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1. Introduction

We consider a bounded domain Ω in R2 with smooth boundary γ. Let
Be be the £-disk whose center is M)eΩ. We put Ωε=ΩVB8. We consider
the following eigenvalue problems (1.1) and (1.2):

(1.1) — Δχ#) — \(β)u(x) , x e Ωβ ,

u(x) = 0,

λvhere 9/9z> denotes the derivative along the inner normal vector at x with re-
spect to the domain Ω8.

(1.2) — Δxu(x) = \u(x) , # <Ξ Ω ,

Let Q<μ1(£)<μ2(€)<'~ be the eigenvalues of (1.1). Let
be the eigenvalues of (1.2). We arrange them repeatedly according to their
multiplicities. Denote by {9>y(£)}7-ι ({<£>./} 7= ι> respectively) a complete ortho-
nomal basis of Z/2(Ωε) (L2(Ω), respectively) consisting of eigenfunction of — Δ

associated with {μ/£)}Γ-ι (ί^y}7-ι> respectively).
In this note we consider the following problem:

Problem. What can one say about asymptotic behaviour of <p/£) as 6 tends
to zero ?

It is well known that μ/(£) tends to μj as £ tends to zero. See Rauch-
Taylor [8], Ozawa [5], As a consequence, μ/£) is simple for small £>0, if we
assume that μj is simple. Thus <£>; (£) is uniquely determined up to the arbi-
trariness of multiplication by +1 or —1.

We have the following Theorem 1. Theorem 2 is our main result.
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Theorem 1. Fix j. Assume that μy is simple. Then, the following state-
ments (i) and (ii) hold.
(i) We can choose <pj(£)for 8>0 so that

lim \ (<Pi(€))(x)<pj(x)dx = 1 .
ε->o jQg

(ii) If we choose <p, (£) as in (i), then

(1.3)

We introduce the polar coordinate z — ίv= (r cos θ, r sin 0) to state the
following

Theorem 2. ίY# j. Assume that μ; is a simple eigenvalue. If <£>,(£) is
chosen as in Theorem 1, then

(1.4) (̂  (<?,(£)))(£ cos 0,£ sin «)

r=0

for an arbitrary s>0.

REMARK. 1) Proofs of Theorems 1 and 2 are given in the section 2.
2) The remainder estimates in (1.3) and (1.4) are not uniform with respect

to;'.
3) Theorems 1 and 2 prove the conjecture stated in the previous work [5]
of the author.
4) The celebrated Hadamard variational formula (See Garabedian-Schiίfer [4])
says that

(1.5) JL.μχe) = -f
Όβ >

holds when μj is simple, where dσl denotes the line element on QBζ. If we
apply Theorems 1 and 2 to (1.5), then

Hence μ; (ε)— μy=0(£2). Using (1.5) once more, we can prove that

(1.6) μffi-μj = -(2π \ grad φj(tO)2-

while we have already obtained in [5] much stronger result

μj(ε)- μj = -(2π\
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However, discussion in [5] was very complicated. Present proof via Hadamard's
variational formula (1.5) is much simpler.

See Ozawa [6], [7], Figari-Orlandi-Teta [2] for other recent developments
on the asymptotic behaviour of the eigenvalues of the Laplacian under singular
variation of domains.

A part of this work was done while I stayed at Courant Institute of Mathe-
matical Sciences. I here express my sincere thanks to C.I. M.S., Professor
G. Papanicolaou and Ms. Vogelsang for their hospitality.

2. Sketch of the proof

Let G(x, y) be the Green function of the Laplacian in Ω under the Dirich-
let condition on γ. Let G8(#, y) be the Green function of the Laplacian in Ω8

satisfying

— ΔΛGε(#, y) = 8(x—y) , x,

9 , 3 t t ,
dvx

Let G (6rε, respectively) be the bounded linear operator on L2(Ω) (L2(Ωε),
respectively) defined by

(x)= Ge(x,y)g(y)dy,
JΩε

respectively. Then, (1.1) and (1.2) are transformed into the problems

(Geu)(x) = λ(£)-χ*)

(Gv)(x) = \^v(x) .

We want to compare Ge and G. It should be remarked that the Green opera-
tors G , and G act on different spaces L2(Ω8) and L2(Ω). One of technical
difficulties arises from here.

In order to relate Gs with G, we introduce the operators J?ε and Rt. To

describe integral kernel of R9 and R9, we put

<VX*, w), Vjb(w, y)y = Σ^L a(x, w) ^-b(w, y)
=ι dzϋf dWj

for any a, b^C\Ω,xΩ\(Ω,xΩl)d')ί where (Ω,xΩ)d denotes the diagonal set of
ΩxΩ. Then, <V«,, V^ is invariant under any orthogonal transformation of
an orthonomal coordinates (wl9 w2). We define
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r.(*, y\ «0 = G(x,

and

rt(x, y) = rt(x, y , a) .

Also we set

?.(*, JO ̂  G(x, y)+2π82<VwG(X> 10), VwG(w, y)>ι «-»?.(*)£. 00 >

where ξ^C°°(R2) satisfies 0<|ε(*)<l, ?,(*) = ! for x<=R2\Be and £,(*)=()
for x^Bt/2.

The operators jR8 and J?ε are defined by

respectively. Roughly speaking, Λε is a very good approximation of Gz. By

definition it is not difficult to compare Rz with jRε. Since Rz acts on L2(Ω)

and not on L2(Ω8), we can easily compare Rz with G. As a consequence we
can compare Gt with G.

Proof of Theorems 1, 2 are divided into several steps.
First we show

for any fixed ί>0 as 8 tends to zero. Here ||| |||/.*(αε) denotes the operator norm
on Z/(Ωf). This will be done in the section 4.

Second we consider Rs as a perturbation of G. We construct an approxi-

mate eigenfunction t/r*(£) and an approximate eigenvalue λ*(£) of R3. Here
λ*(£), ψ*(f) are explicitly constructed by usual perturbation method so that
they satisfy

and

Since λ*(6) and ^*(£) are constructed by perturbation theory, λ*(£) is close
to μj and ψ *(£) is close to φjf

A key step is to examine the following decomposition of £>/(£).

= Σ MB),

where
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J3(ε) =

Here %, is the characteristic function of Ωe and

ί, = sgn \
JQ,

We can prove the following facts. Here ί is an arbitrary fixed positive
constant:

(2.1)
(2.2)

(2.3) max | grad2 (/,(£))(*) | =

(2.4)

(2.5)

= 2ttμJ(ε)μJ1 :fo(r coβ(β+(W/2)), r

These will be proved in the section 6.
Here we assume (2.1)~(2.5) and we would like to prove Theorems 1 and

2. From (2.1) and (2.2) we obtain

(2.6)

It follows from (2.3), (2.4) and (2.5) that

(2.7) μ/6)-1 (J0(9>m ) (6 cos θ, £ sin θ)

- 2teμJ1^-(φj(r cos(0+Or/2)), r sin
σr

We put (2.6) and (2.7) into (1.6) and we obtain

(2.8)

This together with (2.6) proves Theorem 1. Theorem 2 follows from (2.7)
and (2.8).

Thus, our effort to get Theorems 1, 2 will be concentrated on showing
(2.1)~(2.5). This will be completed in the section 6.

Before going further, we explain the reason why rf(x, y) approximates

<?•*> well Put
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?•(*> y) = r*(χy y)-G*(*> y)
Then,

Δ,?,(#,:y) = 0, x,y^Ω

? (^y) = 0 »

and

(2.9) ^-?e(*> y)\*-w— £-<%*> jOu-
9z>Λ 9#!

-2τr£2-^-<VwS(*, w), V.G
8#!

- 2ττε2— f — — log I Λ?- w I —
9^\27r 8wj g ' 3̂

where S(x, y)=G(x, y)+(l/2π) log\x— y\ . And using (2.9) the Z/(Ωf)-norm
of the operator G9—R9 will be estimated in the section 4.

3. Preliminary lemmas

We recall the following:

Lemma 1 (Ozawa [5]). Assume that wgeC°°(Ω8) w harmonic in Ω8, u9(x)=Q

for #eγ αwrf

max { I Que(x)ldv \ x<= QB,} = M .

Then,

holds for a constant C independent of 6.

For any periodic function a(θ) of 0^[0, 2π\ with the Fourier expansion

a(θ) = Wo+Σ (uk sin kθ+tk cos kθ) ,

we put

(̂«) = Σ

Lemma 2. Consider the equation

(3.1) ΔI>(«) = o ,
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(3-2) ^(*)u=(cos<uinβ)=«(0)
ov

for given a(θ). Then, there exists at least one solution v of (3.1), (3.2) satisfying

(3.3) K^

and

(3 .4) max | grad v(x) \ < C^max | α(<9) | )K#(ά)
*e9-Bj θ

l, oo).

Proof. We know that

Put

v(x) = u0 log r+Σ (—k)-\uk sin kθ+tk cos kθ)r"k .

Then, υ(x) satisfies (3.1), (3.2), (3.3) and (3.4). q.e.d.

Lemma 3. Fix #e(l/2, oo). Then, under the same assumption as in
Lemma 1,

l2=(8cos ,8sin )

Proof. In the following we write (£ cos θ, 6 sin θ)=6e(θ).
Applying the similarity transformation of coordinates to Lemma 1, we

have the following:
There exists at least one solution of

satisfying

and

J. \ I ' /

Then, the function vt may not satisfy v9(x)=0 for x^j. Overcome this
difficulty, we apply the same argument as in Ozawa [5; Proposition 1], and
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we obtain the desired result. q.e.d.

We wish to replace the semi-norm K$(a) by a Holder norm. To do this
we let HQt2(S1) denote the ZΛSobolev space of order q. Here q may not be an
integer. It is well known that

<C2\ \a\\H**(si)

holds for a constant Cly C2 independent of a if <7>0. We know that
norm of u is equivalent to the following norm :

χsl \u(x)-u(y} \2\x-y\ -

when 0<ί<l. See, for example Adams [1]. Thus, we have

for any σ>0. Here || Hc^cs1) denotes the usual Holder norm on S1.
We know the interpolation inequality

for any
Summing up these facts, we get

for?e=(l/2,l),
Applying this to Lemma 3 we get the following

Corollary 1. Fix 1/2<£'<£<!. Under the assumption of Lemma 1,

(3.5) max | grad uζ(x)
χξ=dB

Here

fduA, v
\~7T~ }\%)\z^te^\ dv I

4. Approximate Green's function rt(x, y)

We use the following properties of the Green function frequently, so we
here write them:

(4.1) \G(x,y)\<C \\ag\x-y\\

(4.2) \V,G(X,y)\<C \x-y\-\
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Thus,

(4.3)

(4.4) I grad,(QO(*) | £C\\f\[Lf(ΰ> (p>2) .

First we obtain the following

Lemma 5. Let p^(2, oo). Then, there exists a constant OO independent
of 8 such that

Proof. Fix/<ΞC7(Ω8). Theng,=(R t—G t)f satisfies Δg,(x)=Q for

By (2.9) we have

(4.5) -̂ * (*)

= ^-(Gf}(X)-^(Gf)(w)+2πε2-^-<VmS(X, to), Vj(Gf)(to)>
OXi OW1 OXi

for w=w (=0).
By the Sobolev embedding theorem we have

(4.6) l|£/llc1+Λ(Ω)^CΊ|/||Lί(Ωε)

if a=l—(2//>), 2<p<°°. Here || ||^(Ωε) denotes the Z/(Ω8)-norm. There-
fore, (4.5) and (4.6) imply

max ;?*(*)

By Lemma 1 we get the desired result. q.e.d.

The next lemma is stated in the introduction.

Lemma 6. Fixp&(l,oo]m Then,

holds for any fixed s>0 as 6 tends to zero.

Proof. Assume that ^e(l, oo). Put QZ=RZ—GZ. The operator Qe is
self-adjoint on L2(Ωg). Thus, we get

By the Riesz-Thorin interpolation theorem we know that
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for any p^(q', q), q>2. We take sufficiently large q>2 and apply Lemma 5.
Then we have Lemma 6 for^>Φl, oo.

Assume that p=oo. Then, we get Lemma 6 with p=oo by the same
argument as in the proof of Lemma 5. q.e.d.

Now we wish to compare Rz with Rf. We denote by %β the characteristic

function of the set Bz. Then, Xε= 1 — %8.
We have the following

Lemma 7. Let p^(l, oo), q^(2, oo) and re (2, oo). Then, there exists

a constant C such that for any

(2/ί) i log ε i \\V\\L,M+6W) I log 6 1 IML^)) .

Proof. Put k,=%zRzv-R^v). Then, ΔA(*)=0 for #eΩε and Λβ(#)=
for x^j.

We have

(4.7) A-k,(x)^M

O 1

-<VκS(X, w), V.C(χi?ip)(w)>u.(tt(j,...iϊ.

The first term minus the second term in the right hand side of (4.7) does not
exceed

for ^^(0, 1). By (4.2) we see that

I + 1 v.

where (r')-1= 1— r"1. Thus, Lemma 7 follows from these estimates and
Lemma 1. q.e.d.

The following Lemma 8 asserts that <pj(B) behaves well even in Lp space
as 6 goes to zero.

Lemma 8. Fix j and p e ( 1 , oo ] . Then,
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holds for a constant Cp independent of B.

Proof. We devide <£>/£) as follows

(4.8) φj(ε) = /tχ£)-1(

Rauch-Taylor [8] proved that

(4.9)

By Lemma 6 we have

This together with (4.8) proves that

By the definition of R9 we have

I l/^(£)IL*(Ωε) <cf(i+ε i log £ i 1/2)l|?>χ£)IL*(Ωε)

for />e(l, oo]. Since £>/(£) is a normalized eigenfunction we get the desired

result. q.e.d.

5. An approximate eigenfunction of R9

Let Gw denote the functional v(x)\-*(Gv)(w). Put

A(ε}: v H* 2^<VBG( ( w), VjB&vM.-s .

Then, Λg— G-\-B2A(£). We wish to construct an approximate eigenvalue λ*(£)

and an approximate eigenfunction î *(£) of Rz in such a way that

(5.1) ll(

and

(5.2) H

By virtue of perturbation theory, we may take

λ*(£) - μJl

where \(S)=(A(g)<pj, <pj)L

2. Here ( , )L2 denotes the inner product on L2(Ω).
And we may assume that ψ>*(£) is of the form

where Λ/Γ(£) should satisfy (5.3) and (5.4):
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(5.3)

(5.4)
JΩ

Note that G is a compact operator and that the right hand side of (5.3) is ortho-

gonal to q>j. Thus, the unique solution τ/r(£ ) of (5.3), (5.4) exists.

We see that

(5.5) (Λ.

To estimate the left hand sides of (5.1) and (5.2), we need the following

Lemma 9. For a constant C independent of 6, we have

(5.6) lll^(£)IIUQ)<C£(2->)/i|log£|1/2, (p>2)

(5.7) IIU4(fi)IIL«(Q)£C|loge|

and

, (p>2)

Proof. By a Holder inequality and (4.1) we obtain (5.6) and (5.7). Using
(5.7) we have

<C|log£|.

Thus, by virtue of the Fredholm theory we obtain a bound for L2(Ω)-norm
of ψ(6). Similarly we get Lp estimates. q.e.d.

By (5.5) and Lemma 9 we have the following fact, which is stronger than
(5.1).

Lemma 10. For a constant C independent of €

(5.8)

Since G9 is approximated by Λ8 (Lemma 6) and Rz is approximated by

jββ (Lemma 7), we may consider ψ*(8 ) as an approximate eigenfunction of Gβ.
More precisely we have

Lemma 11. For a constant C independent of 6

(5.9) ll(β',-λ*(6))(χfψ*(e))||ii(Qί = 0(£2-')

holds, where s being an arbitrary fixed positive constant.

Proof. We see that the left hand side of (5.6) does not exceed
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(5.10)

The last term is estimated by Lemma 10. By Lemma 7, the second term of
(5.10) does not exceed

|log£| ||̂

We see from the definition of ψ *(£) that

We apply Lemma 9 to this and we have

IWε) < C(ff"+c*+*-'>* I log ε I

for r>2. Thus, the second term of (5.10) is Q(82~s). The first term of (5.10)
is also 0(£2"5), since we have Lemma 6 and ||ψ*(£)IL2(Q)=0(l). Summing up
these facts we obtain (5.9). q.e.d.

The next Lemma states that μy(£) is close to λ*(£) and <pj(B) is close to

Lemma 12. Under the same assumption as in Theorem 1

(S.ii) λ*(e)-A»Xe) = 0(£2-')

(5.12)

hold.

Proof. We know from (5.9) and a spectral theory of compact self-adjoint
operator that there exists at least one eigenvalue λ#(£) of G, satisfying

λ*(£)-λ*(£) = 0(£2-) .

Rauch-Taylor [8] showed that μk(8) tends to μk as £ tends to zero for any k.

Thus, we get λ*(e)=^Xβ)"1

By the eigenfunction expansion

we have

= Σ;
Since λ*^)-*^1 and μk(£)~l'-*• μJ1 as £->0, we have
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This implies

Thus,

and we obtain (5.12). q.e.d.

6. Proof of (2.1)~(2.5)

In this section we shall complete the proof of Theorems 1, 2 by giving
proofs of (2.1)~(2.5).

Recall the definition ofjk(£).

= μj(ε)(G,-R,)(φj(ε))
J2(€) = /*

Here we should state that we choose <£>/£) so that ίe— 1, because we see in the
final part of the section 5 that t\=\ for small £>0.

Lemma 13. Fix an arbitrary s>0. Then,

and (2.3) hold.

Proof. Let Φj(ε) be the extension of <PJ(£) to Ω putting its value zero
on Bt. We know that /j(£) is harmonic in Ω, and zero on γ. We have

(6.1) ft(e)-^-(7ι(e))(*)..̂ ,<»
9"z

cos ί, r sin 0)lf _.

r sn

\ d r * » > > « > J

Thus, by the same argument as in the proof of Lemma 5 we have

(6.2) max 9

8
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for p>2. By Lemma 8 we see that (6.2) does not exceed C'Sl~(2/p\ This
fact together with Lemma 1 show that

We now wish to apply Corollary 1 to J^S ) to prove (2.3). We know that

S(x, a^eC00^). Then, C^S1) norm of the third term in the right hand side
of (6.1) (considering it as a function of θ) does not exceed C. Here we used
(4.4) and Lemma 8. By the fact

we see that the C$(Sl) norm of the first and the second term in the right hand
side of (6.1) do not exceed C" for (•<!. From Corollary 1 we obtain

(6.3) max | grad, CΛ(fi))(*) |

We take ?'>l/2, ξ<l such that \ξ'— 1/2 1 + \ξ— 1 1 is sufficiently small and we
get (2.3). q.e.d.

We have the following

Lemma 14. Fix an arbitrary sX). Then

(6.4) Il/2(£)lli~(aε) = θ(ε2-0

and (2.4) hold.

Proof. Put %s=95;.(ε)— %, ψ *(£). Then, J2(ε)=μj(ε)Rtκt. By the defini-

tion of -R, and (4.2), (4.3) and (4.4) we have

(6.5)

for p£=(2, oo ). Lemma 8 asserts that

(6.6) lklL*cΩε)<C", j>e(2, oo),

while Lemma 12 gives us the estimate

(6.7) lk.llΛQβ)=0(O

Let ^' be an arbitrary fixed number. Then, by the Riesz-Thorin interpolation
theorem we get

(6.8) l

forp>2 close to 2. Thus, (6.4) is proved by (6.5), (6.6) and (6.7).
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By the definition of /2(£)>

(6.9) \dXίdXjG(x,y)\<C \x-y\~2

and (4.4) we have

max I grad, (/2(6))(*) | < C 1 1 κ,| |
*e9jδ

ε

for p<=(2, oo ). Thus, (2.4) is proved by (6.8). q.e.d.

Finally we have the following

Lemma 15. Fix an arbitrary s>0. Then, (2.2) and (2.5) hold.

Proof. We see that μ^ε)'1}^) can be written as Π(£)+IΓ(£). Here

and

Π'(£) = Gί((χ8-l)

+2π£4<VaG(', w), Vw

We have

(6.10) HΠ'^ll^

for p>ly r>2. Thus, (6.10) is estimated by Lemma 9 and we get

for any s>0.
On the other hand, by (4.4) we have

(6-12) l|π(£)-M7>, ll i»(Ωε)

Thus, (6.11) and (6.12) imply (2.2).
We wish to show (2.5). By (4.4) and (6.9) we see that max{|gradz(Π'

(£))(#) I se9.BE} does not exceed

for r>2. Thus,

(6.13) max | grad2 (Π'(£))(«) | = 0(6l~s)
Z(Ξ^Bζ

by Lemma 9. By the similar calculation as in (2.9) we see that

(6.14) JLfZjrfSCv.GO, H V^βVy)(a»),.^)(£ cos Θ, S sin θ)

j & cos θ, £ sin
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Thus,

(6.15) (Π(*)-/*7V/))(6 cos θ, S sin θ)

cos θ> 8 sin

for r>2. Thus, by Lemma 9, (4.4), (6.15) and

(6.16) ( — φ-3 )(ε cos 0, £ sin θ)
\ 9σ /

), rsin(<9+(,r/2)))lf=0+0(£) ,

we get (2.5). q.e.d.

We have thus proved all of (2. 1)~(2. 5) which were stated ίn the section

2. Therefore our proofs of Theorem 1 and 2 are complete.
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