AN UPPER BOUND FOR LOEWY LENGTHS OF PROJECTIVE MODULES IN P-SOLVABLE GROUPS

Wolfgang WILLEMS

(Received October 8, 1985)

1. Introduction. Let p be a prime, F a field of characteristic p and let G be a finite group. With every $F G$-module M there is attached a nonnegative integer $L(M)$ called the Loewy length of M. If $J(F G)$ denotes the Jacobson radical of $F G$, then $L(M)$ is the smallest integer n such that $M J(F G)^{n}$ is the zero module. The Loewy length of a module is of some interest since knowledge of it's value or at least of good bounds for it can be very useful determinating of the structure of the module.

In a significant paper [5], Jennings solved the structure problem for the group algebra of a p-group. Unfortunately, little is known about the algebra structure of an arbitrary group algebra, resp. of a p-block. However, in case of p-solvable groups, there are many papers concerning bounds for the Loewy length of a group algebra, resp. of a p-block ([6], [7], [8], [12], [14], [15], [16], [17]).

Recently Ninomiya found a lower bound for the Loewy length of a projective indecomposable module depending on the order of a vertex of it's head ([13]). The aim of this note is to determine an upper bound.

Throughout this paper all groups in questions are finite and p-solvable all modules finitely generated $F G$-modules where F denotes a field of characteristic p. The notation used in the following is consistent with that in the books of Feit [2] and Huppert/Blackburn [4].

2. Results

Theorem 1. If P is a projective indecomposable module, then $L(P) \leqslant \max \{|V| \mid V$ is a vertex of a composition factor of $P\}$.

Theorem 2. Equality holds in Theorem 1 if and only if the defect group of the block to which P belongs is cyclic.

Corollary (Koshitani, Okuyama, Tsushima). Let B be a p-block with defect group D. Then $L(B) \leqslant|D|$ and equality holds if and only if D is cyclic.

According to all the examples we know, it seems reasonable to ask the

Question. Let M be an irreducible module with vertex V. Is it true that $L\left(P_{G}(M)\right) \leqslant|V|$ where $P_{G}(M)$ denotes the projective cover of M ?

To see that the problem considered here differs from the analogue for p-blocks and defect groups, let us mention the following remarkable example ([10], [11]).

Let p be the prime 3 and let G denote the semidirect product of $S L(2,3)$ with the standard module. Then G possesses an irreducible module M with

$$
L\left(P_{G}(M)\right)=|v x(M)|
$$

where the vertex $v x(M)$ of M is elementary abelian of order 9 .

3. Proofs

In what follows we may always assume that \boldsymbol{F} is algebraically closed. The reduction to such a field is routine since the radical of a group algebra, vertices and defect groups are well behaved by field extensions.

Proof of Theorem 1.
We argue by induction on $\left(|G|_{p},|G|\right)$ where $|G|_{p}$ denotes the p-part of the order $|G|$ of G.

Write $P=P_{G}(M)$ for some irreducible module M.
(1) First assume that $O_{p}(G) \neq\langle 1\rangle$.

Let E be a normal abelian p-subgroup of G. Put $J=J(F E)$ and let G act by conjugation on the powers J^{i} of J. By a result of Alperin, Collins and Sibley [1], we have with $\bar{G}=G / E$ an $F G$-isomorphism

$$
P_{\bar{G}}(M) \otimes J^{i} / J^{i+1} \cong P_{G}(M) J^{i} / P_{G}(M) J^{i+1}
$$

Since $E \subseteq C_{G}\left(J^{i} / J^{i+1}\right)$, the left hand side is an $F \bar{G}$-module, hence a projective $F \bar{G}$-module. As $F G$-modules, all composition factors of

$$
X:=P_{\bar{G}}(M) \otimes J^{i} / J^{i+1}
$$

are composition factors of $P_{G}(M)$.
Hence by the inductive hypothesis we get

$$
\begin{aligned}
L(X) & \leqslant \max \{|V| \mid V \text { is a vertex of a composition factor of } X\} \\
& \leqslant \max \left\{|\bar{V}| \mid V \text { is a vertex of a composition factor of } P_{G}(M)\right\}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
L\left(P_{G}(M)\right) & \leqslant \max \left\{\mid \bar{V} \| V \text { is a vertex of a composition factor of } P_{G}(M)\right\} \cdot L(F E) \\
& \leqslant \max \left\{|\bar{V}| \mid V \text { is a vertex of a composition factor of } P_{G}(M)\right\} \cdot|E| \\
& =\max \left\{|V| \mid V \text { is a vertex of a composition factor of } P_{G}(M)\right\} .
\end{aligned}
$$

Thus it remains to deal with the case

$$
H:=O_{p^{\prime}}(G) \neq\langle 1\rangle .
$$

Let N be an irreducible constituent of M_{H} and let I denote the inertial group of N in G, i.e.

$$
I=I_{G}(N)=\{g \mid g \in G, N \otimes g \cong N\}
$$

(2) Next we consider the case $I<G$.

By Clifford's theory, there exists an irreducible FI-module X such that $M \cong X^{G}$ and $X_{H} \cong e N$ for some $e \in N$. According to Proposition 2.7 in [18] we have

$$
P_{G}(M) \cong P_{I}(X)^{G} .
$$

We claim that for all composition factors Y of $P_{I}(X)$ the induced modules Y^{G} are irreducible. Since $v x(Y)=\overline{\bar{G}} v x\left(Y^{G}\right)$ we are done by the inductive hypothesis. Thus assume that Y is a composition factor of $P_{I}(X)$ and Z an irreducible submodule of Y^{G}. Obviously, $Y_{H} \cong f N$ for some $f \in N$.

If $\left\{g_{1}=1, g_{2}, \cdots, g_{r}\right\}$ denotes a right transversal of I in G, then

$$
Z_{H} \subseteq\left(Y^{G}\right)_{H}=Y_{H} \otimes g_{1} \oplus \cdots \oplus Y_{H} \otimes g_{r}
$$

where the $Y_{H} \otimes g_{i}$ are precisely the homogeneous components of $\left(Y^{G}\right)_{H}$.
Now choose a homogeneous component of Z_{H}, say W. We may assume that $W \subseteq Y_{H} \otimes g_{1}$, otherwise we consider a suitable G-conjugate of W. Since I acts irreducibly on Y, we get $W_{H}=Y_{H} \otimes g_{1}$ and therefore $Z=Y^{G}$.
(3) Finally, let $I=G$.

Now, Fong's reduction theorem ([2], Chap. X) asserts that there exists a finite group \mathcal{G} and a short exact sequence

$$
\langle 1\rangle \rightarrow Z \rightarrow \tilde{G} \rightarrow G \stackrel{f}{\rightarrow}\langle 1\rangle
$$

with Z a cyclic p^{\prime}-group in the center of \boldsymbol{G}.
Furthermore,
(i) \tilde{G} contains a normal subgroup $\tilde{H} \cong H$ with $Z \tilde{H}=Z \times \tilde{H}=f^{-1}(H)$.
(ii) There is an $F \mathcal{G}$-module \widetilde{N} on which \tilde{H} acts irreducibly and an $F \tilde{G}$-module \tilde{M} with $\tilde{H} \subseteq \operatorname{ker}(\tilde{M})$ such that M considered as an $F \mathscr{G}$-module is isomorphic to $\tilde{M} \otimes \tilde{N}$.
(iii) $\quad P_{\widetilde{G}}(M) \cong P_{\widetilde{G}}(\tilde{M}) \otimes \tilde{N}$.

Since $\tilde{H} \subseteq O_{p^{\prime}}(\operatorname{Ker}(\tilde{M}))$, we have $\tilde{H} \subseteq \operatorname{Ker}(\tilde{Y})$ for all composition factors \tilde{Y} of $P_{\tilde{G}}(\tilde{M})$ (see [18], 3.1). Thus by ([4], Chap. VII, 9.12), the tensor product $\tilde{Y} \otimes \tilde{N}$ is irreducible. Because of ([4], Chap. VII, 14.1 and 14.2), there are isomorphisms

$$
P_{\tilde{\sigma}}(M) \cong P_{\tilde{\sigma} / z}(M) \cong P_{G}(M) \text { and } P_{\tilde{G}(\tilde{M}) \cong P_{\tilde{\sigma_{/}}(\tilde{\tilde{H}}}(\tilde{M}) .} .
$$

In particular, each composition factor Y of $P_{G}(M)$ is of the form $Y \cong \tilde{Y} \otimes N$ for some composition factor \tilde{Y} of $P_{\tilde{G}}(\widetilde{M})$. Since $\operatorname{dim} N$ is prime to p, we get $|v x(Y)|=|v x(\tilde{Y})|$, by ([3], 2.1). Now, $\left.|\tilde{G}| \tilde{H}\right|_{p}=|G|_{p}$ and $O_{p}(\tilde{G} \mid \tilde{H}) \neq\langle 1\rangle$. Apply part (1) of the proof to $P_{\tilde{\sigma} / \tilde{\tilde{H}}}(\tilde{M}) \cong P_{\tilde{\sigma}(\tilde{M})}$ and the proof is complete.

Proof of Theorem 2.
Assume first that the defect group D of the p-block B to which P belongs is cyclic. In this case it's well-known that

$$
B \cong \operatorname{Mat}(n, F U)
$$

where $D \preccurlyeq U \leqslant$ holomorph (D) and U / D is a cyclic p^{\prime}-group. From this we deduce quite easily that all the projective indecomposable modules in B are uniserial of length $|D|$. Since D is a vertex for all irreducible modules in B, the assertion follows.

For the other direction \ln Theorem 2 assume that $P=P_{G}(M)$ for some irreducible module M and

$$
\begin{aligned}
L\left(P_{G}(M)\right) & =\max \left\{|V| \mid V \text { is a vertex of a composition factor of } P_{G}(M)\right\} \\
& =\left|V_{0}\right|
\end{aligned}
$$

We claim by induction on $\left(|G|_{p},|G|\right)$ that V_{0} must be cyclic. Then it's well-known that V_{0} coincides up to G-conjugation with the defect group D. To do this assume first that $O_{p^{\prime}}(G)$ is contained in the center $Z(G)$ of G. In this case

$$
O_{p^{\prime}, p}(G)=O_{p^{\prime}}(G) \times O_{p}(G)
$$

and $G / O_{p^{\prime}, p}(G)$ acts faithfully on $O_{p}(G)$. Let E be an abelian normal p-subgroup of \boldsymbol{G} and put $\overline{\boldsymbol{G}}=\boldsymbol{G} / \boldsymbol{E}$.

Similiar to part (1) of the proof of Theorem 1 we get

$$
L\left(P_{\bar{G}}(M)\right)=\left|\bar{V}_{0}\right| \text { and } E \text { has to be cyclic. }
$$

By the inductive hypothesis, \bar{V}_{0} is cyclic. Now, if G has at least two minimal normal p-subgroups, then V_{0} is abelian.

In particular, $O_{p}(G)$ is abelian and therefore cyclic. Since $G / O_{p^{\prime}, p}(G)$ acts faithfully on $\left.O_{p} G\right), O_{p}(G)$ is a Sylow p-subgroup of G. Hence G has only one minimal normal p-subgroup E. This implies that E is contained in the center of $O_{p}(G)$. Since $O_{p}(G) / E$ is cyclic, $O_{p}(G)$ must be abelian, hence cyclic and therefore a Sylow p-subgroup of G. The proof can now be finished by the same line as we did in (2) and (3) of the proof of Theorem 1.

References

[1] J.L. Alperin, M. Collins and D. Sibley: Projective modules, filtrations and Clifford theory, Bull. London Math. Soc. 16 (1984), 416-420.
[2] W. Feit: The representation theory of finite groups, North-Holland, Amsterdam/Oxford/New York, 1982.
[3] W. Hamernik and G. Michler: On vertices of simple modules in p-solvable groups, Mitteilungen Math. Sem. Giessen 121 (1976), 147-162.
[4] B. Huppert and N. Blackburn: Finite groups II, Springer-Verlag, Berlin/ Heidelberg/New York, 1982.
[5] S.A. Jennings: The structure of a group ring of a p-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175-185.
[6] S. Koshitani: On the nilpotency indices of the radicals of group algebras of p solvable groups, Proc. Japan Acad. 53A (1977), 13-16.
[7] S. Koshitani: A remark on the nilpotency index of the radical of a group algebra of a p-solvable group, Proc. Edinburgh Math. Soc. 25 (1982), 31-34.
[8] S. Koshitani: On lower bounds for the radical of a block ideal in a finite p-solvable group, Proc. Edinburgh Math. Soc. 27 (1984), 65-71.
[9] S. Koshitani: On the Jacobson radical of a block ideal in a finite p-solvable group for $p \geqslant 5$, J. Algebra 80 (1983), 134-144.
[10] S. Koshitani: On the Loewy series of the group algebra of a finite p-solvable group with p-length >1, Preprint.
[11] M. Lorenz: On Loewy lengths of projective modules for p-solvable groups, Comm. Algebra 13 (1985), 1193-1212.
[12] K. Motose: On a theorem of Tsushima, Math. J. Okayama Univ. 25 (1984), 11-12.
[13] Y. Ninomiya: On a theorem of Koshitani, Math. J. Okayama Univ. 26 (1984), 19-22.
[14] Y. Tsushima: Radicals of group algebras, Osaka J. Math. 4 (1967), 179-182.
[15] Y. Tsushima: Some notes on the radical of a finite group ring, Osaka J. Math. 15 (1978), 647-653.
[16] Y. Tsushima: Some notes on the radical of a finite group ring II, Osaka J. Math. 16 (1979), 35-38.
[17] D.A.R. Wallace: Lower bounds for the radical of the group algebra of a finite p-soluble group, Proc. Edinburgh Math. Soc. 16 (1968/69), 127-134.
[18] W. Willems: On the projectives of a group algebra, Math. Z. 171 (1980), 163170.

Johannes Gutenberg-Universität
Fachbereich 17 Mathematik
Postfach 39806500 Mainz
F.R.G.

