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1. Introduction

A set Σ of <f (2,2)-matrices over K=GF(q) is said to be a l-spread set if it
contains the zero matrix 0 and X-Y is nonsingular for any distinct X, FeΣ.

Let Σ' be an arbitrary l-spread set over K. Then Σ'={( x y ) \ x , y
\g(χ,y)h(χ,y)/

e K} f or suitable mappings g and h from KxKtoK. Let F= GF((f) ^> K. If
Char K, the characteristic of K, is odd, we can take an element t^F-K with t2

&K and define a mapping / from F to itself in such a way thatf(x+yi)= g(x, y)
—h(x, y)t for x, y^K. Then/ satisfies the condition

(*) /(0)=0 and (x-y)(f(x)-f(y))^K for any distinct x,
Furthermore the set of (2,2)-matrices

<**> 2'=
is a l-spread set over F and the resulting translation plane of order cf with the
kernel F, say π, has the following properties:

(Al) The linear translation complement LC(π) has a shears group P of
order at least (f.

(A2) LC(π) has a Baer subgroup Q of order q+1 with [P,

In this paper we study a class of translation planes of order cf with the pro-
perties (Al) and (A2) as above. Let Ω(F) be the set of mappings from F to
itself satisfying (*). Then the set of (2,2)-matrices Σ/ defined by (**) is a 1-
spread set for any /eΩ(F) and if Char K is odd, a l-spread set Σ/ over K cor-
responding to/ is naturally defined (Proposition 2.1). Denote by U(F) the set
of planes πf corresponding to Σ/ with/^Ω(F). Then Π(F) is characterized as
the set of translation planes with the kernel F having the properties (Al) and
(A2).

The translation complements of these planes are solvable when p>2. To
show this we need a result on shears groups (Theorem 3.1). Any of these
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planes of order q* is derivable and the derived plane has the kernel isomorphic
toK.

Throughout the paper all sets, planes and groups are assumed to be finite.
Definitions and notations are standard and taken from [7], [8] and [13].

2. Extension of 1 -spread sets

Let q=p* be a power of a prime p and set K=GF(q) and F=GF(q2)l)K.
Denote by Sym(X) the symmetric group on a set X. Let /e Sym(ί1) and set

Σ = {( * y \ I x, y e F, where X=x9. If ρ>2, then there exists an element t e
\J(y) X /

F—K with t2^K. Then / induces mappings £ and h from KxK into K in such

f(x+yt)==g(x,y)-h(xyy)tforanyx,y<=K. SetΣ'={( *

î. From now on 1 -spread sets are called simply spread sets.

Proposition 2.1. Let f^Sym(F) with /(0)=0. Then the conditions (i)
and (ii) are equivalent. Furthermore, ifp>2, then (i), (ii) and (Hi) are equivalent.

(i) (x— y) (f(x) —f(y)) $ K for any distinct x,
(ii) Σ/ is a spread set over F=GF(<f).

(iii) Σ/ is a spread set over K=GF(q).

Proof. The condition (ii) is equivalent to

(ii)' (X-X>γ*-(y-y )

for any distinct (x, y), (x', y') eFx F .

Hence, as {(x— x')q+l\x, x'^K}=K, (i) and (ii) are equivalent.
Assume p>2 and set x=a-\-bt ^ndy=c+dty where a,b,c and d^K. Then

(i) is equivalent to

(i)' ((a-c)+(b-d)t) ((g(a, b)-g(cy d))-(h(a, b)-h(c,

for any distinct (α, ό), (c d) e K X K .

A.SΪ&K and t2&Ky (i)' is equivalent to

•(i)// -(a-c) (h(a, b)-h(c, d))+(b-d) (g(a, b)-g(c,

Therefore (i) and (iii) are equivalent when£>2.

Denote by Ω(F) the set of all /eSym(F) which satisfy /(0)=0 and the
condition (i) above. Then, by the result above, Σ/ is a spread set for /e Ω(F)

and moreover Σ/ is also a spread set when p>2. Denote by τr/(=7r(Σ/)) the
translation plane of order qf which corresponds to Σ/. Similarly, we set τr/ =
τr(Σ/). Let F"(4, F) be the underlying F-vector space of πf and set V0tb= {(v} v
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(*b))\vGFxF}(a,b€= F), V»=OxOxFxF and S={Vab\a, b^F} U
\/(ό) a/
{Foo}. Let £eGL(4, F). Theng&LC(π) if and only if g leaves S invariant.

The planes constructed above have the following property.

Lemma 2.2. Set U(F) == {πf \ /e Ω(F)} . Let π e Π(F) ami to L=LC(π)
be the linear translation complement of π. Then L contains a shears group of order
<f and a Baer subgroup of order g+ 1 .

Proof. We can easily verify that L^P={(^ T\\E=(\ JY T=(* °Y
\O £>' ^0 1' ^U Λ/

ThenPand
are desired ones.

REMARK 2.3. Let/eΩ(F). By definition, O, E=(l ^eΣ^ and
but E is not always contained in Σ/.

REMARK 2.4. In Proposition 2.1 we assumed />> 3. That result is modified
for any prime/) as follows:

We may assume that F=K(ΐ), where t<=F—K and f+t^K. (Note that
o?+x+k is irreducible over K for suitable k&K.) Then the following hold.

(i) Let Σ(ιrΛ)={( * ^ ^1*, veί:} be any spread set over K.
\g(x,y)h(x>yy

Define a mapping /from F into itself by

= h(x, y)-g(x> y)+h(x, y) t for x,

Then 2/= {( Λ ^ ) | x, y e F} is a spread set over F.
\f(y) */

(ii) Conversely, let 2/ be any spread set over F. Define mappings g
and h from KxK into ίC by

= h(x,y)-g(x,y)+h(x,y) t for

Then Σ(^fΛ> is a spread set over K.
(iii) / is additive on F if and only if g and h are additive on J!£x K. There-

fore 7r(2/) is a semifield plane if and only if τr(Σ^tA)) is a semifield plane.
(Theorem 5.1.2 of [2].)

EXAMPLE 2.5. Assume p>2 and let £ be an element of F such that e& K
and e2SΞK. Then a function / defined by f(x)=ex^+2t"1^ is an element of

Moreover 7^ is not a semifield plane.

Proof. Clearly f(x)=ex9 or — ex9 according as x&F or x&F. Here F
is the set of square elements of F.
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If xyeF and x*y, then (x-y) (f(x)-f(y))= ±e(x-y)«+1$K.
then (x—y) (f(x)-f(y))= ±(x+y)q+ie(x—y)l(x+y). Assume f$Ω(F). Then
e(x—y)l(x+y)=k for some k&K, so (k+e) xy=(e—k) x?=—(e-\-k)q x2 because
eq=—e. Hence xy=—(e+k)q~1 of^F, a contradiction. Thus/eΩ(.F).

As / is not an additive function, πf is not a semifield plane by Theorem
5.1.2 of [2].

3. Collineation groups generated by shears

The purpose of this section is to prove the following theorem, which will
be required in §4 and §5.

Theorem 3.1. Let π be a translation plane of order q(=p") and C(π)
its translation complement. Suppose C(π) contains an elation group P such that
\P\2^q. Then

(i) π is a desarguesian plane PG(2, q),
(ii) π is a Lilneburg plane L(q) with q even or

(iii) the group generated by all elations in C(π) is a p-group.
In particular, C(π) fixes exactly one point on the line at infinity unless π

(2, ?

The proof is divided into several steps (Lemmas 3.2-3.6).

Lemma 3.2. Set H=C(π) and let N be a normal subgroup of H generated
by all P* with x&H. Then one of the following holds.

(i) N.is an elementary abelian p-group.
(ii) NszSL(2, pm) for some m^nβ.

(iii) p=2 and N^Ssί(2m)for some m^
(iv) ρ=

Proof. This is an immediate consequence of [6] and [14].

Lemma 3.3. If(vo) occurs, then π^PG(2y9).

Proof. In this case we have q^32. Hence the order of π is 9. By
Theorem 8.4 of [13], π^PG(2,9) or π is the nearfield plane of order 9. Since,
by Theorem 8.3 of [13], the nearfield plane of order 9 contains no affine elations
of order 3, we have π^PG(2,9). Thus the lemma holds.

Lemma 3.4. If the case (Hi) occurs, then π^L(q).

Proof. Let S be a Sylow 2-subgrouρ of N(^Sz(2m)). We may assume
S^P. As P contains no elements of order 4, we may also assume P=Z(S).
Let A be a unique fixed point of S on L. Let NA and AN denote the stabilizer
of A in N and the ΛΓ-orbit containing A, respectively. If N fixes the point A,
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then N is a group of perspectivities with axis OA, a contradiction. Therefore
NA=NN(S) since NN(S) is a maximal subgroup of N (cf. [1]). From this,

|̂ | = 1^:^(5)I =22β+l=|P|2+1^2li+l=|L|f whence n=2m and π is a
Lΐineburg plane by [12].

Lemma 3.5. Suppose N^SL(2,ρm) and π^PG(2, q). Then m<n<2m.

Proof. We may assume P is a Sylow ^-subgroup of N. Let A be a unique
fixed point of P on L. Since P acts semi-regularly on L— {A}, pnί^pm. On
the other hand p2m= \P\2:>pn by assumption. Thus m^n^2m. If τz=w or
n=2m, then π^PG(2y q) by [4] and Theorem 38.12 of [13].

Lemma 3.6. If (ϋ) occurs, then π^PG(2, q).

Proof. Suppose false. Then m<n<2m by Lemma 3.5. In particular
m>\. Let P and A be as in the proof of Lemma 3.5. Let
Since P contains no planar elements, NB is a //-subgroup of N.

Since \BN\^\L-AN\^ρ2m-1-pm, \NB\^(ρ2m-l)/(ρttt-1

In particular |N B \ X2(pm± 1), A s p X \ N B \ and |Λ^| ^pm+l+3^11, applying
Dickson's Theorem (Theorem 14.1 of [13]), we have a contradiction.

Proof of Theorem 3.1.
By Lemmas 3.2-3.6, τr^PG(2, q), L(q) or N is a />-group. If τr^PG(2, ?),

L(j), then ΛΓ fixes exactly one point on /«. Therefore, as C(π)\>N, C(π) fixes
that point.

4. A characterization of the class of planes Π(.P)

In this section a characterization of the planes in Iί(F) defined in §2 is
presented in terms of their collineation groups.

Theorem 4.1. Let π be a translation plane of order q* having the kernel
F. Then π is contained in H(F) if and only if LC(π) has subgroups P and Q
with the properties (Al) and (A2):

(Al) P is a group of elations of order at least q*.
(A2) Q is a Boer subgroup of order q+ί with [P, Q]Φ 1.

The "only if" part of the theorem has been proved in Lemma 2.2, so it
suffices to show the "if" part of the theorem. Throughout this section π is
assumed to be a translation plane of order j4 having the kernel F and the pro-
perties (Al) and (A2). We may assume that P is a maximal elation group of

LC(π).

Lemma 4.2. Set L=LC(π). Then Lΐ>P and L fixes exactly one point A
on L.
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Proof. By the properties of the desarguesian plane PG(2, g4), together with
Theorem 3.1, we have the lemma.

Lemma 4.3. Let V be the underlying F-vector space of π. By choosing a
suitable basis for V, Q is represented in the following form :

_ V 1 0\ 0 _ / V O \
Vo J ' y 2 ~Vo ιr'

where e and e' are some elements of F*=F— {0} of order g+l

Proof. Let B(=L be a fixed point of Q with B*A. Let U be a L-
submodule of V corresponding to the line OA and W a Q-submodule of V
corresponding to the line OB. Since p^q+l, V is completely reducible as a
^-module by Maschke's theorem. Hence there exist one dimensional Q-
submodules U19 U2, W, and W2 such that V=Ul®U2®Wl®W2, U=U1®U2y

W=W,®W2 and Ul®W2={v^V\vQ=v}. Let OΦi^eZ/, and OΦWfSlF,
with lίgί<£2. Then {ult u2ί wly zo2} is a basis for V and Q is represented as a

< + ? + 1 = l } . Eachsubgroup of {(& °) 1 0l=(J °)^2=(^J

element of Q— {1} is a Baer collineation with fixed vectors Ul®W2. Hence the
lemma holds.

In the rest of this section we fix the basis for V as stated above and co-
ordinatize n in such a way that ^4=(oo) and B= (0). Let 2 be the correspond-
ing spread set of π. We may assume that

Lemma 4.4. Set Ψ={ΓeΣ| Γ+SeΣ for any SeΣ}. Then Ψ w an

( E T\) I ΓeΨ}.
O £/

Proof. By Theorem 3.13 of [13], the lemma holds.

Lemma 4.5. (i) Let e be an element of F* of order q+1. Then
1 0 0 0
0 * 0 0
0 0 * 0

^ 0 0 0 1

(ii) I f ( Q ^eΣ—{O}, then »=0.v ' J \u v/ ^

(iii) // (x y)eψ, then (e*x y

m Y ((e~^x ° }^ψ for any integer
\ιι v' V u e Ό/ \ 0 (e^—ί)v/

Proof. Since f ̂  j is a collineation for any integer m, ( x ^ j e Σ implies
x^2
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. As Σ is a spread set, (e~1ef)mu=u^=Q and e~mv=v. There-

fore e=e' and v=0 and so (i) and (ii) hold.

Let (* y) €Ξ Ψ. Then, by Lemmas 4.2 and 4.4, Qτm(* y] QZ e Ψ. Hence
\U V' \U V/

y

m )eψ. By definition of Ψ, (f* £ }-(x ^)eψ. Thus (iii) holds.
u v

Lemma 4.6. Σ={(Λ ^ )|Λ,yeF) /or ίomβ g<ΞSym(F) with Jf(0)=0
andktΞF*. ^S(y) **/

Proof. SetΨ^ΨΠ Π )|Λ?,t;eF}. Since ΓP, O1Φ1, ΨιΦ{O} and
\0 tf/

? +11 I Ψj I -1Φ0 by Lemma 4.5 (iii). As | ψλ \ \ (f, we have | Ψ1 \ =f. Hence

( v 0 \ /x v\
\\x^F}. Letί ^Jbe any

element of Σ. Then (* y]-(x ° ]=(Q y ^Σ and so »-A(*)=0,
v w i;/ VO h(x)' Vu v-h(x)J v

( -̂  )eΣ by Lemma 4.5 (ii). This implies that u—g(y) for some £eSym(F).
V# O/

2w ~ l hi
Since Ψx is abelian, h is an additive mapping. Set h(x)= Σ ^ <* More-

ί = 0

over h(ex)=e~l h(x) by Lemma 4.5 (iii). Therefore ct e
pt=e~l c{ for each i, 0^

i^in—1. Assume £, ΦO. Then ept~q=\ and therefore j+l=/>n+l|/>>—P*
Clearly n^i^2n— 1 and so set ί=w+r, O^r^w—1. As^>n+r—pn=
— l)—(pr—l), we have r=0 and h(x)—kxp" for some

Proof of Theorem 4.1. Since (̂  *M 2= {( Λ

(jy), by Lemma 4.6, π is contained in Tί(F).

REMARK 4.7. Clearly Ψ= {( x *}\xe=F,z<=U}9 where U=
\g(2) X/

\ for any y^F} (See Lemma 4.4). As £(0)=0, Ψ^ {Γ* °)

REMARK 4.8. Set PI={ l^= ^eF>> £ι- and ^=

the maximality of P, P^P and PλQ is a Frobenius group with kernel P1Φ

5. Solvability of C(ιr) when p>2

In this section we prove the solvability of C(π) with π&Tl(F). When
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p>2. Except in Lemma 5.1 we assume that p>2 and C(π) is not solvable.
Let notations Σ, P, Q, L and Ψ be as in §4.

( A. ΛC\
),

where A, C and D satisfy the following conditions.
(i) At=GL(2, g2), CeΣ, Z)eΨ-{0} and

(ϋ) A~IΨAD=Ψ, C+A-^AD^Z.

( A X\} for some

A, YeGL(2, <f) and X^M(2, (f) and g normalizes P. Hence Λf(2, g2) denotes

the set of all (2, 2)-matrices over GF(f). Since ̂ (̂  Γ) £=(^ A~*TY\ for
\O /?/ \O E /

any Γeψ, ̂ -'ψ Y=ψ. Set D^^YeΨ. Then Y=AD and so A^ΨAD^
Ψ. On the other hand A-\X+MY)=A~l X+A'1 MYeΣ for each M(ΞΣ.
Set C—^-1 X. Then J?-^C, C^2 and C+A'1 ^AD=^. Thus the lemma
holds.

Let X be a noimal subgroup of L and denote by J¥"(oo) the last term of the
derived series of X. By assumption, L(oo)Φl. Let r and $ be homomorphisms

from L to GL(2, tf) defined by r (̂  C}=A and 5 (̂  C^ = β, respectively. For

a subgroup X of GL(2 ,/), set X=XZ\Z, where Z is the center of GL(2, (?).

Lemma 5.2. // L\>X and X™ Φ 1 , then r(X^) Φ 1 .

Proof. Set M=X™ and assume r(Λί)=l but j(M)Φl. Let fieί(Λf) be

( 7^ /^\
)eM for some CeM(2, <f). Hence g

O B/
fixes each element of {(x,y)\x, y^V(2y q*),y=xC(E—B)~1} and some nontrivial

element of {(Q,y)\y^V(2, (f)}. This is a contradiction by Bruck's Theorem (cf.
Theorem 3.7 of [8]). Therefore s(M) is a ^'-group. Applying Dickson's

Theorem, s(QM)^A5 or S5 and ί(M)^^45. Since p^\s(M) | =22 3 5, we have

?+ 1 ̂  8. However, ί(£)M) ̂ ί(Q) ̂ ί̂+ι, a contradiction.

Lemma 5.3. If L\>X and X^Φl, ί̂ n <X^)Φ1.

Proof. Set M-X(oo) and assume $(Λf)= 1 but r(M)Φl. Let ̂ =(^ C)

be aj>-element of M. Then ^ is a perspectivity with axis #— 0. Hence A=E

and so r(M) is a^'-group. By Dickson's Theorem, r(QM)^^45 or 55 and r(M)
ε^A5. By a similar argument as in the proof of Lemma 5.2, we have a con-
tradiction.

Lemma 5.4. Set ΛΓ=L<ββ>. 77κ?« r(N)=s(N)^ASy PSL(2,q) or PSL
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Proof. By Dickson's Theorem, r(N), s(N) e {A5, PSL(2, ρm)} and it follows

from Lemmas 5.2 and 5.3 that r(N)^s(N). Moreover one of the follogwing
occurs.

(i)

(ii) PSL(2,pm)^r(N)<r(QN)^PGL(2,pm), m\2n, q=p".

(iii)

We not note that r(Q)s*Zpn+l.

If (ii) occurs, then p"+l\pm+l or p"+l \pm— 1, where 2n=mt for some

integer t. Since m^n, t=l or 2. Therefore r(N)^PSL(2, q) or PSL(2, f).
If (iii) occurs, then pn+l \2(pM+l) or p*+l \2(pm— 1), where n=mt for

some integer t. Assume t>l. Then/"1— l<p"+l^2(pm+l). Hence 3W—1

^pm—1<2, a contradiction. Thus r(N)^PSL(2, q).

Lemma 5.5. Set Γ—L—(<*>), where (oo) denotes a unique fixed point of
P on /oo. Then any nontrivial p-element of N has no fixed points on Γ.

Proof. The lemma follows immediately from Theorem of [3].

Lemma 5.6.

Proof. Assume r(N)=A5. As we have seen in the proof of Lemma 5.4,

r(QN) (ίίS5) must contain a cyclic subgroup isomorphic to r(Q)^Zq+1. Hence
q= 3 and \P\ ?£33 by Lemma 5.5. Therefore any 5-element of N centralizes
P. Since N=N<~\ [P, N]=l.

Let W be a Sylow 5-subgrouρ of N and Δ the set of fixed points of W on
/oo. Since [ΪΓ,P]=1,S|P| | |L-Δ|. As |P|=32 or 33, we have either L=Δ
or |P|=32and |Δ|-32 4+l. Since NV?W, LΦΔ. Let W19 W2 and W, be a

Sylow 5-subgrouρs of N such that r(Wi) are distinct. Since |Δ |— 1>33,

\F(Wi)f}F(WJ)ΠL\>l for some distinct i and j. Since r«JΓ,,
contains a Baer 3-element. This is a contradiction by Lemma 5.5.

Lemma 5.7. r(N)=s(N)=SL(2, q). In particular gΦ3.

Proof. Suppose false. Then r(NP)=s(NP)=SL(2,<f) by Lemmas 5.4
and 5.6. Therefore, by Lemma 5.5, \NP: H\ = g"4, where H is the stabilizer
of a point B^Γ in NP. Hence q*— 1| \H\. Applying Dickson's Theorem,
r(H) Z/Z^PSL(2y (?) and so q*\ \H\ , contrary to Lemma 5.5.

Lemma 5.8. Set X==r^-Ey) Π N and Y=s-\<-E» Π N. Then X is
solvable and X= Y.

Proof. By Lemmas 5.2 and 5.3, X is solvable and so SL(2, q)
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E>. Hence X^Y. Similarly Y^X. Therefore X= Y.

Lemma 5.9. There exists no element g^NQ which satisfies either (i) r(g)=
E, s(g)=-E or (ii) r(g)=-Ey s(g)=E.

Proof. Assume r(g)=E and s(g)=—E and set U=r"\E)Γ(N and FW1

(E) (Ί N. Since g&-\E) Π NQ^(r~\SL(2, f)) Π 0) ΛΓ=ΛΓ, g is not contained
in V. Hence Λf/t/Π V>UIUΓi F«E7F/FΦ1. Moreover JV/F^SL(2, 5) and
C7/E7Π F^E/F/F^Z2. By Satz 25.7 of [9] Chapter V, 2| |ΛΓ/Λ/Ί , a contradic-
tion. Hence (i) does not occur. Similarly (ii) does not occur.

Lemma 5.10. Eet 1=^ °\ Then -

Proof. By Lemmas 5.7-5.9, there is an element g=—(E C)eX Then
p=- ^OE/

Lemma 5.11. Set Ω'= {Δx\x<=P}, where Δ=F(Q)ΓiΓ. Then Ω' is a
partition of Γ.

Proof. Assume Δ'ΠΔ^Φφ for some x, y&P. Set z=yx~l and let
Δ Π Δ*. Then the stabilizer (PQ)B^<Q, Oz>^g. By Lemma 5.5, Q=QZ and
hence ^eP0 and x==y (mod P0), where P0=CP(Q). Therefore Δ*= Δy. As P
is abelian, P/P0 acts regularly on Ω' and Ω' is a partition of U Δ'. By Remark

Δ'eEΩ

4.8, Pjg is a Frobenius group of order ^(ί+l). Thus lΩ'I^IPJ-?2.
Therefore Ω' is a partition of Γ as | Δ | — (f.

Lemma 5.12. Set H=NPQ, W=r"\E)Γ\H and W^s-^ΓίH. Then

Proof. Since W£r~l(SL(29f))nH=NP, W^NP. Similarly W^
By Lemma 5.8, W and Wλ are solvable. On the other hand, s(W)<]s(NP)=
s(N)^SL(2,q) by Lemma 5.7. Therefore s(W)^— £>. Applying Lemma
5.9, s(W)=E. This implies W^P. Clearly P^ W and so PF=P. Similarly
Wλ=P.

Lemma 5.13. Let Z be the center of r(H). Then Z^Zq+l) ZΓ(r(Q)=l
and r(H)IZ^PGL(2, q).

Proof. By Lemma 5.7, r(N)=SL(2yq). Hence r(H)ZIZ^PSL(2,q) or
PGL(2, q) by Dickson's Theorem. Clearly r(H)=r(NQ)=r(N) r(Q\ r(Q)^Zq+l

and r(N) Π r(Q)= 1 . Hence Z=r(H) Π {kE \ktΞF*} ^Zq+1 or Z2(f +1). Since r(β)
Γ\Z—l, r(H) contains a cyclic subgroup of order q-\-l. Thus Z^Zq+ί and
=PGL(2>3).

Lemma 5.14. Let x<=H. If C< | F(Q) Π ̂ (g1) Π Γ | < | Δ | . Then r(Q)
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Z=r(Q")Z.

Proof. Assume r(Q)Z*r(Qx)Z. Then r(ρ*)Z/ZΦr(ρ)Z/ZβZf+1. Hence
<r(Q), r(Qx)>Z/Z=r(<Q, Qx>) Z/Z^PGL(2J q) by Dickson's Theorem. In
particular^] | <£), Q*> \ However, this contradicts Lemma 5.5.

Lemma 5.15. Let x^H. //ΔΠΔ'φφ, then Δ=Δ*.

Proof. Suppose false. Then it follows from Lemma 5.14 that r(Q) Z= r
(Qx) Z. Let A be a natural homomorphism from H to H/W. Then h(Q) h(Z)=
h(Qx)h(Z) and so (<J>P/P)x(<-I>P/P)=(<Jx>P/P)x(<-I>P/P) by

Lemma 5.12. HeτeJ=(O~J')eQ with/W0 ""1Y From this </, -/>J \jr ol V i o/
P=<JX,-I>P. Therefore /*=/ or -/for some ίeP. AsΔ*=ΓnP(ρ*)
=Γ Π F/(/*) and Γ Π *U*)=Γ Π ̂ (-/), we have Δ*=(Γ Π F(J))'=Δ'. There-
fore ΔΠ Δ*φφ implies Δ=ΔX by Lemma 5.11.

Lemma 5.16. H^ is a transitive permutation group with a regular normal
subgroup PΩ/. Moreover the global stabilizer M of Δ in H involves PSL (2, q).

Proof. The first part follows immediately from Lemmas 5.11 and 5.15.
In Particular H=MP. Since N^H and N involves PSL(2y q), M also involves

PSLfrq).

We now prove the following theorem.

Theorem 5.17. Let π^TI(F) and assume ρ>2. Then C(π) is solvable.

Proof. Suppose false. Then L is nonsolvable. Let R be the pointwise
stabilizer of Δ in H. Then Mt>R. As r(H)=r(MP)=r(M)t>r(R\ we have
r(M)/Z^PGL(2y q)>r(R) Z/Z^r(Q) Z/Zer(0)eZf+1 by Lemma 5.13. There-
fore r(R) Z/Z^PGL(2, q). In particular p\\R\, contrary to Lemma 5.5. Thus
C(π) is solvable.

6. The linear translation complements when p>2

In this section we determine the structure of LC(π) with π^ΐl(F) and p>
2. Let/eΩ(F) and set Σ=Σ/, π=πf and L=LC(π). Set Mf(a, b, c, d, e)=
,a 0 ac ad \ / 0 1 0 0 x / — 1 0 0 0 v

(u)uooo ,ndh(u) forz/eFI Here
0 0 a e O Γ 5 V / l O O O l l v ; I 0 0 0 ^

0 0
«α is an element of F* of order 2(^+1). The matrix h(u) does exist if p>2.

As we have seen in the proof of Lemma 2.2, we have
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Lemma 6.1. L^L0= {Mf(a, b, c, 0, cΓlV) \a, b<=F*, (α/δ)ί+1=l, c(=F}.

Lemma 6.2. Assume q>3 and let r and s be the homomarphisms defined in

§5.

Proof. By Theorem 5.17 and Lemma 5.1, L

C<ΞM(2y<?)} and r(L) and s(L) are solvable. Since r(L)^r(Q)=<( 1

\0 e/
Zq+1, r(L)^M or 0+1^4 by Dickson's Theorem. Similarly s(L)<*M. Thus
the lemma holds.

Let A(F) be the set of all/eSym(^) such that /(#)=*/£, where u^F—K
and H -̂  — 1. Then it is not difficult to verify that A(F)C.Ω(F) and πf is a
semifield plane for any/eΛ(F).

Proposition 6.3. Assume q>3. Iff^Λ.(F) and f(x)=uX for some u with
uq~1= — l9 then L=<g(u\ h(u)>H and H=<Mf(a, by cy d, e)\a, b, e(ΞF*> c,
F, (b/aγ+1=l>. In particular \L\ =4q* (q-l)2 (q+l)3 and L\>H.

Proof. S*g=g(u\h=h(u)wάLl=<g,h,H>. Since

(«> *> c> d>\ud V \ab~leuy

= 1. Hence H^L. Furthermore f° ^"Y Λ ^W° !>\=f * ^}^Σf and so
" Vw O/ VM^ */ Vw O/ Viiy Λ?/ 7

we have 5eL. Similarly f"1 ° V * JV° "
6 J V 0 «ΓV VMJ */ \u O/

ThusL^L.

/ϋ £«\

Conversely, let z eL. By Lemmas 6.1 and 6.2, OT'=ί J, where C=

(c d] and D=(e °] for suitable v'ζΞ<gίh,LQ>. Then C+fΛ

\ί j / VO ί/ \uy

ίc+ex d+sy\^ for Λ yejp. Therefore ί= , e=ί, i=ud and 5M= .̂
\i+euy j+sx/ J J J

Hence OT'= Af/1, 1, c, d, e) ̂ H. Thus L= <g, h>H. Clearly L>fί and L/H
^Z2XZ2. Therefore |L|=4|//|=4(ί

2-l)2(?+l)?

4-4ί

4(?-l)2(ϊ+l)3 and the
lemma holds.

Proposition 6.4. Assume q>3. If f^Ω(F)—A(F), then any element g
in L is expressed in one of the following form :

(i) g=Mf(a, by c, dy e), where a, bye^F* and c, d^F satisfying /(d+a'1 bey)
=f(d)+ab~1ef(y) for anyy^F.

(ii) S=\L r) Mf(a, b, cy d, e)9 where a, b, e&F* and c, d^F satisfying
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f(d+aΓlbej(y))=f(d)+ab-ley for any y<=F.

Proof. By Lemmas 5.1 and 6.2, g=(A AC\ where A=Jm(a °), C=
\C/ siL)' \U to'

( c d e -ίO} with α,i, <r,i,*, *eF and
f(d)cJ \f(t)

Assume m=0. Then g<ΞL if and only if Y=C+A~1MAD^'Σ for any
/ x v\ (a! h'\

. SetM= J . By calculation Y=( , where a'=c
\ f ( v } x/ V d'J

», c'=f(d)+ab-1 ef(y)+f(t)x and d'=ϊ

Hence a-1bf(t)y=ab-1ΐf(y) (*) and /(d+tx+a'1 bey)=f(d)+(d)-ίef(y)+f(t)x.
Suppose ίΦO. In view of the equation (*) we have/(j;)=ιry, where u=(b/a)q+1

(f(ΐ))q/t. Moreover, wφ.K by Proposition 2.1. Hence tf1"«=(i/Λ)«+1e{±l>
and so uq~1= — l. This implies /eΛ(jF), a contradiction. Thus ί=0 and (i)

WS . / α ' A ' NAssume m=ί. By a similar argument as above Y=( )^Σ, where
\c' d /

y b'=d+q-1 bef(y)+tx, c'=f(d)+f(ί)x+ab-1 ey and d'

=c+ex+ab~1 ty for any x,y&F. From this, a'1bf(t)f(y)=ab'lty (**) and /
(d+a-1bef(y)+tx)=f(d)+f(t) x+ab^ey. If ί ΦO, then/(;y)=:ίθ> by (**), where
u=(a/bγ+\tqlf(ΐ))==(alb)q+Llu. Hence u2=(alb)«+l and so '̂̂ ±{1}. By
Proposition 2.1, tfφ-K and therefore wff"1= — 1, which implies /eΛ(F). This is
a contradiction. Thus ί=0 and (ii) follows.

REMARK 6.5. As we have shown in Lemma 6.1, many collineations of the
form (i) actually exist. However, collineations of the form (ii) do not neces-
sarily exist and the existence depends on the property of the f unction /eΩ(-F).

7. Derivations

In this section we show that any plane in the class T1(F) is derivable. The
content of this section was suggested by V. Jha and N.L. Johnson [11].

We consider an arbitrary fixed element/ of Ω(F). Set Σ=Σ/ and π=πf.

We denote the elements of Σ by M(x, y)=( X y) for all x9 y^F. Let S con-
\f(y) */

sist of the following 2-dimensional F-subspaces of V(=F4).:

Then, 5 is the spread of V concerned with Σ. Set 1?= {V*,, V0tQ \ a

Lemma 7.1. Let g be an element of LC(π) which leaves the set R invariant.
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Proof. By Lemma 5.1, g=(A ΛC\ for some AtΞGL(2, (?) and C,
\\J ΆD'

Since A-l(AC+MAD)tΞ2Q= {(h ®] | h^F} for each ΛfeΣ0, we have C=(c

\0 A/ VO
and D=( _ ) for some c^F and rfeF*. Hence A~1MA^^ for any

\0 α/
There exists ye {0, 1} such that ]jA=(a s}tΞGL(2, <?) and αφO. Since

v 0/

" 'ft °) (* ')=_l_(^-« *!<*-*>W for any
\ί ft/ \0 «/ V f ft/ ab—st\at(X—x) abx—tsx/

F. From this αί=ftί=0. Hence ί=ί=0 and the lemma follows.

Theorem 7.2. R is a derivable partial spread of S. The kernel of the
derived plane π' of π zΰith respect to R is isomorphic to K.

Proof. Put W00=QxFx^xF and Wa={(x,Xa,y, ya)\x,y(=F} for
It is easy to see that R'={Wa\a&F\J {oo}} is the derived partial spread of R.

Since the group of kern homologies of π contains {&ί JI&EΞ.K?}, the kernel

K' of π' is isomorphic to GF(q), GF(f) or GF(f). °
Assume K'^GF((f). Then π is a Hall plane of order q* (cf. [13] Chapter

13). But, we obtain a contradiction by Lemma 5.1.
Assume Kr^GF((f) and let K0=(wy be the group of the kern homologies

of r'. Then|^ol =<f— 1 and KQ^C(π) by Theorem 10.6 of [8]. Set q=p* and
g=w2n. Since C(π)^ΓL(4, F) by Theorem 1.10 of [13], g(=LC(π) and there-
fore g can be expressed in the form described in Lemma 7.1. Let a,gy c, d and
i be as in the lemma.

If ί=l, then (W00)g=WQy a contradiction. If ί=0, then Wk=(Wk)g=
Wh l=ka~qb for all ktΞF. Thus ft-α9. Moreover, as C+A~lM(s, t) AD=

^tdq)y VStt=(V,tt}g=Vc+sdta,-w for all 3<ΞF and

. Thus c-0, J=l and α9"1—!. Therefore ^-=α (£ °] with αeK*. It
\O Έ'

follows that |^| ̂ /-l. On the ther hand \g\ ̂ (p2n-\)βn. Hence 2n^
1^2Λ+1, a contradiction. Therefore K'=GF(q).
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