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We have studied, in [3], a right artinian ting R satisfying Condition I

(see below) as a generalization of right artinian serial rings. However, there,

we have icstricted ourselves to the case that /2z=0, where J is the Jacobson

radical of R.

In this paper, instead of removing the restriction /2=0, we shall add one

more condition (Condition IF: every hollow module is quasi-projective or Con-

dition II": R is an algebra of finite dimension over an algebraically closed field).

We shall give a characterization of a right artinian ring satisfying Condition I

and Condition IF (resp. II"), and show that such a ring is closely related to

an algebra of right local type studied by H. Tachikawa [8] (see also [7]). Ac-

tually, if the assumption "left serial" is removed in [8], the situation is very

similar to that in this paper.

Further, under Condition I, we shall consider Condition II: \eJ/eJ2\<2

for each primitive ίdempotent e, which is weaker than Conditions IF and IF'.

We shall give the structure of a ring satisfying Conditions I and II, and show

that the structure gives a characterization of such a ring ρrovided/3=0.

1 Conditions and Theorems. In this paper, we shall study a right

artinian ring R with identity, and every 72-module is assumed to be a unitary

right 72-module. We denote the Jacobson radical and the socle of an Λ-module

M by ](M) and Soc(M), respectively. Occasionally, we write J=](R). \M\

means the length of a composition series of M. If eR is a right uniserial module

for each primitive idempotent e, R is called a right serial (generalized uniserial)

ring. If R is a right serial ring then the following conditions are satisfied:

Condition I: every submodule in any finite direct sum of hollow modules

is also a direct sum of hollow modules [3]

and

1) Conditions II and 11-a are added in the revise.
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Condition IΓ: every hollow module is quasi-projective [6].
In [3], we have studied rings R satisfying Condition I, under the extra hypo-

thesis J2=Q, and further known that, among them, there exist some rings which
fail to satisfy Condition IF (e.g., algebras over an algebraically closed field).

Let R be an algebra of finite dimension over a field K such that R/J=Σ®
Kni> where Kn. is the ^XH,- full matrix ring over K (e.g., K is an algebraically

closed field). We have thus the following condition:
Condition II": eRe/eJe=eK for each primitive idempotent e, where K

is a subfield contained in the center of R.
As is shown in Corollary 2 below, if R satisfies Conditions I and either

IF or II" then \eJjeJ2\ <2 for each e. From the study of rings satisfying Con-

dition I and J2=0 (see [3]), it seems to the author that \eJ/eJ2\ <2 holds with-
out assuming /2=0. (For the present, he has no counter-examples.) Several

conditions under which \eJjeJ2\ <2 holds are given in [3]. On the other hand,

since ej/ej2 is semisimple, eJιleJ2=^Σi®S(ili\ where Sf are simple (S^Sj
provided /Φ/) and S^J means the direct sum of n{ copies of Sf . If R satisfies

Condition I and J2=Q, then n{<2 for all i if and only if \eJ/eJ2\ <2 (see [3]).
From this point of view, we consider the following conditions:

Condition II: for each primitive idempotent e, \eJjeJ2\ <2,
and

Condition Il-a: for each primitive idempotent ey wt <2/or all i.

Lemma 1. Let P be a two-sided ideal of R. If R satisfies any one of the
conditions above, then so does R/P.

Proof. Assume that R satisfies Condition I. Put R=R/P. Let D be

a finite direct sum of hollow Λ-modules Ni9 and M an Λ-submodule of D.

Then Ni are hollow Λ-modules. Hence, from Condition I, M=Σιθ Wt

with hollow Λ-modules Mf . Since MP=0, M{ is also a hollow J?-module.

Hence Condition I holds for R. It is clear that J(Λ/P)—(J+P)/P. Let e

be a primitive idempotent in R not contained in J+P. Then e is a primitive

idempotent in R. Since eR is a homomorphic image of eR, the remainder is

also clear.

Corollary 2. Assume that R satisfies the following condition:
Condition I*: every submodule in any direct sum of three hollow modules

is also a direct sum of hollow modulesP

Then Conditions II and Il-a are equivalent, and each of Conditions II7 and

II" implies Condition II.

Proof. By Lemma 1, R/J2 satisfies Condition I. Hence the corollary

2) We needed only Condition I* in the proof in [3],
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is clear from [3], Lemmas 9 and 14.

As is easily seen, the conditions above except II7 are invariant for Morita
equivalence. Let R0=eoRe0 be the basic ring of R. If x is an element in
the center of R, e0x is in the center of R0. Hence, in order to study the struc-

ture of rings which satisfy those conditions, we may assume that R is a basic
ring.

Let M be a hollow module. Then M^eR/A with a primitive idempotent

e and a right ideal A in eR. Put Δ = eRe/eJe and Δ(-4) = {# e Δ | x e eΛ?, xAdA},
where # is the coset of x in Δ. It is clear that Δ(-4) is a subdivision ring of Δ.

We regard Δ as a right Δ(^4)-module (see [3] and [4]), so [Δ: Δ(-4)] means the
dimension of Δ over Δ(-4) as a right Δ(^4)-module.

Let M^N! and M2Z)ΛΓ2 be Λ-modules. A submodule Nλ®N2 in M!0Af2

is called a trivial submodule of M!0M2. For N3dNly Λ/Ί/ΛΓg (cMj/ΛΓg) is called
a sub-factor module of Mj.

We shall give the following theorems.

Theorem 1. /,£/ R be a right artinian ring. If R satisfies Conditions I*
and II, then f 01 each primitive idempotent e in R we have the following properties:

1) eJ=A1®B1, where Aλ and B1 are uniserial modules. Further, if A1j](A1)
^B1/](B1)J aA1—B1for some unit a in eRe.

2) For every submodule N in ej, there exists a trivial submodule A{G)Bj
of ej and a unit β in eRe such that N=β(Ai®Bj), where Ai=A1J

i~1c:A1 and

3) // A^Bly then Δ(^f0Jϊf.)=Δ and [Δ: Δ(Ai®Bj)]=2 provided
further A(A1)=A(Ai)=A(Ai®Bj) (i<j) and Δ(B1)

^ then Δ(N) = Δfor any submodule N in ej.

Theorem 2. Let R be a right artinian ring. Then the following are equiva-
lent:

1) R satisfies Conditions I and IF.
2) R satisfies Conditions I* and II'.

3) For each primitive idempotent ey ej is a direct sum of two uniserial modules

A! and Bly and no sub-factor module of Al is isomorphic to any sub-factor module

of Blt and hence every submodule in ej is trivial.

Theorem 2'. Let R be a right artinian ring. If R satisfies Condition
II", then the following are equivalent:

1) R satisfies Condition I.

2) R satisfies Condition I*.
3) For each primitive idempotent e, ej is a direct sum of two uniserial modules

A1 and B1 and every submodule in ej is isomorphic to a trivial submodule via the
left-sided multiplication of a unit element in eRe.
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2 Proof of Theorem 1. We always assume that R is a right artinian
ring with identity, and / is the Jacobson radical of R, unless otherwise stated.
Further, we may assume that R is basic in the proof. In advance of giving
the proof, we state the following proposition.

Proposition 3. If /2=0, then every submodule of a direct sum of two hol-
low modules is also a direct sum of hollow modules.

Proof. As is shown in [3], §3, it suffices to consider a direct sum of hol-
low modules eR/A for a fixed primitive idempotent e and show that every maxi-
mal submodule M of D=eR/A1(&eR/A2 is a direct sum of hollow modules.
Let m be the projection of D onto eR\A{. If π1(M)deJIA1 then M^eJ/A^
eR/A2. Since eJ/Aλ is semisimple by the assumption J2=Q, M is a direct sum

of hollow modules. Assume that τrt is an epimorphism for i=l, 2. Put D=
DI](D) and M=M/](D). Then M has a basis of the form (e+er) over Δ=

eRe/eJe, where e is the coset of e in eR/eJ (note that R is assumed to be basic).
We have the natural mapping φ of eR to D by setting φ(e)=(eJrA1)-\-(er-\-
A2). Then D^φ(eR)^eRIC, where C=ker φ. Since φ(eR)=M, M=φ(eR)+
](D). Noting that J(Z>) is semisimple, we obtain that M=φ(eR)+(Σi®Mi)9

where M, are simple. Hence M is a direct sum of hollow modules.
From Proposition 3, we see that Condition I has a meaning for direct sums

of at least three hollow modules. In what follows, we shall use a diagram

A

B C ,

which means that A, B, and C are hollow modules and J(^4)=

Proof of Theorem 1. We always assume that R satisfies Conditions I*

and II, and that R is a basic ring, unless otherwise stated.

Lemma 3. Assume that R satisfies Condition I*. Let E1 and E2 be sub-
modules in ej with JE2=0. Put D=eRjE1®eRIE2. For each unit a in eRe, D
contains a maximal submodule with a direct summand ίsomorphίc to eR/(E1 (Ί aE2)

via the mapping : x-\-(El Π aE2)^(x+E1)+(a~1 x+E2).

Proof. Let Δ=eRe/eJe. Then D=D/](D) is a right Δ-module, because
R is basic. Now, let M be the maximal submodule of D such that M=MI](D)

=((e-\-E1)-{-(a~1 x+E2))ΔdD. By assumption, M contains a hollow sub-
module M! with M1/J(Λf1)«(Λf1+J(D))/J(Z))=M. Let m1 be a generator of

M! such that mλ=(e-\-a~λ) in D. We denote by TT,- the projection of D onto
Then we obtain a homomorphism /,- : eR-^Ml->eRIEi by setting fi(e)~
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πi(mι)> which is given by the left multiplication of a unit /3t in eRe. Hence
E2] and m1=π1(m1)+π2(m1)=f1(e)+f2(e)=(β1+E1)+(β2+

E2). Since m1=(e+E1)+(a-1+E2)9 βλ=e and β2=a~l in Δ. Now
β^E^^eRKEi Π βiβ^Ez). On the other hand, βιβ71=a+j for some / in eje.
Hence βlβ2

lE2=aE2 by assumption. The mapping is clear.

REMARK 4. If we drop the assumption JE2=ϋ in Lemma 3, we obtain
eR/(E1 Π (a+j)E2) instead of eR/(E1 Π aE2)y from the proof.

Lemma 5. Let A be a right ideal in eR with JA=Q. If aA~A for every
unit a in eRe, then A is a two-sided ideal, provided R is a basic ring.

Proof. Since eJeA=Q, A is a characteristic submodule of eR. Since
R is basic, RA=^ieiReA=^e.^e eJeA+eReA^A, where 1— Σ, £/ and e{ are
orthogonal primitive idempotents.

Lemma 6. eR has the structure given in the following diagram:

eR

A,, (1)

A31 A 32 B3
B32

where A{j and B{j are hollow modules and ζ/1—

Proof. Let A be a hollow module contained in eR and A^fR/B, where
/ is a primitive idempotent in R. Then ](A)=AJ="Σιi=ιQ)Ai with hollow
modules Ai9 and AJ2=Σi®AJ. On the other hand, AJIAJ2^fJI(fJ2+B).
Since fJI(fJ2+B) is a homomorphic image of/////2, \AJ/AJ2\<2 by Condi-
tion II. Hence t<2, which proves the lemma.

Lemma 7. Let eJ=A1®B1 be as in Lemma 6. If A1IA1J^B1IB1J then
\Al\ = \Bl\. If AlIAlJ^ύBlIBlJ, π2a(A^)^Bl for any unit a in eRe, where
τr2 is the projection of ej onto Bλ.

Proof. Put R=R/J2, A^A.+eJ^/eJ2 and B^B.+eJ2)^}2. Since

A^A^/A^^BilBiJ^B^ by [3], Theorem 12 there exists a unit β in eRe/eJ2e

(and hence a unit β in eRe) such that /331=51, i.e., β(A1+eJ2)=B1+eJ2. As
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Bl is hollow, there holds π2β(Al)=B1, so | Al \ > \ Bλ \ . By symmetry, | A1 \ < \ Bl \ ,
and hence | Al \ = \ Eλ \ . Since Aλ and Bλ are hollow, there exist no epimorphisms
of Aλ onto B19 provided AJAJf&BJBJ. Therefore π2a(A1)^FB1 if

Now let N be a submodule of eJ=AlQ)Bly and πλ (resp. π2) the projection

of ej onto A! (resp. B^. Put Λ/Ί=ΛΓn A, N2=^NΓ(Bly W^π^N) and ΛΓ2=
π2(N). Then, as is well known, N1IN1^N2/N2. Further, if N2=0 then N=

7ΓΓ1 (
First we shall study Λ with /3=0 and satisfying Conditions I* and II.

Then, by assumption, eJ^A^B^ where Aλ and Bλ are hollow. Since Aλ is a
hollow 7?//2-module, J(-4ι) = CΊ0C2 by Lemma 1, where C, are simple or zero.
Similarly ](B1)= D^D2 with Z>, simple or zero.

Lemma 8. Assume that C,ΦO and Z^ΦO (i=l, 2), and that Cl is iso-

morphίc to Όl via f. Put Cί = C1(/)={{:1+/(έ:1)|έ:1eC1}cC10A Then there
holds the following:

2) // ΛΓ/C{ w ttw/om in eR/Cί for a submodule N in eR then \ N \ < 3.

Proof. 1) Let ΛΓ* be a submodule of eR such that ΛΓ* D Cί and | JV*/Cί |
= 1. Since ΛΓ*cς/ and |ΛΓ*|=2, IΛΓ*1 1 < \N*\ =2. Hence N^d^A^d
Soc(eR). Similarly, ΛΓ*2 c Soc(^), and therefore ΛΓ* c Soc(^Λ).

2) It is clear that NcieJ. If 7VΊ=0 then |ΛΓ|<3. We assume hence-

forth ΛΓiΦO. If N^Q then ΛΓD^ΘA Since SocWKC&D^C&Dt,
N contains a non-zero element x in C20Z)2> provided JVΦCx®/)!. Then
N/CΊD^+xR+CDICΊ&C&xR, so ΛΓ/Cί is not uniform, and hence N=C&
Dl9 so that |Λ/"| <2. On the other hand, if Λ^φCi then N contains an element
z=x+y^N1; x^Cly j;φOeC2. Hence Λ^/Cί=)(C]+^+Cί)/Cί^C10^, a
contradiction.

Lemma 9. IfJ3=Q, then both Al and B± in Theorem 1 are uniseriaL

Proof. 1) Assume that ej is hollow. Since ej is an Λ//?-module, eJ2=

CΊ0C2 by Lemma 1, where C,- are simple. Assume C, ΦO for i=l, 2, and put
D=eR/C1@eRIC2. Since /C2=0, Z) contains a maximal submodule M with
a direct summand M1 isomorphic to eR, by Lemma 3 (take a=e). Then

I Soc(D) I = I Soc(eR) \ =2, and therefore M=M1. On the other hand, \D\=6

and \M\ = \eR\=4, which is a contradiction. Hence, if ej is hollow then eR is
uniserial.

2) Assume that eJ^=Al®Bl and AΦO, #ιΦθ. Let J(A) = C1ΘC2 and
](B1)=DlφD2 as before (see Lemma 8). We shall show that C2=Z>2=0.

i) Assume that C2=Q, D^O and Z)2ΦO. Then CjφO or A± is simple



FINITE DIRECT SUM OF HOLLOW MODULES III 87

by assumption. First assume that CΊΦO. Since |-4J< I-BJ,
by Lemma 7. Let aλ be a generator of Al9 and α a unit in eRe. Then, by

Lemma 7, aaι=aί-\-b29 where a{^Al—AlJ and b^B^J. Hence aC1=aa1Jd
aίJ+b2Jc:AlJ=C1. Therefore Cl is a two-sided ideal of R, by Lemma 5.
Considering R/Cly in view of Lemma 1, we may assume that Aλ is simple in
either case. Put D=eR/Dl(£)eR/D2. Then, by taking a=e in Lemma 3, we

see that D contains a maximal submodule M with a direct summand Ml

isomorphic to */Z/(AnA)=*# Now, |Z)|=8, IMJ-5, |Soc(D)|=4 and
|Soc(M!)|=3. Hence Λf=M10M2 with M2 uniform. Since the uniform

module M2 is isomorphic to a submodule of eJ/Di (ί=l, 2), we get |M2 |<

|ς//AI Therefore M2Cς//Aθς//A=(^ιθβι)/Aθ(Aθ^ι)/A On the
other hand, SOC(M!)=(*, *+j')Soc(dR)c(A0A)/AΘ(AΘA)/A f°r s°me
j^eje, where (e, β+j): eR-*D is the mapping given in Lemma 3. Hence M2 is

monomorphic to (ΛθA)/Aθ(ΛθA)/A^ιθ^ι, and so to ^ι> for M* is

uniform. But, | M2 \ = \ M\ — \ Ml \ = \ D \ — 1 — | Mί \ =2, which is a contradic-
tion. Hence, if C2=0 then D1=Q or D2=0.

ii) Assume C, φ 0 and A * 0 for * = 1 , 2.
α) Assume that there exists a unit α in eRe such that (C:0 A) ΓΊtf(CΊ0

A)=0. Put Z)=eJR/(C10A)θ^/(CΊ0A) Then, by Lemma 3, D contains
a maximal submodule M" with a direct summand M! isomorphic to eR. Since

|Soc(Z))|=4 and | SocίMJ | -4, we have M=Mlβ But, |D| =10>7= |M|,
which is a contradiction.

β) Assume that (Cj0A) Π^C^A) is simple. Then this module is
of the form C{ (or D{), and M^eR/Cί. Since ISocίMj)!— 3 by Lemma 8,
M=Ml@M2 with M2 uniform. Hence \M2\<2 by Lemma 8, and so \M\ <8,
which is a contradiction.

Thus, we have shown that (C10A)=^(C'ιθA) f°r every unit a in eRe.
Then Ci0A is a characteristic submodule by Lemma 5, since /(C10A)=0
By making use of arguments similar to those employed in α) and β), we may

assume that CΊ0Z>2 is also characteristic. Hence C1=(C10A)Π(C10A) is

characteristic, so that CΊ is a two-sided ideal of R. Consider the factor ring
R/C!. Then e(R/C1) is of the form considered in i), which is a contradiction.

Summarizing all above, we see that Ct—0 and D~0 for some ί",/e{l, 2}.
We have thus shown the lemma.

Lemma 10. If J3= 0, ίA^// £^ery hollow module is isomorphic to one of the
following: 1) uniform, 2) eR, 3) έ?Λ/^42 and eRjB2; A^Al and B2^Bly and 4)
eRI(A2®B2] (see the diagram (2) below).

Proof. This is immediate from Lemma 9 and the proof of Lemma 8.

(Note that for any/: A^B,, eJ=Al®Bl=A1(f)®Bl.)

Lemma 11. Let R be a right artίnίan ring satisfying Conditions I* and
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II. Then eJ=A1®B1 and both Al and Bλ are uniserial.

Proof. Let Jn+1=0. If J3=0, then the lemma is true by Lemma 9. We
proceed by induction on n (>2). By Lemma 6 and the induction hypothesis,
we have the following cases:

eR

ej

ej2

ej*

li Bl

Am Bm

eR

ej2 A, B

D2 ej" C, C2 Dl D2

eR

ej

ej2

(2)

where AlΊ^A2Ί^ ~DAm(rt^. B^B^ lDBn) is the unique composition series
between A1 and Am (resp. B1 and Bn) and m<n. Since n>3, we can find a
hollow 72//3-module as follows:

j C2 A D2

Hence C1=0 or C2— 0 (resp. JD^O or D2=0) by Lemma 9. Thus we have

shown the lemma.

Next we shall show the second part of 1) in Theorem 1. We always as-
sume that m<n.

Lemma 12. Assume that Al/A2^B1IB2, where ^^J !̂) and B2=](B1).
Then there exists a unit a in eRe such that aAl^==Bl.

Proof. From the proof of Lemma 7, we obtain a unit a in eRe such that
a(A1

Jt-eJ2)=(B1

J

ΓeJ2). Let πλ be the projection of ej onto Aί9 and put/^^^!
A,. Then J^ker /"ΦO by α(^1+^/2)=(β1+^/2), and aKciB,. Accordingly
aAl Π^BjΦO. Let / be an arbitrary element of eje. Since eJ(A2ξ&B2)deJ2 and

a-\-j is a unit, (oc+j) (A1ξ&B2)=(A2(&Bl). Hence, replacing a by a+j in the
above, we get (α+Λ^iΓlSiΦO. put D=eRIA1(&eRIB1. Then D contains a

maximal submodule M with a direct summand Mj isomorphic to eRI((aJrj^)Al n
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BJ for some j0 in eje, by Remark 4. If (a+jQ)A1 Π B1^pBl then | Soc(Mi) | =2,

so M=M!. However, |Z)|=2(|ΛI+1) by Lemma 7 and |M|^2|ΛI+1
by (α+jΌMiΠ^iΦO. This is a contradiction. Hence (a+jQ)A1ΠBl=B1) and
therefore (a+jQ)A1=B1.

Lemma 13. Let Ah Bj be as in the diagram (2). Let f be an element in

HomX^ , BJ). If f is not extendible to any element in Honî ,̂..!, -B/_ι) then
eR/Af(f) is uniform. In particular, eR/A^f) is uniform.

Proof. Since eJ=Al®B1==A1(f)®Bl3 eRIA1(f)lDeJIA1(f)=Bl9 and so
eR/A^f) is uniform. Assume /<!, and put ker/=^. Then k<i. Let N be
a submodule of ej such that N^Af(f) and |JV/-4, (/)|==l. If N^Ak^ then

ΛΓ=> 4^+^(7) 5 A (/)> and hence JV^^+^ f/). On the other hand, if ΛΓφ
Ak^ then N1=Akί and JV2=0 by N^A^f). Accordingly, N^A^g) by the
remark stated just before Lemma 8, where g: ,41 _1->βj._1. Then £ is an ex-
tension of /, which is a contradiction. Hence Soc(eRIAi(f))=(Ak_1-\-Ai(f))/

Λ ω
Lemma 14. Lei A{ be as in Lemma 13 (i>2). Let N be a submodule of eR

containing A^. If N\A{ is uniform then \N/A{ \ <i— 1.

Proof. Since NjAi is uniform, N is contained in ej. Now, considering
the projection of eJ/A{ onto AJAh we can easily see the lemma.

Lemma 15. Let f be an arbitrary element of Hom^(^41, B^. Then there
exist* a unit a in eRe such that A1(f)=cxAl.

Proof. If / is an isomorphism then eJ—A^A^f) and A^A^f), so

Al(f)=aA1 for some a by Lemma 12. Next, assume that/ is not an isomor-
phism. If Al^Bl then eJ=Al(f)®Bl and A^^A^B^ Hence there exists
a unit β in eRe such that A1(f)=βB1 by Lemma 12, and so A1(f)=βaA1 with

some a. Assume A^Bl9 and put D=eR/A1®eRIA1(f) (/Φθ). Let M be
such a maximal submodule of D as in the proof of Lemma 3. Then M contains
a direct summand isomorphic to eRI(A1f}cίA1(f))J where α is a unit in eRe
(see Remark 4). Now, assume that K= Al Π aA^f) ^A^ Then | Soc(eRjK) \ =
2. On the other hand, | Soc(D) | =2 by Lemma 13. Hence M^eR/K. Since

/ is not an isomorphism, A1(f)l^Am and ^r2^^ιΦ^ι by Lemma 7. If n=m
then τr2α|A is not a monomorphism, and π2<xAm— 0. Hence aAm— Am> so

that KnAm. But, then, \M \ <n+n— l + l=2n and \D\=2n+2, which is a
contradiction. Also, if n<m, \M\ <m+n+l<2n<2n+ί= \D\ — 1, a con-

tradiction. We have thus seen that aA1(f)=A1.

Corollary 16. // Al^ύBl then Bn is a two-sided ideal provided R is a basic

ring.
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Proof. We have known, from the proof of Lemma 15, that aBn~Bn for any
unit a in eRe. Hence Bn is a two-sided ideal of R, by Lemma 5.

Lemma 17. Let A{ be as in Lemma 13. Given f: A^B^ there exists
a unit a in eRe such that Ai(f)=aAi.

Proof. We proceed by induction on i. If /=!, we are done by Lemma
15. I f / is extendible to ^^Horn^^l,-.!, βj) then, by induction hypothesis,
Ai-.l(g)=βAi_l with some unit β in eRe. Since Ai__1 is uniserial, we get Ai(g)=
Ai(f)=βAi. Henceforth, we assume that / is not extendible. Then eR/A^f)
is uniform by Lemma 13. Put D=eR/Ai®eR/Aί(f), and take such a maximal
sub module M as in the proof of Lemma 3. Then M contains a direct summand
MI isomorphic to eR/Ky where K=Aj Π ccA^f) and a is a unit in eRe such
that a=e. Since |Soc(M1)| =2 and |Soc(D)|=3< |Soc(M)| by Lemma 13,
M=Mλ@M2 and M2 is uniform. Assume now that A^K. Then Soc(Mj)^
AiΊK@Bn for some i'>i. Considering the mapping in Lemma 3, we see that
M2 is monomorphic to eR/A^ Hence \M2\ <i—1 by Lemma 14. Accordingly,
\M\<\eR\+i—l=n+m+i and \D\=2n+2i. But, as i>2 and n>m, we
have a contradiction: | M| +1< | D \ . Hence K=Aiy so that .4t(/)=α^4t .

Lemma 18. Let Bj be as in Lemma 13, and let g be in HomΛ(.B, , A^.
Then Bj(g)=/3Bj9 provided g is not a monomorphίsm, and Bj(g)=Aj(g~1)y soBj(g}=
/3Aj, provided g is a monomorphism) where β is a unit in eRe and Aj=g(Bj)d

A,.

Proof. In case n=m, we are done by Lemma 17. We assume henceforth
m<n. Since the second assertion is clear from Lemma 17, we may further

assume that g is not a monomorphism. Then ker g^>Bn and g induces g:
Bj\Bn-

:>Av By Corollary 16 and induction on the nilpotency index of/, we can

see that there exists a unit β in eRe/eJne such that (BjlBn) (g)=β(BjlBn). This
together with Bfe) Π βB^Bn gives Bj(g)=βBj.

Thus we have completed the proof of Theorem 1 2), by the induction
on n. Next, we shall show Theorem 13). In view of Theorem 1 2), we may
assume that N is a trivial submodule A^Bj of ej.

Lemma 19. // N contains ej* for some t, A(N)=(A(NleJt) in RjJ*).

Proof. This is clear.

Here, we quote the following condition in [3]:
(**) every maximal submodule of any finite direct sum D of hollow modules

contains a non-zero direct summand of D.

Lemma 20. [Δ: Δ(Aλ)] < 2.
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Proof. In view of [4], Theorem 2, it suffices to show that (**) is satisfied
for D^eR/A^eR/A^eRIA^ Let M be a maximal submodule in D. Then,
by Condition I*, there exists a direct summand Mx of M with ΛίjCt J(Z)), where
Mi^eR/K. Let p be the natural epimorphism of eR to Mίy and π-% the pro-
jection of D onto the i-th component. Then τr, p is given by the left multi-
plication of an element αf in eRe. Since M^ ](D), we may assume that aλ is a
unit. Further, a^K. being contained in Aly we may assume that KdA^.

i) If K=^Al then \M1\ = \eRjA1\. Hence πtf is an isomorphism, so M1

is a direct summand of Zλ
ii) If K^Al then (MJ =«+«—* and |Z)|=3(n+l), where AH^Ί

On the other hand, |Soc(Z))|=3 and |Soc(M1)|— 2. Hence M= M10M2

with a uniform M2. Since M2 is monomorphic to eR/Aly we have n-\-l> \M2\
=3nJr2—(n-\-m-{-l—K)=(2n—m)J

Γl
J

Γk9 which implies n== m and k= 0.
Then \M2\=n-\-l and Λf2 is isomorphic to eR\Al via some τr, . Therefore M2

is a direct summand of D.

Lemma 21. [Δ : Δ^)] < 2.

Proof. In case m= n, we are done by Lemma 20. If m<w then Bl"DeJm+l

ΦO, and so Δ(β1)=Δ(J51/ς/">+1) by Lemma 19. On the other hand, by [3],
Theorem 12 and induction on the nilpotency index of /, we can show that

[Δ:

Lemma 22. [Δ : Δ(^V)] < 2 for every submodule N of ej.

Proof. We may assume that N^A&Bj. Then Δ(ΛΓ)=)Δ(-4y) (ί<j) or
(i>j). Further, since Aλ and Bl are uniserial, Δ^^cΔ^,-) and
. Hence [Δ: Δ(JV)]<[Δ: Δ(Λ)]<2 or [Δ:

by Lemma 20 or Lemma 21.

Lemma 23. Let A{ and E{ be as in Lemma 13. If βA—Bt for some
i with a unit β in eRe, then #$Δ(-4f ) and [Δ: Δ(-4f )]=2.

Proof. Let j be an arbitrary element in eje. Then (β-\~j)AiC.Bi-}-jAi.
Since jAideJi+1, we have π^Bf-^-jA^dA^ where π\ is the projection of ej
onto Aλ. Hence (β+^A^A^ so that ΔΦΔ(^), and therefore [Δ: Δ(-4I )]=2
by Lemma 22.

Lemma 24. Assume that βA1—B1 with a unit β in eRe. If 8 ύ a unit in
eRe such that SφΔ^^ ) for some j, then τr2δ: A{— >B{ is an isomorphism, where
π2 is the projection of ej onto Blf

Proof. Since e, β are independent over Δ l̂,-), S=#+ J5y for some X,
with xA—Af and yAi=Ai. Let a{ be a generator of Aif Then βya{ is

a generator of J5,-. Hence π2S\Ai is an epimorphism of A{ onto Bi9 and hence



92 M. HARADA

an isomorphism (cf. the proof of Lemma 23).

Lemma 25. // A1^Bl then Δ^Δ(ΛΓ) for every submodule N of ej. If

Blt then [Δ: Δ(Ai@B ,)]=2 provided iΦ/, and Δ(-4,.0βί)=Δ;

Proof. Put D=eR/A1®eRIA1®eRIB1. Then | Soc(Z>) | -3. Let M be a
maximal submodule of Z>, and M— M10M2® ••• with hollow modules Λf/«
β/2/^/. Since |Λf |=2, we may assume that M^O and M2ΦO. Let πh be
the projection of D onto the λ-th component. Then πk\Ml is an epimorphism
for some k. Hence EldaAl or aBly where a is a unit in e/fe. If E1^=aA1

(or <xBj) then \Soc(eRIE1)\=2. Therefore either Eλ or E2 coincides with aAl

or <xBj, and so πk\M1 is an isomorphism. Accordingly, (**) is satisfied for Zλ
Hence, if [Δ: Δ(-4J]=2, there exists a unit a' such that α'^iCBj (or α'J^c

A), by [5L Proposition 1. Since ^ct*/2, we get a'A1=B1 (or α/

JB1=^ί1).
Conversely, assume that A^B^ Then, by Lemma 12, there exists a unit β
such that βAl=Bl. Hence [Δ: Δ(Λ)]=2=[Δ: Δ(^)] by Lemma 23, and
Δ^ ̂ Δ^ίi) by Δ(-4!)cΔ(-4f ). Now, let N be an arbitrary submodule of
ej. Then we may assume that N=AiQ)Bj. If i=j then N=eJ*9 and so

Δ=Δ(JV) If i>; then J3$Δ(N) by Lemma 24 (cf. the proof of Lemma 23),

and hence [Δ: Δ(Λr)]-2, and either Δ(JV)=Δ(A) or A(Si). Finally, if Δ=
then Δ=-Δ(5i) from the above. Hence Δ=Δ(JV).

3 Proof of Theorems 2 and 2'. We assume that R satisfies Condi-
tion I* and either Condition IΓ or Condition II". Then, by Corollary 2,
R satisfies Condition II. Hence the assumptions of Theorem 1 are fulfilled.
Further, it is clear that Δ=Δ(ΛΓ) for every submodule N of ej by Condition
IΓ or II". It suffices therefore to show the equivalence of 1) and 3) in Theo-
rems 2 and 2'.

Let A^Aj and B^Bj/ be as in Theorem 1, and assume that there exists
f: A IAj^BdBj,. Put N=ix+y^eJ\xt=Ai, y^B^ f(X+Aj)=y+Bj,}.
Then N is a submodule of ej containing AffiBy. On the other hand, since
every submodule in ej is characteristic by Condition II', N is a trivial sub-
module by Theorem 1 2). Hence /=0, which shows the "only if" part of
Theorems 2 and 2'. We shall show the "if" part. We shall show, by induc-
tion on the nilpotency index n of/, that if the condition 3) in Theorem 2 (resp.
Theorem 2') is satisfied then R satisfies Conditions I and IΓ (resp. Condition
I). In order to show that R satisfies Condition I, it suffices to show the fol-

lowing :
(*) every maximal submodule in any finite direct sum of hollow modules

is also a direct sum cf hollow modules (cf. [3]).
Further, as was shown in [3], §3, we may consider a direct sum of hollow

modules which are homomorphic to eR for a fixed e.
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Lemma 26. // the condition 3) in Theorem 2 is satisfied, then R satisfies
Condition IΓ.

Proof. This is clear (cf. [6]).

Lemma 27. Assume that R satisfies Condition IΓ (or Condition II").

Let {eR/Dh}ί,ι be a family of hollow modules. If D^Dj for some i and j, then

(**) is satisfied for D=*Σl-ι®eRIDk.

Proof. Let πh be the projection of D onto eR/Dh. Take a maximal

submodule M in D. If πl(M)^FeRIDl for some / then M=ς//Z>®Σ*Φ/θ
eR/Dh. Hence we may assume that πh(M)=cRIDh for all h. Setting D—
DjJ(D\ we may regard D as a t dimensional vector space over A=eRejeJe (note
that R is basic). Further we may assume that D1(^D2. Since πh(M)=eRIDh

for all h, M=M/J(D) contains a subspace S=(e, ek, 0, •••, 0)Δ (note that k is
a central element of R for the case of Theorem 2'). Since D1dD2, this simple

subspace S is lifted to a direct summand Mλ of D by [1], Theorem 2 and its

proof. Then MjCM, proving (**) for D.

In view of Lemma 27, it remains to show that (*) is satisfied for <D=Σ/Lι
(&eR/Dh provided D{(tDj for all distinct i,j. Let M be a maximal submodule

in D, and let TΓA be as above. As was claimed in the proof of Lemma 27, we
may restrict ourselves to the case where πh(M)=eR/Dh for all h. Then we

can take such a basis of M=M/J(D) as {αfί=((5, •••, e, ekh, 0, •••, OK~i, where
kh^eRe (central elements of R for the case of Theorem 2'). We assume that

eR has the structure given in Theorem 2 (resp. Theorem 2'), i.e.,

In the case of Theorem 2r, Dh=a(A,®Bs). Hence eR/Dh^eRI(Ar®Bs).

Accordingly, we may assume that all Dh are trivial submodules. If all Dh

contain Bn (resp. An®En for the case m=ri), all eR/Dh are hollow JR/y^-modules.
Hence, by induction hypothesis (*) is satisfied for D. Thus, in what follows,
we consider the case where some Dh is equal to A{\ l<i<m (resp. By;
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Therefore we should check the following cases:

1) A=Λ, Dk=AjΛ®Bjk; i<h<i2< '<ip,J\>J2> ~>jp

2) A=A > A=£>, A=4 4θβy,; i<h<h<~ <ip, jι>J2>->jp
However, 2) is a special case of 1) obtained by putting ip=n+l and jp=j.
So, we consider the case 1): D=eRIAi®eRI(Aij®BjΊ)®

Then \D\ =(«+0+Σί-ι(ί,+y,-l). SetM^Λ/A ΘΣLi
A/A , (5y0=0). Then I Λf* I = I Z) I - 1. Define a homomorphism 9) of M* to
D by setting

where x^Al9 ys^eR, z^Bl and ks are central elements for the case of Theo-

rem 2'. Now, let (Λ?+^ί)+Σ3ί.ι(Λ+(^i.θβy..1))+(^+^) be in ker ?>.
Since x and # are in eJ9 ys are all in ej. Set 3>s=jsι+:yS2 (jsi^^i,
Since Λ?+ιy1=Λ?+jy n+;y12e^ , we have y12=Q. Then (̂ yu +y12)+ (y2ι

^ implies that y22^BJι and ek^u+yzi^A^ and ̂ 2(j2i+J22)+(3
implies that y32^Bj2 (note that Bj^dBj^. Repeating this procedure,

we see that iyS2e^yJ_1

 an(l z^Bjp Similarly, from the fact that £ (̂3 1̂ +3^2)+
z^Aip®Bip, it follows that ypl€ΞAip, •••, ysl^Ait, —9yu^Ai9 and x^A{ (note
that ^s are central elements for the case of Theorem 2'). Hence φ is a

monomorphism and im φ=M. Therefore, noting that MZ)J(D), we see that

4 Rings with J3= 0. We have shown in [3] that the converse of Theo-
rem 1 is true provided /2— 0. In this section, we shall show that the same
is still true for the case/3^0, namely if J3= 0 then 1)~3) in Theorem 1 imply
Condition I.

Lemma 28. Assume that βAl=B1. If a is a unit in eRe such that
Δ(Af)for some, Af Π aAi=0.

Proof. Let α, be a generator of A^ Then, by Lemma 24, ofα, =

where a{^Ai9 b^Bf and φβ, +ι Hence aAn=aaiJ*-i=(a'i+bi)J*-1<tAll9

and therefore aAiΓ\Ai=0.
In order to show that R satisfies Condition I, it suffices to show that R

satisfies (*). Further, as is claimed in §3, we may restrict ourselves to the
case that hollow direct summands in (*) are isomorphic to eR/E for a fixed
primitive idempotent e. We shall divide the proof into two cases: 1) A^Bi,
and 2) A^B^

1) A&B!. By 3) in Theorem 1, Δ-Δ(ΛO for every submodule N of
ej. This situation is very similar to that in [3], and we can apply the argument
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employed in [3] to see that R satisfies Condition I.
2) A^B^ There holds Δ.(A1)=A(A2) = A(A1®B2). We shall give the

explicit form of a maximal submodule M in £>=ΣLιθΛ^> where Nh are hol-
low modules isomorphic to eR/Eh. Now, by 1) in Theorem 1, Bl= aAl for
some unit a. If i>j then a(Ai®Bj)c:Aj®Bi9 for aAi=Bi. Hence a(At(&
B^AjφBi. Therefore eRKA^B^eRKA^B^ Consequently, we may
assume that N^eRKA^Bj) for some i<j.

i f=2.

(1) D=eR/A2®eR/A2. Then we may assume that M=(e+A2)Δ(&

(a+A2)Δ, where a is a unit in eRe.
a) aA2=A2. Then M contains a direct summand of D by [1], Theorem

2. Hence M is a direct sum of hollow modules.
β) aA2ΠA2=0. Put M*=eR®A1IA2®A1/A2, and define a homo-

morphism φ of M* into D by setting

where z^eR and #2, ̂ e^. Suppose #ι+£2+*3 be in ker 9?. Then #, are in
£/. Set #!= #1+3/1 (Λ^^J, j^ejBi). Since z1+z2^A2, we have jyι=0. If #ιΦ
0 then π2a%ι=π2axl^0 by Lemma 24, where τr2 is a projection of ej onto #!
However, Q=τr2(az1-i-z3)=π2az1. This contradiction shows that ^—0, and so

^=0. Now, it is clear that φ(M*)=M by | Λί* | = | M | .

(2) D=eR/A1®eR/A1. Let M be as above. If (a+j)Al=A1 for some
then we are done by [1], Theorem 2. On the other hand, if (a-\-j)A1

! for every j^eje then αφ Δ^), and so α^j Π A1=0 by Lemma 29. Hence
M^eR.

(3) D=eRIA1®eR/A2. If α^c^, we are done. Next, if aA2Γ\A1=Q

then Mf&eRξ&AilAz via ̂ (^ι+^2+Λ)):=(^ι+^ι)+^ι+^2+Λ) (note tnat

(4) D^eRIAzΦeRKA&Bt), eRIA2@eRI(A2@B2] or

eRKA^B^). Since <x42cΛθ#2 (αΛd^ι0Sι), M contains a direct
summand of D, by [1], Theorem 2.

(5) D=eRIA1(&eRI(A2(&B2). Note that either p1=τr1α|Λ or p2=π2a\Aλ

is an isomorphism. If pl (resp. p2) is an isomorphism, then Mϊ&eR/A2ξ&BlIB2

(resp. eR/AziBAJAJ.
(6) D=eR/A1®eRI(A1φB2). Since α^n^iθ^) is either a simple

module #2 or A19 M^eR[a~\B2)^eR/A2 or M is a direct summand of D.
(7) Other cases can be reduced to the case/2=0 [3].
ii) ί=3. If Nl9 N2 and JV3 are linearly ordered by inclusion, then M

contains a direct summand of Z), by [5], Corollary 1. Hence, it suffices to
consider the following two cases :

(1) D=eRIAl®eRIA2®eRI(A2®B2). Since eReA2c:A2®B29 M contains
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a direct summand of D.

(2) D=

{ξ=(e+A1)+0+(82+(A2®B2))y η^

are units in eRe (see [3], §3).
α) Assume that there exists a unit x such that

Then ?+i7#=(£, Tx,
of Z>, by [1], Theorem 2.

/3) Assume that S

We may assume that M has a basis

-, where δ^ S2

Since

and S2=S^.

M contains a direct summand

Put M*=eR\A2®eR\A2, and define a

homomorphism φ of M* to Z) by setting φ((%ι+A2)-}-(z2-\-A2))= (#1+A)+

(*2+A)+(Sι *ι+δ2 *2+(Λθ-B2)), where *, GΞ*#. Suppose that (z1+A2)+(z2+

A2) is in ker φ. Then s. eΛ If *ιΦΛ then δj Λ=δι #ι -Kcδ^+CΛΘ^)-
Hence Sr1 δ^clA+δ^Λθ^HAθ^, which contradicts Lemma 24.
Hence ^e^i and similarly £2e^l2. Therefore M«M*.

iii) t>4. In view of [4], Lemma 1 and Theorem 1 and [5], Corollary 1,
this case can be reduced to the cases i) and ii).

Thus we have shown that R satisfies Condition I provided /3=0.

5 Examples. 1. Let L1cL2cL3c be fields. Set

L! 0

0 L,

0 0

0 0

0 0

0

0

L,

0

L,

Then

enR

Hence R satisfies Conditions I and II'. However, R is not left serial (cf. [7]
and [8]). If [L3: LJ>2 then R does not satisfy Condition I for hollow left

Jf2-modules.

2. Let K be a field and let R be a vector space over K with basis {e^

*ιι, yu, *i2» *2, ^22, ^2i, Λ?2i> Define eiej=eiδij, ef xjk ep=xjk δίy δ^, eiyjkep=
Jϊk &ij δ ,̂ Λ^Π Λ?i2==,yi2 an(i #22 X2i==y2i Putting other multiplications to be zero,
we see that Λ is a ring with J3—0. We can easily see that R satisfies the con-
ditions in Theorem 2' as both left and right Λ-modules. Further R satisfies

Condition IΓ as a left Λ-module. Next, let Rί=^el9 xu, y13, x13y e2y x22, y21, x2ly
es> XZL> Define xn Xι3=yι3 and the same as above for others. Then Rλ satisfies
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the conditions in Theorem 2' as a right jR-module, but does not as a left R-
module, since Jel=Rxll

3. Let KdL be fields with \L: K]=2, say L=K®uK. Put

/ L L L

R = l 0 K K

\ 0 0 K

Then euj=(0, K, K)®(Q, uK, uK). Hence R satisfies 1)~3) in Theorem 1
and A^BI. Therefore R satisfies neither Condition IΓ nor Condition II".
But, by [8], R is of right local type.

4. Let k be a field, and x an indeterminate. Put L=k(x) and K=k(of).
Take a left L-vector space V=Lu of one dimension. Putting ux=x2u and
uk=ku for all k^K, we make V a right L-vector space (see [3], Example 2).
Put

L 0 L L L\

0 L V 0 0

R= 0 0 L 0 0

0 0 0 L L

\ 0 0 0 0 LI

Then elίJ=A1®B1 with AΦ#ι> *z2/=-4ίθ-Bί with A{**B{. Further, Je^=
A{'®B{' with AΊ't&BΊ' as left Λ-modules. Hence R satisfies Condition I for
both left and right hollow jR-modules.
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