A HOMOTOPY GROUP OF THE SYMMETRIC SPACE SO(2n)/U(n)

Hideaki ŌSHIMA

(Received February 1, 1983)

In [1] B. Harris calculated some homotopy groups of the symmetric space $\Gamma_{n}=S O(2 n) / U(n)$. He determined $\pi_{2 n+r}\left(\Gamma_{n}\right)$ for $-1 \leqq r \leqq 1$ and for $r=3$, $n \equiv 0(\bmod 4)$ except for $r=1, n \equiv 2(\bmod 4)$. For the last case he made a group extension

$$
\begin{equation*}
0 \rightarrow Z_{2} \rightarrow \pi_{2 n+1}\left(\Gamma_{n}\right) \rightarrow Z_{n!/ 2} \rightarrow 0 \tag{1}
\end{equation*}
$$

from the homotopy exact sequence of the fibration $\Gamma_{n} \rightarrow \Gamma_{n+1} \rightarrow S^{2 n}$. The purpose of this note is to show that this extension splits.

Theorem. $\pi_{2 n+1}\left(\Gamma_{n}\right)=Z_{2} \oplus Z_{n!/ 2}$ if $n \equiv 2(\bmod 4)$.
Proof. If $n=2$, then the conclusion is obvious, by (1). Thus we will always assume that $n \equiv 2(\bmod 4)$ and $n \geqq 6$.

The rotation group $S O(m)$ and the unitary group $U(m)$ are embedded, respectively, in $S O(m+1)$ and $U(m+1)$ as the upper left hand blocks. We embed $U(m)$ in $S O(2 m)$ as the subset of matrices consisting of 2×2 blocks

$$
\left(\begin{array}{rr}
a & b \\
-b & a
\end{array}\right)
$$

The natural map $S O(2 n-1) / U(n-1) \rightarrow S O(2 n) / U(n)=\Gamma_{n}$ is a homeomorphism and will be used to identify these spaces. The inclusion map $S O(2 n-2) \rightarrow$ $S O(2 n-1)$ then induces a map between the fibrations:

Applying the homotopy functor $\pi_{*}(-)$ to this, we obtain a commutative diagram with exact columns:

We already know all the groups except $\pi_{2 n+1}\left(\Gamma_{n}\right)$ in the above diagram. as follows:
(2) $\pi_{2 n+1}\left(\Gamma_{n-1}\right)=Z_{n!(24, n-2) / 48}$. by (8.2) of [2];
(3) $\pi_{2 n}(U(n-1))=Z_{n!2}$, by Lemma 1.6 of [3];
(4) $\pi_{2 n}(S O(2 n-2))=Z_{12}$, by [3];
(5) $\pi_{2 n}(S O(2 n-1))=Z_{2}$, by [3];
(6) $\pi_{2 n}\left(\Gamma_{n-1}\right)=Z_{(2, n-2) / 2}$, by (6.2) of [2];
(7) $\pi_{2 n}\left(\Gamma_{n}\right)=Z_{2}$, by $[1]$;
(8) $\pi_{2 n-1}(U(n-1))=0$, by Lemma 1.4 of [3].
Here (a, b) denotes the greatest common divisor of a and b.
We use the following notations. For a finite abelian group $G, G_{e v}$ and $G_{o d}$ denote the 2-primary and the odd components of G, respectively. For a homomorphism $f: G \rightarrow H, f_{e v}: G_{e v} \rightarrow H_{e v}$ and $f_{o d}: G_{o d} \rightarrow H_{o d}$ are the restrictions of f to the appropriate busgroups.

By (5), (7) and (8), p_{*} is an isomorphism, so Δ is an epimorphism. It follows that $\Delta_{o d}$ is an isomorphism, from (1) and (3), and that (1) splits if and only if Δ has a right inverse. Therefore (1) splits if and only if $\Delta_{e \nu}$ has a right inverse.

Let $n \equiv 2(\bmod 8) . \quad$ By (4), (6) and (8), the image of j_{*}, Image $\left(j_{*}\right)$, is Z_{3} or 0 , so $\partial_{e v}$ is an epimorphism. Hence $\partial_{e v}$ is an isomorphism, by (2) and (3). It follows that $\left(i_{*}\right)_{e v} \circ \partial_{e v}^{-1}$ is a right inverse of $\Delta_{e v}$, so that (1) splits.

Let $n \equiv 6(\bmod 8) . \quad$ By (4), (6) and (8), $\left(\operatorname{Image}\left(j_{*}\right)\right)_{e v}=Z_{2}$. Hence, by (2) and (3), we have a commutative diagram with exact columns:

Suppose that (1) does not split, that is, $\pi_{2 n+1}\left(\Gamma_{n}\right)=Z_{n!}$. Then we can choose generators α, β and γ of $\left(Z_{n!/ 4}\right)_{e v},\left(\pi_{2 n+1}\left(\Gamma_{n}\right)\right)_{e v}$ and $\left(Z_{n!/ 2}\right)_{e v}$, respectively, such that $\partial_{e v}(\alpha)=2 \gamma$ and $\Delta_{e v}(\beta)=\gamma$. Since we can write $\left(i_{*}\right)_{e v}(\alpha)=4 x \beta$ for some integer x, we have

$$
2 \gamma=\partial_{e v}(\alpha)=\left(\Delta_{e v} \circ\left(i_{*}\right)_{e v}\right)(\alpha)=\Delta_{e v}(4 x \beta)=4 x \gamma
$$

Hence $2(2 x-1) \gamma=0$. But this is impossible, because the order of γ is a multiple of 8 . Therefore (1) splits. This completes the proof.

References

[1] B. Harris: Some calculations of homotopy groups of symmetric spaces, Trans. Amer. Math. Soc. 106 (1963), 174-184.
[2] H. Kachi: Homotopy groups of symmetric spaces Γ_{n}, J. Fac. Sci. Shinshu Univ. 13 (1978), 103-120.
[3] M.A. Kervaire: Some nonstable homotopy groups of Lie groups, Illinois J. Math. 4 (1960), 161-169.

Department of Mathematics
Osaka City University
Sugimoto, Sumiyoshi-ku
Osaka 558, Japan

