Lemma 13. Let R be a left serial ring. Assume that $\overline{e J}$ is square-free and eJ is a direct sum of uniserial modules; eJ $=\sum_{i=1}^{m} \oplus A_{i}$. Let x be a unit in eRe and $x A_{1} \neq A_{1}$. Then there exists d in eje such that $(x+d) A_{i}=A_{i}$ for all i.

Proof. Let p_{i} be the projection of $e J$ onto A_{i}, and $A_{j}=a_{j} R$ for $j=1,2, \cdots$, m. Since $\overline{e J}$ is square-free, $p_{i} x A_{1} \subset \mathrm{~J}\left(A_{i}\right)$ for $i \neq 1$. Hence $p_{i} x_{l} \mid A_{1}=\left(d_{i}\right)_{l}$ for some d_{i} in $\mathrm{J}\left(A_{i}\right)$ by [7], Lemma 2. By assumption and [7], Lemma 4, only one d_{i}, say d_{2}, is non-zero, since $x A_{1} \neq A_{1}$. Similarly for $j \neq 1,2$ and $i \neq j$, $p_{i} x_{l} \mid A_{j}=\left(d_{j i}\right)_{l}$ for some $d_{j i} \in \mathrm{~J}\left(A_{i}\right)$. Then $d_{j k}=0 \quad(k \neq 2)$ by [7], Lemma 4. Assume $d_{j 2} \neq 0$, and so $d_{j 2} a_{j} \neq 0$. Since $d_{2} \neq 0,0 \neq d_{2} a_{1} R \subset d_{j 2} a_{j} R$ (or $d_{j 2} a_{j} R \subset$ $d_{2} a_{1} R$). Let $d_{2} a_{1}=d_{j 2} a_{j} r$ (and $a_{1} g=a_{1}$ and $r g=r$ for a primitive idempotent g). Hence there exist non-zero three elements $a_{1} g, a_{j} r g$ and $d_{2} a_{1} g$. This is a contradiction to [7], Lemma 5. Hence $x A_{j}=A_{j}(j \neq 1,2)$. If $x A_{2} \neq A_{2}$, we obtain again a contradiction to [7], Lemmas 2 and 4. Finally, since $0 \neq d_{2} A_{1}$ $\subset A_{2}, d_{2} A_{j}=0$ for $j \neq 1$ from Lemma 9. Therefore $\left(x-d_{2}\right) A_{i}=A_{i}$ for all i.

From Proposition 10 we know the form of maximal submodules in $e R / E_{1}$ $\oplus e R / E_{2}$ up to isomorphism, provided ($*, 2$) holds and $\overline{e J}$ is square-free. We shall show explicitly such an isomorphism. Let $e J=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n}$ be a direct sum of uniserial submodules. Put $E_{i}=A_{1 \alpha_{1}(i)} \oplus A_{2 \alpha_{2}(i)} \oplus \cdots \oplus A_{n \alpha_{n}(i)}$ for $i=1,2$, where $A_{j \alpha_{j}(i)} \subset A_{j}$. Set $D=e R / E_{1} \oplus e R / E_{2}$ and let M be a maximal submodule in D. Put $M^{*}=e R /\left(A_{1 \underline{\omega}_{1}} \oplus A_{2 \underline{\alpha}_{2}} \oplus \cdots \oplus A_{n \underline{a}_{n}}\right) \oplus A_{1} / A_{1 \bar{\alpha}_{1}} \oplus A_{2} / A_{2 \bar{\alpha}_{2}} \oplus \cdots$
$\oplus A_{n} / A_{n \bar{\alpha}_{n}}$ and $\bar{D}=D / J(D) \supset \bar{M}=M / J(D)$. We may assume $\bar{M}=(\bar{e}+\bar{e} \overline{\bar{k}}) \Delta$ (cf. [2], p. 93), where $\bar{k} \neq 0 \in \Delta$ (R is basic). From Lemma 13, we may assume $k A_{i}=A_{i}$ for all i. We define a mapping $\varphi: M^{*} \rightarrow D$ by setting for $x \in e R, a_{i} \in A_{i}$,

$$
\begin{align*}
& \varphi\left(x+\left(A_{1 \alpha_{1}} \oplus \cdots \oplus A_{n \alpha_{n}}\right)+\left(a_{1}+A_{1 \bar{\alpha}_{1}}\right)+\cdots+\left(a_{n}+A_{n \bar{\alpha}_{n}}\right)\right) \tag{12}\\
& =\left(x+a_{1} \delta_{\bar{\alpha}_{1} \alpha_{1}(1)}+\cdots+a_{n} \delta_{\bar{\alpha}_{n} \alpha_{n}(1)}\right)+\left(A_{1 a_{1}(1)} \oplus \cdots \oplus A_{n a n(1)}\right) \\
& \quad+\left(k x+a_{1} \delta_{\bar{\alpha}_{1} \alpha_{1}(2)}^{\prime}+\cdots+a_{n} \delta_{\bar{\alpha}_{n} \alpha_{n}(2)}\right)+\left(A_{1 \alpha_{1}(2)} \oplus \cdots \oplus A_{n \alpha_{n}(2)}\right),
\end{align*}
$$

where the δ, δ^{\prime} are Kronecker deltas such that $\delta_{\bar{a}_{i} \alpha_{i}(2)}^{\prime}=0$ provided $\alpha_{i}(1)=\alpha_{i}(2)$. Since $\left(A_{1 a_{1}(1)} \oplus \cdots \oplus A_{n \alpha_{n}(1)}\right) \cap\left(A_{1 \alpha_{1}(2)} \oplus \cdots \oplus A_{n \alpha_{n}(2)}\right)=A_{1 \alpha_{1}} \oplus \cdots \oplus A_{n \alpha_{n}}, \varphi$ is an $R-$ homomorphism. $\quad\left(\varphi\left(M^{*}\right)+J(D)\right) / J(D)=\bar{M}$ means $\varphi\left(M^{*}\right) \subset M$, and so $\varphi\left(M^{*}\right)$ $=M$, since $\left|M^{*}\right|=|S|-1=|M|$.

Finally we shall give a property of a right artinian ring with ($*, 2$). Put $P=\sum_{k=1}^{i} \oplus A_{k}$ and $Q=\sum_{k=i+1}^{m} \oplus A_{k}$ in (11). Assume $\bar{A}_{k} \approx \bar{A}_{k^{\prime}}$ for all k, k^{\prime} such that $k \leqslant i<k^{\prime}$.

Proposition 12. Let R, P and Q be as above. Let L be a direct summand of eJ such that $L / L J \approx P / P J$. Then there exists a unit $\alpha=e+j(j \in e J e)$ such that $\alpha P=L$.

Proof. From the assumption $L / L J \approx P / P J$ and Krull-Remak-Schmidt theorem, $L \approx P$. We apply the exchange property of L to $e J=P \oplus Q$. Then $e J=L \oplus P^{\prime} \oplus Q^{\prime}$, where $P^{\prime} \subset P$ and $Q^{\prime} \subset Q$. Since no one of indecomposable direct summands of L is isomorphic to any one in $Q, e J=L \oplus Q$. Put $D=e R / P$ $\oplus e R / L$. We shall employ the similar argument to the proof of Proposition 7. From [3], Lemma 3 and its proof, D contains a maximal submodule M such that $M=M_{1} \oplus M^{*}$ with $M_{1} \approx e R / K$, where $K=P \cap \alpha L, \alpha=e+j$. Now

$$
\begin{equation*}
\mathrm{J}(D)=Q_{1} \oplus Q_{2}, \quad \text { where } Q_{i} \approx Q \tag{13}
\end{equation*}
$$

Further, as in the proof of Proposition 7,
$\mathrm{J}(D)=\varphi(e J / K) \oplus M^{*}, \varphi: e R / K \rightarrow D$ is the given injection. On the other hand, $\varphi((Q+K) / K)=Q_{1}(f)$, where $f: Q_{1} \rightarrow Q_{2}$. Hence

$$
\begin{equation*}
\mathrm{J}(D)=\varphi((Q+K) / K) \oplus Q_{2} \quad \text { and } \quad \varphi(P / K) \subset Q_{2} \tag{14}
\end{equation*}
$$

Let p be the projection of $\mathrm{J}(D)$ onto Q_{2} in (14), and x an element in $p\left(\operatorname{Soc}\left(M^{*}\right)\right)$ $\cap \varphi(P / K) ; x=p(y)$ for some y in $\operatorname{Soc}\left(M^{*}\right)$. Then $y=(1-p) y+p y$ and $(1-p) y \in \varphi((Q+K) / K)$. Hence $y \in \varphi(e J / Q) \cap M^{*}=0$, and so $x=0$. Similarly, we know $p \mid \operatorname{Soc}\left(M^{*}\right)$ is a monomorphism. Hence

$$
\begin{equation*}
p\left(M^{*}\right) \oplus(P / K) \subset Q_{2} \quad \text { and } \quad p\left(M^{*}\right) \approx M^{*} \tag{15}
\end{equation*}
$$

Now $\quad|M|=\left|M_{1}\right|+\left|M^{*}\right|=|e R / K|+\left|M^{*}\right|=1+|Q|+|P| K\left|+\left|M^{*}\right| \leqslant\right.$
$1+|Q|+\left|Q_{2}\right|=|D|-1=|M|$ from (15). Hence $p\left(M^{*}\right) \oplus \varphi(P / K)=Q_{2}=$ $\sum_{k=i+1}^{m} \oplus A_{k}$, and so $\varphi(P / K)$ is isomorphic to a direct sum of some $A_{k}(k \geqslant i+1)$ by Krull-Remak-Schmidt theorem. On the other hand, $\bar{A}_{s} \approx \bar{A}_{k}$ for $s \leqslant i<k$, and hence $P=K=P \cap \alpha L$. Therefore $\alpha L=P$.

Example 4. Let Q be the field of rationals. We regard $Q(\sqrt[4]{-1})(=L)$ as a Q-space. Then we can directly compute that $V=Q \oplus Q(\sqrt{-1}+\sqrt[4]{-1})$ is not transferred to a standard submodule of $L=Q \oplus Q \alpha \oplus Q \alpha^{2} \oplus Q \alpha^{3}$ by a unit, where $\alpha=\sqrt[4]{-1}$. Hence

$$
\left(\begin{array}{ll}
L & L \\
0 & Q
\end{array}\right)
$$

is a left serial ring with $(*, 2)$ by [3], Proposition 3, however $(0, V)$ is not transferred to a standard submodule of a decomposition $e J=(0, Q) \oplus(0, Q \alpha) \oplus$ $\left(0, Q \alpha^{2}\right) \oplus\left(0, Q \alpha^{3}\right)$, (cf. Lemma 10 and Proposition 9).

References

[0] M. Harada: On lifting property on direct sums of hollow modules, Osaka J. Math. 17 (1980), 783-791.
[1] -: Serial rings and direct decompositions, J. Pure Appl. Algebra 41 (1984), 55-61.
[2] -: On maximal submodules of a finite direct sum of hollow modules I, Osaka J. Math. 21 (1984), 649-670.
[3] -: On maximal submodules of a finite direct sum of hollow modules III, Osaka J. Math. 22 (1985), 81-98.
[4] -: Note on left serial algebras, Tsukuba J. Math. 10 (1986), 193-197.
[5] -: Generalizations of Nakayama ring I, Osaka J. Math. 23 (1986), 181200.
[6] -: Generalizations of Nakayama ring II, Osaka J. Math. 23 (1986), 509-521.
[7] -_ and Y. Baba: Generalizations of Nakayama ring IV (Left serial rings with (*, 1)), Osaka J. Math. 24 (1987), 139-145.
[8] T. Sumioka: Tachikawa's theorem on algebras of left colocal type, Osaka J. Math. 21 (1984), 629-648.
[9] -: On Artinian rings of right local type, to appear.

