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We have studied, in [3], a right artinian ting R satisfying Condition I
(see below) as a generalization of right artinian serial rings. However, there,
we have .estricted ourselves to the case that /=0, where J is the Jacobson
radical of R.

In this paper, instead of removing the restriction J?=0, we shall add one
more condition (Condition II’: every hollow module is quasi-projective or Con-
dition II”: R is an algebra of finite dimension over an algebraically closed field).
We shall give a characterization of a right artinian ring satisfying Condition I
and Condition II” (resp. II”), and show that such a ring is closely related to
an algebra of right local type studied by H. Tachikawa [8] (see also [7]). Ac-
tually, if the assumption “left serial” is removed in [8], the situation is very
similar to that in this paper.

Further, under Condition I, we shall consider Condition II: |eJ/eJ?| <2
for each primitive idempotent e, which is weaker than Conditions II’ and II”.
We shall give the structure of a ring satisfying Conditions I and II, and show
that the structure gives a characterization of such a ring provided J3=0.

1 Conditions and Theorems. In this paper, we shall study a right
artinian ring R with identity, and every R-module is assumed to be a unitary
right R-module. We denote the Jacobson radical and the socle of an R-module
M by J(M) and Soc(M), respectively. Occasionally, we write J=J(R). |M|
means the length of a composition series of M. If eR is a right uniserial module
for each primitive idempotent e, R is called a right serial (generalized uniserial)
ring. If R is a right serial ring then the following conditions are satisfied:

Condition I: every submodule in any finite direct sum of hollow modules

is also a direct sum of hollow modules [3]
and

1) Conditions II and II-a are added in the revise.
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Condition II":  every hollow module is quasi-projective [6].
In [3], we have studied rings R satisfying Condition I, under the extra hypo-
thesis J?=0, and further known that, among them, there exist some rings which
fail to satisfy Condition II’ (e.g., algebras over an algebraically closed field).

Let R be an algebra of finite dimension over a field K such that R/J=3>1D
K,,, where K, is the n, Xn; full matrix ring over K (e.g., K is an algebraically
closed field). We have thus the following condition:

Condition II”:  eRejeJe=eK for each piimitive idempotent e, where K

is a subfield contained in the center of R.

As is shown in Corollary 2 below, if R satisfies Conditions I and either
IT” or I1” then |e]/eJ?| <2 for each e. From the study of rings satisfying Con-
dition I and J?=0 (see [3]), it seems to the author that |eJ/eJ?| <2 holds with-
out assuming J?=0. (For the present, he has no counter-examples.) Several
conditions under which |eJ/eJ?| <2 holds are given in [3]. On the other hand,
since ef/eJ? is semisimple, efle]’=>,PSY), where S; are smmple (S;3&S;
provided 7=f) and S{*? means the direct sum of 7; copies of S;. If R satisfies
Condition I and J?=0, then ;<2 for all 7 if and only if |eJ/eJ?| <2 (see [3]).
From this point of view, we consider the following conditions:

Condition II: for each primitive idempotent e, |efle]?| <2,
and

Condition II-a: for each primitive idempotent e, n; <2 for all i.

Lemma 1. Let P be a two-sided ideal of R. If R satisfies any one of the
conditions above, then so does R/P.

Proof. Assume that R satisfies Condition I. Put I=?=R/P. Let D be
a finite direct sum of hollow R-modules N,, and M an R-submodule of D.
Then N; are hollow R-modules. Hence, from Condition I, M=>),PM,;
with hollow R-modules M;. Since MP=0, M; is also a hollow R-module.
Hence Condition I holds for R. It is clear that J(R/P)=(J+P)/P. Let e
be a primitive idempotent in R not contained in J+P. Then e is a primitive
idempotent in R. Since ¢R is a homomorphic image of eR, the remainder is
also clear.

Corollary 2. Assume that R satisfies the following condition:
Condition I*: every submodule in any direct sum of three hollow modules
is also a direct sum of hollow modules.?
Then Conditions II and II-a are equivalent, and each of Conditions I1" and
11 implies Condition II.

Proof. By Lemma 1, R/J? satisfies Condition I. Hence the corollary

2) We needed only Condition I* in the proof in [3].
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13 clear from [3], Lemmas 9 and 14.

As is easily seen, the conditions above except II” are invariant for Morita
equivalence. Let Ry=e¢)Re, be the basic ring of R. If x is an element in
the center of R, ¢,x is in the center of R,. Hence, in order to study the struc-
ture of rings which satisfy those conditions, we may assume that R is a basic
ring.

Let M be a hollow module. Then M~eR/A with a primitive idempotent
eand arightideal 4ineR. Put A=eRe[eJeand A(A)={X=A|xeRe, xAC A},
where % is the coset of x in A. It is clear that A(4) is a subdivision ring of A.
We regard A as a right A(4)-module (see [3] and [4]), so [A: A(4)] means the
dimension of A over A(A) as a right A(4)-module.

Let M,D N, and M,DN, be R-modules. A submodule NP N, in M,PM,
is called a trivial submodule of My®M,. For N;CN,, N;/N;(CM,/Nj) is called
a sub-factor module of M,.

We shall give the following theorems.

Theorem 1. Let R be a right artinian ring. If R satisfies Conditions I*
and 11, then for each primitive idempotent e in R we have the following properties:

1) eJ=A,PB,, where A, and B, are uniserial modules. Further, if A,[J(4,)
~B,[](B,), aA,=B, for some unit a in eRe.

2) For every submodule N in e, there exists a trivial submodule A;PDB;
of e] and a unit B in eRe such that N=B(A4;DB,), where A;=A, J'"'C A, and
B,=B, J'"'CB,.

3) If Ai~B, then A(A;®B;))=A and [A: A(A;PB;)|=2 provided i=+j;
Sfurther A(4))=A(4;)=A(4;PB;) (i<j) and A(B,)=A(B;)=A(4;BB;) (i>)).
If A\A&B,, then A(N)=A for any submodule N in e].

Theorem 2. Let R be a right artinian ring. Then the following are equiva-
lent:

1) R satisfies Conditions I and II'.

2) R satisfies Conditions I* and I1'.

3) For each primitive idempotent e, e] is a direct sum of two uniserial modules
A, and B,, and no sub-factor module of A, is isomorphic to any sub-factor module
of B,, and hence every submodule in e] is trivial.

Theorem 2. Let R be a right artinian ring. If R satisfies Condition
I1”, then the following are equivalent:

1) R satisfies Condition I.

2) R satisfies Condition I*.

3) For each primitive idempotent e, e] is a direci sum of two uniserial modules
A, and B, and every submodule in e] is isomorphic to a trivial submodule via the
left-sided multiplication of a unit element in eRe.
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2 Proof of Theorem 1. We always assume that R is a right artinian
ring with identity, and J is the Jacobson radical of R, unless otherwise stated.
Further, we may assume that R is basic in the proof. In advance of giving
the proof, we state the following proposition.

Proposition 3. If J*=0, then every submodule of a direct sum of two hol-
low modules is also a direct sum of hollow modules.

Proof. As is shown in [3], 83, it suffices to consider a direct sum of hol-
low modules eR/A4 for a fixed primitive idempotent e and show that every maxi-
mal submodule M of D=eR|A,PeR|/A, is a direct sum of hollow modules.
Let 7; be the projection of D onto eR/A;. If = (M)CeJ|A, then M=e]J[A,PD
eR/A,. Since eJ/4, is semisimple by the assumption J?=0, M is a direct sum
of hollow modules. Assume that 7; is an epimorphism for i=1, 2. Put D=
D/J(D) and M=M/J(D). Then M has a basis of the form (é-+eF) over A=
eRefe]e, where & is the coset of e in eR/e] (note that R is assumed to be basic).
We have the natural mapping @ of eR to D by setting o(e)=(e+4,)-+(er+
A,). Then DD @(eR)~eR|C, where C=ker @. Since @p(eR)=M, M=g(eR)+
J(D). Noting that J(D) is semisimple, we obtain that M=gp(eR)+ (2B M),
where M; are simple. Hence M is a direct sum of hollow modules.

From Proposition 3, we see that Condition I has a meaning for direct sums
of at least three hollow modules. In what follows, we shall use a diagram

A

B c ,
which means that 4, B, and C are hollow modules and J(4)=B&®C.

Proof of Theorem 1. We always assume that R satisfies Conditions I*
and II, and that R is a basic ring, unless otherwise stated.

Lemma 3. Assume that R satisfies Condition I*. Let E, and E, be sub-
modules in e] with JE,=0. Put D=eR|E,PDeR|E,. For each unit o in eRe, D
contains a maximal submodule with a direct summand isomorphic to eR/(E,N akE,)

via the mapping :  x—+(E, N aE,)—(x+E)+(a™ x+E,).

Proof. Let A=eReleJe. Then D=D/J(D) is a right A-module, because
R is basic. Now, let M be the maximal submodule of D such that M=M/J(D)
=((e+E)+(a* x+E))AcCD. By assumption, M contains a hollow sub-
module M, with M,[J(M,)~(M,+](D))/J(D)=M. Let m, be a generator of
M, such that #m,=(e+a') in D. We denote by =; the projection of D onto
eR/E;. Then we obtain a homomorphism f;: eR—M;—¢R/E; by setting fi(e)=
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z;(m,), which is given by the left multiplication of a unit B; in eRe. Hence
M,~eR|(BT'E,NB7'Ey) and my=my(m,)+m(m)=fi(€)+foe)=(B1+E1)+(B+
E,). Since m,=(e+E,)+(a'+E,), B;=¢ and B,=a™ ' in A. Now eR/(BT'E,N
B7'E,)~eR/(E,N 3187 E,;). On the other hand, B,8z'=a-j for some j in efe.
Hence 8,87 'E,=akE, by assumption. The mapping is clear.

RemARK 4. If we drop the assumption JE,=0 in Lemma 3, we obtain
eR/(E;N(a+j)E,) instead of eR/(E, N aE,), from the proof.

Lemma 5. Let A be a right ideal in eR with JA=0. If a A=A for every
unit o in eRe, then A is a two-sided ideal, provided R is a basic ring.

Proof. Since efeA=0, A is a characteristic submodule of eR. Since
R is basic, RA=2>e;ReA=3, 4. ¢; JeA+eReA=A, where 1=3]; ¢; and e; are
orthogonal primitive idempotents.
Lemma 6. eR has the structure given in the following diagram:
’ eR

A4, B, eJ

Ay Ay B, B,, eJ? (1)

..................

where A;; and B;; are hollow modules and e]'=3) ;P A, ;P> ;P B,

Proof. Let 4 be a hollow module contained in eR and A~fR/B, where
f is a primitive idempotent in R. Then J(4)=AJ=3X1i_.,PA4; with hollow
modules 4;, and 4J*=>),PA;J. On the other hand, AJ/AJ*~f]|(f]*+B).
Since fJ/(fJ?+B) is a homomorphic image of f]J/f]? |AJ|AJ?| <2 by Condi-
tion II. Hence #<2, which proves the lemma.

Lemma 7. Let eJ]=A,PB, be as in Lemma 6. If A,|A, J~B,|B,] then
|A,|=|B,|. If A,JA,]A4B,B, ], ma(4,)SB, for any unit o in eRe, where
7, 1§ the projection of e] onto B,.

Proof. Put R=R|J?, A,=(A;+eJ?)/eJ* and B,=(B,+eJ?)/eJ*Ce]. Since
Ay~ A4,|4, J~By|B, J~B,, by [3], Theorem 12 there exists a unit B in ¢Re/e/%
(and hence a unit @ in eRe) such that BA,=B,, i.e., B(4,+eJ?)=B,+eJ>. As
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B, is hollow, there holds z,8(4,)=By,s0 | A;| > | B;|. By symmetry, |4,| <|B,],
and hence | 4,|=|B;|. Since 4, and B, are hollow, there exist no epimorphisms
of 4, onto B,, provided 4,/A4, Ja&B,/B,]. Therefore ma(4,)*B, if 4,/4,]3
B,/B,].

Now let N be a submodule of eJ=A4,PB,, and =, (resp. z,) the projection
of ef onto A, (resp. B)). Put Ny=NnNA4,, N,=NNB,, N'=z(N) and N?=
7(IN). Then, as is well known, N'/N;~N?/N,. Further, if N,=0 then N=
NY(f)—{s-+f(®) [ +ENY, f(3)=r, 77 (x)}

First we shall study R with J*=0 and satisfying Conditions I* and II.
Then, by assumption, eJ=A4,BB, where A, and B, are hollow. Since 4, is a
hollow R/J/?*-module, J(4,)=C,®C, by Lemma 1, where C; are simple or zero.
Similarly J(B,)=D,@®D, with D; simple or zero.

Lemma 8. Assume that C;=0 and D;#0 (i=1, 2), and that C, is iso-
morphic to D, via f. Put Ci=C\(f)=A{c,+f(c;)|e,€Cy} CC\DD,. Then there
holds the following :

1) Soc(eR/C7)=(C,+C7)/CiB(C,+C7)|C1B(D,BCY)/C1 and (C;+C1)[C1
~C;, (D,+C1)|Ci=~D,.

2) If N|C1 is umiform in eR/C/ for a submodule N in eR then |N | <3.

Proof. 1) Let N* be a submodule of eR such that N*OC/ and |N*/C/{|
=1. Since N*CeJ and |N*|=2, |[N*|<|N*|=2. Hence N* CJ(4,)C
Soc(eR). Similarly, N**CSoc(eR), and therefore N* C Soc(eR).

2) It is clear that NceJ. If N;=0 then |N|<3. We assume hence-
forth N;#=0. If N,OC, then NOC,@D,. Since Soc(e]/(C,PD,))~C,PD,,
N contains a non-zero element x in C,PD,, provided N+=C,@D,. Then
N/C{D(C,+xR+C1)|C{~C,PxR, so N|/C] is not uniform, and hence N=C,P
D,, so that | N|<2. On the other hand, if NV, C, then N contains an element
r=x+yEN;; x€C), y+0&C, Hence N/C{D(C,+2R+C7)|Ci~C,PzR, a

contradiction.
Lemma 9. If J3=0, then both A, and B, in Theorem 1 are uniserial.

Proof. 1) Assume that e] is hollow. Since e] is an R/J/?-module, eJ?=
C,&®C; by Lemma 1, where C; are simple. Assume C;=0 for i=1, 2, and put
D=eR|CPeR/C,. Since JC,=0, D contains a maximal submodule M with
a direct summand M, isomorphic to eR, by Lemma 3 (take a=e). Then
|Soc(D)|=|Soc(eR)| =2, and therefore M=M,. On the other hand, |D|=6
and |M|=|eR|=4, which is a contradiction. Hence, if ¢J is hollow then eR is
uniserial.

2) Assume that e/=A4,PB, and 4,+0, B,+0. Let J(4,)=C,®C, and
J(B))=D,®D, as before (see Lemma 8). We shall show that C,=D,=0.

1) Assume that C,=0, D,#0 and D,=#=0. Then C,=%0 or 4, is simple
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by assumption. First assume that C,==0. Since |4,|<<|B,|, 4,/4,]J73B,|B,]
by Lemma 7. Let a; be a generator of 4;, and « a unit in eRe. Then, by
Lemma 7, aa,=ai+b,, where aj€A,—A,] and b,=B,]. Hence aC,=aa,JC
aiJ+b,JcA,J=C,. Therefore C, is a two-sided ideal of R, by Lemma 5.
Considering R/C), in view of Lemma 1, we may assume that 4, is simple in
either case. Put D=eR/D,@eR/D,. Then, by taking a=e in Lemma 3, we
see that D contains a maximal submodule M with a direct summand M,
isomorphic to eR/(D;ND,)=eR. Now, |D|=8, |M,|=5, |Soc(D)|=4 and
|Soc(M,)|=3. Hence M=DM,PM, with M, uniform. Since the uniform
module M, is isomorphic to a submodule of ¢J/D; (=1, 2), we get |M,| <
leJ]/D;|. Therefore M,CeJ/D,Pe]/D,=(A4,BB,)|D,B(A,PB,)/D,. On the
other hand, Soc(M,)=(e, e-+j)Soc(eR)(D,BD,)/D,B(D,BD,)/D, for some
jEe]je, where (e, e+j): eR—D is the mapping given in Lemma 3. Hence M, is
monomorphic to (4,8 D,)/D,B(A4,PD,)|D,~A,PA,, and so to 4,, for M, is
uniform. But, |M,|=|M|—|M,|=|D|—1—|M,|=2, which is a contradic-
tion. Hence, if C,=0 then D=0 or D,=0.

ii) Assume C;=0 and D,=0 for /=1, 2.

o) Assume that there exists a unit « in eRe such that (C;HD,) N a(C,D
D))=0. Put D=eR/(C,DD,)PeR/(C:PD,). Then, by Lemma 3, D contains
a maximal submodule M with a direct summand M, isomorphic to eR. Since
|Soc(D)| =4 and |Soc(M,)| =4, we have M=M,. But, |D|=10>7=|M|,
which is a contradiction.

B) Assume that (C\®D,)Na(C,PD,) is simple. Then this module is
of the form C{ (or D7), and M,~eR|C{. Since |Soc(M,)|=3 by Lemma 8,
M=M,H M, with M, uniform. Hence |M,| <2 by Lemma 8, and so |M | <8,
which is a contradiction.

Thus, we have shown that (C,PD,)=a(C,PD,) for every unit & in eRe.
Then C,PD, is a characteristic submodule by Lemma 5, since J(C,PD,)=0.
By making use of arguments similar to those employed in «) and B), we may
assume that C,@D, is also characteristic. Hence C,=(C,@D,)N(C,PD,) is
characteristic, so that C, is a two-sided ideal of R. Consider the factor ring
R/C,. 'Then e(R/C)) is of the form considered in i), which is a contradiction.

Summarizing all above, we see that C;=0 and D;=0 for some 7, j& {1, 2}.
We have thus shown the lemma.

Lemma 10. If J*=0, then every hollow module is isomorphic to one of the
following: 1) uniform, 2) eR, 3) eR|A, and eR|B,; A,< A, and B,<B,, and 4)
eR/(A,DB,) (see the diagram (2) below).

Proof. This is immediate from Lemma 9 and the proof of Lemma 8.
(Note that for any f: A,—B,, eJ=A,®B,=A4,(f)DB;.)

Lemma 11. Let R be a right artinian ring satisfying Conditions I* and
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I11. Then eJ=A,PB, and both A, and B, are uniserial.

Proof. Let J**'=0. If J3=0, then the lemma is true by Lemma 9. We
proceed by induction on z (>2). By Lemma 6 and the induction hypothesis,
we have the following cases:

| eR eR | eR
|
| ef Alll B, ef A, B, ef
| | l
e]* A, B, eJ? A, B, eJ?
| R
| ' s Do 6)
4, B, eJ” : : :

C, C, ¢ D, D, ¢* C C, D, D, ¢*+0
e]n-H:O

where 4,04,D---DA,(resp. B;DB,D---DB,) is the unique composition series
between A4, and 4,, (resp. B, and B,) and m<n. Since n>3, we can find a
hollow R/J*-module as follows:

¢ G D, D,

Hence C;=0 or C,=0 (resp. D,=0 or D,=0) by Lemma 9. Thus we have
shown the lemma.

Next we shall show the second part of 1) in Theorem 1. We always as-
sume that m<n.

Lemma 12. Assume that A,|A,~B,|B,, where A,=J(A4,) and B,=]J(B,).
Then there exists a unit o in eRe such that o A,=B,.

Proof. From the proof of Lemma 7, we obtain a unit « in eRe such that
a(A4,+eJ?)=(B,+eJ?). Let =, be the projection of eJ onto 4,, and put f=ma|
A,. Then K=ker f#0 by a(4,+eJ*)=(B,+e¢J?), and aKCB,. Accordingly
ad,NB,#0. Let j be an arbitrary element of efe. Since eJ(4,PB,)CeJ? and
a+j is a unit, (a+j) (4,DB,)=(4,PB,). Hence, replacing o by a-+j in the
above, we get (a+j)A;NB;==0. Put D=eR/A,@eR/B,. Then D contains a
maximal submodule M with a direct summand M, isomorphic to eR/((a+7j,)4; N
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B)) for some j, in efe, by Remark 4. If (a+j,)4,NB,* B, then |Soc(M,)|=2,
so M=M, However, |D|=2(|4;|+1) by Lemma 7 and |M|5=2]|4,]|+1
by (a+jo)4,NB,=%0. This is a contradiction. Hence (a+j,)4;NB,=5B,, and
therefore (a+j,)4,=B;.

Lemma 13. Let A;, B; be as in the diagram (2). Let f be an element in
Homg(4;, B;). If f is not extendible to any element in Homg(A;_,, B;_,) then
eR[A(f) is uniform. In particular, eR|A\(f) is uniform.

Piroof. Since eJ=A,PB,=A,(f)PB,, eR/A(f)DeJ/A(f)=B,;, and so
eR/A\(f) is uniform. Assume 7<1, and put ker f=A4,. Then k<<i. Let N be
a submodule of e] such that NDA4,(f) and |[N/4,(f)|=1. If N4, then
NDA,,+A(f)RAf), and hence N=4,_,+A4,(f). On the other hand, if N
A, then N;=4,, and N,=0 by NDA,(f). Accordingly, N=4,;_,(g) by the
remark stated just before Lemma 8, where g: 4;,_,—B;_,. Then g is an ex-
tension of f, which is a contradiction. Hence Soc(eR/A,(f))=(As-1+A4:f))/

Ai(f)-

Lemma 14. Le. A; be as in Lemma 13 (i1>2). Let N be a submodule of eR
contaiming A;_,. If N|A; is uniform then |NJA;| <i—1.

Proof. Since N/A4; is uniform, N is contained in eJ. Now, considering
the projection of ¢J/4; onto 4,/A4;, we can easily see the lemma.

Lemma 15. Let f be an arbitrary element of Homg(A4,, B,). Then there
exists a unit o in eRe such that A,(f)=ad,.

Proof. If f is an isomorphism then e/=A,PA,(f) and A,;~A(f), so
A\(f)=ad, for some o by Lemma 12. Next, assume that f is not an isomor-
phism. If 4,~B, then e/=A,(f)PB, and 4,(f)~A,~B,. Hence there exists
a unit B in eRe such that 4,(f)=BB, by Lemma 12, and so 4,(f)=RaA4, with
some «. Assume A,7&B,, and put D=eR[A,PeR[A\(f) (f£0). Let M be
such a maximal submodule of D as in the proof of Lemma 3. Then M contains
a direct summand isomorphic to eR/(4,Nad4,(f)), where « is a unit in eRe
(see Remark 4). Now, assume that K=A4, N a4,(f)S4,. Then |Soc(eR/K)|=
2. On the other hand, |Soc(D)|=2 by Lemma 13. Hence M~eR/K. Since
f is not an isomorphism, 4,(f)D4, and =ad,+B, by Lemma 7. If n=m
then z,x|A4; is not a monomorphism, and =,ad,=0. Hence ad,=4,, so
that KD A,. But, then, |M|<n+n—1+1=2n and |D|=2r-+}2, which is a
contradiction. Also, if n<m, |M|<m+n+1<2n<2n+1=|D|—1, a con-
tradiction. We have thus seen that a4,(f)=4,.

Corollary 16. If A,AB, then B, is a two-sided ideal provided R is a basic
ring.
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Proof. We have known, from the proof of Lemma 15, that B,=B,, for any
unit @ in eRe. Hence B, is a two-sided ideal of R, by Lemma 5.

Lemma 17. Let A; be as in Lemma 13. Given f: A,—B;, there exists
a unit a in eRe such that A(f)=ad;.

Proof. We proceed by induction on z. If i=1, we are done by Lemma
15. If f is extendible to g&Homg(4;_,, B;) then, by induction hypothesis,
A;-(g)=pRA;-, with some unit B in eRe. Since 4;_, is uniserial, we get 4,(g)=
A(f)=pBA;. Henceforth, we assume that f is not extendible. Then eR/4,(f)
is uniform by Lemma 13. Put D=eR/4;PeR/A,(f), and take such a maximal
submodule M as in the proof of Lemma 3. Then M contains a direct summand
M, isomorphic to eR/K, where K=A4;NaA,(f) and « is a unit in eRe such
that @=e. Since |Soc(M;)| =2 and |Soc(D)|=3<|Soc(M)| by Lemma 13,
M=M,®PM, and M, is uniform. Assume now that 4;<K. Then Soc(M,)~
Ay|KPB, for some 7'>i. Considering the mapping in Lemma 3, we see that
M, is monomorphic to eR/4;. Hence | M,| <i—1 by Lemma 14. Accordingly,
|M| < |eR|+i—1=n+m+7i and |D|=2n+2{. But, as :>2 and n>m, we
have a contradiction: |M|+1<|D|. Hence K=4,, so that 4,(f)=a4,.

Lemma 18. Let B; be as in Lemma 13, and let g be in Homg(B;, A4,).
Then B (g)=RBB, provided g is not a monomorphism,and B ;(g)=A;(g™"), so B;(g)=
BA;, provided g is a monomorphism, where 3 1s a unit in eRe and A;=g(B;)C
4,.

Proof. In case n=m, we are done by Lemma 17. We assume henceforth
m<<n. Since the second assertion is clear from Lemma 17, we may further
assume that g is not a monomorphism. Then ker gDB, and g induces g:
B;/B,—A,. By Corollary 16 and induction on the nilpotency index of J, we can
see that there exists a unit 8 in eRe/eJ" such that (B i|By) (8)= B(B ;/Bs). This
together with B;(g) N BB;D B, gives B;(g)=pB;.

Thus we have completed the proof of Theorem 1 2), by the induction
on n. Next, we shall show Theorem 1 3). In view of Theorem 1 2), we may
assume that IV is a trivial submodule 4;@B; of ¢J.

Lemma 19. If N contains e]* for some t, A(IN)=(A(N/e]*) in R[]*).
Proof. This is clear.

Here, we quote the following condition in [3]:
(**) every maximal submodule of any finite direct sum D of hollow modules
contains a non-zero direct summand of D.

Lemma 20. [A: A(4))]<2.
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Proof. In view of [4], Theorem 2, it suffices to show that (**) is satisfied
for D=eR|A,PeR[A,PeR|A,. Let M be a maximal submodule in D. Then,
by Condition I*, there exists a direct summand M, of M with M,d J(D), where
M,~eR[K. Let p be the natural epimorphism of eR to M,, and =; the pro-
jection of D onto the i-th component. Then z;p is given by the left multi-
plication of an element «; in eRe. Since M, ¢ J(D), we may assume that ¢, is a
unit. Further, a,K being contained in 4;, we may assume that KC 4.

iy If K=A4, then |M,|=|eR/A4,|. Hence mp is an isomorphism, so M,
is a direct summand of D.

i) If K4, then |M,|=n+m—k and |D|=3(n+1), where k=|K].
On the other hand, [Soc(D)|=3 and |Soc(M,)|=2. Hence M=M,HM,
with a uniform M,. Since M, is monomorphic to eR/4,, we have n+1> | M,|
=3n+2—(n+m+1—k)=(2n—m)+1-+k, which implies n=m and k=0.
Then |M,|=n-+1 and M, is isomorphic to eR/A4, via some ;. 'Therefore M,
is a direct summand of D.

Lemma 21. [A: A(B))]<2.

Proof. In case m=mn, we are done by Lemma 20. If m<n then B,Dej"*!
=*0, and so A(B)=A(B,/eJ™") by Lemma 19. On the other hand, by [3],
Theorem 12 and induction on the nilpotency index of J, we can show that
[A: ABy/eJ™ )] <2.

Lemma 22. [A: A(N)]<2 for every submodule N of e].

Proof. We may assume that N=A,PB;. Then A(N)DA(4;) (<)) or
A(N)DA(B)) (i=j). Further, since 4, and B, are uniserial, A(4,)CA(4;) and
A(B)CA(B;). Hence [A: AN)]<[A: A(4,)]<2 or [A: AN)I<[A: AB)]<2
by Lemma 20 or Lemma 21.

Lemma 23. Let A; and B; be as in Lemma 13. If BA,=B; for some
i with a unit B in eRe, then B A(4;) and [A: A(4,)]=2.

Proof. Let j be an arbitrary element in efe. Then (8-+j)4;CB;+jA,.
Since jA4;CeJ ', we have =,(B;+jA;)CA;, where =, is the projection of e]
onto 4,. Hence (8+j)A4;+A4,, so that A%=A(A4,), and therefore [A: A(4;)]=2
by Lemma 22.

Lemma 24. Assume that BA,=B, with a unit B in eRe. If 8 is a unit in
eRe such that S& A(A;) for some j, then =,8: A;—B; is an isomorphism, where
7, 1S the projection of ef onto B,.

Proof. Since &, B are independent over A(4;), §=%-+B¥ for some &, ¥
A(4;) with x4;=A; and yA,;=A;. Let a; be a generator of 4;. Then Bya; is
a generator of B;. Hence 7,8|4; is an epimorphism of 4; onto B;, and hence
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an isomorphism (cf. the proof of Lemma 23).

Lemma 25. If AA&B, then A=A(N) for every submodule N of e]. If
A,~B,, then [A: A(A;DB;)]=2 provided i+j, and A(4;DB;)=A; A(4;PB;)=
A(4)=A(4,) for i<j.

Proof. Put D=eR/A,PeR[A,PeR|B,. Then |Soc(D)|=3. Let M be a
maximal submodule of D, and M=M,PM,P --- with hollow modules M,~
eR|E,. Since |M|=2, we may assume that M,#0 and M,+0. Let z, be
the projection of D onto the A-th component. Then #,| M, js an epimorphism
for some k. Hence E,CaAd, or aB,, where o is a unit in eRe. If E,+ad,
(or aB,;) then |Soc(eR/E;)|=2. Therefore either E, or E, coincides with a4,
or aB,, and so z,| M, is an isomorphism. Accordingly, (**) is satisfied for D.
Hence, if [A: A(4,)]=2, there exists a unit &’ such that «'4,C B, (or a’B,C
4,), by [5], Proposition 1. Since 4, ef? we get a’d,=B, (or a'B,=A4,).
Conversely, assume that 4,~B,. Then, by Lemma 12, there exists a unit B
such that B84,=B,. Hence [A: A(4))]=2=[A: A(B,)] by Lemma 23, and
A(4,)=A(4,) by A(4,)CA(4;). Now, let N be an arbitrary submodule of
eJ. Then we may assume that N=A;PB; If i=j then N=e¢J’, and so
A=A(N). If i>j then B A(N) by Lemma 24 (cf. the proof of Lemma 23),
and hence [A: A(N)]=2, and either A(N)=A(4,) or A(B;). Finally, if A=
A(A4,) then A=A(B,) from the above. Hence A=A(N).

3 Proof of Theorems 2 and 2’. We assume that R satisfies Condi-
tion I* and either Condition II’ or Condition II”. Then, by Corollary 2,
R satisfies Condition II. Hence the assumptions of Theorem 1 are fulfilled.
Further, it is clear that A=A(N) for every submodule N of ¢J by Condition
II" or IT”. It suffices therefore to show the equivalence of 1) and 3) in Theo-
rems 2 and 2’.

Let A;DA; and ByD B be as in Theorem 1, and assume that there exists
f: 4;/A;~By/By. Put N={x+yece]|x€d;, y&By, [fx+A4;)=y+Bj}.
Then N is a submodule of ¢] containing A;®BB,.. On the other hand, since
every submodule in eJ is characteristic by Condition II’, N is a trivial sub-
module by Theorem 1 2). Hence f=0, which shows the “only if”’ part of
Theorems 2 and 2’. We shall show the “7f”’ part. We shall show, by induc-
tion on the nilpotency index 7 of J, that if the condition 3) in Theorem 2 (resp.
Theorem 2) 1s satisfied then R satisfies Conditions I and II" (resp. Condition
I). In order to show that R satisfies Condition I, it suffices to show the fol-
lowing:

(*) every maximal submodule in any finite direct sum of hollow modules

is also a direct sum cf hollow modules (cf. [3]).
Futther, as was shown in [3], $3, we may consider a direct sum of hollow
modules which are homomorphic to eR for a fixed e.
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Lemma 26. If the condition 3) in Theorem 2 is satisfied, then R satisfies
Condition IT".

Proof. This is clear (cf. [6]).

Lemma 27, Assume that R satisfies Condition II’ (or Condition II”).
Let {eR|D,};-. be a family of hollow modules. If D;CD; for some i and j, then
(**) 1s satisfied for D=31;..PeR|D,.

Proof. Let =, be the projection of D onto eR/D,. Take a maximal
submodule M in D. If z/(M)=eR/D, for some [ then M=e]J/DD>,+,D
eR/D,. Hence we may assume that m,(M)=c¢R/D, for all h. Setting D=
D|J(D), we may regard D as a t dimensional vector space over A=eRe/e]e (note
that R is basic). Further we may assume that D,CD,. Since =,(M)=eR/D,
for all o, M=M]J(D) contains a subspace S=(¢, ¢k, 0, ---, 0)A (note that & is
a central element of R for the case of Theorem 2’). Since D,CD,, this simple
subspace S is lifted to a direct summand M, of D by [1], Theorem 2 and its
proof. Then M,C M, proving (**) for D.

In view of Lemma 27, it remains to show that (¥) is satisfied for D=3;_,
@eR|D, provided D;d D; for all distinct 7, j. Let M be a maximal submodule
in D, and let 7z, be as above. As was claimed in the proof of Lemma 27, we
may restrict ourselves to the case where nh(M):eRh/D,, for all A. Then we

can take such a basis of M=M/J(D) as {a;=(0, -, g, ek,, 0, ---, O}iz!, where
k,EeRe (central elements of R for the case of Theorem 2’). We assume that
eR has the structure given in Theorem 2 (resp. Theorem 2’), i.e.,

eR
|
A, B, e]
|
A, B, e]*
I
I
A4, B, €J"
|
-
B, e]

In the case of Theorem 2', D,=a(4,HB,). Hence eR/D,~eR|(A,DB,).
Accordingly, we may assume that all D, are trivial submodules. If all D,
contain B, (resp. 4,@ B, for the case m=n), all eR/D, are hollow R/J"-modules.
Hence, by induction hypothesis (¥) is satisfied for D. Thus, in what follows,
we consider the case where some D, is equal to 4;; 1<¢<m (resp. B;; 1< j<n).
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Therefore we should check the following cases:

1) Di=A4;, Dy=A4,;@®B;,; i<i,<t,<++<ip, ;>J;>> ],

2) D=4, D,=B,, Dszi,,@Bj,,§ <<ty <ldpy J1>Jp>> 0 pe
However, 2) is a special case of 1) obtained by putting i,=n-+1 and j,=j.
So, we consider the case 1): D=eR/A;DeR|(A; BB, )D - DeR/(4;,DBj,).
Then | D|=(n+1i)+332-1(5,47,—1). Set M*=A,/A,D>:.1PeR|(A;,BBj,_)D
B,\/Bj, (Bj,=0). Then |[M*|=|D|—1. Define a homomorphism @ of M* to
D by setting

P((w+A;)+ 380 (9:+(4:,DB),_ ) +(x+B),)=(x+n+4,)
+(eky 1 +yz+(Ai, @Bi])H‘("’kz Votys+ (A, DBj)+ -+
+(ek, y,+2+(4;,DB;,)),

where x&A4,, y,SeR, =B, and k, are central elements for the case of Theo-
rem 2. Now, let (x+A4;)+>%.:(y,+(4;DBj,_))+(2+B;,) be in ker o.
Since ¥ and 2z are in e], y, are all in eJ. Set y=y,4+Vy (VaE4: Y2EB)).
Since x+y=x-+yn+y.E4; we have y,=0. Then eky(y+y)+(Yaty2)E
A; @©B;, implies that Y2 EB; and ek, y,,+yn E A, , and eky(yn+yn)+(Yuty=) €
4,;,DBj, implies that y;,&B;, (note that B; CBj,). Repeating this procedure,
we see that y,EB; _ and € B;,. Similarly, from the fact that ek,(y,+y,)+
2€4,;,®B;, it follows that y, €4, -, yaEA4,, -, yuE4;, and xE 4, (note
that k, are central elements for the case of Theorem 2’). Hence @ is a
monomorphism and im @=». Therefore, noting that MDJ(D), we see that
M=~M*.

4 Rings with J3>=0. We have shown in [3] that the converse of Theo-
rem 1 is true provided J?=0. In this section, we shall show that the same
is still true for the case J°=0, namely if J*=0 then 1)~3) in Theorem 1 imply
Condition I.

Lemma 28. Assume that BA,=B,. If a is a unit in eRe such that a ¢t
A(4,) for some, A; N aA;=0.

Proof. Let a; be a generator of A;. Then, by Lemma 24, aa,=ai+b;,
where a/€4,;, b,B; and &B,;,,. Hence ad,=aa; J*'=(ai+b,) J* ¢ A4,
and therefore a4; N 4;=0.

In order to show that R satisfies Condition I, it suffices to show that R
satisfies (*). Further, as is claimed in §3, we may restrict ourselves to the
case that hollow direct summands in (¥) are isomorphic to eR/E for a fixed
primitive idempotent e. We shall divide the proof into two cases: 1) A,AB,,
and 2) A4,~B,.

1) A,A&B,. By 3) in Theorem 1, A=A(N) for every submodule N of
eJ. 'This situation is very similar to that in [3], and we can apply the argument
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employed in [3] to see that R satisfies Condition I.

2) A,~B,. There holds A(4,)=A(4,)=A(4,$5B,). We shall give the
explicit form of a maximal submodule M in D=3>};_,PN,, where N, are hol-
low modules isomorphic to eR/E,. Now, by 1) in Theorem 1, B,=a4, for
some unit . If 7>j then a(4;PB;)CA;PB;, for ad;=B;. Hence a(4;
B)=A;®B;. Therefore eR/(A;BB;)~eR|(A;BB;). Consequently, we may
assume that N,~eR/(A;D B;) for some i< .

i) t=2.

(1) D=eR|A,®DeR/A,. Then we may assume that M=(e+A,)AP
(a+A,)A, where a 1s a unit in eRe.

a) adA,=A, Then M contains a direct summand of D by [1], Theorem
2. Hence M is a direct sum of hollow modules.

B) ad,NA4,=0. Put M*=eRPA,/A,PA,|A;,, and define a homo-
morphism @ of M* into D by setting

¢(21+(22+A2)+(2:3—}—A2)) = (21+22+A2)+(a21+23+142) ’

where 2,EeR and 2,, 2, A4,. Suppose 2,+2,+2; be in ker @. Then 2; are in
eJ. Set z=x+y, (x,€4,,y,EB,). Since 2,+2,EA4,, we have y,=0. If x,=+
0 then maz,=max,+0 by Lemma 24, where =, is a projection of e/ onto B,
However, 0=r,(az,+2;)=m,2;. This contradiction shows that x,=0, and so
2,=0. Now, it is clear that p(M*)=M by |M*|=|M|.

(2) D=eR|A,PeR|A,. Let M be as above. If (a+j)4,=A, for some
jE€eje then we are done by [1], Theorem 2. On the other hand, if (¢+4j)4,
=+ A, for every j&e]e then ¢ A(4,), and so ad; N A;=0 by Lemma 29. Hence
M=~eR.

(3) D=eR|A,PeR|/A,. If aA,CA,, we are done. Next, if a4,NA4,=0
then M~eRPA,/A, via @(2,+(2,+A4,)) = (+4,)+(az,+2,+4,) (note that
ad,+A4,).

(4) D=eR|A,PeR|(A,DB,), eR|A,PeR|(A,DB,) or eR/A,PeR|(ADB,)
(eR/A,PeR|(A,B,)). Since ad,C A,PB, (a4, AP B,), M contains a direct
summand of D, by [1], Theorem 2.

(5) D=eR|A,PeR|(A,PB,). Note that either p,=ma|A4, or p,=ma| 4,
is an isomorphism. If p, (resp. p,) is an isomorphism, then M~eR|A,®B,/B,
(resp. eR|A,D A,/ A,).

(6) D=eR/A,PeR|(A,DB,). Since ad,N(A,PB,) is either a simple
module Bj or 4,, M~eR|a"'(B})~eR|A, or M is a direct summand of D.

(7) Other cases can be reduced to the case J2=0 [3].

if) #=3. If N, N, and N; are linearly ordered by inclusion, then M
contains a direct summand of D, by [5], Corollary 1. Hence, it suffices to
consider the following two cases:

(1) D=eR|A,PeR[A,DeR|(A,PB,). Since eReA,C A, PB,, M contains
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a direct summand of D.

(2) D=eR/A,PeR/A,PeR|(A,BDB,). We may assume that M has a basis
(E= (e A) 0+ (LDB), n—0+(e+4)+(E+ABB,)}, where 8, 8,
are units in eRe (see [3], §3).

a) Assume that there exists a unit x such that X=A(4,) and §,=8§,x.
Then E+nz=(e, ex, 0)EM. Since £&A(A4,), M contains a direct summand
of D, by [1], Theorem 2.

B) Assume that §;'0,6£A(4;). Put M*=eR/A,PeR/A, and define a
homomorphism @ of M* to D by setting @((2,+4,)+(2,+4.)=(2,+4,))+
(224A1)4(8, 21+ 8, 2,4 (A4, P B;)), where z;€eR. Suppose that (2,4 A4,)+ (2,4
A,) is in ker @. Then z,€4,. If 2,4, then §, 4,=38, 2, RC§,4,+(4,DB,).
Hence 6&37'6,4,CA,+87(A4,PB,)=A,PB,, which contradicts Lemma 24.
Hence z,€4,, and similarly 2,&4,. Therefore M~M*.

iii) t>4. In view of [4], Lemma 1 and Theorem 1 and [5], Corollary 1,
this case can be reduced to the cases i) and ii).

Thus we have shown that R satisfies Condition I provided J?=0.

5 Examples. 1. Let L,CL,CL,C.- be fields. Set

L0 L, L L
0 L, L, L, L

R=|0 0 Ly O 0
0 0 0 L, L
00 0 0 L
Then
PuR ‘ ezzR . 833R e“'R . essR
_ | b
ellj ‘ 322] eu]
enJ 2 2k 2

Hence R satisfies Conditions I and II'. However, R is not left serial (cf. [7]
and [8]). If [Ls: L,]>2 then R does not satisfy Condition I for hollow left
R-modules.

2. Let K be a field and let R be a vector space over K with basis {e,,
X115 Vizy ¥z €2 Xz Ya, ¥ut. Define e; e;=e; 8;;, €; %, 6,=%, 8 Supy €V ja €=
Yik 0:j Oupy X1y X12=y12 and Xy, X, =7Y,. Putting other multiplications to be zero,
we see that R is a ring with J?=0. We can easily see that R satisfies the con-
ditions in Theorem 2’ as both left and right R-modules. Further R satisfies
Condition IT" as a left R-module. Next, let R,=<e,, %y;, V13, X13, €25 Xz Vo1» X201,
5, x3>. Define x;, x;3=7y,; and the same as above for others. Then R, satisfies
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the conditions in Theorem 2’ as a right R-module, but does not as a left R-
module, since Je,= Rux;, P Rux,, P Rxy.

3. Let KCL be fields with [L: K]=2, say L=K®uK. Put

L L L
R=| 0 K K
0 0 X

Then e, J=(0, K, K)®(0, uK, uK). Hence R satisfies 1)~3) in Theorem 1
and A,~B,. Therefore R satisfies neither Condition I’ nor Condition II”.
But, by |8], R is of right local type.

4. Let k be a field, and x an indeterminate. Put L=£k(x) and K=Fk(x?).
Take a left L-vector space V=Lu of one dimension. Putting ux=x* and
uk=Fku for all k€K, we make V a right L-vector space (see [3], Example 2).
Put

L 0 L L L
0L VOO
R=|0 0 L 0 0
000 L L
0 00 0L

Then e, J=A,@B, with A,&B,, e, J[=A{PB; with A{~Bj. Further, Jexz=
A{’P B} with A}{’a&B}’ as left R-modules. Hence R satisfies Condition 1 for
both left and right hollow R-modules.
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