A CHARACTERIZATION OF SOME PARTIAL GEOMETRIC SPACES

Dedicated to Professor Hirosi Nagao on his 60th birthday

Hiroshi KIMURA and Hiroyuki OHMORI

(Received April 17, 1984)

1. Introduction

A partial geometric space S of dimension $m \geqq 2$ defined in [2, 6] consists of the sets $\left\{A_{i}\right\}_{i=-1}^{m}$ and the set T such that the following eight axioms are satisfied:
(1) $A_{i} \cap A_{j}=\phi$ whenever $i \neq j$ and $-1 \leqq i, j \leqq m$.
(2) $\left|A_{-1}\right|=\left|A_{m}\right|=1$.
(3) $T \subset \prod_{i=-1}^{m} A_{i}$.

The elements of $A_{i},-1 \leqq i \leqq m$, are called i elements of S. The elements of T are called flags of S. There is a property called incidence which is a relation between the elements of S based on the flags.
(4) For each i element x_{i} there is a flag $\left(t_{-1}, \cdots, t_{m}\right) \in T$ such that $x_{i}=t_{i}$, where $-1 \leqq i \leqq m$.
(5) Whenever $\left(y_{-1}, \cdots, y_{m}\right) \in T$ and $\left(z_{-1}, \cdots, z_{m}\right) \in T$ and $y_{k}=z_{k}$ for some $k,-1 \leqq k \leqq m$, then there exists a flag $\left(t_{-1}, \cdots, t_{m}\right) \in T$, where $t_{i}=y_{i}$ for $-1 \leqq i \leqq k$, and $t_{j}=z_{j}$ for $k \leqq j \leqq m$.
(6) If $x_{i} \in A_{i}$ and $x_{j} \in A_{j}$, then x_{i} and x_{j} have an l intersection $x_{l} \in A_{l}$ and an s join $x_{s} \in A_{s}$. Here x_{i} and x_{j} are said to have an l intersection x_{l} (s join x_{s}), where $-1 \leqq l \leqq \min \{i, j\}(\max \{i, j\} \leqq s \leqq m)$ if and only if $x_{l}\left(x_{s}\right)$ is incident with x_{i} and x_{j} such that whenever x_{n} is an n element of S for $-1 \leqq n \leqq$ $\min \{i, j\}(\max \{i, j\} \leqq n \leqq m)$ which is incident with x_{i} and x_{j}, then x_{n} is incident with $x_{l}\left(x_{s}\right)$ and $-1 \leqq n \leqq l(s \leqq n \leqq m)$. By the definition, x_{i} and x_{j} have unique intersection and unique join.
(7) If $x_{i-1} \in A_{i-1}$ and $x_{i+1} \in A_{i+1}$ are incident, then there are $k(i) i$ elements which are incident with x_{i-1} and x_{i+1}, where $2 \leqq k(i)<\infty$, for $0 \leqq i \leqq m-1$. The number $k(i)$ is independent of the choice of x_{i-1} and x_{i+1}, and depends only on $i . \quad k(0), k(1), \cdots, k(m-1)$ are called the configuration parameters of S.
(8) Let $m \geqq 2$. If $x_{i} \in A_{i}$ and $x_{i+1} \in A_{i+1}$ have an ($i-1$) intersection x_{i-1} and an s join x_{s}, where $0 \leqq i \leqq m-2$ and $i+2 \leqq s \leqq m$, then there are $t(i, s, k) i$
elements y_{i}, which are incident with x_{i-1} and x_{i+1} such that y_{i} and x_{i} have an $(i+k)$ join for $1 \leqq k \leqq s-i-1$. Also $\sum_{k=1}^{s-i-1} t(i, s, k) \geqq 1$ for $0 \leqq i \leqq m-2$ and $i+2 \leqq$ $s \leqq m$. The numbers $t(i, s, k)$ are called the geometric parameters of S.

The concept of a partial geometric space of dimension m is an extension of the concept of a partial geometry introduced by R.C. Bose [1]. A partial geometry of dimension three introduced by R. Lasker and J. Dunbar [5] is called an L.D. partial geometric space of dimension three in [6].

We have two examples of partial geometric spaces of dimension m.
Example 1 [6]. Let A be a set consisting ($m+1$) distinct symbols, where $m \geqq 2$. Let $A_{-1}=\{\phi\}$. For $0 \leqq j \leqq m, A_{j}=\{B \subset A| | B \mid=j+1\}$. Note that $A_{m}=\{A\}$. Let $T=\left\{\left(t_{-1}, \cdots, t_{m}\right) \in \prod_{i=1}^{m} A_{i} \mid t_{i} \subset t_{i+1}\right.$ for $\left.-1 \leqq i \leqq m-1\right\}$. Then $S_{1}=\left(\left\{A_{i}\right\}_{i=-1}^{m}, T\right)$ is a partial geometric space of dimension m. The configuration parameters are $k(i)=2$ for $0 \leqq i \leqq m-1$. The geometric parameters are $t(i, i+2,1)=2$ for $0 \leqq i \leqq m-2$ and the rest geometric parameters need not be defined.

Example 2. Let $P G(m, q)$ be the finite projective geometry of dimension m and of order q, where $m \geqq 2$ and q is a prime power. Let $A_{-1}=\{\phi\}$. For $0 \leqq j \leqq m, A_{j}=\{B \mid B$ is a j dimensional subspace of $P G(m, q)\}$. Let $T=\left\{\left(t_{-1}\right.\right.$, $\left.\cdots, t_{m}\right) \in \prod_{i=-1}^{m} A_{i} \mid t_{i} \subset t_{i+1}$ for $\left.0 \leqq i \leqq m-1\right\}$. Then $S_{2}=\left(\left\{A_{i}\right\}_{i=-1}^{m}, T\right)$ is a partial geometric space of dimension m. The configuration parameters are $k(i)=q+1$ for $0 \leqq i \leqq m-1$. The geometric parameters are $t(i, i+2,1)=q+1$ for $0 \leqq i \leqq$ $m-2$ and the rest geometric parameters need not be defined.

Two partial geometric spaces S_{1} and S_{2} of dimension m have common property:
(i) $k(i)$ is constant for $0 \leqq i \leqq m-1$
(ii) $t(i, s, k)=k(i)$ for $0 \leqq i \leqq m-2$, where $s=i+2$ and $k=1$, and the rest geometric parameters need not be defined.

```

From (ii) of the property, we note that for any \(i\) element and \(i+1\) element which have an ( \(i-1\) ) intersection and are not incident, they have an \((i+2)\) join.

In section 2, we shall prove the following theorem.
Theorem. Let \(S=\left(\left\{A_{i}\right\}_{i=-1}^{m}, T\right)\) be a partial geometric space of dimension \(m \geqq 2\) satisfying property (\#). Then \(S=S_{1}\) if \(k(i)=2\), and \(S=S_{2}\) if \(k(i)=\alpha+1>\) 2 and \(m \geqq 3\).

In section 3, we shall give an another example of partial geometric space of dimension \(m \geqq 3\).

\section*{2. Proof of Theorem}

Let \(S=\left(\left\{A_{i}\right\}_{i=-1}^{m}, T\right)\) be a partial geometric space of dimension \(m \geqq 2\). Let \(x_{i} \in A_{i}\) and \(x_{j} \in A_{j}\), where \(-1 \leqq i, j \leqq m . \quad x_{i}\) is said to be incident with \(x_{j}\) if and only if there exists a flag \(\left(t_{-1}, \cdots, t_{m}\right) \in T\) such that \(x_{i}=t_{i}\) and \(x_{j}=t_{j}\). Let \(x_{j} \in A_{j}\) and \(x_{k} \in A_{k}\) such that \(x_{j}\) and \(x_{k}\) are incident, where \(-1 \leqq j<k \leqq m\). \(\phi\left(i, x_{j}, x_{k}\right)\) is the number of \(i\) elements of \(S\) which are incident with \(x_{j}\) and \(x_{k}\), where \(-1 \leqq i \leqq m\). The number \(\phi\left(i, x_{j}, x_{k}\right)\) is a finite positive integer which is independent of the choice of the \(j\) element \(x_{j}\) and the \(k\) element \(x_{k}\) [2]. Therefore put \(\phi(i, j, k)=\phi\left(i, x_{j}, x_{k}\right)\).

From now on in this section, we assume that \(S\) satisfies the property (\#).
Lemma 1. Let \(x_{i}\) and \(y_{i}\) be two distinct \(i\) elements such that they have an \((i-1)\) intersection \(x_{i-1}\) for \(0 \leqq i \leqq m-1\). Then \(x_{i}\) and \(y_{i}\) have an \((i+1)\) join.

Proof. Let \(x_{i+l}\) be a join of \(x_{i}\) and \(y_{i}\), where \(l>1\). Then there exists an \((i+1)\) element \(y_{i+1}\) which is incident with \(x_{i-1}\) and \(x_{i+l}\) and is not incident with \(x_{i}\). From the property (\#), we have \(l=2\) and there are \(k(i) i\) elements \(z_{i}\), which are incident with \(x_{i-1}\) and \(y_{i+1}\), such that \(z_{i}\) and \(x_{i}\) have an (i+1) join. Those \(k(i) i\) elements are distinct from \(y_{i}\). Consequently, there are \((k(i)+1) i\) elements which are incident with \(x_{i-1}\) and \(y_{i+1}\). This is a contradiction. Therefore \(l=1\), i.e. \(x_{i}\) and \(y_{i}\) have an \((i+1)\) join.

Lemma 2. \(\phi\left(i, x_{i-1}, x_{k}\right)=\phi(i, i-1, k)=k(i)(k(i)-1)^{k-i-1}+(k(i)-1)^{k-i-2}\) \(+\cdots+(k(i)-1)+1\), where \(0 \leqq i<k \leqq m\), and \(x_{i-1} \in A_{i-1}\) and \(x_{k} \in A_{k}\).

Proof. It shall be proved by induction on \(k-i+1\), say \(t\). When \(t=2\), from the definition, \(\phi\left(i, x_{i-1}, x_{i+1}\right)=\phi(i, i-1, i+1)=k(i)\). Therefore the lemma holds when \(t=2\). Suppose that \(t>2\) and assume that the lemma holds whenever \(k-i+1<t\), where \(0 \leqq i<k \leqq m\), and \(2<t \leqq m+1\). Let \(x_{i-1}\) be an ( \(i-1\) ) element and \(x_{k}\) be a \(k\) element such that \(x_{i-1}\) and \(x_{k}\) are incident in \(S\), where \(0 \leqq i \leqq m-2, i+2 \leqq k \leqq m\) and \(k-i+1=t\). Count triples ( \(x_{i}, x_{i+1}, x_{i+2}\) ), where \(x_{l}(i \leqq l \leqq i+2)\) is an \(l\) element such that \(x_{l^{\prime}}\) and \(x_{l^{\prime}+1}\left(i-1 \leqq l^{\prime} \leqq i+1\right)\), and \(x_{i+2}\) and \(x_{k}\) are incident in \(S\).
Given a fixed \(i\) element \(x_{i}\) which is incident with \(x_{i-1}\) and \(x_{k}\), there are \((k(i)\) \(\left.(k(i)-1)^{k-i-2}+(k(i)-1)^{k-i-3}+\cdots+(k(i)-1)+1\right)(i+1)\) elements \(x_{i+1}\), which are incident with \(x_{i}\) and \(x_{k}\), by the induction hypothesis.
Similarly, given a fixed pair ( \(x_{i}, x_{i+1}\) ), where \(x_{i-1}\) and \(x_{i}, x_{i}\) and \(x_{i+1}\), and \(x_{i+1}\) and \(x_{k}\) are incident in \(S\), there are \(\left(k(i)(k(i)-1)^{k-i-3}+(k(i)-1)^{k-i-4}+\cdots+(k\right.\) \((i)-1)+1)(i+2)\) elements, which are incident with both \(x_{i+1}\) and \(x_{k}\). Therefore the number of triples is
\[
\begin{aligned}
& \left(k(i)(k(i)-1)^{k-i-2}+(k(i)-1)^{k-i-3}+\cdots+(k(i)-1)+1\right) \times \\
& \left(k(i)(k(i)-1)^{k-i-3}+(k(i)-1)^{k-i-4}+\cdots+(k(i)-1)+1\right) \phi\left(i, x_{i-1}, x_{k}\right) .
\end{aligned}
\]

On the other hand, count pairs \(\left(x_{i}, x_{i+1}\right)\), where \(x_{l}(i \leqq l \leqq i+1)\) is an \(l\) element such that \(x_{l^{\prime}}\) and \(x_{l^{\prime}+1}\left(i-1 \leqq l^{\prime} \leqq i\right)\) are incident in \(S\). Let \(x_{i}\) and \(y_{i}\) be distinct two \(i\) elements which are incident with \(x_{i-1}\) and \(x_{k}\), then \(x_{i}\) and \(y_{i}\) have an \((i+1)\) join, say \(y_{i+1}\). For \(y_{i+1}\), there are \(\binom{k(i)}{2}\) pairs \(\left(x_{i}^{\prime}, y_{i}^{\prime}\right)\) such that an \(i\) elements \(x_{i}^{\prime}\) and \(y_{i}^{\prime}\) have an \((i+1)\) join \(y_{i+1}\) and an intersection \(x_{i-1}\), by the definition of \(k(i)\). Consequently there are \(\binom{\phi\left(i, x_{i-1}, x_{k}\right)}{2} k(i) /\binom{k(i)}{2}\) pairs \(\left(x_{i}, x_{i+1}\right)\) such that \(x_{i-1}\) and \(x_{i}, x_{i}\) and \(x_{i+1}\), and \(x_{i+1}\) and \(x_{k}\) are incident in \(S\). The contribution to triples of such a pair \(\left(x_{i}, x_{i+1}\right)\) is \(\left.\left(k(i)(k(i)-1)^{k-i-3}+\right) k(i)-1\right)^{k-i-4}\) \(+\cdots+(k(i)-1)+1)\) by the induction hypothesis. Therefore we get
\[
\begin{aligned}
& \left(k(i)(k(i)-1)^{k-i-2}+(k(i)-1)^{k-i-3}+\cdots+(k(i)-1)+1\right) \times \\
& \left(k(i)(k(i)-1)^{k-i-3}+(k(i)-1)^{k-i-4}+\cdots+(k(i)-1)+1\right) \phi\left(i, x_{i-1}, x_{k}\right) \\
& =\left(k(i)(k(i)-1)^{k-i-3}+(k(i)-1)^{k-i-4}+\cdots+(k(i)-1)+1\right) \times \\
& \binom{\phi\left(i, x_{i-1}, x_{k}\right)}{2} k(i) /\binom{k(i)}{2} .
\end{aligned}
\]

Consequently we have the lemma.
Remark. This lemma can be obtained from Theorem 7.1 in [6].
Lemma 3. If \(k(i)=2, \phi(i, i-1, k)=k-i+1\), and if \(k(i)=\alpha+1>2\), \(\phi(i, i-1, k)=\left(\alpha^{k-i+1}-1\right) /(\alpha-1)\), for \(0 \leqq i<k \leqq m\).

Proof. It is obvious from Lemma 2.
Lemma 4. If \(k(i)=2, \phi(i, j, k)=\binom{k-j}{i-j}\) for \(-1 \leqq j<i<k \leqq m\).
Proof. Let \(x_{j}\) be a \(j\) element and \(x_{k}\) be a \(k\) element such that \(x_{j}\) and \(x_{k}\) be incident in \(S\). Count \((k-j+1)\)-tuples ( \(x_{j}, \cdots, x_{i}, \cdots, x_{k}\) ), where \(x_{l}(j \leqq l \leqq\) \(k-1\) ) is an \(l\) element such that \(x_{l}\) and \(x_{l+1}\) are incident. By Lemma 2, there are \((k-j)(j+1)\) elements \(x_{j+1}\) which are incident with \(x_{j}\) and \(x_{k}\). For such \(x_{j+1}\), there are \((k-j-1)(j+2)\) elements which are incident with \(x_{j+1}\) and \(x_{k}\), and so on. Consequently there are \((k-j)!(k-j+1)\)-tuples. On the other hand, given a fixed \(i\) element \(x_{i}\) which is incident with \(x_{j}\) and \(x_{k}\), there are \((i-j)!(i-j+1)\)-tuples \(\left(x_{j}, \cdots, x_{i}\right)\) where an \(l\) element \(x_{l}\) and an \((l+1)\) element \(x_{l+1}\) are incident \((j \leqq l \leqq i-1)\), and there are \((k-i)!(k-i+1)\)-tuples \(\left(x_{i}, \cdots, x_{k}\right)\) where an \(l^{\prime}\) element \(x_{l^{\prime}}\) and an \(\left(l^{\prime}+1\right)\) element \(x_{l^{\prime}+1}\) are incident in \(S\), for \(i \leqq l^{\prime} \leqq k-1\). Therefore we get \(\phi\left(i, x_{j}, x_{k}\right)(k-i)!(i-j)!=(k-j)!\). Thus the proof is complete.

Lemma 5. If \(k(i)=\alpha+1>2, \quad \phi(i, j, k)=\prod_{l=1}^{i-j}\left(\alpha^{k-j+l}-1\right) /\left(\alpha^{l}-1\right)\) for \(-1 \leqq j<i<k \leqq m\).

Proof. It is similar to the proof of Lemma 4. So, we shall omit a proof.
We note that \(\phi(i, j, k)=\phi(i,-1, j)\) when \(i<j\), and \(\phi(i, j, k)=\phi(i, k, m)\) when \(k<i\). So, \(\phi(i, j, k)\) is defined for \(i, j\) and \(k\) such that \(-1 \leqq j<k \leqq m,-1\) \(\leqq i \leqq m\) and \(i \neq j, k\).

By the incidence structure in \(S\), an \(i\) element \(x_{i}\) can be corresponded to a subset \(b\left(x_{i}\right)\) of \(A_{0}\) consisting of 0 elements which are incident with \(x_{i}\), where \(0 \leqq i \leqq m\).

Lemma 6. The above correspondence of \(A_{i}\) to a family consisting of subsets of \(A_{0}\) is injective.

Proof. Assume that \(b\left(x_{i}\right)=b\left(y_{i}\right)\) for an \(i\) element \(y_{i}\left(\neq x_{i}\right)\). Let \(x_{i}\) be an \(l\) intersection of \(x_{i}\) and \(y_{i}\). Then \(l<i\) and \(b\left(x_{i}\right) \supseteqq b\left(x_{i}\right)\). On the other hand, \(\left|b\left(z_{j}\right)\right|=\phi(0,-1, j)\) for every \(j\) element \(z_{j}\). This contradicts \(\phi(0,-1, l)<\) \(\phi(0,-1, i)\).

Remark. Similarly we can prove that \(b\left(x_{i}\right) \neq b\left(x_{j}\right)\) for \(x_{i} \in A_{i}\) and \(x_{j} \in A_{j}\), where \(i \neq j\).

Lemma 7. If \(k(i)=2\), then \(S=S_{1}\).
Proof. \(\quad\left|A_{0}\right|=\phi(0,-1, m)=m+1\). Since \(\phi(0,-1, i)=i+1\), every element of \(A_{i}\) is a subset of \(A_{0}\) consisting of \(i+1\) elements. By Lemma 4 and Lemma \(6, A_{i}\) is a family of all subsets of \(A_{0}\) containing \(i+1\) elements. By the definition, for \(i<j, x_{i} \in A_{i}\) and \(x_{j} \in A_{j}\) are incident if and only if \(b\left(x_{i}\right) \subset b\left(x_{j}\right)\). Thus the proof is complete.

Next we assume that \(k(i)=\alpha+1 \geqq 3\) for \(0 \leqq i \leqq m-1\). By Lemma 6 , an \(i\) element \(x_{i}\) is identified with a subset of \(A_{0}\).

Lemma 8. \(A\) incidence structure \(D=\left(A_{0}, A_{m-1}\right)\) is a symmetric \(2-(v, k, \lambda)\) design, where \(v=\left(\alpha^{m+1}-1\right) /(\alpha-1), k=\left(\alpha^{m}-1\right) /(\alpha-1)\) and \(\lambda=\left(\alpha^{m-1}-1\right) /(\alpha-1)\).

Proof. By the definition, \(v=\phi(0,-1, m)\) and \(k=\phi(0,-1, m-1)\). Let \(x_{0}\) and \(y_{0}\) be two elements of \(A_{0}\). Then there exists a 1 element \(x_{1}\) by Lemma 1 which is a join of \(x_{0}\) and \(y_{0}\). But every element of \(A_{m-1}\) containing \(x_{0}\) and \(y_{0}\) has to contain \(x_{1}\). Thus we have \(\lambda=\phi(m-1,1, m)\). By Lemma 5, we have the lemma.

Elements of \(A_{0}\) and elements of \(A_{m-1}\) are called points and blocks in \(D\), respectively. For \(x_{i} \in A_{i}\) and \(y_{j} \in A_{j}\), where \(0 \leqq i \leqq j \leqq m-1\), we define \(\left\langle x_{i}, y_{j}\right\rangle\)
be an intersection of all blocks of \(D\) containing \(x_{i}\) and \(y_{j}\). Especially \(\left\langle x_{0}, y_{0}\right\rangle\) is called a line spanned by \(x_{0}\) and \(y_{0}\), where \(x_{0} \in A_{0}\) and \(y_{0} \in A_{0}\).

Lemma 9. Let \(x_{1}\) and \(y_{1}\) be two elements of \(A_{1}\). Then there is an element of \(A_{m-1}\) which is incident with \(x_{1}\) and not incident with \(y_{1}\).

Proof. Let \(x_{l}\) be an \(l\) join of \(x_{1}\) and \(y_{1}\). Then \(l>1\). By the property of \(x_{l}\), the number of elements of \(A_{m-1}\) which are incident with \(x_{1}\) and \(y_{1}\) equals to the number of elements of \(A_{m-1}\) which are incident with \(x_{l}\). This number is \(\phi(m-1, l, m)\) which is smaller than \(\phi(m-1,1, m)\) by Lemma 5. This proves the lemma.

Lemma 10. \(D\) is a design such that its points and blocks are points and hyperplanes of a finite projective geometry \(P\) of dimension \(m\), respectively.

Proof. Let \(x_{1}\) be a 1 join of \(x_{0}\) and \(y_{0}\), where \(x_{0}, y_{0} \in A_{0}\). By Lemma 1, \(x_{1}\) is contained in every block of \(D\) which is incident with \(x_{0}\) and \(y_{0}\). Therefore \(\left\langle x_{0}, y_{0}\right\rangle \supseteqq x_{1}\). If \(\left\langle x_{0}, y_{0}\right\rangle \neq x_{1}\), then there is an element \(z_{0}\) of \(\left\langle x_{0}, y_{0}\right\rangle\) which is not incident with \(x_{1}\). Let \(x_{l}\) be an \(l\) join of \(z_{0}\) and \(x_{1}\), where \(l>1\). Let \(z_{1}\) be an element of \(A_{1}\) which is incident with \(x_{l}\) and \(z_{0}\). Then \(z_{1} \neq x_{1}\) and \(z_{1}\) is contained in all blocks which contain \(x_{0}\) and \(y_{0}\). But by Lemma 9, there exists a block of \(D\) which is incident with \(x_{1}\) and not incident with \(z_{1}\), and hence \(z_{1}\) is not contained in \(\left\langle x_{0}, y_{0}\right\rangle\). Hence \(\left\langle x_{0}, y_{0}\right\rangle=x_{1}\). Therefore \((v-\lambda) /(k-\lambda)\) \(=\alpha+1=\left|x_{1}\right|\). By using a result in [4], we have the lemma.

Lemma 11. An \(i\) element \(x_{i}\) is a subspace of \(P\) of dimension \(i\) for \(1 \leqq i \leqq m\).
Proof. We shall prove the lemma by the induction on \(i\). By Lemma 10, the case of \(i=1\) is true. Let \(i \geqq 2\). Then there exist elements \(x_{i-1}\) and \(y_{i-1}\) of \(A_{i-1}\), and an element \(x_{i-2}\) of \(A_{i-2}\) such that they are incident with \(x_{i}\), and that \(x_{i-2}\) is incident with \(x_{i-1}\) and \(y_{i-1}\). By Lemma 6, there exists an element \(y_{0}\) of \(y_{i-1}\) which is not contained in \(x_{i-1}\). By the induction hypothesis, \(y_{i-2}\) \(=\left\langle x_{i-2}, y_{0}\right\rangle\) which is a subspace of \(P\) spanned by \(y_{0}\) and all elements of \(x_{i-2}\). Therefore we have \(\left\langle x_{i-1}, y_{0}\right\rangle=\left\langle x_{i-1}, y_{i-1}\right\rangle\). Since \(A_{m}\) is a projective space and \(x_{i-1}\) is an \(i-1\) dimensional subspace, \(\left\langle x_{i-1}, y_{0}\right\rangle\) is an \(i\) dimensional subspace, and hence \(\left|\left\langle x_{i-1}, y_{0}\right\rangle\right|=\left(\alpha^{i+1}-1\right) /(\alpha-1)\). On the other hand, we have \(\left\langle x_{i-1}, y_{i-1}\right\rangle \supset x_{i}\), because \(x_{i}\) is contained in every elements of \(A_{m-1}\) containing \(x_{i-1}\) and \(y_{i-1}\). By Lemma 3, \(\left|x_{i}\right|=\left|\left\langle x_{i-1}, y_{0}\right\rangle\right|\). Therefore we have \(x_{i}=\) \(\left\langle x_{i-1}, y_{0}\right\rangle\). Thus the proof is complete.

By Lemma 7 and Lemma 11, a proof of Theorem completes.

\section*{3. Another example}

Example 3. Let \(V\) be an \(m\) dimensional vector space over \(G F(2)(m \geqq 3)\),
and \(H\) the set consisting of all \(m-1\) dimensional subspaces of \(V\). Put \(A_{-1}\) \(=\{\phi\}, A_{m}=\{V-\{0\}\}\) and \(A_{i}=\left\{M_{i}^{c} \cap \cdots \cap M_{m-i}{ }^{c} \mid M_{1} \supsetneq M_{1} \cap M_{2} \supsetneq \cdots \supsetneq \bigcap_{u=1}^{m-i} M_{u}\right.\), \(\left.M_{u} \in H\right\}\) for \(0 \leqq i \leqq m-1\), where \(M_{u}{ }^{c}=V-M_{u}\). We say that \(x_{i} \in A_{i}\) is incident with \(x_{j} \in A_{j}\) if and only if \(x_{i} \subset x_{j}(i \leqq j)\). We shall show that \(S_{3}=\left(\left\{A_{i}\right\}_{i=-1}^{m}, T\right)\) is a partial geometric space of dimension \(m\), where \(T=\left\{\left(x_{-1}, \cdots, x_{i}, \cdots, x_{j}, \cdots, x_{m}\right) \in \prod_{i=-1}^{m} A_{i} \mid x_{i}\right.\) is incident with \(\left.x_{j}(-1 \leqq i<j \leqq m)\right\}\).

Lemma 12. For \(x_{i} \in A_{i},\left|x_{i}\right|=2^{i}(i \geqq 0)\).
Proof. Let \(x_{i}=\bigcap_{u=1}^{m-i} M_{u}{ }^{c}\), then \({ }_{u=1}^{m-i} M_{u}\) is a subspace of dimension \(i\). Therefore we have that by the principle of inclusion and exclusion \(\left|x_{i}\right|=2^{m}+\sum_{u=1}^{m-i}\) \(\binom{m-i}{u}(-1)^{u} 2^{m-u}=2^{i}(2-1)^{m-i}=2^{i}\).

Remark A. Let \(x_{0} \in A_{0}\) and \(M \in H\left(x_{0} \notin M\right)\). Since \(V-\{0\}\) is a projective space, \(M^{c}\) is an affine space. Thus \(M^{c}-\left\{x_{0}\right\}\) is a projective space over \(G F(2)\).

At first, we define the intersection and the join. For \(z_{l} \in A_{l}(0 \leqq l \leqq m-1)\), put \(K\left(z_{l}\right)=\left\{M \in H \mid M^{c} \supset z_{l}\right\}\), and \(K\left(z_{-1}\right)=H\) and \(K\left(z_{m}\right)=\phi\), where \(z_{-1} \in A_{-1}\) and \(z_{m} \in A_{m}\). Let \(x_{i}\) and \(y_{j}(-1 \leqq i, j \leqq m)\) be elements of \(A_{i}\) and \(A_{j}\), respectively. Then a set \(\bigcap_{u=1}^{m-l} L_{u}{ }^{c}\) is defined to be an \(l\) intersection of \(x_{i}\) and \(x_{j}\) where elements \(L_{u}(1 \leqq u \leqq m-l)\) of \(K\left(x_{i}\right) \cup K\left(y_{j}\right)\) satisfy \(L_{1} \supsetneq L_{1} \cap L_{2} \supsetneq \cdots ? \bigcap_{u=1}^{m-l} L_{u}\) and \(\bigcap_{u=1}^{m-l} L_{u} \subset L\) for any element \(L\) of \(K\left(x_{i}\right) \cup K\left(y_{j}\right)\). We denote \(\bigcap_{u=1}^{m-l} L_{u}{ }^{c}\) by \(x_{i-l} \wedge y_{j}\). We note that if there exists an element \(L_{m-l+1}\) of \(K\left(x_{i}\right) \cup K\left(y_{j}\right)\) such that \({ }_{u=1}^{m-l} L_{u}=\) \(\stackrel{\bigcap_{u=1}^{m-l+1}}{n} L_{u}\) and \(\bigcap_{u=1}^{m-l} L_{u}{ }^{c}=\stackrel{\bigcap_{u=1}^{m-l+1}}{{ }_{n}} L_{u}{ }^{c}\), then \(x_{i}\) and \(y_{j}\) have a -1 intersection. Because let \(\bar{V}=V / L_{1} \cap \cdots \cap L_{m-l}\) and \(\bar{L}_{u}=L_{u} / L_{1} \cap \cdots \cap L_{m-l}(1 \leqq u \leqq m-l)\). By Lemma 12, \(\left|\bar{L}_{1}{ }^{c} \cap \cdots \cap \bar{L}_{m-l}{ }^{c}\right|=1\), and hence \(\bar{L}_{1}^{c} \cap \cdots \cap \bar{L}_{m-l+1}{ }^{c}=\phi\). This implies \(x_{i} \wedge y_{j}=\phi\).
Next, a set \({ }_{w=1}^{m-s} J_{w}{ }^{c}\) is defined to be an \(s\) join of \(x_{i}\) and \(y_{j}\) where element \(J_{w}(1 \leqq\) \(w \leqq m-s)\) of \(K\left(x_{i}\right) \cap K\left(y_{j}\right)(\neq \phi)\) are satisfy \(J_{1} \supsetneq J_{1} \cap J_{2} \supsetneq \cdots \supseteq \bigcap_{w=1}^{m-s} J_{w}\) and \({\underset{w=1}{m-s} J_{w}}_{w}\) \(\subset J\) for any element \(J\) of \(K\left(x_{i}\right) \cap K\left(y_{j}\right)\). We denote \(\bigcap_{w=1}^{m-s} J_{w}{ }^{c}\) or \(V-\{0\}\) by \(x_{i} \vee y_{j}\) according to \(K\left(x_{i}\right) \cap K\left(y_{j}\right) \neq \phi\) or \(=\phi . \quad\) It is obvious that the intersection and the join oir \(x_{i}\) and \(y_{j}\) is well-defined.

By the above paragraph, we have the following lemma.
Lemma 13. Let \(K\) be a subset of \(H\). Then \(\bigcap_{N \in E} N^{c}\) is an element of \(A_{l}\) for some \(l\).

Lemma 14. Let \(x_{i}=\bigcap_{w=1}^{m-i} M_{w}{ }^{c}\) and \(x_{j}=\bigcap_{u=1}^{m-j} N_{u}{ }^{c}\) be elements of \(A_{i}\) and \(A_{j}\), respectively. If \(x_{i} \subset x_{j}\), then \(\bigcap_{w=1}^{m-i} M_{w} \subset \bigcap_{u=1}^{m-j} N_{u}\).

Proof. Suppose that there exists \(N_{z}(1 \leqq z \leqq m-j)\) such that \(\bigcap_{w=1}^{m-i} M_{w} \nsubseteq N_{z}\). Then \(\stackrel{\bigcap_{w=1}^{m-i}}{-} M_{w} \supsetneq{ }_{w=1}^{m-i} M_{w} \cap N_{z}\), so \(x_{i-1}=\bigcap_{w=1}^{m-i} M_{w}^{c} \cap N_{z}^{c}\) is an element of \(A_{i-1}\). Hence \(\bigcup_{w=1}^{m-i} M_{w} \cup N_{z} \supsetneq \bigcup_{w=1}^{m-i} M_{w}\) by Lemma 12. On the other hand, by the hypothesis \(x_{i} \subset x_{j}, \bigcup_{w=1}^{m-i} M_{w} \supset \bigcup_{w=1}^{w-j} N_{u}\). Hence \(\bigcup_{w=1}^{m-i} M_{w} \supset N_{z}\). This is a contradiction.

Lemma 15. Let \(W\) be an \(i\) dimensional subspace of \(V\). Then \(\mid\left\{x_{i} \in A_{i} \mid\right.\) \(x_{i}=\bigcap_{w=1}^{m-i} M_{w}^{c}\), where \(\left.\stackrel{n}{w=1}_{m-i}^{n} M_{w}=W\right\} \mid=2^{m-i}-1\).

Proof. Put \(\bar{V}=V / W\). By Lemma 12, \(\left|\bar{M}_{1}^{c} \cap \cdots \cap \bar{M}_{m-i}^{c}\right|=1\). Since \(G L\) \((m-i, 2)\) acts transitively on \(\bar{V}-\{\overline{0}\}\), we have the lemma.

By Lemmas 14 and 15, we have the following:
Lemma 16. \(\left|A_{0}\right|=2^{m}-1\) and \(\left|A_{i}\right|=\left(\prod_{u=1}^{i} \frac{2^{m+1-u}-1}{2^{u}-1}\right)\left(2^{m-i}-1\right)\) for \(m>i>\) 0.

Lemma 17. Let \(x_{i}=\bigcap_{u=1}^{m-i} M_{u}{ }^{c}\) be an element of \(A_{i}(0 \leqq i \leqq m-1)\), then \(\left|K\left(x_{i}\right)\right|\) \(=2^{m-i-1}\).

Proof. Without loss of generality, we may assume \(i=0\). By Lemma 12, put \(M_{1}^{c} \cap \cdots \cap M_{m}^{c}=\{a\}\), that is every elements of \(H\) contained in \(\bigcup_{u=1}^{m} M_{u}\) does not contain \(\{a\}\). Since the number of hyperplanes of \(V \mid\langle a\rangle\) equals \(2^{m-1}-1\), the number in the lemma equals \(\left(2^{m}-1\right)-\left(2^{m-1}-1\right)=2^{m-1}\).

Lemma 18. \(k(0)=k(m-1)=2\) and \(k(i)=3\) for \(0<i<m-1\).
Proof. Let \(x_{i}\) be an element of \(A_{i}\). Since \(\left|A_{0}\right|=2^{m}-1\) by Lemma 16 and \(\left|x_{1}\right|=2\) by Lemma 12, we have \(k(0)=2\). For \(k(m-1)\), consider a factor space. Then we have similarly that \(k(m-1)=2\). For \(0<i<m-1\), the lemma follows from Remark A and Example 2.

Lemma 19. Let \(a\) and \(x_{i}\) be elements of \(V-\{0\}\) and \(A_{i}\), respectively. Assume that there exist elements \(M\) and \(N\) of \(K\left(x_{i}\right)\) such that \(a \in M\) and \(a \notin N\), where \(i \geqq 0\). Then \(\left|\left\{L \in K\left(x_{i}\right) \mid a \in L\right\}\right|=\left|\left\{L \in K\left(x_{i}\right) \mid a \notin L\right\}\right|\).

Proof. Without loss of generality, we may assume \(\bigcap_{L \in \mathbb{K}\left(x_{i}\right)} L=\{0\}\), that is, \(i=0\). Put \(X=\left\{L \in K\left(x_{0}\right) \mid a \in L\right\}\) and \(Y=K\left(x_{0}\right)-X\). Let \(y_{j}=\bigcap_{L \in X} L^{c}\) and \(z_{l}=\bigcap_{L \in Y} L^{c}\). Since \(\bigcap_{L \in X} L \ni a, j>0\). Since \(z_{l} \ni a, z_{l} \neq x_{0}\), and hence \(l>0\). Since \(\left|K\left(x_{0}\right)\right|>1\)
\(K\left(y_{j}\right)\left|=2^{m-j-1} \geqq|X|\right.\) and \(| K\left(x_{0}\right)\left|>\left|K\left(z_{l}\right)\right|=2^{m-l-1} \geqq|Y|\right.\), we have that \(2^{m-1}\) \(=|X|+|Y| \leqq 2^{m-j-1}+2^{m-l-1}\). Hence \(j=l=1\). This proves the lemma.

Lemma 20. The geometric parameters are the following:
(1) \(t(i, i+2,1)=3\) for \(2<i+2<m\),
(2) \(t(i, m, m-1)=1\) and \(t(i, m, 1)=2\) for \(0<i \leqq m-2\),
(3) \(t(0,2,1)=i f\left\langle x_{0}, x_{1}\right\rangle\) is a subspace of dimension 3 and \(t(0, m, 1)=2\) if \(x_{0} \subset\left\langle x_{1}\right\rangle\), where \(x_{u}(u=0,1)\) are elements of \(A_{u}\) such that \(x_{0}\) is not incident with \(x_{1}\). The rest geometric parameters need not be defined.

Proof. (1) follows from Example 2 and Remark A. Let \(x_{i}\) and \(x_{i+1}\) be elements of \(A_{i}\) and \(A_{i+1}\), respectively, such that they have an \((i-1)\) intersection \(x_{i-1}\) and an \(m\) join \(x_{m}\). Considering a factor space, we may assume \(i=1\). Put \(x_{0}=\{a\}, x_{1}=\{a, b\}\) and \(x_{2}=\{a, c, d, e\}\) by Lemma 12, where \(a, b, c, d\) and \(e\) are distinct elements of \(V-\{0\}\). Since \(x_{m}=x_{1} \vee x_{2}\), there exist elements \(M\) and \(N\) of \(K\left(x_{1}\right)\) and \(K\left(x_{2}\right)\), respectively, such that \(M\) does not contain \(a\) and \(b\), and that \(N\) contains \(b\) and does not contain \(a, c, d\) and \(e\). Let \(Y=K\left(x_{0}\right)-K\left(x_{1}\right)\). Then \(|Y|=2^{m-2}\) by Lemma 17 and \(N(\in H)\) is contained in \(Y\) if and only if \(N\) contains \(b\) and does not contain \(a\). Put \(y_{1}=\bigcap_{N \in Y} N^{c}\), then \(x_{0} \subset y_{1} \subset x_{2}\) since \(\bigcap_{N \in Y} N\) \(\ni b\). Thus \(y_{1}\) is an element of \(A_{1}\) and \(K\left(y_{1}\right) \cap K\left(x_{1}\right)=\phi\), since \(Y=K\left(y_{1}\right)\). Therefore \(y_{1} \vee x_{1}\) is contained in \(A_{m}\) and \(t(1, m, m-1) \geqq 1\). Let \(z_{1}=\{a, c\}\) and \(w_{1}=\{a, d\}\). Since \(K\left(y_{1}\right) \cap K\left(x_{1}\right)=\phi\) and \(\left|K\left(x_{i}\right)\right|=\left|K\left(y_{1}\right)\right|=\left|K\left(x_{0}\right)\right| / 2\), \(K\left(z_{1}\right) \cap K\left(x_{1}\right) \neq \phi\) and \(K\left(w_{1}\right) \cap K\left(x_{1}\right) \neq \phi\). This implies that there are elements \(M\) and \(N\) of \(K\left(x_{1}\right)\) such that \(c \in M\) and \(c \notin N\). By Lemma 19, \(\mid K\left(x_{1}\right) \cap K\left(z_{1}\right)\)
 \(1) \geqq 2\). By the definition, \(\sum_{u=1}^{m-1} t(1, m, u)=k(1)=3\). This implies (2). Next assume that \(i=0\). Put \(x_{0}=\{a\}, x_{1}=\{b, c\}\) and let \(x_{s}=x_{0} \vee x_{1}\). Since \(\left|A_{1}\right|=\) \(\binom{2^{m}-1}{2}\) by Lemma \(16,\{a, b\}\) and \(\{a, c\}\) are contained in \(A_{1}\). Thus \(t(0, s, 1)=\) 2. If \(\langle a, b\rangle \ni c\), then \(|H|-3|\{M \in H \mid a \in M\}|+2|\{M \in H \mid M \supset\langle a, b\rangle\}|=\) \(\left(2^{m}-1\right)-3\left(2^{m-1}-1\right)+2\left(2^{m-2}-1\right)=0\). Therefore \(K\left(x_{0}\right) \cap K\left(x_{1}\right)=\phi\), so \(s=m\). If \(\langle a, b\rangle \nexists c\), then
\[
\begin{aligned}
& |H|-3 \mid\{M \in H \mid a \in M \text { and } b, c \notin M\}|+3|\{M \in H \mid a, b \in M \\
& \quad \text { and } c \notin M\}|-|\{M \in H \mid a, b, c \in M\}| \\
& \quad=\left(2^{m-1}-1\right)-3\left(2^{m-1}-1\right)+3\left(2^{m-2}-1\right)-\left(2^{m-3}-1\right)=2^{m-3} .
\end{aligned}
\]

Therefore \(|\{M \in H \mid a, b, c \notin M\}|=\left|K\left(x_{0} \vee x_{1}\right)\right|=2^{m-3}\) and hence \(x_{0} \vee x_{1}\) is an element of \(A_{2}\). This completes a proof of the lemma.

\section*{References}
[1] R.C. Bose: Strongly regular graphs, partial geometries and partially balanced designs, Pacific J. Math. 13 (1963), 389-419.
[2] R.C. Bose and R. Miskimins: Partial geometric spaces of \(m\) dimensions, Algebraic methods in graph theory Vol. I, II (Szeged, 1978), 37-45, Colloq. Math. Soc. Janos Bolyai, 25, North-Holland, Amsterdam, 1981.
[3] P. Dembowski: Finite geometries, Springer-Verlag, Berlin-New York, 1968.
[4] P. Dembowski and A. Wagner: Some characterization of finite projective spaces, Arch. Math. 11 (1960), 465-469.
[5] L. Lasker and J. Dunbar: Partial geometry of dimension three, J. Combin. Theory 24 (1978), 187-201.
[6] R. Miskimins: Partial geometries of dimension m, Ph. D. Thesis (Colorado State University: Summer, 1978).

Department of Mathematics Ehime University Matsuyama 790, Japan```

