ABOUT STOCHASTIC INTEGRALS WITH RESPECT TO PROCESSES WHICH ARE NOT SEMI-MARTINGALES

Nicolas BOULEAU

(Received April 26, 1984)

1. Introduction

Let $\left(\Omega, \mathscr{F}_{t}, \boldsymbol{P}\right)$ be a probability space with an increasing right continuous family of $\left(\mathscr{F}_{\infty}, \boldsymbol{P}\right)$-complete σ-algebras $\left(\mathscr{F}_{t}\right)$, and let \mathscr{P} be the predictable σ algebra induced on $\Omega \times \boldsymbol{R}_{+}$by the family (\mathscr{F}_{t}).

For $H \in \mathscr{P}$, we write H_{s} for the random variable $\omega \rightarrow 1_{H}(s, \omega)$. If $Z=$ $N+B$ is a semi-martingale such that N is a square integrable martingale and B an adapted process with square integrable variation, the mapping

$$
\begin{equation*}
H \rightarrow \int_{0}^{\infty} H_{s} d Z_{s} \tag{1}
\end{equation*}
$$

defines a σ-additive vector measure on $\left(\Omega \times \boldsymbol{R}_{+}, \mathscr{P}\right)$ with values in $L^{2}\left(\Omega, \mathscr{F}_{\infty}\right.$, $\boldsymbol{P})$. It has been shown by several authors that conversely if μ is a σ-additive measure from \mathscr{P} to $L^{2}\left(\Omega, \mathscr{F}_{\infty}, \boldsymbol{P}\right)$ given on the elementary predictable sets H of the form

$$
H=h \times] s, t] \quad 0<s<t, \quad h \in \mathscr{F}_{s}
$$

by

$$
\begin{equation*}
\mu(H)=1_{h}\left(Z_{t}-Z_{s}\right) \tag{2}
\end{equation*}
$$

for a mean square right-continuous adapted process Z, then there is a modification of Z which is a semi-martingale [2].

Nevertheless, if we consider an other probability space ($W, \mathscr{Q}, \boldsymbol{Q}$), an adapted process $(\omega, t) \rightarrow Z_{t}(\omega, w)$ depending on $w \in W$, and a measure μ which satisfies (2) for elementary predictable sets, and if we replace σ-additivity in $L^{2}(\boldsymbol{P})$ for each $w \in W$ by σ-additivity in $L^{2}(\boldsymbol{P} \times \boldsymbol{Q})$, it becomes possible that Z_{t} fails to be a semi-martingale for fixed w.

In the example that we give, Z_{t} is, for fixed w, the sum of a martingale and a process of zero energy similar to those considered by Fukushima [3] in order to give a probabilistic interpretation of functions in a Dirichlet space.

2. Random mixing of semi-martingales

Let $\left(U_{w}(w)\right)_{w \in \boldsymbol{R}}$ be a second order process on (W, \mathscr{W}, Q) which is right continuous in L^{2}, with orthogonal increments and $\mathscr{B}(\boldsymbol{R}) \times \mathscr{W}$ measurable and let m be the positive Radon measure on \boldsymbol{R} associated to U_{a} by

$$
m(] \alpha, \beta])=\boldsymbol{E}_{\boldsymbol{Q}}\left(U_{\beta}-U_{\omega}\right)^{2}, \quad \alpha<\beta
$$

Let $\left(M_{t}^{a}(\omega)\right)_{\omega \in \boldsymbol{R}}$ be a family of right continuous and left limited martingales, and $\left(A_{t}^{\alpha}(\omega)\right)_{\omega \in \boldsymbol{R}}$ a family of continuous increasing adapted processes on $\left(\Omega, \mathscr{F}_{t}, \boldsymbol{P}\right)$ such that the maps $(\alpha, \omega, s) \rightarrow M_{s}^{a}(\omega)$ and $(\alpha, \omega, s) \rightarrow A_{s}^{\infty}(\omega)$ are $\mathscr{B}(\boldsymbol{R}) \times \mathscr{F}_{t} \times \mathscr{B}\left(\boldsymbol{R}_{+}\right)$measurable on $\boldsymbol{R} \times \Omega \times[0, t]$ and such that

$$
\begin{equation*}
\int_{\infty \in \boldsymbol{R}} \boldsymbol{E}_{P}\left[\left(M_{\infty}^{\infty}\right)^{2}+\left(A_{\infty}^{\infty}\right)^{2}\right] d m(\alpha)<+\infty \tag{3}
\end{equation*}
$$

Then we set $Z_{t}^{a}(\omega)=M_{t}^{\alpha}(\omega)+A_{t}^{\alpha}(\omega)$ and

$$
\begin{equation*}
Z_{t}(\omega, w)=\int_{\infty \in \boldsymbol{R}} Z_{t}^{a}(\omega) d U_{\omega}(w) \tag{4}
\end{equation*}
$$

where the stochastic integral is of Wiener's type and exists for \boldsymbol{P} almost all ω since by (3) $Z_{t}^{\alpha}(\omega)$ belongs to $L^{2}(\boldsymbol{R}, \mathscr{B}(\boldsymbol{R}), d m(x))$ for \boldsymbol{P}-almost all ω.

For \boldsymbol{P}-almost ω the process $Z_{t}(\omega, w)$ is right continuous and left limited in $L^{2}(W, \mathscr{W}, \boldsymbol{Q})$.

If G is an elementary predictable process on $\left(\Omega, \mathscr{F}_{t}, \boldsymbol{P}\right)$ given by:

$$
\left.G_{s}(\omega)=G_{0}(\omega) 1_{\mathrm{Jo}, t]}(s)+\cdots+G_{n}(\omega) 1_{\mathrm{lt}_{n}, t_{n+1}}\right](s)
$$

for $0<t_{1}<\cdots<t_{n+1}$, where G_{i} is a $\mathscr{F}_{t_{i}}$-measurable bounded random variable, it follows immediately

$$
G_{0}\left(Z_{t_{1}}-Z_{0}\right)+\cdots+G_{n}\left(Z_{t_{n+1}}-Z_{t_{n}}\right)=\int_{a \in \boldsymbol{R}}\left(\int_{0}^{\infty} G_{s} d Z_{s}^{\alpha}\right) d U_{a}
$$

And we have:
Proposition 1. The map $H \in \mathscr{P} \rightarrow \int_{0}^{t} H_{s} d Z_{s}$ defined by

$$
\int_{0}^{t} H_{s} d Z_{s}=\int_{\infty \in \boldsymbol{R}}\left(\int_{0}^{t} H_{s} d Z_{s}^{\alpha}\right) d U_{a}
$$

is a σ-additive $L^{2}(\boldsymbol{P} \times \boldsymbol{Q})$ valued measure on $\left(\Omega \times \boldsymbol{R}_{+}, \mathscr{P}\right)$.
Proof. Let $H^{(n)}$ be a sequence of disjoint predictable subsets of $\Omega \times \boldsymbol{R}_{+}$, we have

$$
\begin{aligned}
& \boldsymbol{E}_{\boldsymbol{P}} \boldsymbol{E}_{\boldsymbol{Q}}\left[\int_{\infty \in \boldsymbol{R}}\left(\int_{0}^{t} \sum_{n=N}^{\infty} H_{s}^{(n)} d Z_{s}^{\alpha}\right) d U_{\infty}\right]^{2} \\
& \quad=\int_{\alpha \in \boldsymbol{R}} \boldsymbol{E}_{\boldsymbol{P}}\left(\int_{0}^{t} \sum_{n=N}^{\infty} H_{s}^{(n)} d Z_{s}^{\alpha}\right)^{2} d m(\alpha)
\end{aligned}
$$

which can be made arbitrarily small for N large enough because

$$
\boldsymbol{E}_{\boldsymbol{P}}\left(\int_{0}^{t} \sum_{n=N}^{\infty} H_{s}^{(n)} d Z_{s}^{\alpha}\right)^{2}
$$

tends to zero and remains bounded by

$$
2 \boldsymbol{E}_{\boldsymbol{P}}\left[\left(M_{\infty}^{\infty}\right)^{2}+\left(A_{\infty}^{\infty}\right)^{2}\right]<+\infty
$$

Set

$$
Z_{t}^{(1)}=\int_{a \in R} M_{t}^{a} d U_{\infty} \quad \text { and } \quad Z_{t}^{(2)}=\int_{a \in R} A_{t}^{a} d U_{a}
$$

Lemma 2. There is a $\mathbf{P} \times \boldsymbol{Q}$-modification $\tilde{Z}_{t}^{(1)}$ of $Z_{t}^{(1)}$ which is $a\left(\Omega, \mathscr{I}_{t}, \boldsymbol{P}\right)$ right continuous and left limited martingale for \boldsymbol{Q}-almost all w.

Proof. Let $G \in \mathscr{F}_{s}$, the following equalities hold in $L^{2}(W, \mathscr{W}, \boldsymbol{Q})$ for $s<t$:

$$
\begin{aligned}
& \boldsymbol{E}_{P}\left[1_{G} Z_{t}^{(1)}\right]=\int_{\infty \in \boldsymbol{R}} \boldsymbol{E}_{P}\left[1_{G} M_{t}^{\alpha}\right] d U_{\infty}=\int_{\infty \in \boldsymbol{R}} \boldsymbol{E}_{P}\left[1_{G} M_{s}^{\alpha}\right] d U_{\infty} \\
& \quad=\boldsymbol{E}_{\boldsymbol{P}}\left[1_{G} Z_{s}^{(1)}\right]
\end{aligned}
$$

therefore, if we choose a $\mathscr{I}_{t} \times \mathscr{W}$-measurable element $z_{t}^{(1)}(\omega, w)$ in the $L^{2}(\boldsymbol{P} \times \boldsymbol{Q})$ equivalence class of $Z_{t}^{(1)}$, for w outside a \boldsymbol{Q}-negligible set $\boldsymbol{N}, z_{s}^{(1)}$ is a $\left(\mathscr{F}_{s}, \boldsymbol{P}\right)$ martingale for rational s.
Then, if we put $\tilde{Z}_{t}^{(1)}=\lim _{\substack{\text { rational } \\ \text { sit }}} z_{s}^{(1)}$, for $w \notin \mathscr{N}, \tilde{Z}_{t}^{(1)}$ is \boldsymbol{P}-almost surely a right continuous and left limited $\left(\mathscr{F}_{t}\right)$-martingale and

$$
\tilde{Z}_{t}^{(1)}=Z_{t}^{(1)} \quad \boldsymbol{P} \times \boldsymbol{Q} \text {-a.e. }
$$

because $Z_{t}^{(1)}$ is right continuous in $L^{2}(\boldsymbol{P} \times \boldsymbol{Q})$.
As concerns $Z_{t}^{(2)}$, it is a zero energy process:
Lemma 3. Let τ_{n} be a sequence of partitions of $[0, t]$ with diameter tending to zero, then

$$
\boldsymbol{E}_{\mathbf{Q}} \boldsymbol{E}_{P}\left[\sum_{t_{1} \in \tau_{n}}\left(Z_{t_{i+1}}^{(2)}-Z_{t_{i}}^{(2)}\right)^{2}\right] \xrightarrow[n_{t^{\infty}}]{ } 0
$$

Proof. The expression is equal to

$$
\boldsymbol{E}_{\boldsymbol{P}} \int_{a \in \boldsymbol{R}} \sum_{\tau_{n}}\left(A_{t_{i+1}}^{\infty}-A_{t_{i}}^{\omega}\right)^{2} d m(\alpha),
$$

and $\sum_{\tau_{n}}\left(A_{t_{i+1}}^{a}-A_{t_{i}}^{a}\right)^{2}$ tends to zero, because A_{t}^{a} is continuous, and remains majorized by $\left(A_{\infty}^{\infty}\right)^{2}$, which gives the result by (3).

Nevertheless, in general $Z_{t}^{(2)}$ has no modification with finite variation, as shown by the following example:

Let X be a continuous martingale on $\left(\Omega, \mathscr{F}_{t}, \boldsymbol{P}\right)$ such that

$$
\boldsymbol{E}_{\boldsymbol{P}} X_{\infty}^{2}<+\infty
$$

Let

$$
M_{t}^{a}=\int_{0}^{t} 1_{\left(X_{s}>\infty\right)} d X_{s}
$$

and $\quad A_{t}^{\alpha}=\frac{1}{2} L_{t}^{\alpha}$
where L_{t}^{α} is the local time of X at α. Condition (3) is satisfied as soon as the measure m is finite. If we put

$$
Z_{t}=\int_{\infty \in \boldsymbol{R}} M_{t}^{\infty} d U_{\infty}+\int_{\infty \in \boldsymbol{R}} A_{t}^{\infty} d U_{\infty}
$$

we have, from Meyer-Tanaka's formula:

$$
Z_{t}=\int_{a \in \boldsymbol{R}}\left[\left(X_{t}-\alpha\right)^{+}-\left(X_{0}-\alpha\right)^{+}\right] d U_{a}=\int_{X_{0}}^{X_{t}} U_{\lambda} d \lambda \quad \boldsymbol{P} \times \boldsymbol{Q} \text { a.e. }
$$

If Z_{t} had a $\boldsymbol{P} \times \boldsymbol{Q}$-modification such that, for fixed $w \in W, \tilde{Z}_{t}$ were a (Ω, $\left.\mathscr{F}_{t}, \boldsymbol{P}\right)$ semi-martingale, then, since \tilde{Z}_{t} and $\int_{X_{0}}^{X_{t}} U_{\lambda} d \lambda$ are both right continuous, $\int_{X_{0}}^{x_{t}} U_{\lambda} d \lambda$ would be a semi-martingale. So, from ([1], theorem 5, 6), if we took for X a real stopped brownian motion starting at 0 , the map

$$
x \xrightarrow{\psi} \int_{0}^{x} U_{\lambda}(w) d \lambda
$$

would be the difference of two convex functions. But, if for example, U itself is a stopped brownian motion, that can be true only on a \boldsymbol{Q}-negligible set because almost all brownian sample paths have not finite variation. So, in this case, the $\boldsymbol{P} \times \boldsymbol{Q}$-modifications of Z_{t} are \boldsymbol{Q} a.e. not semi-martingales.

References

[1] E. Cinlar, J. Jacod, P. Protter and M.J. Sharpe: Semimartingales and Markov processes, Z. Wahrsch. Verw. Gebiete 54 (1980), 161-219.
[2] C. Dellacherie and P.A. Meyer: Probabilités et potentiel, théorie des martingales, Hermann, 1980.
[3] M. Fukushima: Dirichlet forms and Markov processes, North-Holland, 1980.

