ASYMPTOTIC PROPERTY OF AN EIGENFUNCTION OF THE LAPLACIAN UNDER SINGULAR VARIATION OF DOMAINS - THE NEUMANN CONDITION -

Shin OZAWA

(Received April 6, 1984)

1. Introduction

We consider a bounded domain Ω in \boldsymbol{R}^{2} with smooth boundary γ. Let B_{z} be the ε-disk whose center is $\widetilde{w} \in \Omega$. We put $\Omega_{\mathrm{q}}=\Omega \backslash \bar{B}_{\mathrm{q}}$. We consider the following eigenvalue problems (1.1) and (1.2):

$$
\begin{align*}
-\Delta_{x} u(x) & =\lambda(\varepsilon) u(x), & & x \in \Omega_{\varepsilon} \tag{1.1}\\
u(x) & =0, & & x \in \gamma \\
\frac{\partial u}{\partial \nu}(x) & =0, & & x \in \partial B_{\varepsilon},
\end{align*}
$$

where $\partial / \partial \nu$ denotes the derivative along the inner normal vector at x with respect to the domain Ω_{g}.

$$
\begin{align*}
-\Delta_{x} u(x) & =\lambda u(x), & & x \in \Omega, \tag{1.2}\\
u(x) & =0, & & x \in \gamma .
\end{align*}
$$

Let $0<\mu_{1}(\varepsilon) \leq \mu_{2}(\varepsilon) \leq \cdots$ be the eigenvalues of (1.1). Let $0<\mu_{1} \leq \mu_{2} \leq \cdots$ be the eigenvalues of (1.2). We arrange them repeatedly according to their multiplicities. Denote by $\left\{\varphi_{j}(\varepsilon)\right\}_{j=1}^{\infty}\left(\left\{\varphi_{j}\right\}_{j=1}^{\infty}\right.$, respectively) a complete orthonomal basis of $L^{2}\left(\Omega_{\varepsilon}\right)\left(L^{2}(\Omega)\right.$, respectively) consisting of eigenfunction of $-\Delta$ associated with $\left\{\mu_{j}(\varepsilon)\right\}_{j=1}^{\infty}\left(\left\{\varphi_{j}\right\}_{j=1}^{\infty}\right.$, respectively).

In this note we consider the following problem:
Problem. What can one say about asymptotic behaviour of $\varphi_{j}(\varepsilon)$ as ε tends to zero?

It is well known that $\mu_{j}(\varepsilon)$ tends to μ_{j} as ε tends to zero. See RauchTaylor [8], Ozawa [5]. As a consequence, $\mu_{j}(\varepsilon)$ is simple for small $\varepsilon>0$, if we assume that μ_{j} is simple. Thus $\varphi_{j}(\varepsilon)$ is uniquely determined up to the arbitratiness of multiplication by +1 or -1 .

We have the following Theorem 1. Theorem 2 is our main result.

Theorem 1. Fix j. Assume that μ_{j} is simple. Then, the following statements (i) and (ii) hold.
(i) We can choose $\varphi_{j}(\varepsilon)$ for $\varepsilon>0$ so that

$$
\lim _{\varepsilon \rightarrow 0} \int_{\mathbf{Q}_{\varepsilon}}\left(\varphi_{j}(\varepsilon)\right)(x) \varphi_{j}(x) d x=1
$$

(ii) If we choose $\varphi_{j}(\varepsilon)$ as in (i), then

$$
\begin{equation*}
\left\|\varphi_{j}(\varepsilon)-\varphi_{j}\right\|_{L^{\infty}\left(\Omega_{\mathfrak{\varepsilon}}\right)}=0(\varepsilon) \tag{1.3}
\end{equation*}
$$

We introduce the polar coordinate $z-\tilde{w}=(r \cos \theta, r \sin \theta)$ to state the following

Theorem 2. Fix j. Assume that μ_{j} is a simple eigenvalue. If $\varphi_{j}(\varepsilon)$ is chosen as in Theorem 1, then

$$
\begin{align*}
& \left(\frac{\partial}{\partial \theta}\left(\varphi_{j}(\varepsilon)\right)\right)(\varepsilon \cos \theta, \varepsilon \sin \theta) \tag{1.4}\\
= & 2 \frac{\partial}{\partial r}\left(\left.\varphi_{j}\left(r \cos \left(\theta+\frac{\pi}{2}\right), r \sin \left(\theta+\frac{\pi}{2}\right)\right)\right|_{r=0}+0\left(\varepsilon^{(1 / 2)-s}\right)\right.
\end{align*}
$$

for an arbitrary $s>0$.
Remark. 1) Proofs of Theorems 1 and 2 are given in the section 2.
2) The remainder estimates in (1.3) and (1.4) are not uniform with respect to j.
3) Theorems 1 and 2 prove the conjecture stated in the previous work [5] of the author.
4) The celebrated Hadamard variational formula (See Garabedian-Schiffer [4]) says that

$$
\begin{equation*}
\frac{\partial}{\partial \varepsilon} \mu_{j}(\varepsilon)=-\int_{\partial B_{\varepsilon}}\left(\left|\operatorname{grad}_{z} \varphi_{j}(\varepsilon)(z)\right|^{2}-\mu_{j}(\varepsilon)\left(\varphi_{j}(\varepsilon)\right)(z)^{2}\right) d \sigma_{z}^{z} \tag{1.5}
\end{equation*}
$$

holds when μ_{j} is simple, where $d \sigma_{z}^{\varepsilon}$ denotes the line element on ∂B_{q}. If we apply Theorems 1 and 2 to (1.5), then

$$
\frac{\partial}{\partial \varepsilon} \mu_{j}(\varepsilon)=0(\varepsilon)
$$

Hence $\mu_{j}(\varepsilon)-\mu_{j}=0\left(\varepsilon^{2}\right)$. Using (1.5) once more, we can prove that

$$
\begin{equation*}
\mu_{j}(\varepsilon)-\mu_{j}=-\left(2 \pi \mid \operatorname{grad} \varphi_{j}(\widetilde{w})^{2}-\pi \mu_{j} \varphi_{j}(\tilde{w})^{2}\right) \varepsilon^{2}+0\left(\varepsilon^{(5 / 2)-s}\right), \tag{1.6}
\end{equation*}
$$

while we have already obtained in [5] much stronger result

$$
\mu_{j}(\varepsilon)-\mu_{j}=-\left(2 \pi\left|\operatorname{grad} \varphi_{j}(\widetilde{w})\right|^{2}-\pi \mu_{j} \varphi_{j}(\widetilde{w})^{2}\right) \varepsilon^{2}+0\left(\varepsilon^{3}|\log \varepsilon|^{2}\right) .
$$

However, discussion in [5] was very complicated. Present proof via Hadamard's variational formula (1.5) is much simpler.

See Ozawa [6], [7], Figari-Orlandi-Teta [2] for other recent developments on the asymptotic behaviour of the eigenvalues of the Laplacian under singular variation of domains.

A part of this work was done while I stayed at Courant Institute of Mathematical Sciences. I here express my sincere thanks to C.I.M.S., Professor G. Papanicolaou and Ms. Vogelsang for their hospitality.

2. Sketch of the proof

Let $G(x, y)$ be the Green function of the Laplacian in Ω under the Dirichlet condition on γ. Let $G_{\mathrm{e}}(x, y)$ be the Green function of the Laplacian in Ω_{z} satisfying

$$
\begin{array}{lr}
-\Delta_{x} G_{\mathrm{z}}(x, y)=\delta(x-y), & x, y \in \Omega_{\mathrm{e}} \\
G_{\mathrm{\varepsilon}}(x, y)_{\mid x \in \gamma}=0, & y \in \Omega_{\mathrm{e}} \\
\frac{\partial}{\partial \nu_{x}} G_{\mathrm{z}}(x, y)_{\mid x \in \partial B_{\mathrm{z}}}=0, & y \in \Omega_{\mathrm{q}}
\end{array}
$$

Let $\boldsymbol{G}\left(\boldsymbol{G}_{\mathrm{e}}\right.$, respectively) be the bounded linear operator on $L^{2}(\Omega)\left(L^{2}\left(\Omega_{\mathrm{q}}\right)\right.$, respectively) defined by

$$
\begin{aligned}
& (\boldsymbol{G} f)(x)=\int_{\Omega} G(x, y) f(y) d y \\
& \left(\boldsymbol{G}_{\boldsymbol{\varepsilon}} g\right)(x)=\int_{\mathbf{Q}_{\mathbf{\varepsilon}}} G_{\mathrm{\varepsilon}}(x, y) g(y) d y
\end{aligned}
$$

respectively. Then, (1.1) and (1.2) are transformed into the problems

$$
\begin{aligned}
& \left(\boldsymbol{G}_{\mathrm{e}} u\right)(x)=\lambda(\varepsilon)^{-1} u(x) \\
& (\boldsymbol{G} v)(x)=\lambda^{-1} v(x)
\end{aligned}
$$

We want to compare $\boldsymbol{G}_{\varepsilon}$ and \boldsymbol{G}. It should be remarked that the Green operators $\boldsymbol{G}_{\mathrm{e}}$ and \mathbf{G} act on different spaces $L^{2}\left(\Omega_{\mathrm{e}}\right)$ and $L^{2}(\Omega)$. One of technical difficulties arises from here.

In order to relate $\boldsymbol{G}_{\mathrm{z}}$ with \boldsymbol{G}, we introduce the operators $\boldsymbol{R}_{\mathrm{z}}$ and $\tilde{\boldsymbol{R}}_{\mathrm{e}}$. To describe integral kernel of $\boldsymbol{R}_{\boldsymbol{z}}$ and $\tilde{\boldsymbol{R}}_{\boldsymbol{e}}$, we put

$$
\left\langle\nabla_{w} a(x, w), \nabla_{w} b(w, y)\right\rangle=\sum_{i=1}^{2} \frac{\partial}{\partial w_{i}} a(x, w) \frac{\partial}{\partial w_{i}} b(w, y)
$$

for any a, $b \in C^{1}\left(\Omega \times \Omega \backslash(\Omega \times \Omega)_{d}\right)$, where $(\Omega \times \Omega)_{d}$ denotes the diagonal set of $\Omega \times \Omega$. Then, $\left\langle\nabla_{w}, \nabla_{w}\right\rangle$ is invariant under any orthogonal transformation of an orthonomal coordinates $\left(w_{1}, w_{2}\right)$. We define

$$
r_{\imath}(x, y ; w)=G(x, y)+2 \pi \varepsilon^{2}\left\langle\nabla_{w} G(x, w), \nabla_{w} G(w, y)\right\rangle
$$

and

$$
r_{\mathrm{e}}(x, y)=r_{\mathrm{e}}(x, y ; \widetilde{w}) .
$$

Also we set

$$
\tilde{r}_{\mathrm{z}}(x, y)=G(x, y)+2 \pi \varepsilon^{2}\left\langle\nabla_{w} G(x, w), \nabla_{w} G(w, y)\right\rangle_{\mid w=\tilde{w}} \xi_{\mathrm{z}}(x) \xi_{\mathrm{e}}(y),
$$

where $\xi_{\mathrm{e}} \in C^{\infty}\left(\boldsymbol{R}^{2}\right)$ satisfies $0 \leq \xi_{\mathrm{z}}(x) \leq 1, \xi_{\mathrm{e}}(x)=1$ for $x \in \boldsymbol{R}^{2} \backslash \bar{B}_{\mathrm{z}}$ and $\xi_{\mathrm{z}}(x)=0$ for $x \in B_{\mathrm{z} / 2}$.

The operators $\boldsymbol{R}_{\mathrm{z}}$ and $\tilde{\boldsymbol{R}}_{\mathrm{z}}$ are defined by

$$
\begin{aligned}
& \left(\boldsymbol{R}_{\mathrm{e}} g\right)(x)=\int_{\Omega_{\mathrm{e}}} r_{\mathrm{e}}(x, y) g(y) d y, \quad x \in \Omega_{\mathrm{e}} \\
& \left(\tilde{\boldsymbol{R}}_{\mathrm{e}} f\right)(x)=\int_{\Omega} \tilde{r}_{\mathrm{e}}(x, y) f(y) d y, \quad x \in \Omega
\end{aligned}
$$

respectively. Roughly speaking, $\boldsymbol{R}_{\mathrm{z}}$ is a very good approximation of $\boldsymbol{G}_{\mathrm{q}}$. By definition it is not difficult to compare $\boldsymbol{R}_{\boldsymbol{z}}$ with $\tilde{\boldsymbol{R}}_{\mathrm{q}}$. Since $\tilde{\boldsymbol{R}}_{\mathrm{z}}$ acts on $L^{2}(\Omega)$ and not on $L^{2}\left(\Omega_{\mathrm{\varepsilon}}\right)$, we can easily compare $\tilde{\boldsymbol{R}}_{\mathrm{\varepsilon}}$ with \boldsymbol{G}. As a consequence we can compare $\boldsymbol{G}_{\boldsymbol{\varepsilon}}$ with \boldsymbol{G}.

Proof of Theorems 1, 2 are divided into several steps.
First we show

$$
\left\|\left\|\boldsymbol{G}_{\mathfrak{z}}-\boldsymbol{R}_{\mathfrak{q}}\right\|\right\|_{L^{2}\left(\Omega_{\mathrm{z}}\right)}=0\left(\varepsilon^{2-s}\right)
$$

for any fixed $s>0$ as ε tends to zero. Here $\left|\left|\left|\left|\left.\right|_{L^{p}\left(\Omega_{\varepsilon}\right)}\right.\right.\right.\right.$ denotes the operator norm on $L^{p}\left(\Omega_{z}\right)$. This will be done in the section 4.

Second we consider $\tilde{\boldsymbol{R}}_{\mathrm{g}}$ as a perturbation of \boldsymbol{G}. We construct an approximate eigenfunction $\psi^{*}(\varepsilon)$ and an approximate eigenvalue $\lambda^{*}(\varepsilon)$ of $\tilde{\boldsymbol{R}}_{\boldsymbol{q}}$. Here $\lambda^{*}(\varepsilon), \psi^{*}(\varepsilon)$ are explicitly constructed by usual perturbation method so that they satisfy

$$
\left\|\left(\tilde{\boldsymbol{R}}_{\mathrm{z}}-\lambda^{*}(\varepsilon)\right) \psi^{*}(\varepsilon)\right\|_{\left.L^{2} \Omega\right)}=0\left(\varepsilon^{4}|\log \varepsilon|^{2}\right)
$$

and

$$
\left\|\psi^{*}(\varepsilon)\right\|_{L^{2}(\Omega)}=1+0\left(\varepsilon^{2}|\log \varepsilon|\right) .
$$

Since $\lambda^{*}(\varepsilon)$ and $\psi^{*}(\varepsilon)$ are constructed by perturbation theory, $\lambda^{*}(\varepsilon)$ is close to μ_{j} and $\psi^{*}(\varepsilon)$ is close to φ_{j}.

A key step is to examine the following decomposition of $\varphi_{j}(\varepsilon)$.

$$
\boldsymbol{\varphi}_{j}(\varepsilon)=\sum_{k=1}^{3} J_{k}(\varepsilon)
$$

where

$$
\begin{aligned}
& J_{1}(\varepsilon)=\mu_{j}(\varepsilon)\left(\boldsymbol{G}_{\mathbf{z}}-\boldsymbol{R}_{\mathfrak{z}}\right)\left(\varphi_{j}(\varepsilon)\right) \\
& J_{2}(\varepsilon)=\mu_{j}(\varepsilon) \boldsymbol{R}_{\mathfrak{z}}\left(\varphi_{j}(\varepsilon)-t_{\mathbf{z}} \chi_{\mathfrak{z}} \psi^{*}(\varepsilon)\right) \\
& J_{3}(\varepsilon)=\mu_{j}(\varepsilon) t_{\mathbf{z}} \boldsymbol{R}_{\boldsymbol{z}}\left(\chi_{\mathbf{z}} \psi^{*}(\varepsilon)\right) .
\end{aligned}
$$

Here χ_{z} is the characteristic function of Ω_{z} and

$$
t_{\mathrm{z}}=\operatorname{sgn} \int_{\varrho_{\mathrm{q}}}\left(\varphi_{j}(\varepsilon)\right)(x) \varphi_{j}(x) d x
$$

We can prove the following facts. Here s is an arbitrary fixed positive constant:

$$
\begin{align*}
&\left\|J_{1}(\varepsilon)\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}+\left\|J_{2}(\varepsilon)\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}=0\left(\varepsilon^{2-s}\right) . \tag{2.1}\\
&\left\|\mu_{j}(\varepsilon)^{-1} J_{3}(\varepsilon)-t_{\mathrm{z}} \mu, \varphi_{j}\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}=0(\varepsilon) . \tag{2.2}\\
& \max _{z \in \partial B_{\mathrm{z}}}\left|\operatorname{grad}_{z}\left(J_{1}(\varepsilon)\right)(z)\right|=0\left(\varepsilon^{(1 / 2)-s}\right) . \tag{2.3}\\
& \max _{z \in \partial B_{\varepsilon}}\left|\operatorname{grad}_{z}\left(J_{2}(\varepsilon)\right)(z)\right|=0\left(\varepsilon^{2-s}\right) . \tag{2.4}\\
& \left.\left(\frac{\partial}{\partial \theta}\left(J_{3}(\varepsilon)\right)(z)\right) \right\rvert\, z=(\mathrm{z} \cos \theta, z \sin \theta) \tag{2.5}\\
&= 2 t_{\mathrm{e}} \mu_{j}(\varepsilon) \mu_{j}^{-1}\left(\frac{\partial}{\partial r}\left(\varphi_{j}(r \cos (\theta+(\pi / 2)), r \sin (\theta+(\pi / 2)))\right)_{\mid r=0}+0\left(\varepsilon^{1-s}\right) .\right.
\end{align*}
$$

These will be proved in the section 6 .
Here we assume (2.1) $\sim(2.5)$ and we would like to prove Theorems 1 and 2. From (2.1) and (2.2) we obtain

$$
\begin{equation*}
\left\|\varphi_{j}(\varepsilon)-t_{\mathrm{z}} \mu_{j}(\varepsilon) \mu_{j}^{-1} \varphi_{j}\right\|_{L^{\infty}\left(\Omega_{\mathrm{g}}\right)}=0(\varepsilon) . \tag{2.6}
\end{equation*}
$$

It follows from (2.3), (2.4) and (2.5) that

$$
\begin{align*}
& \mu_{j}(\varepsilon)^{-1}\left(\frac{\partial}{\partial \theta}\left(\varphi_{j}(\varepsilon)\right)\right)(\varepsilon \cos \theta, \varepsilon \sin \theta) \tag{2.7}\\
= & 2 t_{\mathrm{e}} \mu_{j}^{-1} \frac{\partial}{\partial r}\left(\varphi_{j}(r \cos (\theta+(\pi / 2)), r \sin (\theta+(\pi / 2)))_{\mid r=0}+0\left(\varepsilon^{(1 / 2)-s}\right) .\right.
\end{align*}
$$

We put (2.6) and (2.7) into (1.6) and we obtain

$$
\begin{equation*}
\mu_{j}(\varepsilon)-\mu_{j}=0\left(\varepsilon^{2}\right) . \tag{2.8}
\end{equation*}
$$

This together with (2.6) proves Theorem 1. Theorem 2 follows from (2.7) and (2.8).

Thus, our effort to get Theorems 1,2 will be concentrated on showing (2.1) $\sim(2.5)$. This will be completed in the section 6 .

Before going further, we explain the reason why $r_{\mathrm{e}}(x, y)$ approximates $G_{\mathrm{e}}(x, y)$ well. Put

$$
q_{\mathrm{e}}(x, y)=r_{\mathrm{e}}(x, y)-G_{\mathrm{e}}(x, y) .
$$

Then,

$$
\begin{aligned}
\Delta_{x} q_{\mathrm{e}}(x, y)=0, & x, y \in \Omega_{\mathrm{z}} \\
q_{\mathrm{e}}(x, y)=0, & x \in \gamma, y \in \Omega_{\mathrm{z}}
\end{aligned}
$$

and

$$
\begin{align*}
& \quad \frac{\partial}{\partial \nu_{x}} q_{\varepsilon}(x, y)_{\mid x=(\varepsilon, 0)}-\frac{\partial}{\partial x_{1}} G(x, y)_{\mid x=(\varepsilon, 0)} \tag{2.9}\\
& \\
& \quad-2 \pi \varepsilon^{2} \frac{\partial}{\partial x_{1}}\left\langle\nabla_{w} S(x, w), \nabla_{w} G(w, y)\right\rangle_{\mid w=\tilde{w}=0, x=(\varepsilon, 0)} \\
& =2 \pi \varepsilon^{2} \frac{\partial}{\partial x_{1}}\left(\frac{1}{2 \pi} \frac{\partial}{\partial w_{1}} \log |x-w| \cdot \frac{\partial}{\partial w_{1}} G(w, y)\right. \\
& \\
& \left.\quad+\frac{1}{2 \pi} \frac{\partial}{\partial w_{2}} \log |x-w| \cdot \frac{\partial}{\partial w_{2}} G(w, y)\right)_{\mid w=\tilde{w}=0, x=(\varepsilon, 0)} \\
& =-
\end{align*}
$$

where $S(x, y)=G(x, y)+(1 / 2 \pi) \log |x-y|$. And using (2.9) the $L^{p}\left(\Omega_{\mathrm{z}}\right)$-norm of the operator $\boldsymbol{G}_{\boldsymbol{e}}-\boldsymbol{R}_{\mathrm{e}}$ will be estimated in the section 4.

3. Preliminary lemmas

We recall the following:
Lemma 1 (Ozawa [5]). Assume that $u_{\mathrm{z}} \in C^{\infty}\left(\bar{\Omega}_{\mathrm{e}}\right)$ is harmonic in $\Omega_{\mathrm{g}}, u_{\mathrm{z}}(x)=0$ for $x \in \gamma$ and

$$
\max \left\{\left|\partial u_{\mathrm{e}}(x) / \partial \nu\right| ; x \in \partial B_{\mathrm{z}}\right\}=M
$$

Then,

$$
\left|u_{\mathrm{z}}(x)\right| \leq C \varepsilon M(1+|\log (|x-w| / \varepsilon)|), \quad x \in \Omega_{\mathrm{z}}
$$

holds for a constant C independent of ε.
For any periodic function $\alpha(\theta)$ of $\theta \in[0,2 \pi]$ with the Fourier expansion

$$
\alpha(\theta)=u_{0}+\sum_{k=1}^{\infty}\left(u_{k} \sin k \theta+t_{k} \cos k \theta\right),
$$

we put

$$
K_{\vartheta}(\alpha)=\sum_{k=1}^{\infty} k^{\vartheta}\left(u_{k}^{2}+t_{k}^{2}\right)^{1 / 2} .
$$

Lemma 2. Consider the equation

$$
\begin{equation*}
\Delta v(x)=0, \quad x \in \boldsymbol{R}^{2} \backslash \bar{B}_{1} \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial v}{\partial \nu}(x)_{\mid x=(\cos \theta, \sin \theta)}=\alpha(\theta) \tag{3.2}
\end{equation*}
$$

for given $\alpha(\theta)$. Then, there exists at least one solution v of (3.1), (3.2) satisfying

$$
\begin{equation*}
|v(x)| \leq C \max _{\theta}|\alpha(\theta)|(1+|\log | x| |) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{x \in \partial B_{1}}|\operatorname{grad} v(x)| \leq C_{\vartheta}\left(\max _{\theta}|\alpha(\theta)|\right) K_{\vartheta}(\alpha) \tag{3.4}
\end{equation*}
$$

for $\vartheta \in(1, \infty)$.
Proof. We know that

$$
u_{0}^{2}+\sum_{k=1}^{\infty}\left(u_{k}^{2}+t_{k}^{2}\right) \leq 2 \pi \max _{\theta}|\alpha(\theta)|^{2}
$$

Put

$$
v(x)=u_{0} \log r+\sum_{k=1}^{\infty}(-k)^{-1}\left(u_{k} \sin k \theta+t_{k} \cos k \theta\right) r^{-k}
$$

Then, $v(x)$ satisfies (3.1), (3.2), (3.3) and (3.4).
q.e.d.

Lemma 3. Fix $q \in(1 / 2, \infty)$. Then, under the same assumption as in Lemma 1,

$$
\max _{x \in \partial B_{\mathrm{e}}}\left|\operatorname{grad} u_{\mathrm{z}}(x)\right| \leq C\left(M+K_{2 q}\left(\left(\frac{\partial u_{\mathrm{z}}}{\partial \nu}(z)\right)_{1 z=(\mathrm{ecos} \cdot, \mathrm{e} \sin \cdot)}\right)\right) .
$$

Proof. In the following we write $(\varepsilon \cos \theta, \varepsilon \sin \theta)=\varepsilon e(\theta)$.
Applying the similarity transformation of coordinates to Lemma 1 , we have the following:
There exists at least one solution of

$$
\begin{array}{ll}
\Delta v_{\mathrm{e}}(x)=0, & x \in R^{2} \backslash \bar{B}_{z} \\
\left(\frac{\partial v_{z}}{\partial \nu_{z}}\right)(\varepsilon e(\theta))=\left(\frac{\partial u_{z}}{\partial \nu_{z}}\right)(\varepsilon e(\theta)), & \theta \in S^{1}\left(=\partial B_{1}\right)
\end{array}
$$

satisfying

$$
\left|v_{\mathrm{e}}(x)\right|_{x \in \partial B_{\varepsilon}} \leq C \varepsilon \max _{\theta}\left|\left(\frac{\partial u_{\mathrm{e}}}{\partial \nu}\right)(\varepsilon e(\theta))\right|(1+\mid \log (|x-\tilde{w}| / \varepsilon \mid))
$$

and

$$
\max _{\theta}\left|\operatorname{grad} v_{\mathrm{e}}(z)\right|_{z=\varepsilon e(\theta)} \leq C\left(\max _{\theta}\left|\left(\frac{\partial u_{\mathrm{e}}}{\partial \nu}\right)(\varepsilon e(\theta))\right|+K_{2 q}\left(\left(\frac{\partial u_{\mathrm{e}}}{\partial \nu}\right)(\varepsilon e(\cdot))\right)\right)
$$

for $q \in(1 / 2, \infty)$.
Then, the function v_{e} may not satisfy $v_{\mathrm{e}}(x)=0$ for $x \in \gamma$. Overcome this difficulty, we apply the same argument as in Ozawa [5; Proposition 1], and
we obtain the desired result.
q.e.d.

We wish to replace the semi-norm $K_{\vartheta}(\alpha)$ by a Hölder norm. To do this we let $H^{q, 2}\left(S^{1}\right)$ denote the L^{2}-Sobolev space of order q. Here q may not be an integer. It is well known that

$$
\begin{aligned}
C_{1}\|\alpha\|_{H^{q},\left(s^{1}\right)} & \leq\|\alpha\|_{L^{2}\left(s^{1}\right)}+K_{2 q}(\alpha) \\
& \leq C_{2}\|\alpha\|_{H^{q, 2}\left(s^{1}\right)}
\end{aligned}
$$

holds for a constant C_{1}, C_{2} independent of α if $q \geq 0$. We know that $H^{q, 2}\left(S^{1}\right)$ norm of u is equivalent to the following norm:

$$
\|u\|_{L^{2}\left(S^{1}\right)}+\left(\iint_{S^{1} \times S^{1}}|u(x)-u(y)|^{2}|x-y|^{-2 q-1} d x d y\right)^{1 / 2}
$$

when $0<q<1$. See, for example Adams [1]. Thus, we have

$$
\|u\|_{H^{q, 2}\left(s^{1}\right)} \leq C\left(\|u\|_{L^{2}\left(s^{1}\right)}+\|u\|_{C^{q+\sigma}\left(s^{1}\right)}\right)
$$

for any $\sigma>0$. Here $\left\|\| c^{\mu}\left(s^{1}\right)\right.$ denotes the usual Hölder norm on S^{1}.
We know the interpolation inequality

$$
\|u\|_{C^{\mu}\left(S^{1}\right)}^{\mu_{1}} \leq C\|u\|_{C^{0}\left(S^{1}\right)}^{1-(\mu \tilde{\mu})}\|u\|_{C^{\tilde{\mu}}\left(S^{1}\right)}^{(\mu / \tilde{\mu})}
$$

for any $0<\mu \leq \tilde{\mu}<1$.
Summing up these facts, we get

$$
K_{2 q}(\alpha) \leq C\left(\|\alpha\|_{L^{2}\left(S^{1}\right)}+\|\alpha\|_{C^{0}\left(S^{1}\right)}^{1-(\xi)}\|\alpha\|_{C^{\prime}\left(S^{1}\right)}^{\left(\xi^{\prime} / \xi\right)}\right.
$$

for $q \in(1 / 2,1), 1 / 2<\xi^{\prime}<\xi<1$.
Applying this to Lemma 3 we get the following
Corollary 1. Fix $1 / 2<\xi^{\prime}<\xi<1$. Under the assumption of Lemma 1,

$$
\begin{equation*}
\max _{x \in \partial B_{\mathrm{e}}}\left|\operatorname{grad} u_{\mathrm{e}}(x)\right| \leq C\left(M+M^{1-(\xi / \xi)} L_{\xi}(\varepsilon)^{(\xi / \xi)}\right) \tag{3.5}
\end{equation*}
$$

Here

$$
L_{\xi}(\varepsilon)=\left\|\left(\frac{\partial u_{\varepsilon}}{\partial \nu}\right)(z)_{\mid z=e(\cdot)}\right\|_{C^{\xi}\left(S^{1}\right)}
$$

4. Approximate Green's function $\boldsymbol{r}_{\mathbf{i}}(\boldsymbol{x}, \boldsymbol{y})$

We use the following properties of the Green function frequently, so we here write them:

$$
\begin{align*}
& |G(x, y)| \leq C|\log | x-y| | \tag{4.1}\\
& \left|\nabla_{x} G(x, y)\right| \leq C|x-y|^{-1} . \tag{4.2}
\end{align*}
$$

Thus,

$$
\begin{array}{ll}
|(\boldsymbol{G} f)(x)| \leq C\|f\|_{L^{p}(\Omega)} & (p>1) \\
\left|\operatorname{grad}_{x}(G f)(x)\right| \leq C\|f\|_{L^{p}(\Omega)} & (p>2) . \tag{4.4}
\end{array}
$$

First we obtain the following
Lemma 5. Let $p \in(2, \infty)$. Then, there exists a constant $C>0$ independent of ε such that

$$
\left\|\boldsymbol{R}_{\mathfrak{z}}-\boldsymbol{G}_{\mathrm{e}}\left|\|_{L^{p}\left(\Omega_{\varepsilon}\right)} \leq C \varepsilon^{2-(2 / p)}\right| \log \varepsilon \mid\right.
$$

Proof. Fix $f \in C_{0}^{\infty}\left(\Omega_{\mathrm{q}}\right)$. Then $g_{\mathrm{e}}=\left(\boldsymbol{R}_{\mathrm{e}}-\boldsymbol{G}_{\mathrm{q}}\right) f$ satisfies $\Delta g_{\mathrm{e}}(x)=0$ for $x \in \Omega_{\mathrm{g}}$ and $g_{\mathrm{e}}(x)=0$ for $x \in \gamma$.

By (2.9) we have

$$
\begin{align*}
& \left.\frac{\partial}{\partial \nu} g_{\mathrm{e}}(x)\right|_{1 x=(\varepsilon, 0)} \tag{4.5}\\
= & \frac{\partial}{\partial x_{1}}(\boldsymbol{G} f)(x)-\frac{\partial}{\partial w_{1}}(\boldsymbol{G} f)(w)+2 \pi \varepsilon^{2} \frac{\partial}{\partial x_{1}}\left\langle\nabla_{w} S(x, w), \nabla_{w}(\boldsymbol{G} f)(w)\right\rangle
\end{align*}
$$

for $w=\widetilde{w}(=0)$.
By the Sobolev embedding theorem we have

$$
\begin{equation*}
\|\boldsymbol{G} f\|_{C^{1+\alpha}(\Omega)} \leq C\|f\|_{L^{p}\left(\Omega_{\varepsilon}\right)} \tag{4.6}
\end{equation*}
$$

if $\alpha=1-(2 / p), 2<p<\infty$. Here $\left\|\|_{L^{p}\left(\Omega_{\varepsilon}\right)}\right.$ denotes the $L^{p}\left(\Omega_{\varepsilon}\right)$-norm. Therefore, (4.5) and (4.6) imply

$$
\max _{x \in \partial B_{\varepsilon}}\left|\frac{\partial}{\partial \nu} g_{\mathrm{\varepsilon}}(x)\right| \leq C \varepsilon^{1-(2 / p)}\|f\|_{L^{p}\left(\Omega_{\varepsilon}\right)} .
$$

By Lemma 1 we get the desired result.
The next lemma is stated in the introduction.
Lemma 6. Fix $p \in(1, \infty]$. Then,

$$
\left\|\left\|\boldsymbol{R}_{\boldsymbol{z}}-\boldsymbol{G}_{\mathbf{\varepsilon}}\right\|\right\|_{L^{p}\left(\Omega_{\varepsilon}\right)}=0\left(\varepsilon^{2-s}\right)
$$

holds for any fixed $s>0$ as ε tends to zero.
Proof. Assume that $p \in(1, \infty)$. Put $\boldsymbol{Q}_{\mathbf{z}}=\boldsymbol{R}_{\mathbf{z}}-\boldsymbol{G}_{\mathbf{q}}$. The operator $\boldsymbol{Q}_{\boldsymbol{z}}$ is self-adjoint on $L^{2}\left(\Omega_{\mathrm{q}}\right)$. Thus, we get

$$
\left\|\left\|\boldsymbol{Q}_{\mathrm{e}}\right\|_{L^{q}\left(\Omega_{\mathrm{e}}\right)}=\right\|\left\|\boldsymbol{Q}_{\mathrm{e}}\right\| \|_{L^{q^{\prime}}\left(\Omega_{\mathrm{e}}\right)} \quad\left(q^{-1}+\left(q^{\prime}\right)^{-1}=1\right) .
$$

By the Riesz-Thorin interpolation theorem we know that

$$
\left\|\left|\boldsymbol{Q}_{\mathfrak{z}}\left\|_{L^{p}\left(\Omega_{\mathfrak{e}}\right)} \leq\right\|\left\|\boldsymbol{Q}_{\mathrm{e}} \mid\right\|_{L^{q}\left(\Omega_{\mathfrak{z}}\right)}\right.\right.
$$

for any $p \in\left(q^{\prime}, q\right), q>2$. We take sufficiently large $q>2$ and apply Lemma 5 . Then we have Lemma 6 for $p \neq 1, \infty$.

Assume that $p=\infty$. Then, we get Lemma 6 with $p=\infty$ by the same argument as in the proof of Lemma 5.
q.e.d.

Now we wish to compare $\boldsymbol{R}_{\mathrm{z}}$ with $\tilde{\boldsymbol{R}}_{\mathrm{z}}$. We denote by $\hat{\chi}_{\mathrm{z}}$ the characteristic function of the set B_{q}. Then, $\hat{\chi}_{\mathrm{z}}=1-\chi_{\mathrm{q}}$.

We have the following
Lemma 7. Let $p \in(1, \infty), q \in(2, \infty)$ and $r \in(2, \infty)$. Then, there exists a constant C such that for any $v \in L^{q}(\Omega)$

$$
\begin{aligned}
& \left\|\tilde{\boldsymbol{R}}_{\mathrm{\varepsilon}} v-\boldsymbol{R}_{\mathrm{\varepsilon}}\left(\chi_{\mathrm{Z}} v\right)\right\|_{L^{p}\left(\Omega_{\Omega}\right)} \\
\leq & C\left(\varepsilon^{2-(2 / q)}\left|\log \varepsilon\|v\|_{L^{q}(\Omega)}+\varepsilon^{\left(2 / r^{\prime}\right)}\right| \log \varepsilon \mid\|v\|_{L^{r}\left(B_{\varepsilon}\right)}\right) .
\end{aligned}
$$

Proof. Put $k_{\mathrm{z}}=\chi_{\mathrm{q}} \tilde{\boldsymbol{R}}_{\mathrm{q}} v-\boldsymbol{R}_{\mathrm{e}}\left(\chi_{\mathrm{g}} v\right)$. Then, $\Delta_{x} k_{\mathrm{g}}(x)=0$ for $x \in \Omega_{\mathrm{g}}$ and $k_{\mathrm{z}}(x)=0$ for $x \in \gamma$.

We have

$$
\begin{align*}
& \frac{\partial}{\partial \nu} k_{\mathrm{z}}(x)_{\mid x=(\mathrm{\varepsilon}, 0)} \tag{4.7}\\
= & \frac{\partial}{\partial x_{1}}\left(\boldsymbol{G}\left(\hat{X}_{\mathrm{z}} v\right)\right)(x)_{\mid x=(\mathrm{z}, 0)}-\frac{\partial}{\partial w_{1}}\left(\boldsymbol{G}\left(\hat{X}_{\mathrm{z}} \xi_{\mathrm{z}} v\right)\right)(\tilde{w}) \\
& +2 \pi \varepsilon^{2} \frac{\partial}{\partial x_{1}}\left\langle\nabla_{w} S(x, w), \nabla_{w} \boldsymbol{G}\left(\hat{\chi}_{\mathrm{z}} \xi_{\mathrm{z}} v\right)(w)\right\rangle_{\mid x=(\varepsilon, 0), w=\tilde{w}} .
\end{align*}
$$

The first term minus the second term in the right hand side of (4.7) does not exceed

$$
\left.\varepsilon^{\theta}\left\|\boldsymbol{G}\left(\hat{\chi}_{\varepsilon} v\right)\right\|_{C^{1+\theta}(\Omega)}+\left\lvert\, \frac{\partial}{\partial w_{1}}\left(\boldsymbol{G}\left(\hat{\chi}_{z}\left(1-\xi_{z}\right)\right) v\right)\right.\right)(\widetilde{w}) \mid
$$

for $\theta \in(0,1) . \quad$ By (4.2) we see that

$$
\begin{aligned}
& \left|\nabla_{w} \boldsymbol{G}\left(\hat{\chi}_{\mathrm{z}} \xi_{\mathrm{z}} v\right)(\widetilde{w})\right|+\left|\nabla_{w} \boldsymbol{G}\left(\hat{\chi}_{\mathrm{z}}\left(1-\xi_{\mathrm{z}}\right) v\right)(\widetilde{w})\right| \\
\leq & \boldsymbol{C} \varepsilon^{\left(2 / r^{\prime}\right)-1}\|v\|_{L^{r}\left(B_{\mathrm{z}}\right)},
\end{aligned}
$$

where $\left(r^{\prime}\right)^{-1}=1-r^{-1}$. Thus, Lemma 7 follows from these estimates and Lemma 1.
q.e.d.

The following Lemma 8 asserts that $\varphi_{j}(\varepsilon)$ behaves well even in L^{p} space as ε goes to zero.

Lemma 8. Fix j and $p \in(1, \infty]$. Then,

$$
\left\|\varphi_{j}(\varepsilon)\right\|_{L^{p}\left(\Omega_{\xi}\right)} \leq C_{p}<\infty
$$

holds for a constant C_{p} independent of ε.
Proof. We devide $\varphi_{j}(\varepsilon)$ as follows:

$$
\begin{equation*}
\left.\varphi_{j}(\varepsilon)=\mu_{j}(\varepsilon)^{-1}\left(\boldsymbol{R}_{\mathbf{e}} \varphi_{j}(\varepsilon)\right)+\mu_{j}(\varepsilon)^{-1}\left(\left(\boldsymbol{G}_{\mathbf{z}}-\boldsymbol{R}_{\mathfrak{z}}\right) \varphi_{j}(\varepsilon)\right)\right) . \tag{4.8}
\end{equation*}
$$

Rauch-Taylor [8] proved that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \mu_{j}(\varepsilon)=\mu_{j} . \tag{4.9}
\end{equation*}
$$

By Lemma 6 we have

$$
\left\|\mu_{j}(\varepsilon)^{-1}\left(\boldsymbol{G}_{\boldsymbol{z}}-\boldsymbol{R}_{\boldsymbol{z}}\right) \varphi_{j}(\varepsilon)\right\|_{L^{p}\left(\Omega_{\varepsilon}\right)} \leq 0\left(\varepsilon^{2-s}\right)\left\|\varphi_{j}(\varepsilon)\right\|_{L^{p}\left(\Omega_{\varepsilon}\right)} .
$$

This together with (4.8) proves that

$$
\left\|\varphi_{j}(\varepsilon)\right\|_{L^{p}\left(\Omega_{\varepsilon}\right)} \leq C\left\|\boldsymbol{R}_{\mathrm{z}} \varphi_{j}(\varepsilon)\right\|_{L^{p}\left(\Omega_{\varepsilon}\right)} .
$$

By the definition of $\boldsymbol{R}_{\boldsymbol{e}}$ we have

$$
\left\|\boldsymbol{R}_{\varepsilon} \varphi_{j}(\varepsilon)\right\|_{L^{p}\left(\Omega_{\varepsilon}\right)} \leq C_{p}^{*}\left(1+\varepsilon|\log \varepsilon|^{1 / 2}\right)\left\|\varphi_{j}(\varepsilon)\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}
$$

for $p \in(1, \infty]$. Since $\varphi_{j}(\varepsilon)$ is a normalized eigenfunction we get the desired result.

5. An approximate eigenfunction of $\tilde{\boldsymbol{R}}_{\boldsymbol{z}}$

Let \boldsymbol{G}_{w} denote the functional $v(x) \mapsto(\boldsymbol{G} v)(w)$. Put

$$
A(\varepsilon):\left.v \mapsto 2 \pi\left\langle\nabla_{w} G(\cdot, w), \nabla_{w} G_{w}\left(\xi_{z} v\right)\right\rangle\right|_{w=\tilde{w}} .
$$

Then, $\tilde{\boldsymbol{R}}_{\boldsymbol{z}}=\boldsymbol{G}+\varepsilon^{2} A(\varepsilon)$. We wish to construct an approximate eigenvalue $\lambda^{*}(\varepsilon)$ and an approximate eigenfunction $\psi^{*}(\varepsilon)$ of $\tilde{\boldsymbol{R}}_{\mathrm{z}}$ in such a way that

$$
\begin{equation*}
\left\|\left(\tilde{\boldsymbol{R}}_{\mathrm{z}}-\lambda^{*}(\varepsilon)\right) \psi^{*}(\varepsilon)\right\|_{L^{2}(\Omega)}=o\left(\varepsilon^{2}\right) \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\psi^{*}(\varepsilon)\right\|_{L^{2}(\Omega)}=1+O\left(\varepsilon^{2}|\log \varepsilon|\right) \tag{5.2}
\end{equation*}
$$

By virtue of perturbation theory, we may take

$$
\lambda^{*}(\varepsilon)=\mu_{j}^{-1}+\varepsilon^{2} \lambda(\varepsilon),
$$

where $\lambda(\varepsilon)=\left(A(\varepsilon) \varphi_{j}, \varphi_{j}\right)_{L^{2}}$. Here $(,)_{L^{2}}$ denotes the inner product on $L^{2}(\Omega)$. And we may assume that $\psi^{*}(\varepsilon)$ is of the form

$$
\psi^{*}(\varepsilon)=\varphi_{j}+\varepsilon^{2} \psi(\varepsilon),
$$

where $\psi(\varepsilon)$ should satisfy (5.3) and (5.4):

$$
\begin{equation*}
\left(\boldsymbol{G}-\mu_{j}^{-1}\right) \psi(\varepsilon)=(\lambda(\varepsilon)-A(\varepsilon)) \varphi_{j} \tag{5.3}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\Omega}(\psi(\varepsilon))(x) \varphi_{j}(x) d x=0 \tag{5.4}
\end{equation*}
$$

Note that \boldsymbol{G} is a compact operator and that the right hand side of (5.3) is orthogonal to φ_{j}. Thus, the unique solution $\psi(\varepsilon)$ of (5.3), (5.4) exists. We see that

$$
\begin{equation*}
\left(\tilde{\boldsymbol{R}}_{\mathrm{z}}-\lambda^{*}(\varepsilon)\right) \psi^{*}(\varepsilon)=\varepsilon^{4}(A(\varepsilon)-\lambda(\varepsilon)) \psi(\varepsilon) \tag{5.5}
\end{equation*}
$$

To estimate the left hand sides of (5.1) and (5.2), we need the following
Lemma 9. For a constant C independent of ε, we have

$$
\begin{align*}
& \|A(\varepsilon)\| \|_{L^{p}(\Omega)} \leq C \varepsilon^{(2-p) / p}|\log \varepsilon|^{1 / 2}, \quad(p>2) \tag{5.6}\\
& \left\|\left|A(\varepsilon) \|_{L^{2}(\Omega)} \leq C\right| \log \varepsilon \mid\right. \tag{5.7}
\end{align*}
$$

and

$$
\begin{aligned}
& \|\psi(\varepsilon)\|_{L^{p}(\Omega)} \leq C \varepsilon^{(2-p) / p}|\log \varepsilon|^{1 / 2}, \quad(p>2) \\
& \|\psi(\varepsilon)\|_{L^{2}(\Omega)} \leq C|\log \varepsilon|
\end{aligned}
$$

Proof. By a Hölder inequality and (4.1) we obtain (5.6) and (5.7). Using (5.7) we have

$$
\begin{aligned}
\left\|(\lambda(\varepsilon)-A(\varepsilon)) \varphi_{j}\right\|_{L^{2}(\Omega)} & \leq C^{\prime}\|\mid A(\varepsilon)\| \|_{L^{2}(\Omega)} \\
& \leq C|\log \varepsilon|
\end{aligned}
$$

Thus, by virtue of the Fredholm theory we obtain a bound for $L^{2}(\Omega)$-norm of $\psi(\varepsilon)$. Similarly we get L^{p} estimates. q.e.d.

By (5.5) and Lemma 9 we have the following fact, which is stronger than (5.1).

Lemma 10. For a constant C independent of ε

$$
\begin{equation*}
\left\|\left(\tilde{\boldsymbol{R}}_{\varepsilon}-\lambda^{*}(\varepsilon)\right) \psi^{*}(\varepsilon)\right\|_{L^{2}(\Omega)} \leq C \varepsilon^{4}|\log \varepsilon|^{2} \tag{5.8}
\end{equation*}
$$

Since $\boldsymbol{G}_{\mathrm{z}}$ is approximated by $\boldsymbol{R}_{\boldsymbol{z}}$ (Lemma 6) and $\boldsymbol{R}_{\mathrm{e}}$ is approximated by $\tilde{\boldsymbol{R}}_{\boldsymbol{\varepsilon}}$ (Lemma 7), we may consider $\psi^{*}(\varepsilon)$ as an approximate eigenfunction of $\boldsymbol{G}_{\boldsymbol{e}}$. More precisely we have

Lemma 11. For a constant C independent of ε

$$
\begin{equation*}
\left\|\left(\boldsymbol{G}_{\mathrm{z}}-\lambda^{*}(\varepsilon)\right)\left(\chi_{\mathrm{z}} \psi^{*}(\varepsilon)\right)\right\|_{L^{2}\left(\Omega_{\mathrm{g}}\right)}=0\left(\varepsilon^{2-s}\right) \tag{5.9}
\end{equation*}
$$

holds, where s being an arbitrary fixed positive constant.
Proof. We see that the left hand side of (5.6) does not exceed

$$
\begin{align*}
\left\|\left(\boldsymbol{G}_{\mathrm{z}}-\boldsymbol{R}_{\mathrm{z}}\right)\left(\chi_{\mathrm{z}} \psi^{*}(\varepsilon)\right)\right\|_{L^{2}\left(\Omega_{\mathrm{e}}\right)} & +\left\|\tilde{\boldsymbol{R}}_{\mathrm{z}} \psi^{*}(\varepsilon)-\boldsymbol{R}_{\mathrm{z}}\left(\chi_{\mathrm{z}} \psi^{*}(\varepsilon)\right)\right\|_{L^{2}\left(\Omega_{\mathrm{\varepsilon}}\right)} \tag{5.10}\\
& +\left\|\left(\tilde{\boldsymbol{R}}_{\mathrm{z}}-\lambda^{*}(\varepsilon)\right) \psi^{*}(\varepsilon)\right\|_{L^{2}\left(\Omega_{\mathrm{g}}\right)} .
\end{align*}
$$

The last term is estimated by Lemma 10. By Lemma 7, the second term of (5.10) does not exceed

$$
C \varepsilon^{2-(2 / q)}|\log \varepsilon|\left\|\psi^{*}(\varepsilon)\right\|_{L^{q}(\Omega)}+C \varepsilon^{\left(2 / r^{\prime}\right)}|\log \varepsilon|\left\|\psi^{*}(\varepsilon)\right\|_{L^{r}\left(B_{\varepsilon}\right)} .
$$

We see from the definition of $\psi^{*}(\varepsilon)$ that

$$
\left\|\psi^{*}(\varepsilon)\right\|_{L^{r}\left(B_{\varepsilon}\right)} \leq\left\|\varphi_{j}\right\|_{L^{r}\left(B_{\varepsilon}\right)}+\varepsilon^{2}\|\psi(\varepsilon)\|_{L^{r}\left(B_{\varepsilon}\right)} .
$$

We apply Lemma 9 to this and we have

$$
\left\|\psi^{*}(\varepsilon)\right\|_{L^{r}\left(B_{\varepsilon}\right)} \leq C\left(\varepsilon^{3 / r}+\varepsilon^{2+(2-r) / r}|\log \varepsilon|^{1 / 2}\right)
$$

for $r>2$. Thus, the second term of (5.10) is $0\left(\varepsilon^{2-s}\right)$. The first term of (5.10) is also $0\left(\varepsilon^{2-s}\right)$, since we have Lemma 6 and $\left\|\psi^{*}(\varepsilon)\right\|_{L^{2}(\Omega)}=0(1)$. Summing up these facts we obtain (5.9).

The next Lemma states that $\mu_{j}(\varepsilon)$ is close to $\lambda^{*}(\varepsilon)$ and $\varphi_{j}(\varepsilon)$ is close to $\chi_{8} \psi^{*}(\varepsilon)$.

Lemma 12. Under the same assumption as in Theorem 1

$$
\begin{equation*}
\lambda^{*}(\varepsilon)-\mu_{j}(\varepsilon)=0\left(\varepsilon^{2-s}\right) \tag{5.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\varphi_{j}(\varepsilon)-t_{\mathrm{z}} \chi_{\mathrm{z}} \psi^{*}(\varepsilon)\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}=0\left(\varepsilon^{2-s}\right) \tag{5.12}
\end{equation*}
$$

hold.
Proof. We know from (5.9) and a spectral theory of compact self-adjoint operator that there exists at least one eigenvalue $\lambda_{*}(\varepsilon)$ of $\boldsymbol{G}_{\mathrm{z}}$ satisfying

$$
\lambda_{*}(\varepsilon)-\lambda^{*}(\varepsilon)=0\left(\varepsilon^{2-s}\right) .
$$

Rauch-Taylor [8] showed that $\mu_{k}(\varepsilon)$ tends to μ_{k} as ε tends to zero for any k. Thus, we get $\lambda_{*}(\varepsilon)=\mu_{j}(\varepsilon)^{-1}$.

By the eigenfunction expansion

$$
\boldsymbol{G}_{\mathbf{\imath}} f=\sum_{k=1}^{\infty} \mu_{k}(\varepsilon)^{-1}\left\langle\varphi_{k}(\varepsilon), f\right\rangle \varphi_{k}(\varepsilon),
$$

we have

$$
\begin{aligned}
& \left\|\left(G_{z}-\lambda^{*}(\varepsilon)\right)\left(\chi_{\mathrm{z}} \psi^{*}(\varepsilon)\right)\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}^{2} \\
= & \sum_{k=1}^{\infty}\left|\mu_{k}(\varepsilon)^{-1}-\lambda^{*}(\varepsilon)\right|^{2}\left|\left\langle\varphi_{k}(\varepsilon), \chi_{\mathrm{z}} \psi^{*}(\varepsilon)\right\rangle\right|^{2} .
\end{aligned}
$$

Since $\lambda^{*}(\varepsilon) \rightarrow \mu_{j}^{-1}$ and $\mu_{k}(\varepsilon)^{-1} \rightarrow \mu_{k}^{-1}$ as $\varepsilon \rightarrow 0$, we have

$$
\sum_{k=1, k \neq j}^{\infty}\left|\left\langle\varphi_{k}(\varepsilon), \chi_{\varepsilon} \psi^{*}(\varepsilon)\right\rangle\right|^{2}=0\left(\varepsilon^{4-2 s}\right)
$$

This implies

$$
\left\|\chi_{\mathrm{z}} \psi^{*}(\varepsilon)-\left\langle\varphi_{j}(\varepsilon), \chi_{\mathrm{z}} \psi^{*}(\varepsilon)\right\rangle \varphi_{j}(\varepsilon)\right\|_{L\left(\Omega_{\mathrm{\varepsilon}}\right)}=0\left(\varepsilon^{2-s}\right) .
$$

Thus,

$$
\left|\left\langle\varphi_{j}(\varepsilon), \chi_{\mathrm{e}} \psi^{*}(\varepsilon)\right\rangle^{2}-1\right|=0\left(\varepsilon^{4-2 s}\right)
$$

and we obtain (5.12).
q.e.d.

6. Proof of $(2.1) \sim(2.5)$

In this section we shall complete the proof of Theorems 1, 2 by giving proofs of (2.1) $\sim(2.5)$.

Recall the definition of $J_{k}(\varepsilon)$.

$$
\begin{aligned}
& J_{1}(\varepsilon)=\mu_{j}(\varepsilon)\left(\boldsymbol{G}_{\mathrm{z}}-\boldsymbol{R}_{\mathrm{z}}\right)\left(\varphi_{j}(\varepsilon)\right) \\
& J_{2}(\varepsilon)=\mu_{j}(\varepsilon) \boldsymbol{R}_{\mathrm{e}}\left(\varphi_{j}(\varepsilon)-\chi_{\mathrm{z}} \psi^{*}(\varepsilon)\right) \\
& J_{3}(\varepsilon)=\mu_{j}(\varepsilon) \boldsymbol{R}_{\mathrm{q}}\left(\chi_{\mathrm{z}} \psi^{*}(\varepsilon)\right) .
\end{aligned}
$$

Here we should state that we choose $\varphi_{j}(\varepsilon)$ so that $t_{\mathrm{e}}=1$, because we see in the final part of the section 5 that $t_{\mathrm{e}}^{2}=1$ for small $\varepsilon>0$.

Lemma 13. Fix an arbitrary $s>0$. Then,

$$
\left\|J_{1}(\varepsilon)\right\|_{L^{\infty}\left(\Omega_{\S}\right)}=0\left(\varepsilon^{2-s}\right)
$$

and (2.3) hold.
Proof. Let $\widetilde{\rho}_{j}(\varepsilon)$ be the extension of $\varphi_{j}(\varepsilon)$ to Ω putting its value zero on B_{q}. We know that $J_{1}(\varepsilon)$ is harmonic in Ω_{ε} and zero on γ. We have

$$
\begin{align*}
& \mu_{1}(\varepsilon) \frac{\partial}{\partial \nu_{z}}\left(J_{1}(\varepsilon)\right)(z)_{\mid z=\varepsilon e(\theta)} \tag{6.1}\\
= & \frac{\partial}{\partial r}\left(\left(G \widetilde{\mathscr{q}}_{j}(\varepsilon)\right)\right)(r \cos \theta, r \sin \theta)_{\mid r=\varepsilon} \\
& -\frac{\partial}{\partial r}\left(\left(\boldsymbol{G} \widetilde{\mathscr{P}}_{j}(\varepsilon)\right)(r \cos \theta, r \sin \theta)\right)_{\mid r=0} \\
& +2 \pi \varepsilon^{2}\left(\left.\frac{\partial}{\partial r}\left\langle\nabla_{w} S(x, w), \nabla_{w}\left(G \widetilde{\mathscr{P}}_{j}(\varepsilon)\right)(w)\right\rangle\right|_{x=\varepsilon e(\theta), w=\tilde{w}} .\right.
\end{align*}
$$

Thus, by the same argument as in the proof of Lemma 5 we have

$$
\begin{equation*}
\max _{x \in \partial B_{\varepsilon}}\left|\frac{\partial}{\partial \nu}\left(J_{1}(\varepsilon)\right)(x)\right| \leq C \varepsilon^{1-(2 / p)}\left\|\varphi_{j}(\varepsilon)\right\|_{L^{p}\left(\Omega_{\varepsilon}\right)} \tag{6.2}
\end{equation*}
$$

for $p>2$. By Lemma 8 we see that (6.2) does not exceed $C^{\prime} \varepsilon^{1-(2 / p)}$. This fact together with Lemma 1 show that

$$
\left\|J_{1}(\varepsilon)\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}=0\left(\varepsilon^{2-s}\right)
$$

We now wish to apply Corollary 1 to $J_{1}(\varepsilon)$ to prove (2.3). We know that $S(x, w) \in C^{\infty}(\Omega)$. Then, $C^{\xi}\left(S^{1}\right)$ norm of the third term in the right hand side of (6.1) (considering it as a function of θ) does not exceed C. Here we used (4.4) and Lemma 8. By the fact

$$
\|\boldsymbol{G} f\|_{C^{1+\xi}(\Omega)} \leq C\|f\|_{L^{\infty}(\Omega)} \quad(\xi<1)
$$

we see that the $C^{\xi}\left(S^{1}\right)$ norm of the first and the second term in the right hand side of (6.1) do not exceed $C_{\xi}^{\prime \prime}$ for $\xi<1$. From Corollary 1 we obtain

$$
\begin{equation*}
\max _{z \in \partial B_{\varepsilon}}\left|\operatorname{grad}_{z}\left(J_{1}(\varepsilon)\right)(z)\right| \leq C\left(\varepsilon^{1-s}+C_{\xi}\left(\varepsilon^{1-s}\right)^{\left(1-\left(\xi / \xi^{\prime}\right)\right)}\right) \tag{6.3}
\end{equation*}
$$

We take $\xi^{\prime}>1 / 2, \xi<1$ such that $\left|\xi^{\prime}-1 / 2\right|+|\xi-1|$ is sufficiently small and we get (2.3).

We have the following
Lemma 14. Fix an arbitrary $s>0$. Then

$$
\begin{equation*}
\left\|J_{2}(\varepsilon)\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}=0\left(\varepsilon^{2-s}\right) \tag{6.4}
\end{equation*}
$$

and (2.4) hold.
Proof. Put $\chi_{z}=\varphi_{j}(\varepsilon)-\chi_{\mathrm{z}} \psi^{*}(\varepsilon)$. Then, $J_{2}(\varepsilon)=\mu_{j}(\varepsilon) \boldsymbol{R}_{\mathrm{e}} \kappa_{\mathrm{g}}$. By the definition of $\boldsymbol{R}_{\mathrm{z}}$ and (4.2), (4.3) and (4.4) we have

$$
\begin{equation*}
\left\|J_{2}(\varepsilon)\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)} \leq C\left(\left\|\kappa_{\mathrm{\varepsilon}}\right\|_{L^{2}\left(\Omega_{\mathrm{\varepsilon}}\right)}+\varepsilon\left\|\kappa_{\mathrm{g}}\right\|_{L^{p}\left(\Omega_{\mathrm{\varepsilon}}\right)}\right) \tag{6.5}
\end{equation*}
$$

for $p \in(2, \infty)$. Lemma 8 asserts that

$$
\begin{equation*}
\left\|\kappa_{\mathrm{z}}\right\|_{L^{p}\left(\Omega_{\varepsilon}\right)} \leq C^{\prime}, \quad p \in(2, \infty) \tag{6.6}
\end{equation*}
$$

while Lemma 12 gives us the estimate

$$
\begin{equation*}
\left\|\kappa_{\mathrm{e}}\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}=0\left(\varepsilon^{2-s}\right) . \tag{6.7}
\end{equation*}
$$

Let s^{\prime} be an arbitrary fixed number. Then, by the Riesz-Thorin interpolation theorem we get

$$
\begin{equation*}
\left\|\kappa_{\mathrm{\varepsilon}}\right\|_{L^{p}\left(\Omega_{\varepsilon}\right)}=0\left(\varepsilon^{2-s^{\prime}}\right) \tag{6.8}
\end{equation*}
$$

for $p>2$ close to 2 . Thus, (6.4) is proved by (6.5), (6.6) and (6.7).

By the definition of $J_{2}(\varepsilon)$,

$$
\begin{equation*}
\left|\partial_{x_{i}} \partial_{x_{j}} G(x, y)\right| \leq C|x-y|^{-2} \tag{6.9}
\end{equation*}
$$

and (4.4) we have

$$
\max _{z \in \partial B_{\varepsilon}}\left|\operatorname{grad}_{z}\left(J_{2}(\varepsilon)\right)(z)\right| \leq C\left\|\kappa_{\varepsilon}\right\|_{L^{p}\left(\Omega_{\varepsilon}\right)}
$$

for $p \in(2, \infty)$. Thus, (2.4) is proved by (6.8). q.e.d.

Finally we have the following
Lemma 15. Fix an arbitrary $s>0$. Then, (2.2) and (2.5) hold.
Proof. We see that $\mu_{j}(\varepsilon)^{-1} J_{3}(\varepsilon)$ can be written as $\Pi(\varepsilon)+\Pi^{\prime}(\varepsilon)$. Here

$$
\Pi(\varepsilon)=\boldsymbol{G} \varphi_{j}+2 \pi \varepsilon^{2}\left\langle\nabla_{w} G(\cdot, w), \nabla_{w} \boldsymbol{G}\left(\chi_{\imath} \varphi_{j}\right)(w)\right\rangle_{\mid w=\tilde{w}}
$$

and

$$
\begin{aligned}
\Pi^{\prime}(\varepsilon)= & \boldsymbol{G}\left(\left(\chi_{\mathrm{z}}-1\right) \varphi_{j}\right)+\varepsilon^{2} \boldsymbol{G}\left(\chi_{\mathrm{z}} \psi(\varepsilon)\right) \\
& +2 \pi \varepsilon^{4}\left\langle\nabla_{w} G(\cdot, w), \nabla_{w} \boldsymbol{G}\left(\chi_{\mathrm{z}} \psi(\varepsilon)\right)(w)\right\rangle_{\mid w=\tilde{w}} .
\end{aligned}
$$

We have

$$
\begin{equation*}
\left\|\Pi^{\prime}(\varepsilon)\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)} \leq C\left(\left\|\varphi_{j}\right\|_{L^{p}\left(B_{\varepsilon}\right)}+\varepsilon^{2}\|\psi(\varepsilon)\|_{L^{r}(\Omega)}\right) \tag{6.10}
\end{equation*}
$$

for $p>1, r>2$. Thus, (6.10) is estimated by Lemma 9 and we get

$$
\begin{equation*}
\left\|\Pi^{\prime}(\varepsilon)\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}=0\left(\varepsilon^{2-s}\right) \tag{6.11}
\end{equation*}
$$

for any $s>0$.
On the other hand, by (4.4) we have

$$
\begin{equation*}
\left\|\Pi(\varepsilon)-\mu_{j}^{-1} \varphi_{j}\right\|_{L^{\infty}\left(\Omega_{\varepsilon}\right)}=0(\varepsilon) . \tag{6.12}
\end{equation*}
$$

Thus, (6.11) and (6.12) imply (2.2).
We wish to show (2.5). By (4.4) and (6.9) we see that max\{| $\operatorname{grad}_{2}\left(\Pi^{\prime}\right.$ $\left.(\varepsilon))(z) \mid ; z \in \partial B_{\mathrm{q}}\right\}$ does not exceed

$$
C\left(\left\|\varphi_{j}\right\|_{L^{r}\left(B_{\varepsilon}\right)}+\varepsilon^{2}\|\psi(\varepsilon)\|_{L^{r}(\Omega)}\right)
$$

for $r>2$. Thus,

$$
\begin{equation*}
\max _{z \in \partial B_{\mathrm{e}}}\left|\operatorname{grad}_{z}\left(\Pi^{\prime}(\varepsilon)\right)(z)\right|=0\left(\varepsilon^{1-s}\right) \tag{6.13}
\end{equation*}
$$

by Lemma 9. By the similar calculation as in (2.9) we see that

$$
\begin{align*}
& \left(\frac{\partial}{\partial \theta}\left(2 \pi \varepsilon^{2}\left\langle\nabla_{w} G(\cdot, w), \nabla_{w}\left(\boldsymbol{G} \varphi_{j}\right)(w)_{\mid w=\tilde{w}}\right)\right)(\varepsilon \cos \theta, \varepsilon \sin \theta)\right. \tag{6.14}\\
= & \mu_{j}^{-1}\left(\frac{\partial}{\partial \theta} \varphi_{j}\right)(\varepsilon \cos \theta, \varepsilon \sin \theta)+0\left(\varepsilon^{2}\right)\left|\nabla_{w}\left(\boldsymbol{G} \varphi_{j}\right)(\tilde{w})\right| .
\end{align*}
$$

Thus,

$$
\begin{align*}
& \left(\frac{\partial}{\partial \theta}\left(\Pi(\varepsilon)-\mu_{j}^{-1} \varphi_{j}\right)\right)(\varepsilon \cos \theta, \varepsilon \sin \theta) \tag{6.15}\\
= & \mu_{j}^{-1}\left(\frac{\partial}{\partial \theta} \varphi_{j}\right)(\varepsilon \cos \theta, \varepsilon \sin \theta)+0\left(\varepsilon^{2}\right)\left\|\varphi_{j}\right\|_{L^{r}(\Omega)} \\
& +0(1)\left|\nabla_{w}\left(\boldsymbol{G}\left(\hat{\chi}_{z} \varphi_{j}\right)\right)(\widetilde{w})\right|
\end{align*}
$$

for $r>2$. Thus, by Lemma 9, (4.4), (6.15) and

$$
\begin{align*}
& \left(\frac{\partial}{\partial \theta} \varphi_{j}\right)(\varepsilon \cos \theta, \varepsilon \sin \theta) \tag{6.16}\\
= & \frac{\theta}{\partial r}\left(\varphi_{j}(r \cos (\theta+(\pi / 2)), r \sin (\theta+(\pi / 2)))_{\mid r=0}+0(\varepsilon),\right.
\end{align*}
$$

we get (2.5).
q.e.d.

We have thus proved all of $(2.1) \sim(2.5)$ which were stated in the section
2. Therefore our proofs of Theorem 1 and 2 are complete.

References

[1] R. Adams: Sobolev spaces, Academic Press, New York, 1975.
[2] R. Figari, E. Orlandi and S. Teta: The Laplacian in regions with many small obstacles, Fluctuation around the limit operator, preprint (1984).
[3] P.R. Garabedian: Partial differential equations, J. Wiley and Sons, Inc., New York, 1964.
[4] P.R. Garabedian and M. Schiffer: Convexity of domain functionals, J. Analyse Math. 2 (1952-53), 281-369.
[5] S. Ozawa: Spectra of domains with small spherical Neumann boundary, J. Fac. Sci. Univ. Tokyo Sec. IA, 30 (1983), 259-277.
[6] S. Ozawa: Electrostatic capacity and eigenvalues of the Laplacian, Ibid. 30 (1983), 53-62.
[7] S. Ozawa: Random media and eigenvalues of the Laplacian, Comm. Math. Phys. 94 (1984), 421-437.
[8] J. Rauch and M. Taylor: Potential and scattering theory on wildly perturbed domains, J. Funct. Anal. 18 (1975), 27-59.

