BLOCK INTERSECTION NUMBERS OF BLOCK DESIGNS II

Mitsuo YOSHIZAWA

(Received December 22, 1983)

1. Introduction

Let t, v, k and λ be positive integers with $v \geq k \geq t$. A $t-(v, k, \lambda)$ design is a pair consisting of a v-set Ω and a family \boldsymbol{B} of k-subsets of Ω, such that each t-subset of Ω is contained in just λ elements of \boldsymbol{B}. Elements of Ω and \boldsymbol{B} are called points and blocks, respectively. A $t-(v, k, 1)$ design is often called a Steiner system $S(t, k, v)$. A $t-(v, k, \lambda)$ design is called nontrivial provided \boldsymbol{B} is a proper subfamily of the family of all k-subsets of Ω, then $t<k<v$. In this paper we assume that all designs are nontrivial. For a $t-(v, k, \lambda)$ design \boldsymbol{D} we use $\lambda_{i}(0 \leq i \leq t)$ to represent the number of blocks which contain a given set of i points of \boldsymbol{D}. Then we have

$$
\lambda_{i}=\frac{\binom{v-i}{t-i}}{\binom{k-i}{t-i}} \lambda=\frac{(v-i)(v-i-1) \cdots(v-t-1)}{(k-i)(k-i-1) \cdots(k-t-1)} \lambda \quad(0 \leq i \leq t)
$$

A $t-(v, k, \lambda)$ design \boldsymbol{D} is called block-schematic if the blocks of \boldsymbol{D} form an association scheme with the relations determined by size of intersection (cf. [3]). Any Steiner system $S(2, k, v)(t=2)$ is block-schematic (cf. [2]). For a block B of a $t-(v, k, \lambda)$ design \boldsymbol{D} we use $x_{i}(B)(0 \leq i \leq k)$ to denote the number of blocks each of which has exactly i points in common with B. If, for each $i(i=0, \cdots$, $k), x_{i}(B)$ is the same for every block B, we say that \boldsymbol{D} is block-regular and we write x_{i} instead of $x_{i}(B)$. Any Steiner system $S(t, k, v)$ is block-regular (cf. [6]), and any block-schematic t-($v, k, \lambda)$ design is also block-regular.

Atsumi [1] proved
Result 1. If a Steiner system $S(t, k, v)$ is block-schematic with $t \geq 3$, then $v \leq k^{4}\binom{k}{\left[\frac{k}{2}\right]}$ holds.

Yoshizawa [7] extended Result 1 and prove
Result 2. (a) For each $n \geq 1$ and $\lambda \geq 1$, there exist at most finitely many block-schematic $t-(v, k, \lambda)$ designs with $k-t=n$ and $t \geq 3$.
(b) For each $n \geq 1$ and $\lambda \geq 2$, there exist at most finitely many blockschematic $t-(v, k, \lambda)$ designs with $k-t=n$ and $t \geq 2$.

In $\S 2$ we first prove the following proposition, and we prove the following theorem related to the above results.

Proposition. $\quad x_{t-1}^{2} \geq x_{0}$ holds for any block-schematic Steiner system $S(t, k, v)$ with $k \geq 2(t-1)$.

Theorem 1. Let ε be a positive real number. Then for each $t \geq 3$ there exist at most finitely many block-schematic Steiner systems $S(t, k, v)$ with $v<k^{2-\varepsilon}$, and for each $t>\frac{2}{\varepsilon}+2$ there exist at most finitely many block-schematic Steiner systems $S(t, k, v)$ with $v>k^{3+\varepsilon}$.

Yoshizawa [7] proved the following result about block-regular designs.
Result 3. Let c be a real number with $c>2$. Then for each $n \geq 1$ and $l \geq 0$, there exist at most finitely many block-regular $t-(v, k, \lambda)$ designs with $k-t=n, v \geq c t$ and $x_{i} \leq l$ for some $i(0 \leq i \leq t-1)$.

In $\S 3$ we notice that the block-regularity of Result 3 is essentially unnecessary, and we prove

Theorem 2. Let c be a real number with $c>2$, and n, l be integers with $n \geq 1, l \geq 0$. Then there exist at most finitely many $t-(v, k, \lambda)$ designs each of which satisfies the following conditions: (i) $k-t=n$, (ii) $v \geq c t$, (iii) there exist a block B and an integer $i(0 \leq i \leq t-1)$ with $x_{i}(B) \leq l$.

2. Proof of Theorem 1

Let \boldsymbol{D} be a $t-(v, k, \lambda)$ design. Let $B_{1}, \cdots, B_{\lambda_{0}}$ be the blocks of \boldsymbol{D}, and $A_{h}(0 \leq h \leq k)$ be the h-adjacency matrix of \boldsymbol{D} of degree λ_{0} defined by

$$
A_{h}(i, j)=\left\{\begin{array}{l}
1 \text { if }\left|B_{i} \cap B_{j}\right|=h \\
0 \text { otherwise }
\end{array}\right.
$$

If \boldsymbol{D} is block-schematic, then
$A_{i} A_{j}=\sum_{h=0}^{k} \mu(i, j, h) A_{h}(0 \leq i, j \leq k)$ where $\mu(i, j, h)$ is a non-negative integer defined by the following: When there exist blocks B_{p} and B_{q} with $\left|B_{p} \cap B_{q}\right|=$ h,

$$
\mu(i, j, h)=\left|\left\{B_{r}:\left|B_{p} \cap B_{r}\right|=i,\left|B_{q} \cap B_{r}\right|=j, 1 \leq r \leq \lambda_{0}\right\}\right|,
$$

and when there exist no blocks B_{p} and B_{q} with $\left|B_{p} \cap B_{q}\right|=h, \mu(i, j, h)=0$. Let \boldsymbol{a} be the all -1 column vector of degree λ_{0}. Then

$$
A_{i} A_{j} \boldsymbol{a}=\sum_{h=0}^{k} \mu(i, j, h) A_{h} \boldsymbol{a}
$$

Hence we have
Lemma 1. For a block-schematic t - (v, k, λ) design, $x_{i} x_{j}=\sum_{h=0}^{h} \mu(i, j, h) x_{h}$ holds $(0 \leq i, j \leq k)$.

Remark. Lemma 1 is essentially well-known (cf. [1], [7]).
Lemma 2. Let \boldsymbol{D} be a Steiner system $S(t, k, v)$ with $t \geq 2$ and $k \geq 2(t-1)$. If $(t, k, v) \neq(4,7,23),\left(2, n+1, n^{2}+n+1\right)(n \geq 2)$, then there exist three blocks B_{1}, B_{2} and B_{3} of \boldsymbol{D} such that $\left|B_{1} \cap B_{2}\right|=\left|B_{1} \cap B_{3}\right|=t-1$ and $\left|B_{2} \cap B_{3}\right|=0$.

Proof. By [6] we have

$$
x_{t-1}=\left(\lambda_{t-1}-1\right)\binom{k}{t-1}=\frac{v-k}{k-t+1}\binom{k}{t-1}>0
$$

Hence we may assume that there exist two blocks B_{1} and B_{2} with $\left|B_{1} \cap B_{2}\right|=$ $t-1$. Since $k \geq 2(t-1), B_{1}-B_{2}$ has (distinct) $t-1$ points $\alpha_{1}, \cdots, \alpha_{t-1}$. Let M_{1} ($=B_{1}$), $M_{2}, \cdots, M_{\lambda_{t-1}}$ be the blocks which contain $\alpha_{1}, \cdots, \alpha_{t-1}$. If $M_{i} \cap B_{2}=\phi$ for some $i\left(2 \leq i \leq \lambda_{t-1}\right)$, then $\left|B_{1} \cap M_{i}\right|=t-1$ and $\left|B_{2} \cap M_{i}\right|=0$ hold. Let $u s$ suppose $M_{i} \cap B_{2} \neq \phi$ for $i=2, \cdots, \lambda_{t-1}$. Then we have

$$
\begin{equation*}
\frac{v-t+1}{k-t+1}-1 \leq k-t+1 \tag{1}
\end{equation*}
$$

On the other hand by Theorems 3A. 3 and 4 in [4], we have $v-t+1 \geq$ $(k-t+2)(k-t+1)$, with equality only when $(t, k, v)=\left(2, n+1, n^{2}+n+1\right)(n \geq$ 2), $(3,4,8),(3,6,22),(3,12,112),(4,7,23)$ or $(5,8,24)$. Hence by (1) and the assumption of Lemma 2, we have $(t, k, v)=(3,4,8),(3,6,22),(3,12,112)$ or $(5,8,24)$. But we can easily check that $S(3,4,8), S(3,6,22), S(3,12,112)$ and $S(5,8,24)$ satisfy the conclusion of Lemma 2 if $S(3,12,112)$ exists (cf. [5, Corollary 1]).

Proof of Proposition. Let us suppose that \boldsymbol{D} is a block-schematic Steiner system $S(t, k, v)$ with $k \geq 2(t-1)$. Then by Lemma 1, we have

$$
x_{t-1}^{2}=\sum_{k=0}^{k} \mu(t-1, t-1, h) x_{h}
$$

Now by Lemma 2, $\mu(t-1, t-1,0)>0$ or $x_{0}=0$ holds when $k \geq 2(t-1)$ and $t \geq 2$ hold. Hence we have $x_{i-1}^{2} \geq x_{0}$.

Proof of Theorem 1. First let us suppose that \boldsymbol{D} is a block-schematic Steiner system $S(t, k, v)$ with $t \geq 3$ and $v<k^{2-8}$. By Theorems 3A. 3 and 4 in [4], we have $v \geq(k-t+2)(k-t+1)+t-1$, where the right hand of this
inequality is a polynomial in k of degree two. Hence there exists a positive number $N(\varepsilon, t)$ with $k<N(\varepsilon, t)$, where $N(\varepsilon, t)$ depends only on ε and t. Hence by Result $1, v$ is bounded above by a function of ε and t.

Next suppose that \boldsymbol{D} is a block-schematic Steiner system $S(t, k, v)$ with $t>\frac{2}{\varepsilon}+2$ and $v>k^{3+z}$.
By [6] we have

$$
\begin{equation*}
x_{t-1}^{2}=\left(\lambda_{t-1}-1\right)^{2}\binom{k}{t-1}^{2}=\frac{(v-k)^{2}}{(k-t+1)^{2}}\binom{k}{t-1}^{2} \tag{2}
\end{equation*}
$$

By [5, Lemma 6] (or [7, Lemma 5]) we have

$$
\begin{align*}
& x_{0}=\left\{\binom{v-k}{k}+(-1)^{t+1} \sum_{\lambda=0}^{k-t-1}\binom{t-1+q}{q}\binom{v-k+q}{k-t}\right\} /\binom{v-t}{k-t}, \\
& x_{0} \geq \frac{\binom{v-k}{k}}{\binom{v-t}{k-t}}-\frac{(k-t)\binom{k-2}{k-t-1}\binom{v-t-1}{k-t}}{\binom{v-t}{k-t}} \tag{3}
\end{align*}
$$

Hence by (2) and (3) we have

$$
\begin{aligned}
& x_{0}-x_{t-1}^{2} \geq \frac{(v-k) \cdots(v-2 k+1)}{(v-t) \cdots(v-k+1) k \cdots(k-t+1)}-(k-t)(k-2)^{t-1}-\frac{(v-k)^{2}}{(k-t)^{2}}\binom{k}{t-1}^{2} \\
& x_{0}-x_{t-1}^{2} \geq \frac{(v-2 k)^{k}}{v^{k-t} k^{t}}-k^{t}-\frac{v^{2} k^{2 t-2}}{(k-t)^{2}}
\end{aligned}
$$

Since we may assume $k \geq 2 t$ by Result 1 , we have

$$
x_{0}-x_{t-1}^{2} \geq \frac{(v-2 k)^{k}}{v^{k-t} k^{t}}-k^{t}-4 v^{2} k^{2 t-4} \geq \frac{(v-2 k)^{k}}{v^{k-t} k^{t}}-5 v^{2} k^{2 t-4}
$$

On the other hand by Proposition, $x_{t-1}^{2} \geq x_{0}$ holds because of $k \geq 2 t$. Thus we get

$$
\begin{equation*}
(v-2 k)^{k}-5 v^{k-t+2} k^{3 t-4} \leq 0 . \tag{4}
\end{equation*}
$$

Since $v>k^{3}$, we have

$$
\begin{equation*}
\frac{(v-2 k)^{k}}{5 v^{k-t+2} k^{3 t-4}}=\frac{\left(1-\frac{2 k}{v}\right)^{k-t+2}(v-2 k)^{t-2}}{5 k^{3 t-4}} \geq \frac{\left(1-\frac{1}{k}\right)^{k}(v-2 k)^{t-2}}{5\left(1-\frac{1}{k}\right)^{t-2} k^{3 t-4}} \tag{5}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}=\frac{1}{e}$, where e is the Napier number, there is a positive num-
ber $M_{1}(t)$ which depends only on t, such that $\left(1-\frac{1}{n}\right)^{n} /\left\{5\left(1-\frac{1}{n}\right)^{t-2}\right\}>$ $M_{1}(t)$ holds for all integer $n \geq 2$. On the other hand, $(v-2 k)^{t-2} / k^{3 t-4} \geq v^{t-2} /$ $\left\{2^{t-2} k^{3 t-4}\right\}$ holds. Hence by (5), we have

$$
\frac{(v-2 k)^{k}}{5 v^{k-t+2} k^{3 t-4}} \geq M_{2}(t) \frac{v^{t-2}}{k^{3 t-4}},
$$

where $M_{2}(t)$ is a positive number which depends only on t. Since $v>k^{3+\varepsilon}$ and $t>\frac{2}{\varepsilon}+2$, there exists a positive number $M_{3}(\varepsilon, t)$ which depends only on ε and t, such that

$$
\frac{(v-2 k)^{k}}{5 v^{k-t+2} k^{3 t-4}}>1 \text { holds for any } k \geq M_{3}(\varepsilon, t)
$$

Hence by (4), we must have $k<M_{3}(\varepsilon, t)$. Hence by Result $1, v$ is bounded above by a function of ε and t.

3. Proof of Theorem 2

The proof of Theorem 2 is essentially similar to that of Theorem 2 in [7]. So we give its outline.

Let \boldsymbol{D} be a $t-(v, k, \lambda)$ design, and B be a block of \boldsymbol{D}. Counting in two ways the number of the following set

$$
\left\{\left(B^{\prime},\left\{\alpha_{1}, \cdots \alpha_{i}\right\}\right): B^{\prime} \text { a block }(\neq B), B^{\prime} \cap B \ni \alpha_{1}, \cdots \alpha_{i}, \alpha_{j} \neq \alpha_{j^{\prime}} \text { if } j \neq j^{\prime}\right\}
$$ gives

$$
\begin{equation*}
x_{i}(B)+\binom{i+1}{i} x_{i+1}(B)+\cdots+\binom{t}{i} x_{t}(B)+\cdots+\binom{k-1}{i} x_{k-1}(B)=\left(\lambda_{i}-1\right)\binom{k}{i} \tag{6}
\end{equation*}
$$

for $i=0, \cdots, t-1$, and

$$
\begin{equation*}
x_{i}(B)+\binom{i+1}{i} x_{i+1}(B)+\cdots+\binom{k-1}{i} x_{k-1}(B) \leq(\lambda-1)\binom{k}{i} \tag{7}
\end{equation*}
$$

for $i=t, \cdots, k-1$. Let $w_{i}(B)(t \leq i \leq k-1)$ be the left hand of the above inequality, where $w_{t}(B)=(\lambda-1)\binom{k}{t}$.

By (6) and (7) we have

$$
\begin{equation*}
x_{i}(B)=\sum_{j=0}^{t-1}\binom{j}{i}\left(\lambda_{j}-1\right)\binom{k}{j}(-1)^{i+j}+\sum_{j=t}^{k-1}\binom{j}{i} w_{j}(B)(-1)^{1+j} \tag{8}
\end{equation*}
$$

for $i=0, \cdots, t-1$ (cf. [7, Proof of Lemma 1]). By (8) we have that there exists
a positive number $C(k, l, t, i)$ which depends only on k, l, t, i, such that $x_{i}(B)$ $-l>0$ holds if $v \geq C(k, l, t, i)$ (cf. [7, Proof of Lemma 6]). Namely, $v<C$ (k, l, t, i) holds if $x_{i}(B) \leq l$. Hence we get

Lemma 3. For each $k \geq 2$ and $l \geq 0$, there exist at most finitely many t (v, k, λ) designs each of which satisfies that there exists a block B and an integer i $(0 \leq i \leq t-1)$ with $x_{i}(B) \leq l$.

Proof of Theorem 2. By Lemma 3 we may assume that $t \geq \frac{2 n+((2 n+2)!)^{2}}{c-2}$ $+2 n$. Let \boldsymbol{D} be a $t-(v, k, \lambda)$ design satisfying $v \geq c t$ and $t \geq \frac{2 n+((2 n+2)!)^{2}}{c-2}$ $+2 n$. Set $v=m t(m \geq c)$, where m is not always integral.
By (8) we have

$$
\begin{aligned}
& x_{i}(B)=\frac{\lambda\binom{k}{i}}{\binom{v-t}{k-t}}\left\{\binom{v-k}{k-i}+(-1)^{t+i+1} \sum_{k=0}^{k-t-1}\binom{t-i-1+q}{q}\binom{v-k+q}{k-}\right\} \\
& \quad+(\lambda-1) \sum_{j=i}^{t-1}\binom{j}{i}\binom{k}{j}(-1)^{i+j}+\sum_{j=t}^{k-1}\binom{j}{i} w_{j}(B)(-1)^{i+j},
\end{aligned}
$$

where $x_{j}(B) \leq w_{j}(B) \leq(\lambda-1)\binom{k}{j}=(\lambda-1)\binom{t+n}{j}(t \leq j \leq k-1)$
(cf. [7, Proof of Lemma 5]). Hence we get

$$
\begin{aligned}
& x_{i}(B)=\frac{\lambda\binom{t+n}{i}}{\binom{(m-1) t}{n}}\left\{\left(\begin{array}{c}
\left.\binom{m-1) t-n}{t+n-i}+(-1)^{t+i+1} \sum_{q=0}^{n-1}\binom{t-i-1+q}{q}\binom{(m-1) t-n+q}{n}\right\} \\
\quad+(\lambda-1) \sum_{j=i}^{t-1}\binom{j}{i}\binom{t+n}{j}(-1)^{i+j^{t+n-1}} \sum_{j=t}^{j}\binom{j}{i} w_{j}(B)(-1)^{i+j},
\end{array}, l\right.\right.
\end{aligned}
$$

for $i=0, \cdots, t-1$. By the above equality and the condition on t, we have

$$
x_{i}(B)>\frac{((c-1) t-n)}{((n+1)!)^{2}}\left(\frac{c-2}{c-1}\right)^{n}-5 n \quad(c f .[7, \text { pp. 797, 798] })
$$

We remark that the right hand of the above inequality does not depend on i. Hence there exists a positive number $N(c, n, l)\left(\geq \frac{2 n+((2 n+2)!)^{2}}{c-2}+2 n\right)$ which depends only on c, n, l, such that $x_{i}(B)-l>0$ holds for $i=0, \cdots, t-1$ if $t \geq N$ (c, n, l). Namely, $t<N(c, n, l)$ holds if $x_{i}(B) \leq l$ holds for some $i(0 \leq i \leq t-1)$. Hence by Lemma 3, we complete the proof.

References

[1] T. Atsumi: An extension of Cameron's result on block schematic Steiner systems, J. Combin. Theory Ser. A 27 (1979), 388-391.
[2] R.C. Bose: Strongly regular graphs, partial geometries, and partially balanced designs, Pacific J. Math. 13 (1963), 389-419.
[3] P.J. Cameron: Two remarks on Steiner systems, Geom. Dedicata 4 (1975), 403418.
[4] P.J. Cameron: Parallelisms of complete designs, London Math. Soc. Lecture note series No. 23, Cambridge Univ. Press, Cambridge 1976.
[5] B.H. Gross: Intersection triangles and block intersection numbers for Steiner systems, Math. Z. 139 (1974), 87-104.
[6] N.S. Mendelsohn: A theorem on Steiner systems, Canad. J. Math. 22 (1970), 1010-1015.
[7] M. Yoshizawa: Block intersection numbers of block designs, Osaka J. Math. 18 (1981), 787-799.

Department of Mathematics Keio University
4-1-1 Hiyoshi, Kohoku-ku
Yokohama 223, Japan

