ON NON-SINGULAR HYPERPLANE SECTIONS OF SOME HERMITIAN SYMMETRIC SPACES

Yusuke SAKANE

(Received September 6, 1982)

Let $P^{k}(\boldsymbol{C})$ denote a complex projective space of dimension k. The product space $P^{m}(\boldsymbol{C}) \times P^{n}(\boldsymbol{C})$ has a natural imbedding in $P^{m n+m+n}(\boldsymbol{C})$, called the Segre imbedding. Let V be a non-singular hyperplane section of $P^{m}(\boldsymbol{C}) \times P^{n}(\boldsymbol{C})$ in $P^{m n+m+n}(\boldsymbol{C})$. The identity connected component $\operatorname{Aut}_{0}(V)$ of the group of all holomorphic automorphisms of V has been determined by $J-I$. Hano [3]. For an irreducible Hermitian symmetric space M of compact type we have the canonical equivariant imbedding $j: M \rightarrow P^{N}(\boldsymbol{C})$. Now take a non-singular hyperplane section V of M in $P^{N}(\boldsymbol{C})$. In this note we shall determine the structure of the Lie algebra of $\operatorname{Aut}(V)$ fro the cases when M is a complex Grassmann manifold $G_{m, 2}(\boldsymbol{C})$ of 2-planes in \boldsymbol{C}^{m} and when M is $\mathrm{SO}(10) / \mathrm{U}(5)$, by applying Hano's method. In particular, using Lichnerowicz-Matsushima's theorem, we prove the following.

1) For the case M is $G_{m, 2}(\boldsymbol{C})(m \geq 4)$, if m is odd a non-singular hyperplane section V does not admit any Kähler metric with constant scalar curvature, and if m is even V is a kählerian C-space.
2) For the case M is $\mathrm{SO}(10) / \mathrm{U}(5), V$ does not admit any Kahler metric with constant scalar curvature.

The author would like to express his thanks to the referee for the valuable advice.

1. Preliminaries

A simply connected compact homogeneous complex manifold is called a C-space. A C-space is said to be kählerian if it admits a Kähler metric. We recall some known facts on kählerian C-spaces and holomorphic line bundles on these complex manifolds (cf. [1], [4]).

Fact 1. Every holomorphic line bundle on a kählerian C-space M is homogeneous. If we denote by $H^{1}\left(M, \theta^{*}\right)$ the group of all isomorphism classes of holomorphic line bundles on M and by $c_{1}(F)$ the Chern class of a holomorphic line bundle F, then the homomorphism $F \rightarrow c_{1}(F): H^{1}\left(M, \theta^{*}\right) \rightarrow H^{2}(M, \boldsymbol{Z})$ is bijective.

Fact 2. Every ample holomorphic line bundle on a kählerian C-space M is
very ample. Moreover for each very ample holomorphic line bundle the corresponding holomorphic imbedding of M can be realized as an orbit space of the irreducible representation of all holomorphic automorphism group Aut(M) of M.

From now on we assume that M is a kahlerian C-space with the second Betti number $b_{2}(M)=1$. In this case there is a unique very ample holomorphic line bundle L on M which is a generator of the group $H^{1}\left(M, \theta^{*}\right)$. The corresponding holomorphic imbedding for L is called the canonical imbedding of M and denoted by $j: M \rightarrow P^{N}(\boldsymbol{C})$. Let $h=c_{1}(L)$. Then h is a generator of $H^{2}(M, \boldsymbol{Z})$. For a divisor D on M let $\{D\}$ be the holomorphic line bundle on M associated to D. Then for a positive divisor D on M there is a positive integer $a(D)$ such that $c_{1}(\{D\})=a(D) h$. The integer $a(D)$ is called the degree of D.

Fact 3. Let $j: M \rightarrow P^{N}(\boldsymbol{C})$ be the canonical imbedding of a kählerian C-space M with $b_{2}(M)=1$. Then for each positive divisor D on M of degree a there exists a homogeneous polynomial F on \boldsymbol{C}^{N+1} of degree a such that D is the pull back of the divisor on $P^{N}(\boldsymbol{C})$ defined by the zero points of F by the canonical imbedding j.

For a non-singular hypersurface V of M the degree of the positive divisor defined by V is called the degree of V. Let $K(V)$ and $K(M)$ denote the canonical line bundles on V and M respectively. It is known that the first Chern class $c_{1}(M)$ of M is given by $c_{1}(M)=\kappa h$ for some positive integer κ. Since $K(V)=$ $\iota^{*}(K(M) \otimes\{V\})$ where $\iota: V \rightarrow M$ is inclusion, the first Chern class $c_{1}(V)$ of V is given by $c_{1}(V)=(\kappa-a) \iota^{*} h$ if the degree of V is a. In particular, if V is a non-singular hypersurface of degree $a<\kappa$, the first Chern class $c_{1}(V)$ of V is positive. It is also known that irreducible Hermitian symmetric spaces of compact type are kählerian C-spaces with the second Betti number 1 and the positive number $\kappa \geq 2$. Therefore if V is a non-singular hyperplane section of an irreducible Hermitian symmetric space M of compact type for the canonical imbedding $j: M \rightarrow P^{N}(C)$, the first Chern class $c_{1}(V)$ of V is positive.

Let $T(M)$ and $T(V)$ be the holomorphic tangent bundles of M and V respectively. Given a holomorphic vector bundle E, we denote by $\Omega^{0}(E)$ the sheaf of germs of local holomorphic sections of E.

Fact 4 (Kimura [5]). Let M be an irreducible Hermitian symmetric space of compact type. Assume that M is not a complex projective space $P^{n}(C)$ or a complex quadric $Q^{n}(\boldsymbol{C})$. Then for a non-singular hypersurface V of M the exact sequence of sheaves on M

$$
0 \rightarrow \Omega^{0}\left(T(M) \otimes\{V\}^{-1}\right) \rightarrow \Omega^{0}(T(M)) \rightarrow \Omega^{0}(T(M) \mid V) \rightarrow 0
$$

induces the exact sequence of cohomologies

$$
0 \rightarrow H^{0}(M, T(M)) \rightarrow H^{0}(V, T(M) \mid V) \rightarrow 0
$$

Moreover $H^{1}(V, T(M) \mid V)=(0)$.
Remark. If V is a non-singular hypersurface $Q^{n}(\boldsymbol{C})(n>3)$ of degree $a \neq 2$, the same result as in Fact 4 holds.

2. The case M is a complex Grassmann manifold $\boldsymbol{G}_{\boldsymbol{m}, 2}(\boldsymbol{C})$

Let ρ be the natural representation of $S L(m, \boldsymbol{C})$ on \boldsymbol{C}^{m} and consider the p th exterior representation $\Lambda^{p} \rho: S L(m, \boldsymbol{C}) \rightarrow G L\left(\Lambda^{p} \boldsymbol{C}^{m}\right)$ induced by ρ. Note that $\Lambda^{p} \rho$ is an irreducible representation of $S L(m, \boldsymbol{C})$. Fix a highest weight vector $v_{0} \in \Lambda^{p} \boldsymbol{C}^{m}$ and consider the subgroup U of $S L(m, C)$ defined by

$$
\left\{h \in S L(m, \boldsymbol{C}) \mid\left(\Lambda^{p} \rho\right)(h) v_{0}=c v_{0} \text { for some } c \in \boldsymbol{C}-(0)\right\}
$$

Then the map $j: S L(m, \boldsymbol{C}) / U \rightarrow P\left(\Lambda^{p} \boldsymbol{C}^{m}\right)$ defined by

$$
j(g U)=\left[\Lambda^{p} \rho(g)\left(v_{0}\right)\right] \quad \text { for } g \in S L(m, \boldsymbol{C}),
$$

where $[w]\left(w \in \Lambda^{p} \boldsymbol{C}^{m}\right)$ denotes the line determined by w, is the canonical imbedding of the Grassmann manifold $M=G_{m, p}(\boldsymbol{C})$ and is called the Plücker imbedding of M.

From now on we assume that M is a complex Grassmann manifold of 2-planes in \boldsymbol{C}^{m} which is not a complex projective space, so we may assume $m \geq 4$. We may also regard M as a non-singular projective subvariety of $P\left(\Lambda^{2} \boldsymbol{C}^{m}\right)$ by the canonical imbedding.

Theorem 1. For an integer $m \geq 4$ let V be a non-singular hyperplane section of $G_{m, 2}(\boldsymbol{C})$ in $P\left(\Lambda^{2} \boldsymbol{C}^{m}\right)$.
(1) If m is even, V is a kählerian C-space $S p(n, C) / P$ with the second Betti number 1 where $n=m / 2$ and P is a parabolic subgroup of $S p(n, C)$.
(2) If m is odd, the group $A u t(V)$ of all holomorphic transformations of V is not reductive and thus V does not admit any Kahler metric with constant scalar curvature. Moreover we have $H^{1}(V, T(V))=(0)$.

Proof. By the Lefschetz theorem on hyperplane sections, we have $b_{2}(V)=1$ since $b_{2}\left(G_{m, 2}(C)\right)=1$. From the fact 4 we see that every holomorphic vector field on V can be extended uniquely to a holomorphic vector field on M. Let $A=$ $\{g \in \operatorname{Aut}(M) \mid g(V)=V\}$. Then the Lie algebra \mathfrak{a} of A can be identified with the Lie algebra of all holomorphic vector fields on V. By means of irreducible representation $\Lambda^{2} \rho: S L(m, \boldsymbol{C}) \rightarrow G L\left(\Lambda^{2} \boldsymbol{C}^{m}\right)$ each element of $S L(m, \boldsymbol{C})$ maps a hyperplane of $P\left(\Lambda^{2} \boldsymbol{C}^{m}\right)$ to another hyperplane. Take a hyperplane H of $P\left(\Lambda^{2} \boldsymbol{C}^{m}\right)$ such that $V=H \cap M$. Note that such a hyperplane H in $P\left(\Lambda^{2} \boldsymbol{C}^{m}\right)$ is determined uniquely since the canonical imbedding $j: M \rightarrow P\left(\Lambda^{2} C^{m}\right)$ is full. Thus the Lie algebra \mathfrak{a} of A coincides with the Lie algebra of $A^{\prime}=\{g \in S L(m, C) \mid g \cdot H=H\}$. A hyperplane H is the zero locus of non-zero linear form B on $\Lambda^{2} C^{m}$. If we let

$$
b(z, w)=B(z \wedge w) \quad\left(z, w \in \boldsymbol{C}^{m}\right)
$$

b is a skew-symmetric form on \boldsymbol{C}^{m}. Therefore

$$
A^{\prime}=\left\{g \in S L(m, \boldsymbol{C}) \mid b(g \cdot z, g \cdot w)=\lambda(g) b(z, w), z, w \in \boldsymbol{C}^{m}\right.
$$

for some non-zero constant $\lambda(g) \in \boldsymbol{C}\}$.
Now we choose coordinates on \boldsymbol{C}^{m} in such a way as

$$
b(z, w)=\sum_{i=1}^{k}\left(z_{i} w_{k+i}-z_{k+i} w_{i}\right) \text { where } 1 \leq k \leq[m / 2]
$$

(that is, if $p_{a \beta}$ denote Plucker coordinates, the hyperplane H is defined by $p_{1 k+1}+$ $\left.\cdots+p_{k 2 k}\right)=0$.

We claim that $k=[m / 2]$ if V is non-singular. Suppose that $k<[m / 2]$. Then $2 k \leq m-2$. We can take vectors $z, w \in \boldsymbol{C}^{m}$ given by

$$
\begin{gathered}
z_{1}=\cdots=z_{2 k}=0, z_{2 k+1}=1, z_{2 k+2}=\cdots=z_{m}=0 \\
w_{1}=\cdots=w_{2 k+1}=0, w_{2 k+2}=1, w_{2 k+3}=\cdots=w_{m}=0
\end{gathered}
$$

respectively. The $z \wedge w$ determines a point of V which is singular, since

$$
d b=\sum_{j=1}^{k}\left(w_{k+i} d z_{i}+z_{i} d w_{k+i}-w_{i} d z_{k+i}-z_{k+i} d w_{i}\right)
$$

vanishes at this point. Hence $k=[m / 2]$.
Now we consider the cases where m is even or odd separately.
Case $1 \quad m=2 n$
In this case the Lie algebra \mathfrak{a} is given by the Lie algebra of

$$
\left\{\left.g \in S L(2 n, \boldsymbol{C})\right|^{t} g\left(\begin{array}{cc}
0 & 1_{n} \\
-1_{n} & 0
\end{array}\right) g=\lambda(g)\left(\begin{array}{cc}
0 & 1_{n} \\
-1_{n} & 0
\end{array}\right)\right\}
$$

where 1_{n} denotes $n \times n$ identity matrix. We may write an $m \times m$ matrix X in the form

$$
X=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

where A, B, C and D are $n \times n$ matrices. Thus we see that $X \in \mathfrak{a}$ if and only if $C={ }^{t} C, B={ }^{t} B$ and ${ }^{t} A+D=\mu(X) 1_{n}$ for some $\mu(X) \in C$. Since $\operatorname{tr}(X)=0$, we have $\mu(X)=0$ and hence $X \in \mathfrak{a}$ if and only if

$$
X \in \mathfrak{p}(n, \boldsymbol{C})=\left\{\left.X\right|^{t} X\left(\begin{array}{cc}
0 & 1_{n} \\
-1_{n} & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 1_{n} \\
-1_{n} & 0
\end{array}\right) X=0\right\}
$$

Therefore we may identify the connected component of the identity of A^{\prime} with $S p(n, \boldsymbol{C})$. Take two vectors $e_{1}={ }^{t}(1,0, \cdots, 0)$ and $e_{2}={ }^{t}(0,1,0, \cdots, 0)$ of \boldsymbol{C}^{m}. The $e_{1} \wedge e_{2}$ determines a point x_{0} of V (that is, in the Plücker coordinates, x_{0} is given by $P_{12} \neq 0$ and $p_{a \beta}=0$ otherwise). Let P be the isotropy subgroup at x_{0}. Then it is not difficult to see that P is a parabolic subgroup of $S p(n, \boldsymbol{C})$. Since dim $S p(n, C) / P=2(2 n-2)-1, \operatorname{dim} V=2(2 n-2)-1$ and V is compact, we see $V=$ $S p(n, C) / P$.

Case $2 m=2 n+1$
We may write a $(2 n+1) \times(2 n+1)$ matrix X in the form

$$
X=\left(\begin{array}{ll}
A & \alpha \\
\beta & \gamma
\end{array}\right)
$$

where A is a $2 n \times 2 n$ matrix. Then $X \in \mathfrak{a}$ if and only if $\alpha=0$ and

$$
{ }^{t} A\left(\begin{array}{cc}
0 & 1_{n} \\
-1_{n} & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 1_{n} \\
-1_{n} & 0
\end{array}\right) A=\mu(X)\left(\begin{array}{cc}
0 & 1_{n} \\
-1_{n} & 0
\end{array}\right)
$$

for some $\mu(X) \in \boldsymbol{C}$. Thus we get

$$
\begin{aligned}
\mathfrak{a}= & \left\{\left(\begin{array}{ll}
A & 0 \\
\beta & \gamma
\end{array}\right) \in \mathfrak{l l}(2 n+1, \boldsymbol{C}) \left\lvert\, A=\left(\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right){ }^{t} X_{2}=X_{2}\right.\right. \\
& \left.{ }^{t} X_{3}=X_{3}, X_{1}+{ }^{t} X_{4}=-(\gamma / n) 1_{n},{ }^{t} \beta \in \boldsymbol{C}^{2 n}, \gamma \in \boldsymbol{C}\right\}
\end{aligned}
$$

and $\operatorname{dim} \mathfrak{a}=2 n^{2}+3 n+1$. Let
$\mathfrak{n}=\left\{\left.\left(\begin{array}{ll}0 & 0 \\ \beta & 0\end{array}\right)\right|^{t} \beta \in \boldsymbol{C}^{2 n}\right\}$. Then \mathfrak{n} is an abelian ideal of \mathfrak{a}. On the other hand the center \mathfrak{z} of \mathfrak{a} is given by $\left\{a 1_{2 n+1} \mid a \in \boldsymbol{C}\right\}$. Since $\mathfrak{n} \cap \mathfrak{z}=(0), \mathfrak{a}$ is not reductive. By a theorem of Lichnerowicz-Matsushima [76], we see that V does not admit any Kähler metric with constant scalar curvature.

Now the exact sequence of sheaves

$$
0 \rightarrow \Omega^{0}(T(V)) \rightarrow \Omega^{0}(T(M) \mid V) \rightarrow \Omega^{0}(\{V\} \mid V) \rightarrow 0
$$

induces the exact sequence of cohomologies

$$
\left.\begin{array}{rl}
0 & \rightarrow H^{0}(V, T(V)) \\
& \rightarrow H^{0}(V, T(M) \mid V)
\end{array} \rightarrow H^{1}(V,\{V\} \mid V), T(V)\right) \rightarrow H^{1}(V, T(M) \mid V) \rightarrow \cdots .
$$

Since $H^{1}(V, T(M) \mid V)=(0), H^{0}(V, T(M) \mid V) \cong H^{0}(M, T(M))$ by the fact 4 and $h^{0}(V,\{V\} \mid V)=h^{0}(M,\{V\})-1$, we get

$$
\begin{aligned}
& h^{1}(V, T(V))=h^{0}(V, T(V))-h^{0}(M, T(M))+h^{0}(V,\{V\} \mid V) \\
& =2 n^{2}+3 n+1-\left((2 n+1)^{2}-1\right)+\binom{2 n+1}{2}-1=0
\end{aligned}
$$

q.e.d.

3. The case M is $S O(10) / U(5)$

Let M be an irreducible Hermitian symmetric space of compact type of type DIII. It is known that M is diffeomorphic to $S O(2 n) / U(n)(n \geq 4)$. Note that M is a complex quadric $Q^{6}(\boldsymbol{C})$ if $n=4$.

Consider a semi-spin representation of the complex simple Lie algebra g of type D_{n} and the corresponding representation ρ of the simply connected complex Lie Group G with the Lie algebra g. Fix a highest weight vector v_{0} and let U be the subgroup of G defined by $\left\{g \in G \mid \rho(g) v_{0}=c v_{0}\right.$ form some $c \in$ $\boldsymbol{C}-(0)\}$. Then a map

$$
j: G / U \rightarrow P\left(\boldsymbol{C}^{2^{n-1}}\right)
$$

defined by $j(g U)=\left[\rho(g) v_{0}\right]$ for $g \in G$, is the canonical imbedding of $M=G / U$.
We recall semi-spin representations of type D_{n} (cf. [2], chap. VIII, §13), so that we can fix our notations. Let W be a $2 n$-dimensional complex vector space and Φ a non-degenerate symmetric bilinear form on W. Then W is a direct sum of maximal totally isotropic subspaces F and F^{\prime} of W; $W=F \oplus F^{\prime}$. Let $\left\{e_{1}, \cdots, e_{n}, e_{-n}, \cdots, e_{-1}\right\}$ be a Witt basis of W, that is, $\left\{e_{1}, \cdots, e_{n}\right\}$ and $\left\{e_{-n}, \cdots\right.$, $\left.e_{-1}\right\}$ are bases of F and F^{\prime} respectively which satisfy the relation $\Phi\left(e_{i}, e_{-j}\right)=\delta_{i j}$ for $i, j=1, \cdots, n$. The corresponding matrix of Φ with respect to a Witt basis is given as

$$
\left(\begin{array}{ll}
0 & s \\
s & 0
\end{array}\right) \text { where } s=\left(\begin{array}{ccc}
0 & & 1 \\
& 1 & \\
. & & \\
1 & & 0
\end{array}\right)
$$

and the Lie algebra g can be given by

$$
\left\{\left.\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \right\rvert\, B=-s^{t} B s, C=-s^{t} C s, D=-s^{t} A s\right\}
$$

Let $E_{p, q}$ be a matrix unit, that is, the (k, l)-component of $E_{p, q}$ is given by $\delta_{k p} \delta_{l q}$. Put $\mathfrak{h}=\{X \in \mathfrak{g} \mid X$ is a diagonal matrix $\}$ and $H_{i}=E_{i, i}-E_{-i,-i}$ for $i=1, \cdots, n$. Then $\left\{H_{1}, \cdots, H_{n}\right\}$ is a basis of \mathfrak{h}. Let $\left\{\varepsilon_{1}, \cdots, \varepsilon_{n}\right\}$ be the dual basis of the dual space \mathfrak{b}^{*}.

Put

$$
\begin{aligned}
& X_{\varepsilon_{i}-\varepsilon_{j}}=E_{i, j}-E_{-j,-i} \\
& X_{-\varepsilon_{i}+\varepsilon_{j}}=-E_{j, i}+E_{-i,-j} \\
& X_{\varepsilon_{i+\ell j}}=E_{i,-j}-E_{j,-i} \\
& X_{-\varepsilon_{i}-\varepsilon_{j}}=-E_{-j, i}+E_{-i, j} \\
& \text { for } 1 \leq i<j \leq n .
\end{aligned}
$$

Then \mathfrak{G} is a Cartan subalgebra of g and the root system \sum of \mathfrak{g} relative to \mathfrak{h} is given by $\sum=\left\{ \pm \varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i<j \leq n\right\}$. Let $\alpha_{1}=\varepsilon_{1}-\varepsilon_{2}, \alpha_{2}=\varepsilon_{2}-\varepsilon_{3}, \cdots, \alpha_{n-1}=$ $\varepsilon_{n-1}-\varepsilon_{n}, \alpha_{n}=\varepsilon_{n-1}+\varepsilon_{n}$. Then $\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ is a fundamental root system Π of Σ and the fundamental weights corresponding Π to are

$$
\begin{aligned}
& \Lambda_{a_{i}}=\varepsilon_{1}+\cdots+\varepsilon_{i} \quad(1 \leq i \leq n-2) \\
& \Lambda_{a_{n-1}}=\frac{1}{2}\left(\varepsilon_{1}+\cdots+\varepsilon_{n-2}+\varepsilon_{n-1}-\varepsilon_{n}\right) \\
& \Lambda_{a_{n}}=\frac{1}{2}\left(\varepsilon_{1}+\cdots+\varepsilon_{n-2}+\varepsilon_{n-1}+\varepsilon_{n}\right)
\end{aligned}
$$

Now semi-spin representations are irreducible representations of g with the highest weight $\Lambda_{a_{n-1}}$ and $\Lambda_{\omega_{n}}$ respectively.

Let Q be the quadric form defined by $x \rightarrow \Phi(x, x) / 2$ and let $C(Q)$ denote the Clifford alegbra of W relative to Q. Let N be the exterior algebra of the maximal totally isotropic subspace F^{\prime}. We shall identify F and the dual of F^{\prime} via Φ. For $x \in F^{\prime}$ and $y \in F$ let $\lambda(x)$ and $\lambda(y)$ denote the left exterior product by x and left interior product by y in N respectively; so that for $x \in F^{\prime}$ and $y \in F$

$$
\begin{aligned}
& \lambda(x) a_{1} \wedge \cdots \wedge a_{k}=x \wedge a_{1} \wedge \cdots \wedge a_{k} \\
& \lambda(y) a_{1} \wedge \cdots \wedge a_{k}=\sum_{i=1}^{k}(-1)^{i-1} \Phi\left(a_{i}, y\right) a_{1} \wedge \cdots \wedge \widehat{a}_{i} \wedge \cdots \wedge a_{k}
\end{aligned}
$$

where $a_{1}, \cdots, a_{k} \in F^{\prime}$.
Then we get that $\lambda(x)^{2}=\lambda(y)^{2}$ and $\lambda(x) \lambda(y)+\lambda(y) \lambda(x)=\Phi(x, y) 1$, and there exist a unique homomorphism of $C(Q)$ into $\operatorname{End}(N)$, denoted also by λ, which is a prolongation of the map $\lambda: F \cup F^{\prime} \rightarrow \operatorname{End}(N)$. Let $C^{+}(Q)$ denote the subalgebra oî $C(Q)$ spanned by even elements and put

$$
N_{+}=\sum_{p: \text { even }} \Lambda^{p} F^{\prime}, N_{-}=\sum_{p: \text { odd }} \Lambda^{p} F^{\prime}
$$

Now N_{+}and N_{-}are stable for the restriction of λ to $C^{+}(Q)$, and the representations λ_{+}and λ_{-}of $C^{+}(Q)$ in N_{+}and N_{-}respectively are called semi-spin representations of $C^{+}(Q)$. These are simple $C^{+}(Q)$-modules. There also exists a canonical linear map $f: \mathrm{g} \rightarrow C^{+}(Q)$ which satisfies $[f(X), f(Y)]=f([X, Y])$ for X
and Y in \mathfrak{g} and $f(\mathfrak{g})$ generates the associative algebra $C^{+}(Q)$. Furthermore if N is a left $C^{+}(Q)$-module and ρ is the corresponding homomorphism of $C^{+}(Q)$ into $\operatorname{End}(N)$, then $\rho \circ f$ is a representation of g in N (cf. [2], p. 195, Lemma 1). Thus $\rho_{+}=\lambda_{+} \circ f$ and $\rho_{-}=\lambda_{-} \circ f$ are irreducible representations of \mathfrak{g}. In particular, the action of g on N is given as follows:

$$
\begin{aligned}
& X_{\varepsilon_{i}-\varepsilon_{j}}\left(e_{-i_{1}} \wedge \cdots \wedge e_{-i_{k}}\right)=\lambda\left(e_{i}\right)\left(e_{-j} \wedge e_{-i_{1}} \wedge \cdots \wedge e_{-i_{k}}\right) \\
& X_{-\varepsilon_{i}+\varepsilon_{j}}\left(e_{-i_{1}} \wedge \cdots \wedge e_{-i_{k}}\right)=-\lambda\left(e_{j}\right)\left(e_{-i} \wedge e_{-i_{1}} \wedge \cdots \wedge e_{-i_{k}}\right) \\
& X_{-\varepsilon_{i}-\varepsilon_{j}}\left(e_{-i_{1}} \wedge \cdots \wedge e_{-i_{k}}\right)=e_{-i} \wedge e_{-j} \wedge e_{-i_{1}} \wedge \cdots \wedge e_{-i_{k}} \\
& X_{\varepsilon_{i}+\varepsilon_{j}}\left(e_{-i_{1}} \wedge \cdots \wedge e_{-i_{k}}\right)=\lambda\left(e_{i}\right) \lambda\left(e_{j}\right)\left(e_{-i_{1}} \wedge \cdots \wedge e_{-i_{k}}\right)
\end{aligned}
$$

where $1 \leq i<j \leq n$ and

$$
\begin{aligned}
& H\left(e_{-i_{1}} \wedge \cdots \wedge e_{-i_{k}}\right) \\
& =\left(\frac{1}{2}\left(\varepsilon_{1}+\cdots+\varepsilon_{n}\right)-\left(\varepsilon_{i_{1}}+\cdots+\varepsilon_{i_{k}}\right)(H)\left(e_{-i_{1}} \wedge \cdots \wedge e_{-i_{k}}\right)\right.
\end{aligned}
$$

for $H \in \mathfrak{h}$. Particularly we see that the highest weights of ρ_{+}and ρ_{-}are $\Lambda_{\boldsymbol{\omega}_{n}}$ and $\Lambda_{\omega_{n-1}}$ respectively. The representation ρ_{-}is the contragradient representation of ρ_{+}.

From now on we consider the case $n=5$ exclusively.
Theorem 2. Let V be a non-singular hyperplane section of $M^{10}=$ $S O(10) / U(5)$ in $P^{15}(C)$ via the canonical imbedding. Then the group $A u t_{0}(V)$ is not reductive and thus V does not admit any Kähler metric with constant scalar curvature. Moreover $H^{1}(V, T(V))=(0)$.

In order to prove Theorem 2 we shall first classify the hyperplanes of N_{+}by means of the action of the Lie group G. For a linear form $B: N_{+} \rightarrow \boldsymbol{C}$ and $g \in G$ let $g^{*} A$ denote the linear form defined by $\left(g^{*} A\right)(n)=A(g \cdot n)$ for $n \in N_{+}$. Now linear forms B and B_{1} are called G-equivalent if there is an element $g \in G$ such that $B_{1}=g^{*} B$.

Lemma. Let $B: N_{+}=\boldsymbol{C} \cdot 1+\Lambda^{2} F^{\prime}+\Lambda^{4} F^{\prime} \rightarrow \boldsymbol{C}$ be a linear form. Then B is G-equivalent to either a linear form on $\boldsymbol{C} \cdot 1$ or a linear form on $\Lambda^{2} F^{\prime}$.

Proof. We may assume $B \neq 0$. Take a basis $\left\{e_{-1}, \cdots, e_{-5}\right\}$ of F^{\prime} and fix it. A basis of N_{+}is now given by $\left\{1, e_{-i} \wedge e_{-j}, e_{-1} \wedge \cdots \wedge \widehat{e}_{-k} \wedge \cdots \wedge e_{-5} \mid 1 \leq i<j \leq\right.$ $5, k=1, \cdots, 5\}$ and the corresponding dual basis of $\left(N_{+}\right)^{*}$ will be denoted by

$$
\left\{1,\left(e_{-i} \wedge e_{-j}\right)^{*},\left(e_{-1} \wedge \cdots \wedge \hat{e}_{-k} \wedge \cdots \wedge e_{-5}\right)^{*} \mid 1 \leq i<j \leq 5, k=1, \cdots, 5\right\}
$$

Step 1. We claim the linear form B is G-equivalent to

$$
\alpha \cdot 1+\sum_{i<j} \beta_{i j}\left(e_{-i} \wedge e_{-j}\right)^{*}+\sum_{k} \gamma_{k}\left(e_{-1} \wedge \cdots \wedge \hat{e}_{-k} \wedge \cdots \wedge e_{-5}\right)^{*}
$$

with $\alpha \neq 0$.
The linear form B can be written as

$$
B=\beta \cdot 1+\sum_{i<j} \tilde{\beta}_{i j}\left(e_{-i} \wedge e_{-1}\right)^{*}+\sum_{k} \tilde{\gamma}_{k}\left(e_{-1} \wedge \cdots \wedge \hat{e}_{-k} \wedge \cdots \wedge e_{-5}\right)^{*}
$$

We may assume that $\beta=0$. Let $X=\sum_{k<l} p_{k l} X_{-\varepsilon_{k}-\varepsilon_{l}}$ be an element of g . Then we have

$$
\exp X(1)=1+\sum_{k<l} p_{k l} e_{-k} \wedge e_{-l}+\frac{1}{2} \sum_{k<l} \sum_{i<j} p_{k l} p_{i j} e_{-i} \wedge e_{-j} \wedge e_{-k} \wedge e_{-l}
$$

(a) The case when $\widetilde{\beta}_{i j} \neq 0$ for some (i, j).

Let $p_{k l}=0$ for $(k, l) \neq(i, j)$ and $p_{i j}=1$.
Then $B(\exp X(1))=\tilde{\beta}_{i j} \neq 0$ and the linear form
$(\exp X)^{*} B$ has the required property.
(b) The case when $\tilde{\beta}_{k l}=0$ for all (k, l).

Take $\gamma_{k} \neq 0$ and choose $\{i, j, s, t\}$ such a way as $i<j<s<t$ and $i, j, s, t \neq k$. Let $X=X_{-\varepsilon_{i}-\varepsilon_{j}}+X_{-\varepsilon_{s}-\varepsilon_{t} .}$. Then $B(\exp X(1))=\gamma_{k} \neq 0$ and the linear form $(\exp X)^{*} B$ has the required property.

Step. 2. We claim the linear form B is G-equivalent to

$$
\alpha \cdot 1+\left(e_{-1} \wedge e_{-2}\right)^{*}+\left(e_{-3} \wedge e_{-4}\right)^{*}+\sum_{k} \gamma_{k}^{\prime}\left(e_{-1} \wedge \cdots \wedge \hat{e}_{-k} \wedge \cdots \wedge e_{-5}\right)^{*}
$$

with $\alpha \neq 0$ and for some $\gamma_{k}^{\prime} \in \boldsymbol{C}$.
By Step 1 we may assume that B is given by

$$
\alpha \cdot 1+\sum_{i<j} \beta_{i j}\left(e_{-i} \wedge e_{-j}\right)^{*}+\sum_{k} \gamma_{k}\left(e_{-1} \wedge \cdots \wedge \hat{e}_{-k} \wedge \cdots \wedge e_{-5}\right)^{*}
$$

with $\alpha \neq 0$. Let $Y=\sum_{k<l} q_{k l} X_{\varepsilon_{k}+\varepsilon_{l}}$ be an element of g. Then we have $B\left(\exp Y\left(e_{-i} \wedge e_{-j}\right)\right)=B\left(e_{-i} \wedge e_{-j}+Y\left(e_{-i} \wedge e_{-j}\right)\right)=\beta_{i j}-q_{i j} \alpha$ and $B(\exp Y(1))=$ $B(1)=\alpha$. Hence we can choose Y in such a way as $(\exp Y)^{*} B=\alpha \cdot 1+$ $\left(e_{-1} \wedge e_{-2}\right)^{*}+\left(e_{-3} \wedge e_{-4}\right)^{*}+\sum_{k} \gamma_{k}^{\prime}\left(e_{-1} \wedge \cdots \wedge \hat{e}_{-k} \wedge \cdots \wedge e_{-5}\right)^{*}$.

Step 3. We claim the linear form B is G-equivalent to

$$
\alpha \cdot 1+\sum_{i<j} \beta_{i j}^{\prime}\left(e_{-i} \wedge e_{-j}\right)^{*} \text { for some } \beta_{i j}^{\prime} \in \boldsymbol{C}
$$

We may assume B is given by

$$
\alpha \cdot 1+\left(e_{-1} \wedge e_{-2}\right)^{*}+\left(e_{-3} \wedge e_{-4}\right)^{*}+\sum_{k} \gamma_{k}^{\prime}\left(e_{-1} \wedge \cdots \wedge \hat{e}_{-k} \wedge \cdots \wedge e_{-5}\right)^{*} .
$$

Let $Y_{1}=q_{12}^{\prime} X_{\mathfrak{t}_{1}+\varepsilon_{2}}$ be an element of \mathfrak{g}. Then

$$
\begin{aligned}
& \left(\exp Y_{1}\right)^{*} B=\alpha \cdot 1+\left(1-q_{12}^{\prime} \alpha\right)\left(e_{-1} \wedge e_{-2}\right)_{*}+\left(e_{-3} \wedge e_{-4}\right)^{*} \\
& \quad+\left(\gamma_{5}-q_{12}^{\prime}\right)\left(e_{-1} \wedge e_{-2} \wedge e_{-3} \wedge e_{-4}\right)^{*}+\sum_{k \leq 4} \gamma_{k}^{\prime}\left(e_{-1} \wedge \cdots \wedge \hat{e}_{-k} \wedge \cdots \wedge e_{-5}\right)^{*}
\end{aligned}
$$

Let $q_{12}^{\prime}=\gamma_{5}$. Then we have

$$
\begin{aligned}
& \left(\exp Y_{1}\right)^{*} B=\alpha \cdot 1+\mu_{12}\left(e_{-1} \wedge e_{-2}\right)^{*}+\left(e_{-3} \wedge e_{-4}\right)^{*} \\
& \quad+\sum_{k \leq 4} \gamma_{k}^{\prime}\left(e_{-1} \wedge \cdots \wedge \hat{e}_{-k} \wedge \cdots \wedge e_{-5}\right)^{*}
\end{aligned}
$$

where $\mu_{12}=1-\gamma_{5} \alpha$.
Let $Y_{2}=q_{25}^{\prime} X_{\varepsilon_{2}+\varepsilon_{5}}+q_{15}^{\prime} X_{\varepsilon_{1}+\varepsilon_{5}}$. Then we have

$$
\begin{aligned}
& \left(\exp Y_{2}\right)^{*}\left(\exp Y_{1}\right)^{*} B\left(e_{-2} \wedge e_{-3} \wedge e_{-4} \wedge e_{-5}\right)=\gamma_{1}^{\prime}-q_{25}^{\prime} \\
& \left(\exp Y_{2}\right)^{*}\left(\exp Y_{1}\right)^{*} B\left(e_{-1} \wedge e_{-3} \wedge e_{-4} \wedge e_{-5}\right)=\gamma_{2}^{\prime}-q_{15}^{\prime} \\
& \left(\exp Y_{2}\right)^{*}\left(\exp Y_{1}\right)^{*} B\left(e_{-1} \wedge e_{-2} \wedge e_{-4} \wedge e_{-5}\right)=\gamma_{3}^{\prime} \\
& \left(\exp Y_{2}\right)^{*}\left(\exp Y_{1}\right)^{*} B\left(e_{-1} \wedge e_{-2} \wedge e_{-3} \wedge e_{-5}\right)=\gamma_{4}^{\prime} \\
& \left(\exp Y_{2}\right)^{*}\left(\exp Y_{1}\right)^{*} B\left(e_{-1} \wedge e_{-2} \wedge e_{-3} \wedge e_{-4}\right)=0 \\
& \left(\exp Y_{2}\right)^{*}\left(\exp Y_{1}\right)^{*} B\left(e_{-i} \wedge e_{-j}\right)=\left(\exp Y_{1}\right)^{*} B\left(e_{-i} \wedge e_{-j}\right) \\
& \quad \operatorname{if}(i, j) \neq(1,5)(2,5) \\
& \left(\exp Y_{2}\right)^{*}\left(\exp Y_{1}\right)^{*} B\left(e_{-2} \wedge e_{-5}\right)=-q_{25}^{\prime} \alpha \\
& \left(\exp Y_{2}\right)^{*}\left(\exp Y_{1}\right)^{*} B\left(e_{-1} \wedge e_{-5}\right)=-q_{15}^{\prime} \alpha
\end{aligned}
$$

Thus setting $q_{15}^{\prime}=\gamma_{2}^{\prime}$ and $q_{25}^{\prime}=\gamma_{1}^{\prime}$, we get
$\left(\exp Y_{2}\right)^{*}\left(\exp Y_{1}\right)^{*} B=\alpha \cdot 1+\mu_{12}\left(e_{-1} \wedge e_{-2}\right)^{*}+\left(e_{-3} \wedge e_{-4}\right)^{*}-\gamma_{2}^{\prime} \alpha\left(e_{-1} \wedge e_{-5}\right)^{*}$ $-\gamma_{1}^{\prime} \alpha\left(e_{-2} \wedge e_{-5}\right)^{*}+\gamma_{3}^{\prime}\left(e_{-1} \wedge e_{-2} \wedge e_{-4} \wedge e_{-5}\right)^{*}+\gamma_{4}^{\prime}\left(e_{-1} \wedge e_{-2} \wedge e_{-3} \wedge e_{-5}\right)^{*}$.
(a) Now we consider the case $\mu_{12} \neq 0, \gamma_{2}^{\prime} \neq 0$ or $\gamma_{1}^{\prime} \neq 0$.

Let $Y_{3}=q_{45}^{\prime} X_{\varepsilon_{4}+\varepsilon_{5}}+q_{35}^{\prime} X_{\varepsilon_{3}+\varepsilon_{5}}$. Then we have $\left(\exp Y_{3}\right)^{*}\left(\exp Y_{2}\right)^{*}\left(\exp Y_{1}\right)^{*} B=\alpha \cdot 1+\sum_{i<j} \beta_{i j}^{\prime}\left(e_{-i} \wedge e_{-j}\right)^{*}+\left(\gamma_{4}^{\prime}-q_{35}^{\prime} \mu_{12}\right)\left(e_{-1} \wedge\right.$ $\left.e_{-2} \wedge e_{-3} \wedge e_{-5}\right)^{*}+\left(\gamma_{3}^{\prime}-q_{45}^{\prime} \mu_{12}\right)\left(e_{-1} \wedge e_{-2} \wedge e_{-4} \wedge e_{-5}\right)^{*}$ for some $\beta_{i j}^{\prime} \in \boldsymbol{C}$. If $\mu_{12} \neq 0$, let $q_{35}^{\prime}=\gamma_{4}^{\prime} / \mu_{12}$ and $q_{45}^{\prime}=\gamma_{3}^{\prime} / \mu_{12}$, then $\left(\exp Y_{3}\right)^{*}\left(\exp Y_{2}\right)^{*}\left(\exp Y_{1}\right)^{*} B$ has the required property. Similarly if $\gamma_{2}^{\prime} \neq 0$, let $Y_{3}=q_{24}^{\prime} X_{\varepsilon_{2}+\varepsilon_{4}}+q_{23}^{\prime} X_{\varepsilon_{2}+\varepsilon_{3}}$ where $q_{24}^{\prime}=$ $-\gamma_{3}^{\prime} / \gamma_{2}^{\prime} \alpha$ and $q_{23}^{\prime}=-\gamma_{4}^{\prime} / \gamma_{2}^{\prime} \alpha$, then $\left(\exp Y_{3}\right)^{*}\left(\exp Y_{2}\right)^{*}\left(\exp Y_{1}\right)^{*} B$ has the required property. And if $\gamma_{1}^{\prime} \neq 0$, let $Y_{3}=q_{14}^{\prime} X_{\varepsilon_{1}+\varepsilon_{4}}+q_{13}^{\prime} X_{\varepsilon_{1}+\varepsilon_{3}}$ where $q_{14}^{\prime}=\gamma_{3}^{\prime} / \gamma_{2}^{\prime} \alpha$ and $q_{13}^{\prime}=\gamma_{4}^{\prime} / \gamma_{2}^{\prime} \alpha$, then $\left(\exp Y_{3}\right)^{*}\left(\exp Y_{2}\right)^{*}\left(\exp Y_{1}\right)^{*} B$ has the required property.
(b) Now we consider the case $\mu_{12}=\gamma_{2}^{\prime}=\gamma_{1}^{\prime}=0$.

Let $Y_{3}=\widetilde{q}_{12} X_{\varepsilon_{1}+\varepsilon_{2}}+\widetilde{q}_{35} X_{\varepsilon_{3}+\varepsilon_{5}}+\widetilde{q}_{45} X_{\varepsilon_{4}+\varepsilon_{5}}$.
Then $\left(\exp Y_{3}\right)^{*}\left(\exp Y_{2}\right)^{*}\left(\exp Y_{1}\right)^{*} B=\alpha \cdot 1-\tilde{q}_{12} \alpha\left(e_{-1} \wedge e_{-2}\right)^{*}+\left(e_{-3} \wedge e_{-4}\right)^{*}-\tilde{q}_{35} \alpha$ $\left(e_{-3} \wedge e_{-5}\right)^{*}-\widetilde{q}_{45} \alpha\left(e_{-4} \wedge e_{-5}\right)^{*}-\widetilde{q}_{12}\left(e_{-1} \wedge e_{-2} \wedge e_{-3} \wedge e_{-4}\right)^{*}+\left(\gamma_{4}^{\prime}+\widetilde{q}_{12} \tilde{q}_{35}\right)\left(e_{-1} \wedge e_{-2} \wedge e_{-3}\right.$ $\left.\wedge e_{-5}\right)^{*}+\left(\gamma_{3}^{\prime}+\tilde{q}_{12} \tilde{q}_{45}\right)\left(e_{-1} \wedge e_{-2} \wedge e_{-4} \wedge \epsilon_{-5}\right)^{*}$.
Now choose $\tilde{q}_{12} \neq 0, \tilde{q}_{35}$ and \tilde{q}_{45} such that $\gamma_{4}^{\prime}+\tilde{q}_{12} \tilde{q}_{35}=0$ and $\gamma_{3}^{\prime}+\tilde{q}_{12} \tilde{q}_{45}=0$, so that $\left(\exp Y_{3}\right)^{*}\left(\exp Y_{2}\right)^{*}\left(\exp Y_{1}\right)^{*} B=\alpha \cdot 1-\widetilde{q}_{12} \alpha\left(e_{-1} \wedge e_{-2}\right)^{*}+\left(e_{-3} \wedge e_{-4}\right)^{*}$
$-\widetilde{q}_{35} \alpha\left(e_{-3} \wedge e_{-5}\right)^{*}-\widetilde{q}_{45} \alpha\left(e_{-4} \wedge e_{-5}\right)^{*}-\widetilde{q}_{12}\left(e_{-1} \wedge e_{-2} \wedge e_{-3} \wedge e_{-4}\right)^{*}$.
Let $Y_{4}=-\widetilde{q}_{12} X_{\varepsilon_{1}+\varepsilon_{2}}$. Then
$\left(\exp Y_{4}\right)^{*}\left(\exp Y_{3}\right)^{*}\left(\exp Y_{2}\right)^{*}\left(\exp Y_{1}\right)^{*} B\left(e_{-1} \wedge e_{-2} \wedge e_{-3} \wedge e_{-4}\right)=-\widetilde{q}_{12}+\widetilde{q}_{12} \times 1=0$ and hence
$\left(\exp Y_{4}\right)^{*}\left(\exp Y_{3}\right)^{*}\left(\exp Y_{2}\right)^{*}\left(\exp Y_{1}\right)^{*} B$ has the required property.
Step 4. Now we may assume B is given by $\alpha \cdot 1+\sum \beta_{i j}^{\prime}\left(e_{-i} \wedge e_{-j}\right)^{*}$. If $\beta_{i j}^{\prime}=0$ for all $(i, j), B$ is a linear form on $\boldsymbol{C} \cdot 1$. We may assume there is (i, j) such that $\beta_{i j}^{\prime} \neq 0$. Let $X_{1}=p_{i j}^{\prime} X_{-\varepsilon_{i}-\varepsilon_{j}} . \quad$ Then

$$
\begin{aligned}
& \left(\exp X_{1}\right)^{*} B(1)=\alpha-p_{i j}^{\prime} \beta_{i j}^{\prime} \\
& \left(\exp X_{1}\right)^{*} B\left(e_{-k} \wedge e_{-l}\right)=B\left(e_{-k} \wedge e_{-l}\right) \text { for each }(k, l) \\
& \left(\exp X_{1}\right)^{*} B\left(e_{-1} \wedge \cdots \wedge \hat{e}_{-k} \wedge \cdots \wedge e_{-5}\right)=0 \text { for each } k .
\end{aligned}
$$

Letting $p_{i j}^{\prime}=\alpha / \beta_{i j}^{\prime},\left(\exp X_{1}\right)^{*} B$ can be regarded as a linear form on $\Lambda^{2} F^{\prime}$. q.e.d.

Proof of Theorem 2. From the fact 4 we see that every holomorphic vector field on a non-singular hyperplane section V can be extended uniquely to a holomorphic vector field on M. Let $A=\{g \in \operatorname{Aut}(M) \mid g(V)=V\}$. Then the Lie algebra of A can be identified with the Lie algebra of all holomorphic vector fields on V. Take the hyperplane H of $P\left(N_{+}\right)$such that $V=M \cap H$ and let $A^{\prime}=$ $\{g \in G \mid g H=H\}$. A hyperplane H is the zero locus of non-zero linear form B on N_{+}and thus the Lie algebra \mathfrak{a} of A^{\prime} is given by $\mathfrak{a}(B)=\{X \in \mathfrak{s o}(10, C) \mid B(X \cdot n)$ $=c(X) B(n), n \in N_{+}$for some $\left.c(X) \in \boldsymbol{C}\right\}$. Note also that if linear forms B and B^{\prime} on N_{+}are G-equivalent the Lie algebras $\mathfrak{a}(B)$ and $\mathfrak{a}\left(B^{\prime}\right)$ are isomorphic. Therefore by Lemma we may assume that B is a linear form on $\boldsymbol{C} \cdot \cdot 1$ or a linear form on $\Lambda^{2} F^{\prime}$. If $B=\alpha \cdot 1(\alpha \neq 0)$ we can see the variety $M \cap H$ has a singular point (see Appendix). Thus we may assume B is a linear form on $\Lambda^{2} F^{\prime}$. Now we can take a basis $\left\{e_{-1}, e_{-2}, e_{-3}, e_{-4}, e_{-5}\right\}$ of F^{\prime} such that $B=\left(e_{-1} \wedge e_{-2}\right)^{*}+$ $\left(e_{-3} \wedge e_{-4}\right)^{*}$ or $B=\left(e_{-1} \wedge e_{-2}\right)^{*}$. We claim if $M \cap H$ is non-snigular $B=\left(e_{-1} \wedge e_{-2}\right)^{*}+$ $\left(e_{-3} \wedge e_{-4}\right)^{*}$. Since a generic hyperplane section of M is non-isngular, it is sufficient to see that if $B=\left(e_{-1} \wedge e_{-2}\right)^{*}, M \cap H$ has a singular point. Let $X=X_{-\varepsilon_{1}-\varepsilon_{2}}$ and $Y=X_{\varepsilon_{1}+\varepsilon_{2}}$. Then $(\exp Y)^{*}(\exp X)^{*} B=1$, and thus B is G-equivalent to a linear form on $\boldsymbol{C} \cdot 1$. Hence, $M \cap H$ hsa a singularity.

Now we shall compute the Lie algebra $\mathfrak{a}(B)$ for $B=\left(e_{-1} \wedge e_{-2}\right)^{*}+\left(e_{-3} \wedge e_{-4}\right)^{*}$. We may write an element X of $\mathfrak{g}=\mathfrak{g o}(10, \boldsymbol{C})$ as

$$
\begin{aligned}
X & =\sum_{i<j} a_{i j} X_{\varepsilon_{i}-\varepsilon_{j}}+\sum_{i<j} b_{i j} X_{-\varepsilon_{i}+\varepsilon_{j}}+\sum_{i<j} c_{i j} X_{\varepsilon_{i}+\varepsilon_{j}}+\sum_{i<i} d_{i j} X_{-\varepsilon_{i}-\varepsilon_{j}} \\
& +\sum_{i} l_{i} H_{i} .
\end{aligned}
$$

Since $B(1)=0, B(X \cdot 1)=B\left(\sum_{i<j} d_{i j} e_{-i} \wedge e_{-j}\right)=d_{12}+d_{34}=0$. Since $B\left(e_{-1} \wedge \cdots \wedge \hat{e}_{-k} \wedge \cdots \wedge e_{-5}\right)=0$, we see that

$$
\begin{aligned}
& B\left(X \cdot e_{-1} \wedge e_{-2} \wedge e_{-3} \wedge e_{-4}\right)=-c_{12}-c_{34}=0 \\
& B\left(X \cdot e_{-1} \wedge e_{-2} \wedge e_{-3} \wedge e_{-5}\right)=-c_{35}=0 \\
& B\left(X \cdot e_{-1} \wedge e_{-2} \wedge e_{-4} \wedge e_{-5}\right)=-c_{45}=0 \\
& B\left(X \cdot e_{-1} \wedge e_{-3} \wedge e_{-4} \wedge e_{-5}\right)=-c_{15}=0 \\
& B\left(X \cdot e_{-2} \wedge e_{-3} \wedge e_{-4} \wedge e_{-5}\right)=-c_{25}=0 .
\end{aligned}
$$

Moreover

$$
\begin{array}{ll}
B\left(X \cdot e_{-1} \wedge e_{-2}\right)=\left(\frac{1}{2}\left(l_{1}+l_{2}+l_{3}+l_{4}+l_{5}\right)-\left(l_{1}+l_{2}\right)\right)=c(X) \\
B\left(X \cdot e_{-3} \wedge e_{-4}\right)=\left(\frac{1}{2}\left(l_{1}+l_{2}+l_{3}+l_{4}+l_{5}\right)-\left(l_{3}+l_{4}\right)\right)=c(X) \\
B\left(X \cdot e_{-1} \wedge e_{-3}\right)=a_{14}+a_{23}=0, & B\left(X \cdot e_{-1} \wedge e_{-4}\right)=-a_{13}+b_{24}=0, \\
B\left(X \cdot e_{-1} \wedge e_{-5}\right)=b_{25}=0, & B\left(X \cdot e_{-2} \wedge e_{-3}\right)=a_{24}-b_{13}=0, \\
B\left(X \cdot e_{-2} \wedge e_{-4}\right)=-a_{23}-b_{14}=0, & B\left(X \cdot e_{-2} \wedge e_{-5}\right)=-b_{15}=0, \\
B\left(X \cdot e_{-3} \wedge e_{-5}\right)=b_{45}=0, & B\left(X \cdot e_{-4} \wedge e_{-5}\right)=-b_{35}=0 .
\end{array}
$$

Thus the Lie algebra $\mathfrak{a}(B)$ is given by
and, in particular, $\operatorname{dim} \mathfrak{a}(B)=30$. Let

$$
\mathfrak{n}=\left\{X \in \mathfrak{a}(B) \left\lvert\, X=\left(\begin{array}{cc:c}
0 & \alpha_{1} & 0 \\
& \alpha_{5} & 0 \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
-\beta_{1} \cdots-\beta_{4} & 0 & -\alpha_{5} \cdots \\
& \beta_{4} & \\
0 & \vdots & 0
\end{array}\right)\right.\right\}
$$

Then \mathfrak{n} is a solvable ideal of $\mathfrak{a}(B)$ such that $[\mathfrak{n}, \mathfrak{n}] \neq(0)$ and $[[\mathfrak{n}, \mathfrak{n}],[\mathfrak{n}, \mathfrak{n}]]=(0)$.

Therefore $\mathfrak{a}(B)$ is not a reductive Lie algebra. By a theorem of LichnerowiczMatsushima [6], we see that the hyperplane section V does not admit any Kahler metric with constant scalar curvature.

Now by the same argument as in the proof of Theorem 1, we get

$$
\begin{aligned}
& \operatorname{dim} H^{1}(V, T(V))=h^{1}(V, T(V)) \\
= & h^{0}(V, T(V))-h^{0}(M, T(M))+h^{0}(V,\{V\} \mid V) \\
= & \operatorname{dim} \mathfrak{a}(B)-\operatorname{dim} \mathfrak{B o}(10, C)+(16-1) \\
= & 30-45+15=0 .
\end{aligned}
$$

q.e.d.

Appendix

Let M be an Hermitian symmetric space of compact type and L a very ample holomorphic line bundle on M. Let $j_{L}: M \rightarrow P^{N}(C)$ be the imbedding associated to L. Then it is known that the homogeneous ideal of M is generated by quadrics [7]. We shall determine these quadrics in the case when $M=$ $S O(10) / U(5)$ and the imbedding is canonical. Denote by o the point in $P\left(N_{+}\right)$ corresponding to $U(5)$ of M. Let $\mathfrak{m}_{-}=\sum_{i<j} \mathfrak{g}_{-\varepsilon_{i}-\varepsilon_{j}}$ be an abelian subalgebra of $\mathfrak{g}=\mathfrak{g o}(10, C)$ and M_{-}the Lie subgroup corresponding to \boldsymbol{m}_{-}. Fix a basis $\left\{e_{-1}, e_{-2}, e_{-3}, e_{-4}, e_{-5}\right\}$ of F^{\prime}. Then

$$
\left\{1, e_{-i} \wedge e_{-j}, e_{-i_{1}} \wedge e_{-i_{2}} \wedge e_{-i_{3}} \wedge e_{-i_{4}} \mid i<j, i_{1}<i_{2}<i_{3}<i_{4}\right\}
$$

is a basis of N_{+}. We also denote by $\left\{x_{\lambda}\right\}$ the dual basis of N_{+}^{*}. Now consider the orbit $M_{-} \cdot o=j\left(\exp \mathfrak{m}_{-} \cdot U\right)=\left[\rho\left(\exp \mathfrak{m}_{-}\right) v_{0}\right]$. We may write an element Y of \mathfrak{m}_{-}as

$$
Y=\sum_{i<j} \xi_{-\varepsilon_{i}-\varepsilon_{j}} X_{-\varepsilon_{i}-\varepsilon_{j}}
$$

Note that the highest vector v_{0} is given by $1 \in N_{+}$in our case. Then

$$
\begin{aligned}
& \rho(\exp Y) \cdot 1 \\
& \quad=1+\sum \xi_{-\varepsilon_{i}-\varepsilon_{j}} X_{-\varepsilon_{i}-\varepsilon_{j}} \cdot 1+\frac{1}{2} \sum \xi_{-\varepsilon_{i}-\varepsilon_{j}} \xi_{-\varepsilon_{k}-\varepsilon_{l}} X_{-\varepsilon_{i}-\varepsilon_{j}} X_{-\varepsilon_{k}-\varepsilon_{l}} \cdot 1 .
\end{aligned}
$$

For simplicity we denote the highest weight $\Lambda_{a_{5}}$ by Λ. Now we get

$$
\begin{aligned}
& x_{\Lambda}(\rho(\exp Y) \cdot c \cdot 1)=c \\
& x_{\Lambda-\varepsilon_{i}-\varepsilon_{j}}(\rho(\exp Y) \cdot c \cdot 1)=c \xi_{-\varepsilon_{i}-\varepsilon_{j}} \\
& x_{\Lambda-\varepsilon_{i}-\varepsilon_{j}-\varepsilon_{k}-\varepsilon_{l}}(\rho(\exp Y) \cdot c \cdot 1) \\
& \quad=c\left(\xi_{-\varepsilon_{i}-\varepsilon_{j}} \xi_{-\varepsilon_{k}-\varepsilon_{l}}-\xi_{-\varepsilon_{i}-\varepsilon_{k}} \xi_{-\varepsilon_{j}-\varepsilon_{l}}+\xi_{-\varepsilon_{i}-\varepsilon_{l}} \xi_{-z_{j}-\varepsilon_{k}}\right)
\end{aligned}
$$

where $i<j<k<l$. Thus we see on $M_{-} \cdot o$

$$
\begin{aligned}
& x_{\Lambda} x_{\Lambda-\left(\varepsilon_{i}+\varepsilon_{j}+\varepsilon_{k}+\varepsilon_{l}\right)}-x_{\Lambda-\left(\varepsilon_{i}+\varepsilon_{j}\right)} x_{\Lambda-\left(\varepsilon_{k}+\varepsilon_{l}\right)} \\
& \quad+x_{\Lambda-\left(\varepsilon_{i}+\varepsilon_{k}\right)} x_{\Lambda-\left(\varepsilon_{j}+\varepsilon_{l}\right)}-x_{\Lambda-\left(\varepsilon_{i}+\varepsilon_{l}\right)} x_{\Lambda-\left(\varepsilon_{j}+\varepsilon_{k}\right)}=0
\end{aligned}
$$

for $i<j<k<l$.
Since the Zariski closure $\overline{M_{-} \cdot o}$ of $M_{-} \cdot o$ in $P\left(N_{+}\right)$is M, we see that these quadrics vanish on M.

Let $I(M)$ be the homogeneous ideal of $M, S^{2}\left(N_{+}^{*}\right)$ the vector space of homogeneous polynomials of degree 2 on N_{+}and I_{2} the subspace of degree 2 of the ideal $I(M)$. Then $I(M), S^{2}\left(N_{+}^{*}\right)$ and I_{2} are $\mathfrak{s p}(10, \boldsymbol{C})$-modules. Now the decomposition of $S^{2}\left(N_{+}^{*}\right)$ as $\mathfrak{s o}(10, C)$-modules is given by

$$
S_{2}\left(N_{+}^{*}\right)=V_{2 \Lambda a_{4}}+V_{\Delta a_{1}}
$$

where $V_{2 \Lambda a_{4}}$ and $V_{\Lambda a_{1}}$ denotes $\mathfrak{s o}(10, \boldsymbol{C})$-modules with the highest weights $2 \Lambda_{\omega_{4}}$ and $\Lambda_{\omega_{1}}$ respectively, and we see $I_{2}=V_{\Lambda a_{1}}$ as $\mathfrak{g o}(10, \boldsymbol{C})$-module. (Note that $\Lambda_{\omega_{1}}=$ ε_{1}.) In particular, we have $\operatorname{dim} I_{2}=10$. Applynig elements of Weyl group of $\mathfrak{g o}(10, \boldsymbol{C})$, it is not difficult to see that the following 10 quadrics constitute a basis of I_{2} :
For $1 \leq i<j<k<l \leq 5$,

$$
\begin{aligned}
& x_{\Lambda} x_{\Lambda-\left(\varepsilon_{i}+\varepsilon_{j}+\varepsilon_{k}+\varepsilon_{l}\right)}-x_{\Lambda-\left(\varepsilon_{i}+\varepsilon_{j}\right)} x_{\Lambda-\left(\varepsilon_{k}+\varepsilon_{l}\right)} \\
& \quad+x_{\Lambda-\left(\varepsilon_{i}+\varepsilon_{k}\right)} x_{\Lambda-\left(\varepsilon_{j}+\varepsilon_{l}\right)}-x_{\Lambda-\left(\varepsilon_{i}+\varepsilon_{l}\right)} x_{\Lambda-\left(\varepsilon_{j}+\varepsilon_{k}\right)}, \\
& x_{\Lambda-\left(\varepsilon_{4}+\varepsilon_{5}\right)} x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}\right)}-x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}\right)} x_{\Lambda-\left(\varepsilon_{3}+\varepsilon_{4}\right)} \\
& \quad+x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}\right)} x_{\Lambda-\left(\varepsilon_{2}+\varepsilon_{4}\right)}-x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{4}\right)} x_{\Lambda-\left(\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}\right)}, \\
& x_{\Lambda-\left(\varepsilon_{4}+\varepsilon_{5}\right)} x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{5}\right)}-x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{4}+\varepsilon_{5}\right)} x_{\Lambda-\left(\varepsilon_{3}+\varepsilon_{5}\right)} \\
& \quad+x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}\right)} x_{\Lambda-\left(\varepsilon_{2}+\varepsilon_{5}\right)}-x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{5}\right)} x_{\Lambda-\left(\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}\right)}, \\
& x_{\Lambda-\left(\varepsilon_{3}+\varepsilon_{5}\right)} x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}\right)}-x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{5}\right)} x_{\Lambda-\left(\varepsilon_{3}+\varepsilon_{4}\right)} \\
& \quad+x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{3}\right)} x_{\Lambda-\left(\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}\right)}-x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}\right)} x_{\Lambda-\left(\varepsilon_{2}+\varepsilon_{3}\right)}, \\
& x_{\Lambda-\left(\varepsilon_{2}+\varepsilon_{5}\right)} x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}\right)}-x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{2}\right)} x_{\Lambda-\left(\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}\right)} \\
& \quad+x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{5}\right)} x_{\Lambda-\left(\varepsilon_{2}+\varepsilon_{4}\right)}-x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{4}+\varepsilon_{5}\right)} x_{\Lambda-\left(\varepsilon_{2}+\varepsilon_{3}\right)}, \\
& x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{5}\right)} x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}\right)}-x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{2}\right)} x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}\right)} \\
& \quad+x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{3}\right)} x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{4}+\varepsilon_{5}\right)}-x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{4}\right)} x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{5}\right)} .
\end{aligned}
$$

Now if a hyperplane H is given by $B=\alpha \cdot 1$, that is, $\alpha \cdot x_{\Lambda}=0$, then the variety $M \cap H$ has a singular point. In fact, if we take a point $p \in P\left(N_{+}\right)$defined by

$$
x_{\Lambda-\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}\right)}(p) \neq 0 \text { and } x_{\lambda}(p)=0 \quad \text { otherwise }
$$

then $p \in M \cap H$ is a singular point of $M \cap H$, using the fact M is the zero locus of 10 quadrics above.

References

[1] A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538.
[2] N. Bourbaki: Groupes et algebres de Lie, Chap. 7 et 8. Hermann, Paris, 1975.
[3] J-I. Hano: Examples of projective manifolds not admitting Kähler metric with constant scalar curvature, Osaka J. Math. 20 (1983), 787-791.
[4] M. Ise: Some properties of complex analytic vector bundles over compact complex homogeneous spaces, Osaka Math. J. 12 (1960), 217-252.
[5] Y. Kimura: On the hypersurfaces of Hermitian symmetric spaces of compact type, Osaka J. Math. 16 (1979), 97-119.
[6] S. Kobayashi: Transformation groups in differential geometry, Ergebniss 70, Springer, Berlin, 1972.
[7] Y. Sakane and M. Takeuchi: On defining equation of symmetric submanifolds in complex projective spaces, J. Math. Soc. Japan 33 (1981), 267-279.

Department of Mathematics
Faculty of Science
Osaka University
Toyonaka, Osaka 560
Japan

