ASYMPTOTIC PROPERTY OF AN EIGENFUNCTION OF THE LAPLACIAN UNDER SINGULAR VARIATION OF DOMAINS — THE NEUMANN CONDITION —

SHIN OZAWA

(Received April 6, 1984)

1. Introduction

We consider a bounded domain Ω in \mathbb{R}^2 with smooth boundary γ . Let B_{ε} be the ε -disk whose center is $\widetilde{w} \in \Omega$. We put $\Omega_{\varepsilon} = \Omega \setminus \overline{B}_{\varepsilon}$. We consider the following eigenvalue problems (1.1) and (1.2):

(1.1)
$$-\Delta_{x}u(x) = \lambda(\varepsilon)u(x), \qquad x \in \Omega_{\varepsilon},$$

$$u(x) = 0, \qquad x \in \gamma,$$

$$\frac{\partial u}{\partial x}(x) = 0, \qquad x \in \partial B_{\varepsilon},$$

where $\partial/\partial\nu$ denotes the derivative along the inner normal vector at x with respect to the domain Ω_s .

(1.2)
$$-\Delta_x u(x) = \lambda u(x), \quad x \in \Omega,$$
$$u(x) = 0, \quad x \in \gamma.$$

Let $0 < \mu_1(\mathcal{E}) \le \mu_2(\mathcal{E}) \le \cdots$ be the eigenvalues of (1.1). Let $0 < \mu_1 \le \mu_2 \le \cdots$ be the eigenvalues of (1.2). We arrange them repeatedly according to their multiplicities. Denote by $\{\varphi_j(\mathcal{E})\}_{j=1}^{\infty}$ ($\{\varphi_j\}_{j=1}^{\infty}$, respectively) a complete orthonomal basis of $L^2(\Omega_{\epsilon})$ ($L^2(\Omega)$, respectively) consisting of eigenfunction of $-\Delta$ associated with $\{\mu_j(\mathcal{E})\}_{j=1}^{\infty}$ ($\{\varphi_j\}_{j=1}^{\infty}$, respectively).

In this note we consider the following problem: Problem. What can one say about asymptotic behaviour of $\varphi_j(\mathcal{E})$ as \mathcal{E} tends to zero?

It is well known that $\mu_j(\varepsilon)$ tends to μ_j as ε tends to zero. See Rauch-Taylor [8], Ozawa [5]. As a consequence, $\mu_j(\varepsilon)$ is simple for small $\varepsilon > 0$, if we assume that μ_j is simple. Thus $\varphi_j(\varepsilon)$ is uniquely determined up to the arbitratiness of multiplication by +1 or -1.

We have the following Theorem 1. Theorem 2 is our main result.

640 S. Ozawa

Theorem 1. Fix j. Assume that μ_j is simple. Then, the following statements (i) and (ii) hold.

(i) We can choose $\varphi_i(\varepsilon)$ for $\varepsilon > 0$ so that

$$\lim_{\varepsilon \to 0} \int_{\Omega_{\varepsilon}} (\varphi_{j}(\varepsilon))(x) \varphi_{j}(x) dx = 1.$$

(ii) If we choose $\varphi_i(\mathcal{E})$ as in (i), then

We introduce the polar coordinate $z-\tilde{w}=(r\cos\theta, r\sin\theta)$ to state the following

Theorem 2. Fix j. Assume that μ_j is a simple eigenvalue. If $\varphi_j(\varepsilon)$ is chosen as in Theorem 1, then

(1.4)
$$\left(\frac{\partial}{\partial \theta} (\varphi_{j}(\varepsilon)) \right) (\varepsilon \cos \theta, \varepsilon \sin \theta)$$

$$= 2 \frac{\partial}{\partial r} \left(\varphi_{j} \left(r \cos \left(\theta + \frac{\pi}{2} \right), r \sin \left(\theta + \frac{\pi}{2} \right) \right) \right) \Big|_{r=0} + 0 (\varepsilon^{(1/2)-s})$$

for an arbitrary s>0.

REMARK. 1) Proofs of Theorems 1 and 2 are given in the section 2.

- 2) The remainder estimates in (1.3) and (1.4) are not uniform with respect to j.
- 3) Theorems 1 and 2 prove the conjecture stated in the previous work [5] of the author.
- 4) The celebrated Hadamard variational formula (See Garabedian-Schiffer [4]) says that

(1.5)
$$\frac{\partial}{\partial \varepsilon} \mu_j(\varepsilon) = -\int_{\partial B_{\varepsilon}} (|\operatorname{grad}_z \varphi_j(\varepsilon)(z)|^2 - \mu_j(\varepsilon)(\varphi_j(\varepsilon))(z)^2) d\sigma_z^{\varepsilon},$$

holds when μ_j is simple, where $d\sigma_z^2$ denotes the line element on ∂B_z . If we apply Theorems 1 and 2 to (1.5), then

$$\frac{\partial}{\partial \varepsilon} \mu_j(\varepsilon) = 0(\varepsilon)$$
.

Hence $\mu_j(\mathcal{E}) - \mu_j = 0(\mathcal{E}^2)$. Using (1.5) once more, we can prove that

$$(1.6) \qquad \mu_j(\mathcal{E}) - \mu_j = -(2\pi |\operatorname{grad} \varphi_j(\tilde{w})^2 - \pi \mu_j \varphi_j(\tilde{w})^2) \mathcal{E}^2 + 0(\mathcal{E}^{(5/2)-s}),$$

while we have already obtained in [5] much stronger result

$$\mu_{\boldsymbol{j}}(\boldsymbol{\varepsilon}) - \mu_{\boldsymbol{j}} = -(2\pi \, |\operatorname{grad} \varphi_{\boldsymbol{j}}(\widetilde{\boldsymbol{w}})|^2 - \pi \mu_{\boldsymbol{j}} \varphi_{\boldsymbol{j}}(\widetilde{\boldsymbol{w}})^2) \boldsymbol{\varepsilon}^2 + 0(\boldsymbol{\varepsilon}^3 |\log \boldsymbol{\varepsilon}|^2) \; .$$

However, discussion in [5] was very complicated. Present proof via Hadamard's variational formula (1.5) is much simpler.

See Ozawa [6], [7], Figari-Orlandi-Teta [2] for other recent developments on the asymptotic behaviour of the eigenvalues of the Laplacian under singular variation of domains.

A part of this work was done while I stayed at Courant Institute of Mathematical Sciences. I here express my sincere thanks to C.I.M.S., Professor G. Papanicolaou and Ms. Vogelsang for their hospitality.

2. Sketch of the proof

Let G(x, y) be the Green function of the Laplacian in Ω under the Dirichlet condition on γ . Let $G_{\mathfrak{e}}(x, y)$ be the Green function of the Laplacian in $\Omega_{\mathfrak{e}}$ satisfying

$$\begin{split} -\Delta_x G_{\mathbf{e}}(x,y) &= \delta(x-y) \,, \qquad x,y \in \Omega_{\mathbf{e}} \\ G_{\mathbf{e}}(x,y)_{|x \in \mathbf{Y}} &= 0 \,, \qquad \qquad y \in \Omega_{\mathbf{e}} \\ \frac{\partial}{\partial \nu_x} G_{\mathbf{e}}(x,y)_{|x \in \mathbf{\partial} B_{\mathbf{e}}} &= 0 \,, \qquad \qquad y \in \Omega_{\mathbf{e}} \,. \end{split}$$

Let $G(G_{\epsilon}$, respectively) be the bounded linear operator on $L^{2}(\Omega)$ ($L^{2}(\Omega_{\epsilon})$, respectively) defined by

$$(Gf)(x) = \int_{\Omega} G(x, y) f(y) dy,$$

 $(G_{\varepsilon}g)(x) = \int_{\Omega_{\varepsilon}} G_{\varepsilon}(x, y) g(y) dy,$

respectively. Then, (1.1) and (1.2) are transformed into the problems

$$(G_{\varepsilon}u)(x) = \lambda(\varepsilon)^{-1}u(x)$$
$$(Gv)(x) = \lambda^{-1}v(x).$$

We want to compare G_{ϵ} and G. It should be remarked that the Green operators G_{ϵ} and G act on different spaces $L^2(\Omega_{\epsilon})$ and $L^2(\Omega)$. One of technical difficulties arises from here.

In order to relate G_{ϵ} with G, we introduce the operators R_{ϵ} and \tilde{R}_{ϵ} . To describe integral kernel of R_{ϵ} and \tilde{R}_{ϵ} , we put

$$\langle \nabla_w a(x, w), \nabla_w b(w, y) \rangle = \sum_{i=1}^2 \frac{\partial}{\partial w_i} a(x, w) \frac{\partial}{\partial w_i} b(w, y)$$

for any $a, b \in C^1(\Omega \times \Omega \setminus (\Omega \times \Omega)_d)$, where $(\Omega \times \Omega)_d$ denotes the diagonal set of $\Omega \times \Omega$. Then, $\langle \nabla_w, \nabla_w \rangle$ is invariant under any orthogonal transformation of an orthonomal coordinates (w_1, w_2) . We define

$$r_{\varepsilon}(x, y; w) = G(x, y) + 2\pi \varepsilon^2 \langle \nabla_w G(x, w), \nabla_w G(w, y) \rangle$$

and

$$r_{\mathfrak{g}}(x, y) = r_{\mathfrak{g}}(x, y; \widetilde{w}).$$

Also we set

$$\widetilde{r}_{\mathbf{e}}(x, y) = G(x, y) + 2\pi \varepsilon^2 \langle \nabla_w G(x, w), \nabla_w G(w, y) \rangle_{|w=\widetilde{w}} \xi_{\mathbf{e}}(x) \xi_{\mathbf{e}}(y),$$

where $\xi_{\epsilon} \in C^{\infty}(\mathbb{R}^2)$ satisfies $0 \le \xi_{\epsilon}(x) \le 1$, $\xi_{\epsilon}(x) = 1$ for $x \in \mathbb{R}^2 \setminus \overline{B}_{\epsilon}$ and $\xi_{\epsilon}(x) = 0$ for $x \in B_{\epsilon/2}$.

The operators $R_{\mathfrak{e}}$ and $\tilde{R}_{\mathfrak{e}}$ are defined by

$$(\mathbf{R}_{\mathbf{e}}g)(x) = \int_{\Omega_{\mathbf{e}}} r_{\mathbf{e}}(x, y)g(y)dy, \quad x \in \Omega_{\mathbf{e}},$$

$$(\tilde{\mathbf{R}}_{\mathbf{e}}f)(x) = \int_{\Omega} \tilde{r}_{\mathbf{e}}(x, y)f(y)dy, \quad x \in \Omega,$$

respectively. Roughly speaking, \mathbf{R}_{e} is a very good approximation of \mathbf{G}_{e} . By definition it is not difficult to compare \mathbf{R}_{e} with $\tilde{\mathbf{R}}_{e}$. Since $\tilde{\mathbf{R}}_{e}$ acts on $L^{2}(\Omega)$ and not on $L^{2}(\Omega_{e})$, we can easily compare $\tilde{\mathbf{R}}_{e}$ with \mathbf{G} . As a consequence we can compare \mathbf{G}_{e} with \mathbf{G} .

Proof of Theorems 1, 2 are divided into several steps.

First we show

$$|||\boldsymbol{G}_{\boldsymbol{\varepsilon}} - \boldsymbol{R}_{\boldsymbol{\varepsilon}}|||_{L^2(\Omega_{\boldsymbol{\varepsilon}})} = 0(\mathcal{E}^{2-s})$$

for any fixed s>0 as ε tends to zero. Here $||| |||_{L^p(\Omega_{\varepsilon})}$ denotes the operator norm on $L^p(\Omega_{\varepsilon})$. This will be done in the section 4.

Second we consider \tilde{R}_{ϵ} as a perturbation of G. We construct an approximate eigenfunction $\psi^*(\mathcal{E})$ and an approximate eigenvalue $\lambda^*(\mathcal{E})$ of \tilde{R}_{ϵ} . Here $\lambda^*(\mathcal{E})$, $\psi^*(\mathcal{E})$ are explicitly constructed by usual perturbation method so that they satisfy

$$||(\tilde{R}_{\epsilon}-\lambda^*(\varepsilon))\psi^*(\varepsilon)||_{L^2\Omega}=0(\varepsilon^4|\log\varepsilon|^2)$$

and

$$||\psi^*(\varepsilon)||_{L^2(\Omega)} = 1 + 0(\varepsilon^2 |\log \varepsilon|)$$
 .

Since $\lambda^*(\mathcal{E})$ and $\psi^*(\mathcal{E})$ are constructed by perturbation theory, $\lambda^*(\mathcal{E})$ is close to μ_i and $\psi^*(\mathcal{E})$ is close to φ_i .

A key step is to examine the following decomposition of $\varphi_j(\mathcal{E})$.

$$arphi_j(arepsilon) = \sum\limits_{k=1}^3 J_k(arepsilon)$$
 ,

where

$$\begin{split} J_{1}(\mathcal{E}) &= \mu_{j}(\mathcal{E})(\boldsymbol{G}_{\boldsymbol{e}} - \boldsymbol{R}_{\boldsymbol{e}})(\varphi_{j}(\mathcal{E})) \\ J_{2}(\mathcal{E}) &= \mu_{j}(\mathcal{E})\boldsymbol{R}_{\boldsymbol{e}}(\varphi_{j}(\mathcal{E}) - t_{\boldsymbol{e}}\chi_{\boldsymbol{e}}\psi^{*}(\mathcal{E})) \\ J_{3}(\mathcal{E}) &= \mu_{j}(\mathcal{E})t_{\boldsymbol{e}}\boldsymbol{R}_{\boldsymbol{e}}(\chi_{\boldsymbol{e}}\psi^{*}(\mathcal{E})) \; . \end{split}$$

Here χ_{ϵ} is the characteristic function of Ω_{ϵ} and

$$t_{\epsilon} = \operatorname{sgn} \int_{\Omega_{\epsilon}} (\varphi_{j}(\epsilon))(x) \varphi_{j}(x) dx$$
.

We can prove the following facts. Here s is an arbitrary fixed positive constant:

$$(2.1) ||J_1(\varepsilon)||_{L^{\infty}(\Omega_{\circ})} + ||J_2(\varepsilon)||_{L^{\infty}(\Omega_{\circ})} = 0(\varepsilon^{2-s}).$$

(2.2)
$$||\mu_{j}(\varepsilon)| \int_{3}(\varepsilon) - \iota_{\varepsilon} \mu_{j} \varphi_{j}||_{L^{\infty}(\Omega_{\varepsilon})} = 0(\varepsilon^{2.3})$$

$$\max_{z \in \partial B_{\varepsilon}} |\operatorname{grad}_{z}(J_{1}(\varepsilon))(z)| = 0(\varepsilon^{(1/2)-s}).$$

(2.4)
$$\max_{z \in \partial B_{g}} |\operatorname{grad}_{z}(J_{2}(\varepsilon))(z)| = 0(\varepsilon^{2-s}).$$

(2.5)
$$\left(\frac{\partial}{\partial \theta}(J_3(\varepsilon))(z)\right)_{|z|=(\varepsilon\cos\theta,\ \varepsilon\sin\theta)}$$

$$= 2t_{\varepsilon}\mu_j(\varepsilon)\mu_j^{-1}\left(\frac{\partial}{\partial r}(\varphi_j(r\cos(\theta+(\pi/2)),\ r\sin(\theta+(\pi/2)))\right)_{|r=0}+0(\varepsilon^{1-s}).$$

These will be proved in the section 6.

Here we assume $(2.1)\sim(2.5)$ and we would like to prove Theorems 1 and 2. From (2.1) and (2.2) we obtain

$$(2.6) ||\varphi_j(\varepsilon) - t_{\varepsilon}\mu_j(\varepsilon)\mu_j^{-1}\varphi_j||_{L^{\infty}(\Omega_{\varepsilon})} = 0(\varepsilon).$$

It follows from (2.3), (2.4) and (2.5) that

(2.7)
$$\mu_{j}(\varepsilon)^{-1} \left(\frac{\partial}{\partial \theta} (\varphi_{j}(\varepsilon)) \right) (\varepsilon \cos \theta, \varepsilon \sin \theta)$$

$$= 2t_{\varepsilon} \mu_{j}^{-1} \frac{\partial}{\partial r} (\varphi_{j}(r \cos(\theta + (\pi/2)), r \sin(\theta + (\pi/2))))|_{r=0} + 0(\varepsilon^{(1/2)-s}).$$

We put (2.6) and (2.7) into (1.6) and we obtain

(2.8)
$$\mu_j(\varepsilon) - \mu_j = 0(\varepsilon^2).$$

This together with (2.6) proves Theorem 1. Theorem 2 follows from (2.7) and (2.8).

Thus, our effort to get Theorems 1, 2 will be concentrated on showing $(2.1)\sim(2.5)$. This will be completed in the section 6.

Before going further, we explain the reason why $r_{\epsilon}(x, y)$ approximates $G_{\epsilon}(x, y)$ well. Put

$$q_{\epsilon}(x, y) = r_{\epsilon}(x, y) - G_{\epsilon}(x, y)$$
.

Then,

$$\Delta_x q_{\mathbf{z}}(x, y) = 0, \qquad x, y \in \Omega_{\mathbf{z}}$$
 $q_{\mathbf{z}}(x, y) = 0, \qquad x \in \gamma, y \in \Omega_{\mathbf{z}}$

and

$$(2.9) \qquad \frac{\partial}{\partial \nu_{x}} q_{\mathbf{e}}(x, y)_{|x=(\mathbf{e}, 0)} - \frac{\partial}{\partial x_{1}} G(x, y)_{|x=(\mathbf{e}, 0)}$$

$$-2\pi \varepsilon^{2} \frac{\partial}{\partial x_{1}} \langle \nabla_{w} S(x, w), \nabla_{w} G(w, y) \rangle_{|w=\widetilde{w}=\mathbf{0}, x=(\mathbf{e}, \mathbf{0})}$$

$$= 2\pi \varepsilon^{2} \frac{\partial}{\partial x_{1}} \left(\frac{1}{2\pi} \frac{\partial}{\partial w_{1}} \log|x-w| \cdot \frac{\partial}{\partial w_{1}} G(w, y) \right)$$

$$+ \frac{1}{2\pi} \frac{\partial}{\partial w_{2}} \log|x-w| \cdot \frac{\partial}{\partial w_{2}} G(w, y) \Big)_{|w=\widetilde{w}=\mathbf{0}, x=(\mathbf{e}, \mathbf{0})}$$

$$= -\frac{\partial}{\partial w_{1}} G(w, y)_{|w=\widetilde{w}=\mathbf{0}},$$

where $S(x, y) = G(x, y) + (1/2\pi) \log |x-y|$. And using (2.9) the $L^p(\Omega_{\epsilon})$ -norm of the operator $G_{\epsilon} - R_{\epsilon}$ will be estimated in the section 4.

3. Preliminary lemmas

We recall the following:

Lemma 1 (Ozawa [5]). Assume that $u_{\mathfrak{e}} \in C^{\infty}(\overline{\Omega}_{\mathfrak{e}})$ is harmonic in $\Omega_{\mathfrak{e}}$, $u_{\mathfrak{e}}(x) = 0$ for $x \in \gamma$ and

$$\max\{|\partial u_{\epsilon}(x)/\partial \nu|; x \in \partial B_{\epsilon}\} = M.$$

Then,

$$|u_{\varepsilon}(x)| \leq C \varepsilon M(1 + |\log(|x-w|/\varepsilon)|), \quad x \in \Omega_{\varepsilon}$$

holds for a constant C independent of E.

For any periodic function $\alpha(\theta)$ of $\theta \in [0, 2\pi]$ with the Fourier expansion

$$\alpha(\theta) = u_0 + \sum_{k=1}^{\infty} (u_k \sin k\theta + t_k \cos k\theta)$$
,

we put

$$K_{artheta}(lpha)=\sum\limits_{k=1}^{\infty}k^{artheta}(u_k^2\!+\!t_k^2)^{1/2}$$
 .

Lemma 2. Consider the equation

$$\Delta v(x) = 0, \quad x \in \mathbf{R}^2 \backslash \bar{B}_1$$

(3.2)
$$\frac{\partial v}{\partial \nu}(x)_{|x=(\cos\theta,\sin\theta)} = \alpha(\theta)$$

for given $\alpha(\theta)$. Then, there exists at least one solution v of (3.1), (3.2) satisfying

$$(3.3) |v(x)| \leq C \max_{\theta} |\alpha(\theta)| (1+|\log|x||)$$

and

(3.4)
$$\max_{x \in \partial B_1} |\operatorname{grad} v(x)| \leq C_{\theta}(\max_{\theta} |\alpha(\theta)|) K_{\theta}(\alpha)$$

for $\vartheta \in (1, \infty)$.

Proof. We know that

$$u_0^2 + \sum_{k=1}^{\infty} (u_k^2 + t_k^2) \le 2\pi \max_{\theta} |\alpha(\theta)|^2$$
.

Put

$$v(x) = u_0 \log r + \sum_{k=1}^{\infty} (-k)^{-1} (u_k \sin k\theta + t_k \cos k\theta) r^{-k}$$
.

Then, v(x) satisfies (3.1), (3.2), (3.3) and (3.4).

q.e.d.

Lemma 3. Fix $q \in (1/2, \infty)$. Then, under the same assumption as in Lemma 1,

$$\max_{\mathbf{z} \in \partial B_{\mathbf{g}}} |\operatorname{grad} u_{\mathbf{z}}(\mathbf{x})| \leq C \left(M + K_{2q} \left(\left(\frac{\partial u_{\mathbf{z}}}{\partial \nu} \left(\mathbf{z} \right) \right)_{|\mathbf{z} = (\mathbf{e} \cos \cdot, \, \mathbf{e} \sin \cdot)} \right) \right).$$

Proof. In the following we write $(\varepsilon \cos \theta, \varepsilon \sin \theta) = \varepsilon e(\theta)$.

Applying the similarity transformation of coordinates to Lemma 1, we have the following:

There exists at least one solution of

$$\Delta v_{\mathbf{e}}(x) = 0$$
, $x \in \mathbf{R}^2 \setminus \overline{B}_{\mathbf{e}}$
 $\left(\frac{\partial v_{\mathbf{e}}}{\partial \nu_{\mathbf{e}}}\right) (\mathcal{E}e(\theta)) = \left(\frac{\partial u_{\mathbf{e}}}{\partial \nu_{\mathbf{e}}}\right) (\mathcal{E}e(\theta))$, $\theta \in S^1 (=\partial B_1)$

satisfying

$$|v_{\epsilon}(x)|_{x \in \partial B_{\epsilon}} \le C \varepsilon \max_{\theta} \left| \left(\frac{\partial u_{\epsilon}}{\partial \nu} \right) (\varepsilon e(\theta)) \right| (1 + |\log(|x - \widetilde{w}|/\varepsilon|))$$

and

$$\max_{\theta} |\operatorname{grad} v_{e}(z)|_{z=e_{\theta}(\theta)} \leq C \left(\max_{\theta} \left| \left(\frac{\partial u_{e}}{\partial \nu} \right) (\mathcal{E}e(\theta)) \right| + K_{2q} \left(\left(\frac{\partial u_{e}}{\partial \nu} \right) (\mathcal{E}e(\cdot)) \right) \right)$$

for $q \in (1/2, \infty)$.

Then, the function v_e may not satisfy $v_e(x)=0$ for $x \in \gamma$. Overcome this difficulty, we apply the same argument as in Ozawa [5; Proposition 1], and

646 S. Ozawa

we obtain the desired result.

q.e.d.

We wish to replace the semi-norm $K_{\theta}(\alpha)$ by a Hölder norm. To do this we let $H^{q,2}(S^1)$ denote the L^2 -Sobolev space of order q. Here q may not be an integer. It is well known that

$$C_1 ||\alpha||_{H^{q,2}(S^1)} \le ||\alpha||_{L^2(S^1)} + K_{2q}(\alpha)$$

 $\le C_2 ||\alpha||_{H^{q,2}(S^1)}$

holds for a constant C_1 , C_2 independent of α if $q \ge 0$. We know that $H^{q,2}(S^1)$ -norm of u is equivalent to the following norm:

$$||u||_{L^{2}(S^{1})} + \left(\iint_{S^{1}\times S^{1}} |u(x)-u(y)|^{2} |x-y|^{-2q-1} dx dy \right)^{1/2}$$

when 0 < q < 1. See, for example Adams [1]. Thus, we have

$$||u||_{H^{q,2}(S^1)} \leq C(||u||_{L^2(S^1)} + ||u||_{C^{q+\sigma}(S^1)})$$

for any $\sigma > 0$. Here $|| ||_{C^{\mu}(S^1)}$ denotes the usual Hölder norm on S^1 . We know the interpolation inequality

$$||u||_{C^{\mu}(S^1)} \le C||u||_{C^0(S^1)}^{1-(\mu/\widetilde{\mu})}||u||_{C^{\widetilde{\mu}}(S^1)}^{(\mu/\widetilde{\mu})}$$

for any $0 < \mu \le \tilde{\mu} < 1$.

Summing up these facts, we get

$$K_{2q}(\alpha) \leq C(||\alpha||_{L^2(S^1)} + ||\alpha||_{C^0(S^1)}^{1 - (\xi'/\xi)}||\alpha||_{C^{\xi}(S^1)}^{(\xi'/\xi)})$$

for $q \in (1/2, 1), 1/2 < \xi' < \xi < 1$.

Applying this to Lemma 3 we get the following

Corollary 1. Fix $1/2 < \xi' < \xi < 1$. Under the assumption of Lemma 1,

(3.5)
$$\max_{x \in \partial B_g} |\operatorname{grad} u_{\epsilon}(x)| \leq C(M + M^{1-(\xi'/\xi)} L_{\xi}(\varepsilon)^{(\xi'/\xi)}).$$

Here

$$L_{\xi}(\mathcal{E}) = \left\| \left(rac{\partial u_{arepsilon}}{\partial
u}
ight) (z)_{|_{z=arepsilon_{arepsilon}(\cdot)}}
ight\|_{c^{\xi}(c^{1})}.$$

4. Approximate Green's function $r_{i}(x, y)$

We use the following properties of the Green function frequently, so we here write them:

$$(4.1) |G(x, y)| \le C |\log|x - y||$$

$$(4.2) |\nabla_x G(x, y)| \le C |x-y|^{-1}.$$

Thus,

$$(4.3) |(Gf)(x)| \le C||f||_{L^{p}(\Omega)} (p>1)$$

(4.4)
$$|\operatorname{grad}_{x}(Gf)(x)| \leq C||f||_{L^{p}(\Omega)} \quad (p>2).$$

First we obtain the following

Lemma 5. Let $p \in (2, \infty)$. Then, there exists a constant C > 0 independent of ε such that

$$|||R_{\varepsilon}-G_{\varepsilon}|||_{L^{p}(\Omega_{\varepsilon})} \leq C \varepsilon^{2-(2/p)} |\log \varepsilon|.$$

Proof. Fix $f \in C_0^{\infty}(\Omega_{\epsilon})$. Then $g_{\epsilon} = (R_{\epsilon} - G_{\epsilon})f$ satisfies $\Delta g_{\epsilon}(x) = 0$ for $x \in \Omega_{\epsilon}$ and $g_{\epsilon}(x) = 0$ for $x \in \gamma$.

By (2.9) we have

$$(4.5) \qquad \frac{\partial}{\partial \nu} g_{e}(x) \Big|_{|x=(e,0)|}$$

$$= \frac{\partial}{\partial x_{1}} (\mathbf{G}f)(x) - \frac{\partial}{\partial w_{1}} (\mathbf{G}f)(w) + 2\pi \varepsilon^{2} \frac{\partial}{\partial x_{1}} \langle \nabla_{w} S(x, w), \nabla_{w} (\mathbf{G}f)(w) \rangle$$

for $w = \tilde{w}$ (=0).

By the Sobolev embedding theorem we have

$$(4.6) ||Gf||_{c^{1+\alpha}(\Omega)} \leq C||f||_{L^{p}(\Omega_{c})}$$

if $\alpha=1-(2/p)$, $2 . Here <math>\| \|_{L^p(\Omega_p)}$ denotes the $L^p(\Omega_p)$ -norm. Therefore, (4.5) and (4.6) imply

$$\max_{x \in \partial B_{\varrho}} \left| \frac{\partial}{\partial \nu} g_{\varrho}(x) \right| \leq C \mathcal{E}^{1 - (2/p)} ||f||_{L^{p}(\Omega_{\varrho})} .$$

By Lemma 1 we get the desired result.

q.e.d.

The next lemma is stated in the introduction.

Lemma 6. Fix $p \in (1, \infty]$. Then,

$$|||\boldsymbol{R}_{\epsilon}-\boldsymbol{G}_{\epsilon}|||_{L^{p}(\Omega_{\epsilon})}=0(\epsilon^{2-s})$$

holds for any fixed s>0 as ε tends to zero.

Proof. Assume that $p \in (1, \infty)$. Put $\mathbf{Q}_{\epsilon} = \mathbf{R}_{\epsilon} - \mathbf{G}_{\epsilon}$. The operator \mathbf{Q}_{ϵ} is self-adjoint on $L^{2}(\Omega_{\epsilon})$. Thus, we get

$$|||\boldsymbol{Q}_{\mathbf{g}}|||_{L^{q}(\Omega_{\mathbf{g}})} = |||\boldsymbol{Q}_{\mathbf{g}}|||_{L^{q'}(\Omega_{\mathbf{g}})} \qquad (q^{-1} + (q')^{-1} = 1).$$

By the Riesz-Thorin interpolation theorem we know that

$$|||\boldsymbol{Q}_{\mathfrak{g}}|||_{L^p(\Omega_{\mathfrak{g}})} \leq |||\boldsymbol{Q}_{\mathfrak{g}}|||_{L^q(\Omega_{\mathfrak{g}})}$$

for any $p \in (q', q)$, q > 2. We take sufficiently large q > 2 and apply Lemma 5. Then we have Lemma 6 for $p \neq 1$, ∞ .

Assume that $p=\infty$. Then, we get Lemma 6 with $p=\infty$ by the same argument as in the proof of Lemma 5. q.e.d.

Now we wish to compare R_{ϵ} with \tilde{R}_{ϵ} . We denote by $\hat{\chi}_{\epsilon}$ the characteristic function of the set B_{ϵ} . Then, $\hat{\chi}_{\epsilon}=1-\chi_{\epsilon}$.

We have the following

Lemma 7. Let $p \in (1, \infty)$, $q \in (2, \infty)$ and $r \in (2, \infty)$. Then, there exists a constant C such that for any $v \in L^q(\Omega)$

$$\begin{split} &||\tilde{\boldsymbol{R}}_{\boldsymbol{\varepsilon}}v - \boldsymbol{R}_{\boldsymbol{\varepsilon}}(\boldsymbol{\chi}_{\boldsymbol{\varepsilon}}v)||_{L^{p}(\Omega_{\boldsymbol{\varepsilon}})} \\ \leq &C(\boldsymbol{\varepsilon}^{2-(2/q)}|\log \boldsymbol{\varepsilon}|||v||_{L^{q}(\Omega)} + \boldsymbol{\varepsilon}^{(2/r')}|\log \boldsymbol{\varepsilon}|||v||_{L^{r}(B_{\boldsymbol{\varepsilon}})}). \end{split}$$

Proof. Put $k_{\mathbf{e}} = \chi_{\mathbf{e}} \tilde{\mathbf{R}}_{\mathbf{e}} v - \mathbf{R}_{\mathbf{e}} (\chi_{\mathbf{e}} v)$. Then, $\Delta_{x} k_{\mathbf{e}}(x) = 0$ for $x \in \Omega_{\mathbf{e}}$ and $k_{\mathbf{e}}(x) = 0$ for $x \in \gamma$.

We have

$$(4.7) \qquad \frac{\partial}{\partial \nu} k_{\mathbf{e}}(x)_{|x=(\mathbf{e},\mathbf{0})}$$

$$= \frac{\partial}{\partial x_{1}} (\mathbf{G}(\hat{\mathbf{X}}_{\mathbf{e}}v))(x)_{|x=(\mathbf{e},\mathbf{0})} - \frac{\partial}{\partial w_{1}} (\mathbf{G}(\hat{\mathbf{X}}_{\mathbf{e}}\xi_{\mathbf{e}}v))(\tilde{w})$$

$$+2\pi \mathcal{E}^{2} \frac{\partial}{\partial x_{1}} \langle \nabla_{w} S(x, w), \nabla_{w} \mathbf{G}(\hat{\mathbf{X}}_{\mathbf{e}}\xi_{\mathbf{e}}v)(w) \rangle_{|x=(\mathbf{e},\mathbf{0}), w=\tilde{w}}.$$

The first term minus the second term in the right hand side of (4.7) does not exceed

$$\left. \mathcal{E}^{\theta} || \boldsymbol{G}(\hat{\boldsymbol{\chi}}_{\mathbf{e}} v) ||_{\mathcal{C}^{1+\theta}(\Omega)} + \left| \frac{\partial}{\partial w_{1}} (\boldsymbol{G}(\hat{\boldsymbol{\chi}}_{\mathbf{e}} (1-\boldsymbol{\xi}_{\mathbf{e}})) v))(\tilde{\boldsymbol{w}}) \right| \right.$$

for $\theta \in (0, 1)$. By (4.2) we see that

$$\begin{split} &|\nabla_{w} \boldsymbol{G}(\hat{\boldsymbol{\chi}}_{\epsilon} \boldsymbol{\xi}_{\epsilon} \boldsymbol{v})(\tilde{w})| + |\nabla_{w} \boldsymbol{G}(\hat{\boldsymbol{\chi}}_{\epsilon} (1 - \boldsymbol{\xi}_{\epsilon}) \boldsymbol{v})(\tilde{w})| \\ \leq & \boldsymbol{C} \boldsymbol{\varepsilon}^{(2/r')^{-1}} ||\boldsymbol{v}||_{L^{\boldsymbol{\tau}}(B_{\epsilon})}, \end{split}$$

where $(r')^{-1} = 1 - r^{-1}$. Thus, Lemma 7 follows from these estimates and Lemma 1.

The following Lemma 8 asserts that $\varphi_j(\mathcal{E})$ behaves well even in L^p space as \mathcal{E} goes to zero.

Lemma 8. Fix j and $p \in (1, \infty]$. Then

$$||\varphi_{j}(\varepsilon)||_{L^{p}(\Omega_{\varepsilon})} \leq C_{p} < \infty$$

holds for a constant $C_{\mathfrak{p}}$ independent of ε .

Proof. We devide $\varphi_i(\mathcal{E})$ as follows:

(4.8)
$$\varphi_{j}(\varepsilon) = \mu_{j}(\varepsilon)^{-1}(\mathbf{R}_{\varepsilon}\varphi_{j}(\varepsilon)) + \mu_{j}(\varepsilon)^{-1}((\mathbf{G}_{\varepsilon} - \mathbf{R}_{\varepsilon})\varphi_{j}(\varepsilon)).$$

Rauch-Taylor [8] proved that

$$\lim_{\varepsilon \to 0} \mu_j(\varepsilon) = \mu_j.$$

By Lemma 6 we have

$$||\mu_j(\mathcal{E})^{-1}(\boldsymbol{G}_{\boldsymbol{\varepsilon}}-\boldsymbol{R}_{\boldsymbol{\varepsilon}})\varphi_j(\mathcal{E})||_{L^p(\Omega_{\boldsymbol{\varepsilon}})} \leq 0(\mathcal{E}^{2-s})||\varphi_j(\mathcal{E})||_{L^p(\Omega_{\boldsymbol{\varepsilon}})}.$$

This together with (4.8) proves that

$$||\varphi_j(\varepsilon)||_{L^p(\Omega_\varepsilon)} \leq C ||R_\varepsilon \varphi_j(\varepsilon)||_{L^p(\Omega_\varepsilon)}$$
.

By the definition of R_{ϵ} we have

$$||\boldsymbol{R}_{\boldsymbol{\varepsilon}}\varphi_{\boldsymbol{j}}(\varepsilon)||_{L^{p}(\Omega_{\varepsilon})} \leq C_{p}^{*}(1+\varepsilon|\log\varepsilon|^{1/2})||\varphi_{\boldsymbol{j}}(\varepsilon)||_{L^{2}(\Omega_{\varepsilon})}$$

for $p \in (1, \infty]$. Since $\varphi_j(\varepsilon)$ is a normalized eigenfunction we get the desired result. q.e.d.

5. An approximate eigenfunction of \tilde{R}_{ϵ}

Let G_w denote the functional $v(x) \mapsto (Gv)(w)$. Put

$$A(\varepsilon) \colon v \mapsto 2\pi \langle \nabla_w G(\:\raisebox{1pt}{\text{\circle*{1.5}}},\:w),\: \nabla_w G_w(\xi_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}v) \rangle \,|_{\:w = \widetilde{w}}\:.$$

Then, $\tilde{R}_{\varepsilon} = G + \varepsilon^2 A(\varepsilon)$. We wish to construct an approximate eigenvalue $\lambda^*(\varepsilon)$ and an approximate eigenfunction $\psi^*(\varepsilon)$ of \tilde{R}_{ε} in such a way that

$$(5.1) ||(\tilde{R}_{\varepsilon} - \lambda^*(\varepsilon))\psi^*(\varepsilon)||_{L^2(\Omega)} = o(\varepsilon^2)$$

and

$$(5.2) ||\psi^*(\varepsilon)||_{L^2(\Omega)} = 1 + O(\varepsilon^2 |\log \varepsilon|)$$

By virtue of perturbation theory, we may take

$$\lambda^*(\mathcal{E}) = \mu_j^{-1} + \mathcal{E}^2 \lambda(\mathcal{E})$$
,

where $\lambda(\mathcal{E}) = (A(\mathcal{E})\varphi_j, \varphi_j)_{L^2}$. Here (,)_{L²} denotes the inner product on $L^2(\Omega)$. And we may assume that $\psi^*(\mathcal{E})$ is of the form

$$\psi^*(\mathcal{E}) = \varphi_j + \mathcal{E}^2 \psi(\mathcal{E})$$
,

where $\psi(\mathcal{E})$ should satisfy (5.3) and (5.4):

650 S. Ozawa

(5.3)
$$(\mathbf{G} - \mu_j^{-1})\psi(\varepsilon) = (\lambda(\varepsilon) - A(\varepsilon))\varphi_j$$

(5.4)
$$\int_{\Omega} (\psi(\varepsilon))(x)\varphi_{j}(x)dx = 0.$$

Note that G is a compact operator and that the right hand side of (5.3) is orthogonal to φ_j . Thus, the unique solution $\psi(\varepsilon)$ of (5.3), (5.4) exists. We see that

$$(5.5) \qquad (\tilde{\mathbf{R}}_{\varepsilon} - \lambda^*(\varepsilon))\psi^*(\varepsilon) = \varepsilon^4(A(\varepsilon) - \lambda(\varepsilon))\psi(\varepsilon).$$

To estimate the left hand sides of (5.1) and (5.2), we need the following

Lemma 9. For a constant C independent of ε , we have

$$(5.6) |||A(\varepsilon)|||_{L^p(\Omega)} \leq C \varepsilon^{(2-p)/p} |\log \varepsilon|^{1/2}, (p>2)$$

$$(5.7) |||A(\varepsilon)|||_{L^2(\Omega)} \leq C |\log \varepsilon|$$

and

$$||\psi(\varepsilon)||_{L^{p}(\Omega)} \leq C \varepsilon^{(2-p)/p} |\log \varepsilon|^{1/2}, \qquad (p>2)$$

$$||\psi(\varepsilon)||_{L^{2}(\Omega)} \leq C |\log \varepsilon|.$$

Proof. By a Hölder inequality and (4.1) we obtain (5.6) and (5.7). Using (5.7) we have

$$||(\lambda(\varepsilon) - A(\varepsilon))\varphi_j||_{L^2(\Omega)} \le C' |||A(\varepsilon)|||_{L^2(\Omega)} \le C |\log \varepsilon|.$$

Thus, by virtue of the Fredholm theory we obtain a bound for $L^2(\Omega)$ -norm of $\psi(\mathcal{E})$. Similarly we get L^p estimates.

By (5.5) and Lemma 9 we have the following fact, which is stronger than (5.1).

Lemma 10. For a constant C independent of &

$$(5.8) ||(\tilde{\mathbf{R}}_{\mathbf{z}} - \lambda^*(\varepsilon))\psi^*(\varepsilon)||_{L^2(\Omega)} \le C\varepsilon^4 |\log \varepsilon|^2.$$

Since G_{ϵ} is approximated by R_{ϵ} (Lemma 6) and R_{ϵ} is approximated by \tilde{R}_{ϵ} (Lemma 7), we may consider $\psi^*(\varepsilon)$ as an approximate eigenfunction of G_{ϵ} . More precisely we have

Lemma 11. For a constant C independent of &

$$(5.9) ||(\mathbf{G}_{\varepsilon} - \lambda^*(\varepsilon))(\mathbf{\chi}_{\varepsilon} \psi^*(\varepsilon))||_{L^2(\Omega_{\varepsilon})} = 0(\varepsilon^{2-s})$$

holds, where s being an arbitrary fixed positive constant.

Proof. We see that the left hand side of (5.6) does not exceed

$$(5.10) \qquad ||(\boldsymbol{G}_{\varepsilon} - \boldsymbol{R}_{\varepsilon})(\boldsymbol{\chi}_{\varepsilon} \psi^{*}(\varepsilon))||_{L^{2}(\Omega_{\varepsilon})} + ||\tilde{\boldsymbol{R}}_{\varepsilon} \psi^{*}(\varepsilon) - \boldsymbol{R}_{\varepsilon}(\boldsymbol{\chi}_{\varepsilon} \psi^{*}(\varepsilon))||_{L^{2}(\Omega_{\varepsilon})} + ||(\tilde{\boldsymbol{R}}_{\varepsilon} - \lambda^{*}(\varepsilon))\psi^{*}(\varepsilon)||_{L^{2}(\Omega_{\varepsilon})}.$$

The last term is estimated by Lemma 10. By Lemma 7, the second term of (5.10) does not exceed

$$C\varepsilon^{2-(2/q)} |\log \varepsilon| ||\psi^*(\varepsilon)||_{L^q(\Omega)} + C\varepsilon^{(2/r')} |\log \varepsilon| ||\psi^*(\varepsilon)||_{L^r(B_{\sigma})}$$
.

We see from the definition of $\psi^*(\mathcal{E})$ that

$$||\psi^*(\varepsilon)||_{L^{r}(B_s)} \leq ||\varphi_i||_{L^{r}(B_s)} + \varepsilon^2 ||\psi(\varepsilon)||_{L^{r}(B_s)}$$
.

We apply Lemma 9 to this and we have

$$||\psi^*(\varepsilon)||_{L^{r}(B_s)} \le C(\varepsilon^{3/r} + \varepsilon^{2+(2-r)/r} |\log \varepsilon|^{1/2})$$

for r>2. Thus, the second term of (5.10) is $0(\varepsilon^{2-s})$. The first term of (5.10) is also $0(\varepsilon^{2-s})$, since we have Lemma 6 and $||\psi^*(\varepsilon)||_{L^2(\Omega)}=0(1)$. Summing up these facts we obtain (5.9).

The next Lemma states that $\mu_j(\mathcal{E})$ is close to $\lambda^*(\mathcal{E})$ and $\varphi_j(\mathcal{E})$ is close to $\mathcal{X}_{\varepsilon}\psi^*(\mathcal{E})$.

Lemma 12. Under the same assumption as in Theorem 1

(5.11)
$$\lambda^*(\mathcal{E}) - \mu_j(\mathcal{E}) = 0(\mathcal{E}^{2-s})$$

and

$$(5.12) ||\varphi_{j}(\varepsilon) - t_{\varepsilon} \chi_{\varepsilon} \psi^{*}(\varepsilon)||_{L^{2}(\Omega_{\varepsilon})} = 0(\varepsilon^{2-s})$$

hold.

Proof. We know from (5.9) and a spectral theory of compact self-adjoint operator that there exists at least one eigenvalue $\lambda_*(\varepsilon)$ of G_{ε} satisfying

$$\lambda_*(\mathcal{E}) - \lambda^*(\mathcal{E}) = 0(\mathcal{E}^{2-s})$$
.

Rauch-Taylor [8] showed that $\mu_k(\mathcal{E})$ tends to μ_k as \mathcal{E} tends to zero for any k. Thus, we get $\lambda_*(\mathcal{E}) = \mu_j(\mathcal{E})^{-1}$.

By the eigenfunction expansion

we have

$$egin{aligned} &||(m{G}_{m{\epsilon}}\!\!-\!\lambda^*\!(m{arepsilon}))(m{\chi}_{m{\epsilon}}\!\psi^*\!(m{arepsilon}))||_{L^2(\Omega_{m{\epsilon}})}^2 \ &= \sum\limits_{k=1}^\infty |\,\mu_k\!(m{arepsilon})^{-1} \!\!-\! \lambda^*\!(m{arepsilon})|^2 |\!\!\langle m{arphi}_k\!(m{arepsilon}),\,m{\chi}_{m{\epsilon}}\!\psi^*\!(m{arepsilon})\!\!
angle|^2 \,. \end{aligned}$$

Since $\lambda^*(\mathcal{E}) \to \mu_j^{-1}$ and $\mu_k(\mathcal{E})^{-1} \to \mu_k^{-1}$ as $\mathcal{E} \to 0$, we have

$$\sum_{k=1,k\pm j}^{\infty} |\langle arphi_k(\mathcal{E}), \chi_{arepsilon}\psi^*(\mathcal{E})
angle|^2 = 0(\mathcal{E}^{4-2s})$$
 .

This implies

$$||\chi_{\varepsilon}\psi^*(\varepsilon)-\langle \varphi_j(\varepsilon),\chi_{\varepsilon}\psi^*(\varepsilon)\rangle \varphi_j(\varepsilon)||_{L^{(\Omega_{\varepsilon})}}=0(\varepsilon^{2-s})$$
 .

Thus,

$$|\langle \varphi_i(\varepsilon), \chi_{\mathfrak{s}} \psi^*(\varepsilon) \rangle^2 - 1| = 0(\varepsilon^{4-2s})$$

and we obtain (5.12).

q.e.d.

6. Proof of $(2.1)\sim(2.5)$

In this section we shall complete the proof of Theorems 1, 2 by giving proofs of $(2.1)\sim(2.5)$.

Recall the definition of $J_k(\mathcal{E})$.

$$egin{aligned} J_{1}(\mathcal{E}) &= \mu_{j}(\mathcal{E})(oldsymbol{G_{e}} - oldsymbol{R_{e}})(oldsymbol{arphi}_{j}(\mathcal{E})) \ J_{2}(\mathcal{E}) &= \mu_{j}(\mathcal{E})oldsymbol{R_{e}}(oldsymbol{arphi}_{j}(\mathcal{E}) - oldsymbol{\chi_{e}} \psi^{*}(\mathcal{E})) \ J_{3}(\mathcal{E}) &= \mu_{j}(\mathcal{E})oldsymbol{R_{e}}(\chi_{e}\psi^{*}(\mathcal{E})) \ . \end{aligned}$$

Here we should state that we choose $\varphi_j(\mathcal{E})$ so that $t_{\epsilon}=1$, because we see in the final part of the section 5 that $t_{\epsilon}^2=1$ for small $\epsilon>0$.

Lemma 13. Fix an arbitrary s>0. Then,

$$||J_1(\mathcal{E})||_{L^{\infty}(\Omega_{\mathcal{E}})} = 0(\mathcal{E}^{2-s})$$

and (2.3) hold.

Proof. Let $\widetilde{\varphi}_{j}(\mathcal{E})$ be the extension of $\varphi_{j}(\mathcal{E})$ to Ω putting its value zero on B_{ϵ} . We know that $J_{1}(\mathcal{E})$ is harmonic in Ω_{ϵ} and zero on γ . We have

Thus, by the same argument as in the proof of Lemma 5 we have

(6.2)
$$\max_{x \in \partial B_{\varrho}} \left| \frac{\partial}{\partial \nu} (J_{1}(\varepsilon))(x) \right| \leq C \varepsilon^{1-(2/p)} ||\varphi_{j}(\varepsilon)||_{L^{p}(\Omega_{\varepsilon})}$$

for p>2. By Lemma 8 we see that (6.2) does not exceed $C'\varepsilon^{1-(2/p)}$. This fact together with Lemma 1 show that

$$|| J_1(\varepsilon)||_{L^{\infty}(\Omega_{\varepsilon})} = 0(\varepsilon^{2-s})$$
.

We now wish to apply Corollary 1 to $J_1(\varepsilon)$ to prove (2.3). We know that

 $S(x, w) \in C^{\infty}(\Omega)$. Then, $C^{\xi}(S^1)$ norm of the third term in the right hand side of (6.1) (considering it as a function of θ) does not exceed C. Here we used (4.4) and Lemma 8. By the fact

$$||\mathbf{G}f||_{\mathcal{C}^{1+\xi}(\Omega)} \leq C||f||_{L^{\infty}(\Omega)} \qquad (\xi < 1)$$

we see that the $C^{\xi}(S^1)$ norm of the first and the second term in the right hand side of (6.1) do not exceed $C'_{\xi'}$ for $\xi < 1$. From Corollary 1 we obtain

(6.3)
$$\max_{z \in \partial B_{\mathfrak{g}}} |\operatorname{grad}_{z}(J_{1}(\varepsilon))(z)| \leq C(\varepsilon^{1-s} + C_{\xi}(\varepsilon^{1-s})^{(1-(\xi/\xi'))}).$$

We take $\xi' > 1/2$, $\xi < 1$ such that $|\xi' - 1/2| + |\xi - 1|$ is sufficiently small and we get (2.3).

We have the following

Lemma 14. Fix an arbitrary s>0. Then

and (2.4) hold.

Proof. Put $\chi_{\epsilon} = \varphi_{j}(\varepsilon) - \chi_{\epsilon} \psi^{*}(\varepsilon)$. Then, $J_{2}(\varepsilon) = \mu_{j}(\varepsilon) \mathbf{R}_{\epsilon} \kappa_{\epsilon}$. By the definition of \mathbf{R}_{ϵ} and (4.2), (4.3) and (4.4) we have

$$(6.5) ||J_2(\varepsilon)||_{L^{\infty}(\Omega_{\varepsilon})} \leq C(||\kappa_{\varepsilon}||_{L^2(\Omega_{\varepsilon})} + \varepsilon||\kappa_{\varepsilon}||_{L^p(\Omega_{\varepsilon})})$$

for $p \in (2, \infty)$. Lemma 8 asserts that

$$(6.6) ||\kappa_{\mathfrak{g}}||_{L^{p}(\Omega_{\mathfrak{g}})} \leq C', p \in (2, \infty),$$

while Lemma 12 gives us the estimate

(6.7)
$$||\kappa_{\varepsilon}||_{L^{2}(\Omega_{\varepsilon})} = 0(\varepsilon^{2-s}).$$

Let s' be an arbitrary fixed number. Then, by the Riesz-Thorin interpolation theorem we get

for p>2 close to 2. Thus, (6.4) is proved by (6.5), (6.6) and (6.7).

By the definition of $J_2(\mathcal{E})$,

$$(6.9) |\partial_{x_i}\partial_{x_i}G(x,y)| \le C|x-y|^{-2}$$

and (4.4) we have

$$\max_{z \in \partial B_{\mathfrak{o}}} |\operatorname{grad}_{z}(J_{2}(\mathcal{E}))(z)| \leq C ||\kappa_{\mathfrak{e}}||_{L^{p}(\Omega_{\mathfrak{e}})}$$

for $p \in (2, \infty)$. Thus, (2.4) is proved by (6.8).

q.e.d.

Finally we have the following

Lemma 15. Fix an arbitrary s>0. Then, (2.2) and (2.5) hold.

Proof. We see that $\mu_i(\mathcal{E})^{-1}J_3(\mathcal{E})$ can be written as $\Pi(\mathcal{E})+\Pi'(\mathcal{E})$. Here

$$\Pi(\varepsilon) = \mathbf{G}\varphi_i + 2\pi\varepsilon^2 \langle \nabla_w G(\cdot, w), \nabla_w \mathbf{G}(\chi_{\varepsilon}\varphi_i)(w) \rangle_{|w=\widetilde{w}|}$$

and

$$\Pi'(\mathcal{E}) = G((\chi_{\mathbf{e}} - 1)\varphi_{j}) + \mathcal{E}^{2}G(\chi_{\mathbf{e}}\psi(\mathcal{E})) + 2\pi\mathcal{E}^{4}\langle \nabla_{w}G(\cdot, w), \nabla_{w}G(\chi_{\mathbf{e}}\psi(\mathcal{E}))(w) \rangle_{|_{w}=\widetilde{w}}.$$

We have

$$(6.10) ||\Pi'(\varepsilon)||_{L^{\infty}(\Omega_{\varepsilon})} \leq C(||\varphi_{j}||_{L^{p}(B_{\varepsilon})} + \varepsilon^{2}||\psi(\varepsilon)||_{L^{r}(\Omega)})$$

for p>1, r>2. Thus, (6.10) is estimated by Lemma 9 and we get

for any s>0.

On the other hand, by (4.4) we have

(6.12)
$$||\Pi(\varepsilon) - \mu_j^{-1} \varphi_j||_{L^{\infty}(\Omega_{\varepsilon})} = 0(\varepsilon).$$

Thus, (6.11) and (6.12) imply (2.2).

We wish to show (2.5). By (4.4) and (6.9) we see that $\max\{|\operatorname{grad}_z(\Pi'(\varepsilon))(z)|; z \in \partial B_{\varepsilon}\}$ does not exceed

$$C(||\varphi_j||_{L^r(B_{\mathfrak{S}})} + \mathcal{E}^2||\psi(\mathcal{E})||_{L^r(\Omega)})$$

for r>2. Thus,

(6.13)
$$\max_{z \in \partial B_g} |\operatorname{grad}_z(\Pi'(\varepsilon))(z)| = 0(\varepsilon^{1-s})$$

by Lemma 9. By the similar calculation as in (2.9) we see that

(6.14)
$$\left(\frac{\partial}{\partial \theta} (2\pi \mathcal{E}^2 \langle \nabla_w G(\cdot, w), \nabla_w (\mathbf{G}\varphi_j)(w) |_{w=\widetilde{w}}) \right) (\mathcal{E} \cos \theta, \mathcal{E} \sin \theta)$$

$$= \mu_j^{-1} \left(\frac{\partial}{\partial \theta} \varphi_j \right) (\mathcal{E} \cos \theta, \mathcal{E} \sin \theta) + 0 (\mathcal{E}^2) |\nabla_w (\mathbf{G}\varphi_j)(\widetilde{w})|.$$

Thus,

(6.15)
$$\left(\frac{\partial}{\partial \theta} (\Pi(\mathcal{E}) - \mu_j^{-1} \varphi_j)\right) (\mathcal{E} \cos \theta, \, \mathcal{E} \sin \theta)$$

$$= \mu_j^{-1} \left(\frac{\partial}{\partial \theta} \varphi_j\right) (\mathcal{E} \cos \theta, \, \mathcal{E} \sin \theta) + 0(\mathcal{E}^2) ||\varphi_j||_{L^{r}(\Omega)}$$

$$+ 0(1) |\nabla_w (G(\hat{\chi}_{\varrho} \varphi_j))(\tilde{w})|$$

for r>2. Thus, by Lemma 9, (4.4), (6.15) and

(6.16)
$$\left(\frac{\partial}{\partial \theta} \varphi_j\right) (\varepsilon \cos \theta, \varepsilon \sin \theta)$$

$$= \frac{\theta}{\partial r} (\varphi_j (r \cos (\theta + (\pi/2)), r \sin (\theta + (\pi/2)))|_{r=0} + 0(\varepsilon),$$

we get (2.5). q.e.d.

We have thus proved all of $(2.1)\sim(2.5)$ which were stated in the section 2. Therefore our proofs of Theorem 1 and 2 are complete.

References

- [1] R. Adams: Sobolev spaces, Academic Press, New York, 1975.
- [2] R. Figari, E. Orlandi and S. Teta: The Laplacian in regions with many small obstacles, Fluctuation around the limit operator, preprint (1984).
- [3] P.R. Garabedian: Partial differential equations, J. Wiley and Sons, Inc., New York, 1964.
- [4] P.R. Garabedian and M. Schiffer: Convexity of domain functionals, J. Analyse Math. 2 (1952-53), 281-369.
- [5] S. Ozawa: Spectra of domains with small spherical Neumann boundary, J. Fac. Sci. Univ. Tokyo Sec. IA, 30 (1983), 259-277.
- [6] S. Ozawa: Electrostatic capacity and eigenvalues of the Laplacian, Ibid. 30 (1983), 53-62.
- [7] S. Ozawa: Random media and eigenvalues of the Laplacian, Comm. Math. Phys. 94 (1984), 421–437.
- [8] J. Rauch and M. Taylor: Potential and scattering theory on wildly perturbed domains, J. Funct. Anal. 18 (1975), 27-59.

Department of Mathematics Faculty of Science Osaka University Toyonaka, Osaka 560, Japan