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ON NON-SINGULAR HYPERPLANE SECTIONS
OF SOME HERMITIAN SYMMETRIC SPACES
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Let Pk(C) denote a complex projective space of dimension k. The product
space Pm(C)xP"(C) has a natural imbedding in P« «+*+»(C), called the Segre

imbedding. Let V be a non-singular hyperplane section of Pm(C)χP"(C) in

PWIW+W+W(C). The identity connected component Auto(F) of the group of all
holomorphic automorphisms of V has been determined by/-/. Hano [3]. For
an irreducible Hermitian symmetric space M of compact type we have the

canonical equivariant imbedding j: M-*PN(C). Now take a non-singular
hyperplane section V of M in PN(C). In this note we shall determine the

structure of the Lie algebra of Aut(F) fro the cases when M is a complex Gras-
smann manifold Gm,2(C) of 2-planes in Cm and when M is SO(10)/U(5), by

applying Hano's method. In particular, using Lichnerowicz-Matsushima's theo-

rem, we prove the following.

1) For the case M is GWt2(C) (#&>4), if m is odd a non-singular hyperplane

section V does not admit any Kahler metric with constant scalar curvature, and
if m is even V is a kahlerian C-space.

2) For the case M is SO(10)/U(5), V does not admit any Kahler metric
with constant scalar curvature.

The author would like to express his thanks to the referee for the valuable

advice.

1. Preliminaries

A simply connected compact homogeneous complex manifold is called a

C-space. A C-space is said to be kahlerian if it admits a Kahler metric. We
recall some known facts on kahlerian C-spaces and holomorphic line bundles on
these complex manifolds (cf. [1], [4]).

Fact 1. Every holomorphic line bundle on a kάhlerian C-space M is homo-
geneous. If we denote by Hl(M, θ*) the group of all isomorphism classes of ho-

lomorphic line bundles on M and by c^F) the Chern class of a holomorphic line

bundle F, then the homomorphism F-^c^F): H\M, <9*)->#2(M, Z) is bijective.

Fact 2. Every ample holomorphic line bundle on a kάhlerian C-space M is
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very ample. Moreover for each very ample holomorphic line bundle the correspond-

ing holomorphic imbedding of M can be realized as an orbit space of the irreducible

representation of all holomorphic automorphism group Aut(M) of M.

From now on we assume that M is a kahlerian C-space with the second

Betti number b2(M)=l. In this case there is a unique very ample holomorphic

line bundle L on M which is a generator of the group H\M, θ*). The corres-

ponding holomorphic imbedding for L is called the canonical imbedding of

M and denoted by j: M-*PN(C). Let h=c1(L). Then A is a generator of

H\M, Z). For a divisor D on M let {D} be the holomorphic line bundle on

Massociated to Zλ Then for a positive divisor Z) on M there is a positive integer

a(D) such that cl({D})=a(D)h. The integer a(D) is called the degree of D.

Fact 3. Let j: M->PN(C) be the canonical imbedding of a kάhleήan C-space

M with b2(M)= 1. Then for each positive divisor D on M of degree a there exists

a homogeneous polynomial F on CN+1 of degree a such that D is the pull back of the

divisor on PN(C) defined by the zero points of F by the canonical imbedding j.

For a non-singular hypersurface V of M the degree of the positive divisor

defined by V is called the degree of V. Let K(V) and K(M) denote the canonical

line bundles on V and M respectively. It is known that the first Chern class

£i(M) of M is given by cl(M)=κh for some positive integer K. Since K(V)=

ι*(K(M)®{V}) where t: V->M is inclusion, the first Chern class c^V) of V is

given by c1(V)==(κ—ά) c*h if the degree of V is a. In particular, if F is a

non-singular hypersurface of degree α</c, the first Chern class cλ(V) of V is

positive. It is also known that irreducible Hermitian symmetric spaces of com-

pact type are kahlerian O-spaces with the second Betti number 1 and the posi-

tive number κ>2. Therefore if F is a non-singular hyperplane section of an

irreducible Hermitian symmetric space M of compact type for the canonical

imbedding j: M-+PN(C), the first Chern class c^V) of V is positive.

Let T(M) and T(V) be the holomorphic tangent bundles of M and V re-

spectively. Given a holomorphic vector bundle E, we denote by Ω%E) the

sheaf of germs of local holomorphic sections of E.

Fact 4 (Kimura [5]). Let M be an irreducible Hermitian symmetric space of

compact type. Assume that M is not a complex projective space Pn(C) or a com-

plex quadric Qn(C). Then for a non-singular hypersurface V of M the exact se-

quence of sheaves on M

induces the exact sequence of cohomologies
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Moreover H\V, T(M)\V)=(Q).

REMARK. If V is a non-singular hypersurface £)n(C)(rc>3) of degree αΦ2,
the same result as in Fact 4 holds.

2. The case M is a complex Grassmann manifold Gm>2(C]

Let p be the natural representation of SL(m, C) on Cm and consider the p-
th exterior representation Apρ: SL(m, C)-*GL(Λ.pCm) induced by p. Note that
A.pρ is an irreducible representation of SL(m, C). Fix a highest weight vector
vQ^A.pCm and consider the subgroup U of SL(m, C) defined by

{h<=SL(m, C) |(ΛV) (A) *>0 = <*>* for some c<ΞC-(0)} .

Then the map;: SL(m, C)IU^P(A.pCm) defined by

j(gU) = [Λpp(g) (VQ)] forgtΞSL(m, C) ,

where [w] (w£ϊΛ.pCm) denotes the line determined by w, is the canonical imbedd-
ing of the Grassmann manifold M=GMtp(C) and is called the Plίicker imbedding
ofM.

From now on we assume that M is a complex Grassmann manifold of
2-planes in Cm which is not a complex projective space, so we may assume m>4.
We may also regard M as a non-singular projective sub variety of P(Λ2CfWI) by
the canonical imbedding.

Theorem 1. For an integer m>4 let V be a non-singular hyper plane section

(1) If m is even, V is a kάhlerίan C-space Sp(n, C)/P with the second Betti
number 1 where n=m/2 and P is a parabolic subgroup of Sp(n, C).

(2) If m is odd, the group Aut(V) of all holomorphίc transformations of V is
not reductive and thus V does not admit any Ktihler metric with constant scalar
curvature. Moreover we have Hl(V> T(V))=(ϋ).

Proof. By the Lefschetz theorem on hyperplane sections, we have b2(V)=l
since b2(Gmt2(C))=\. From the fact 4 we see that every holomorphic vector field
on V can be extended uniquely to a holomorphic vector field on M. Let A=
{g e Aut(M) \g(V)=V}. Then the Lie algebra α of A can be identified with the
Lie algebra of all holomorphic vector fields on V. By means of irreducible
representation Λ?ρ: SL(m, C)-*GL(Λ.2Cm) each element of SL(m, C) maps a
hyperplane of P(A.2Cm) to another hyperplane. Take a hyperplane H of P(Λ2CW)
such that V=HΓ\M. Note that such a hyperplane H in P(A2Cm) is determined
uniquely since the canonical imbedding j: M-^P(A2Cm) is full. Thus the Lie
algebra α of A coincides with the Lie algebra of A'={g^SL(m, C)\g H=H}.
A hyperplane H is the zero locus of non-zero linear form B on Λ2CW. If we let
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b(z, w) = B(z Λ w) (z, w<=Cm),

b is a skew-symmetric form on Cm. Therefore

A' = ig<EΞSL(m, C)\b(g z,g ιo) = \(g) b(z, w\ z, i

for some non-zero constant λ(^) e C}.

Now we choose coordinates on Cm in such a way as

b(z9 w) = Σ (#, wΛ+ί—^+, 2 ,̂-) where 1 <^
ι = l

(that is, if pΛβ denote Plϋcker coordinates, the hyperplane H is defined by pίk+ι+

We claim that &— [m/2] if V is non-singular. Suppose that k< [m/2]. Then
2k<m—2. We can take vectors z,w^Cm given by

= 0, W2k±2 = 1, w2jfe+3 = — =«;„, = 0 ,

respectively. The ^Λ^ determines a point of F which is singular, since

k
db = Σ (wk+i dZi+Zi dwk+i—Wi d*k+i—zk+i dw?)

vanishes at this point. Hence k=[m/2].
Now we consider the cases where m is even or odd separately.
Case I m=2n
In this case the Lie algebra α is given by the Lie algebra of

° °
where 1Λ denotes nXn identity matrix. We may write an mXm matrix X in
the form

(A B\
X=(

\C D)

where A, B, C and D are n X n matrices. Thus we see that X^ α if and only if
C='C, B='B and fA+D=μ(X) 1. for some μ(X)eC. Since tr(X)=Q, we
have μ(X)=0 and hence X^a if and only if

ί / 0 1B\ / 0 1Λ )
X<=Z'V(n,C)=\X\tX\ }+( }X=0 .

( \-l. 0 V-l. O / J
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Therefore we may identify the connected component of the identity of A' with

Sρ(n, C). Take two vectors ^='(1, 0, ••-, 0) and *2='(0, 1, 0, •••, 0) of Cm. The
el/\e2 determines a point x0 of V (that is, in the Plϋcker coordinates, x0 is given

by P12ΦO and^>Λ/3— 0 otherwise). Let P be the isotropy subgroup at x0. Then
it is not difficult to see that P is a parabolic subgroup of Sp(n, C). Since dim
sP(n> C)/P=2(2n—2)—l, dim V=2(2n— 2)— 1 and V is compact, we see V=

(n, C)IP.

Case 2 m=2n+l

We may write a (2n+ 1) X (2n+ 1) matrix X in the form

(A a\
X=(

\β Ί)

where A is a 2nx 2n matrix. Then X^a if and only if a=0 and

o

for some

(

V-i. o

/ Y Y/^L! Λ.2

U xt

<X3 = X3>

anddimα=2w2+3n+l. Let

(/O 0\ )
n = i |'/9eC2"k Then n is an abelian ideal of α. On the other hand

\\β O/ )
the center 5 of α is given by {a I2n+1 \ a e C} . Since n Π 8=(0), α is not reductive.
By a theorem of Lichnerowicz-Matsushima [76], we see that V does not admit

any Kahler metric with constant scalar curvature.

Now the exact sequence of sheaves

0

| V)

Since H\V, T(M)\ F)=(0), #°(F, Γ(M)|F)sH0(M, Γ(M)) by the fact 4 and

I V)=h\M,{V})-\, we get

0 -* (f(T(V)) ->

induces the exact sequence of cohomologies

0 -- H\V,T(V)) -

, Γ(F))
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h\V, T(V)) = h°(V, T(V))-h\M, T(M})+h\Vy{V} \ V)

= 2n2+3n+l-((2n+l)2-l)+(*n+l}-l = 0

q.e.d.

3. The case M is SO(10)/£7(5)

Let M be an irreducible Hermitian symmetric space of compact type of
type DHL It is known that M is diίfeomorphic to SO(2n)/U(n) (n>4). Note
that M is a complex quadric QQ(C) if n=4 .

Consider a semi-spin representation of the complex simple Lie algebra 9
of type Dn and the corresponding representation p of the simply connected
complex Lie Group G with the Lie algebra g. Fix a highest weight vector VQ

and let U be the subgroup of G defined by ig^G\p(g)vQ=cv0 form some c&
C— (0)}. Then a map

defined by j(gU)=[ρ(g) VQ] for g^G, is the canonical imbedding of M=G/U.
We recall semi-spin representations of type Dn (cf. [2], chap. VIII, §13),

so that we can fix our notations. Let W be a 2n-dimensional complex vector
space and Φ a non-degenerate symmetric bilinear form on W. Then W is a
direct sum of maximal totally isotropic subspaces F and F' of W\ W=F@Fr.
Let {ely •••, en, e_n, •••, e^} be a Witt basis of W, that is, {el9 •••, en} and {e_ny •••,
e^} are bases of F and F7 respectively which satisfy the relation Φ(eiy e-j)= So-
for ί,/=l, •••,«. The corresponding matrix of Φ with respect to a Witt basis is
given as

and the Lie algebra g can be given by

\(A B\ \\\B = -s<Bs, C = -s<Cs, D = -»Ά .Ivc z>; J
Let Epιt be a matrix unit, that is, the (k, /)-component of Ettί is given by δ^ δ/β.
Put $={X^Q\X is a diagonal matrix} and Hi=Eiιί—E_iι_i for ι=l, •••, τι.
Then {//j, •••, Hn} is a basis of f). Let {ε1; •••, £„} be the dual basis of the dual
space f)*.

Put
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for \<i<j<n .

Then ^ is a Cartan subalgebra of g and the root system Σ of g relative to ϊ)
is given by Σ={±£, ±£/l l<*<./<rc}. Let a1=el—629 a2=£2—ε3, •••, an.1=
£n_!— £w, an=6u,1+6k. Then {aly •••, αj is a fundamental root system Π of Σ
and the fundamental weights corresponding Π to are

(\<ί<n-2)

ΛΛΛ = y (£ι+ +£.

Now semi-spin representations are irreducible representations of Q with the
highest weight Λα > n_ l and ΛΛ)ι respectively.

Let Q be the quadric form defined by x-+Φ(xy x)/2 and let C(Q) denote the
Clifford alegbra of W relative to Q. Let N be the exterior algebra of the max-
imal totally isotropic subspace F'. We shall identify F and the dual of F' via Φ.
For x^F' and y^F let λ(#) and \(y) denote the left exterior product by x and
left interior product by y in N respectively; so that for x^F' and

iΛ — Λ Λ A = Σ (-1)1'"1 ΦK , j) αiΛ ••• Λ α,Λ

where ΛJ, •••, ak^F'.

Then we get that λ(*)2=λ(j )2 and X(Λ ) λ(j)+λ(y) λ(Λ?)=Φ(Λ?,j;) 1, and there
exist a unique homomorphism of C(Q) into End(AΓ), denoted also by λ, which is a
prolongation of the map λ: F(J F'-+End (N). Let C+(Q) denote the subalgebra
oi C(Q) spanned by even elements and put

', N_ =
: odd

Now N+ and Λ^_ are stable for the restriction of λ to C+(Q), and the representa-
tions λ+ and λ_ of C+(Q) in N+ and AΓ_ respectively are called semi-spin rep-
resentations of C+(Q). These are simple C+(<2)-modules. There also exists a
canonical linear map /: Q^C+(Q) which satisfies [ f ( X ) , f ( Y ) ] = f ( [ X , Y]) for X
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and Y in g and /(g) generates the associative algebra C+(Q). Furthermore if N
is a left C+(j2)-module and p is the corresponding homomorphism of C+(Q) into
End(ΛΓ), then p°f is a representation of g in ΛΓ(cf. [2], p. 195, Lemma 1). Thus
p+=λ+o/ and p_=λ_oy are irreducible representations of g. In particular, the
action of g on TV is given as follows:

X^Λ — Λ*-f A)

where \<i<j<n and

#(*-,, Λ Λ*.,,)

- (y (Si+ +SΛ-ί^+ +Sj) (tf) (*_,., Λ Λ*.,.,)

for H^§. Particularly we see that the highest weights of p+ and p_ are ΛΛw and

Λrt j ι_1 respectively. The representation p_ is the contragradient representation

of ρ+.
From now on we consider the case n— 5 exclusively.

Theorem 2. Let V be a non-singular hyperplane section of Mw=
SO(10)/C7(5) in P15(C) via the canonical imbedding. Then the group Auΐ0(V) is
not reductive and thus V does not admit any Kάhler metric with constant scalar
curvature. Moreover Hl( V, T( V)) = (0) .

In order to prove Theorem 2 we shall first classify the hyperplanes of ΛΓ+ by
means of the action of the Lie group G. For a linear form B: N+-+C and g^G
let g*A denote the linear form defined by (g*A) (ri)=A(g ri) for n^N+. Now
linear forms B and B± are called G-equivalent if there is an element g^G such
that B!=

Lemma. Let B : N+ = C 1 + Λ2F' + Λ.4F'-*C be a linear form. Then B is
G-equivalent to either a linear form on C \ or a linear form on Λ2F'.

Proof. We may assume #ΦO. Take a basis {e_ly •••, £_5} of F' and fix

it. A basis of N+ is now given by {1, β_ f Λβ-;, ^_1Λ Λ"e_j f e Λ Λ^-5l l<ί<j<
5, k=l, β ,5} and the corresponding dual basis of (N+)* will be denoted by

^i<^S,Λ=l> -, 5>

Step 1. We claim the linear form B is G-equivalent to
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α l+Σ A/(«-<Λ*-yi<J

with αΦO.
The linear form jB can be written as

We may assume that β=0. Let X=Σ1 Pki X-*k-*ι ^e an element °f 9 Then

we have

exp jf(l) = l+ ΣAι*-*Λ*-/+— Σ ΣpkiPij e.iΛe.jΛe.kAe.l .
*</ 2 *</ *</

(a) The case when jS, yΦO for some (ί,.;).

LetJ>w=0 for (A, l)Φ(iJ) and jfcy=l.
Then £(exp Jφ))=/Sf yΦθ and the linear form

(exp X)*B has the required property.

(b) The case when &/=0 for all (A, /).
Take γΛΦθ and choose {/,y, ί, t} such a way as i<j<s<t and ι,y, ί, ίΦA.

Let X=X_9l_9J+X_tt_9t. Then β(exp -Y(l))= 7ΛΦO and the linear form

(exp JY")* β has the required property.

Step. 2. We claim the linear form B is G-equivalent to

with αφO and for some γ£
By Step 1 we may assume that B is given by

with αφO. Let Y=Σ ?*/ ^βt+87 be an element of g. Then we have
*</ * '

iΛe^))=βij-qij a and
=o:. Hence we can choose Y in such a way as (exp Y)*B=a

Step 3. We claim the linear form B is G-equivalent to

α l+Σ βij(e-iΛe-j)* for some β'ij

We may assume -B is given by

Let Yl=q{2 X^+tz be an element of g. Then
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(exp YJ*B=* a>l+(l-qί2a) (e.1Λe.

Let q'i2=Ύs Then we have

(exp Yl)*B=aΊ+μtJe-1Λe-,)*+(

+Σ7ί(*-ιΛ» Λβ_ 4 Λ »Λ«.5)*

where μ12=l—Ύsa.

Let y2=$s -X«ί+e54-?ί5 ̂ J+S5 Then we have

(exp F2)* (exp Yl)*B(e.tΛe-,Aig.t/(e.t)

(exp F2)* (exp

(exp F2)* (exp

(exp F2)* (exp Y1)*B(e-1Ae.2A,e.3/\e.s) = rί

(exp F2)* (exp F1)*JB(e_1Λe_2Λe.3Λe_4) = 0

(exp F2)* (exp FO^^-. Λe.,) = (exp Ft)* B

(exp F2)* (exp F1)*B(e_2Λe_5) = -q'κa

(exp F2)* (exp FO^^^Λe-

Thus setting ^ί5=72 and ?25=7ί, we get
(exp F2)*(exp F,)* fi=α.

(a) Now we consider the case μ^φO, 72 Φθ or 7ίφ0.

Let F3=^5 X,t+tt+q'35 XS3+ts Then we have
(exp F3)* (exp F2)* (exp F,)*B=α l+Σ β'i^

*χy
^-2Λβ.3Λ^-5)*+(fy3— ?45/^ι2) (β_ιΛ^-2Λ^_4Λ^_5)* for some β'ij<=C. If μ12φO,
let q35=7i/μι2 and tfίs^Ύs/W, then (exp y3)* (exp Y2)* (exp Y^* £ has the
required property. Similarly if T2ΦO, let Yz=q^ X^+^+qh ^ε2+ε3 where q^=

— Ύ3/Ύ2(X and gi3=— Ύi/Ύίa, then (exp F3)* (exp Y2)* (exp F^* β nas the

required property. And if γ{ Φθ, let Yz=q(^X^+^Jrq(^X^+^ where ^ί^Ύa/Ύ^
and qί3=ΎilΎ2^y then (exp F3)* (exp y2)* (exp YJ* B has the required property.

(b) Now we consider the case μα2=Ύ2— 7ί— 0.

Let ys=912 ^εj+ε2+^35

Then (exp Y3)* (exp Y2)* (exp

Now choose ?ι2Φθ, q& and §45 such that Tί+^WZas^O and 73 + <7i2§45 = 0,
so that (exp Y3)* (exp Y2)* (exp
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Let y4=- £12 X^Z2. Then

(exp y4)*(exp Y3)* (exp F2)* (exp 70*5 (β.1Λ^2Λ^3Λ^4)=-?i2+?i2X 1=0
and hence
(exp F4)* (exp ya)* (exp F2)* (exp yx)* S has the required property.

Step 4. Now we may assume B is given by α l+Σ /?o (e_t Λ£-/)*. If
β'ij=Q for all (*,/), S is a linear form on C l. We may assume there is (1,7)
such that /8/yΦ 0. Let

X=ί X-- Then

(exp X1)*B(e.k^e.i) = B(e^k/\e.,) for each (Λ, /)
(exp X^Bfa-iΛ — /\e-k/\ ••• Λtf_ 5) = 0 for each &.

Letting p'ij=alβ'ijy (exp Xι)*B can be regarded as a linear form on Λ2F'.

q.e.d.

Proof of Theorem 2. From the fact 4 we see that every holomorphic vector
field on a non-singular hyperplane section V can be extended uniquely to a hol-
omorphic vector field on M. Let A={g^Aut(M)\g(V)=V}. Then the Lie
algebra of A can be identified with the Lie algebra of all holomorphic vector
fields on V. Take the hyperplane H of P(N+) such that V=M Π H and let A '=
{£ e G I gH=H} . A hyperplane # is the zero locus of non-zero linear form B on

N+ and thus the Lie algebra α of ^4' is given by α(jB)={^e§o(10, C)\B(X n)
=c(X) B(n), n^N+ for some c(X)^C}. Note also that if linear forms B and
B' on ΛΓ+ are G-equivalent the Lie algebras a(B) and d(-β') are isomorphic.
Therefore by Lemma we may assume that B is a linear form on C l or a linear
form on Λ2ί". If J3=α l(αΦθ) we can see the variety M (Ί# has a singular
point (see Appendix). Thus we may assume B is a linear form on Λ2jF'. Now

we can take a basis {e^l9 e_2> £-3, ?-& ^-5} of F' such that B=(e_1/\e_2)*+

(^_3Λ^_4)*. Since a generic hyperplane section of M is nqn-isngular, it is suf-
ficient to see that if JB=(e_1Λ^_2)*, M[\H has a singular point. Let X=X_ζ _82

and y=Jίε3+ε2. Then (exp F)* (exp JQ* 5=1, and thus 5 is G-equivalent to a
linear form on C 1. Hence, MΠH hsa a singularity.

Now we shall compute the Lie algebra a(B) for 5=(^_1Λ^_2)*+(^-3Λ^_4)
ί|c.

We may write an element X of g=§o(10, C) as

X — Σ ^ε-

Since JB(1)=0,5( .̂ \)=B(Σ dn e.ί/\e_j)=d12+d3t=0. Since

!/\ ••• /\e-k/\ ••• Λe_5)=0, we see that
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—cl2—cM = 0

-% = 0

-c45 = 0

— c15 = 0

—cκ = 0 .

Moreover

e-j = (y (J,

B(X-e,1/\e,3) = 014+023 = 0 > B(X-e^/\e^ = —a13+b24 = 0 ,

£-5) = #25 = 0 , B(X e_2/\e.3) = a24—b13 = 0 ,

e_4) = -a23-bu = 0 , B(X e-2Λe.s) = -b15 = 0 ,

Thus the Lie algebra α(5) is given by

0 CΛΛ Γio £10 0 \

— #12 *2 #23 #24

«35

0 0 0 0 / 5

0

— ̂ 3—0*23 0 ^34 έ/35

0 Λ*12 d13 du d15

0 c24 c23 0 -cl2

0 ^34 0 -C23-£13

Q Q c c ^

0 0 0 0 0

~k ~α45~Λ35~Λ25~α15

Π 7

0 —*34 4 —#23—#13

0 έ24

0 bιA

*1-Γ*2 = '3-Γ*4

-#13+*24 = 0

#24 —*13 = 0

[ λ ___ f\

du+du = 0

^12+^34 — 0

and, in particular, dim α(jB)=30. Let

0

n = X<=a(B) -A —A 0

A

A

Then π is a solvable ideal of α(B) such that [π, tt]Φ(0) and [[n, n], [n, n]]=(0).

0

0

0
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Therefore d(B) is not a reductive Lie algebra. By a theorem of Lichnerowicz-
Matsushima [6], we see that the hyperplane section V does not admit any Kahler
metric with constant scalar curvature.

Now by the same argument as in the proof of Theorem 1, we get

dim H\V, T(V)) = h\V, T(V))

= Λ°(F, T(V))-h\M, T(M))+h°(V, {V} \ V)

= dim α(β)-dim βo(10, C)+(16-l)
= 30-45+15 = 0.

q.e.d.

Appendix

Let M be an Hermitian symmetric space of compact type and L a very

ample holomorphic line bundle on M. L,etjL: M^>PN(C) be the imbedding as-
sociated to L. Then it is known that the homogeneous ideal of M is generated
by quadrics [7]. We shall determine these quadrics in the case when M==
SO(W)/U(5) and the imbedding is canonical. Denote by o the point in P(N+)

corresponding to t/(5) of M. Let m_ = Σ 9_εί_ey be an abelian subalgebra of

Q=§O (10, C) and M_ the Lie subgroup corresponding to m_. Fix a basis

{<?_!, £_2, *?_3, £_4, έ?_5> of F'. Then

is a basis of N+. We also denote by {xλ} the dual basis of N% . Now consider

the orbit M, o=j (exp m_ U) = [ρ (exp m_) ̂ 0]. We may write an element Y
of m_ as

Note that the highest vector VQ is given by 1 EΞ JV+ in our case. Then

P(expY).l

— 1 + Σ ζ-ti- βy -̂ -8,— βy*l+~Λ" Σ ζ-ti-tj ?-βΛ-8/ -^-βί-βy -^-f^-e/

For simplicity we denote the highest weight ΛΛs by Λ. Now we get

^A-8|._βy_e,_ε/ (p (exp Y) c l)

:= ^ (b-ε,— βy t-βjfe-ε/ b-fί- 8^

where ι < j < £ < /. Thus we see on Λf _ o
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fθϊt<j<k<l.

Since the Zariski closure M_ o of M_ o in P(N+) is M, we see that these quadrics

vanish on M.
Let /(M) be the homogeneous ideal of M, S2(N%) the vector space of ho-

mogeneous polynomials of degree 2 on JV+ and 72 the subspace of degree 2 of the

ideal /(M). Then /(M), S2(ΛΓ*) and I? are So(10, C)-modules. Now the decom-
position of S2(N%) as £o(10, C)-modules is given by

where F2Λ-4 and Fr

Λα>ι denotes §o(10, C)-modules with the highest weights 2ΛΛ

and ΛΛί respectively, and we see /2= FΛΛ] as §o(10, CJ-module. (Note that ΛΛj=
fj.) In particular, we have dim /2=10. Applynig elements of Weyl group of

§o(10, C), it is not difficult to see that the following 10 quadrics constitute a

basis of /2:
For l<i<j<k<l<5,

xΛxA-(si+zj+tk+el') ^Δ-Cε +εy) ^Λ

(ε2+ε4)
 <x?Λ-(ε1+ε4)

 <:vA-(

) Λ:Λ-(ε1+ε2+ε4+ε5) ^Δ-(83+85)

T~ Λ?Λ-(81+ε3+ε4+ε5) ^A-(82+85) ^Δ-Cεj+εs) ^-(82+83+84+85)

I xA-

β5)

-(t1 + 82+83+ 85) ^A-

81 + 82) ^Δ- (85 + 83+84+85)

ΛΔ-(81+84) ^Δ-(81 + 82+ 83+85)

Now if a hyperplane H is given by S=α l, that is, a xA=Q, then the

variety Mf~}H has a singular point. In fact, if we take a point p^P(N+) defined
by

#Λ_(g]+ε2+ε3+β4) (/>)ΦO and *λ(/>) = 0 otherwise,

thenp^MΓiH is a singular point of MΓ\H, using the fact M is the zero locus

of 10 quadrics above.
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