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ASYMPTOTIC SUFFICIENCY I: REGULAR CASES
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1. Introduction. The concept of asymptotic sufficiency of maximum
likelihood (m.l.) estimator is due to Wald [16] and this work was succeeded
by LeCam [4] and Pfanzagl [10]. Higher order asymptotic sufficiency has
been subsequently studied by Ghosh and Subramanyam [3], Michel [7] and
Suzuki [14], [15].

Let ® be an open subset of the s-dimensional Euclidean space. Suppose
that «xy, .-+, x, are independent and identically distributed random variables
with joint distribution P, , #&®©, which has a constant support and satisfies
certain regularity conditions. For # €@ and z,=(x, -+, x,) let G{(z,,0)
denote the m-th derivative relative to @ of the log-likelihood function. In
Michel [7], it was shown that for k=3 a statistic T, ,=(T,, G(2. Th), *
G¥(z,, T,)), where {T,} is a sequence of asymptotic m.l. estimators of order
o(n~*-2/%) (see Definition in Section 3), is asymptotically sufficient up to
order o(n~*-2/%) in the following sense: For each neN, T,, is sufficient for
a family {Q,q; 6 €@} of probability distributions and for every compact
subset K of ©

Sup “Pn,o_Qn,OII = o(n~(k—2)/2) ’
6eK

where ||+|| means the total variation of a measure. Suzuki [14], [15] also
showed that for kEN a statistic (8,, GP(z,,8,), -+, G¥(z,, b,)), where 6, is a
reasonable estimator including m.l. estimator, is asymptotically sufficient up to
order o(n~*~1/%) under a stronger moment condition than in Michel [7].

In this paper we give a refinement of their results on higher order asym-
ptotic sufficiency. Our result includes that (1) T, ,=(T,, G(2m T¥), -
G¥(z,, T,)) is asymptotically sufficient up to order O(rn~*?) for any sequence
{T,} of asymptotic m.l. estimators of order O(n *?) and (2) a sequence of
asymptotic m.l. estimators of order O(n~"/%) with some r (0, 1) is asymptotically
sufficient up to order O(n~"/%) under mild moment conditions for the first and
the second derivatives of the log-likelihood function.

In the case k=1, Pfanzagl ([10], Theorem 1) proved that a sequence of
estimators with properties analogous to those of asymptotic m.l. estimators of
order O(n~"%) is asymptotically sufficient up to order O(n~*?), and showed in
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[11] that this order of convergence cannot be improved in general. Thus our
result is an extension of his and it seems to be impossible to improve the con-
vergence order O(n~*?).

In Section 2 we present a result concerning probabilities of deviations
for sums of independent and identically distributed random variables with a
restricted moment. In Section 3 we investigate asymptotic sufficiency of
T, . constructed by asymptotic m.l. estimators 7T',. In the final Section 4 we
give conditions under which a sequence of m.l. estimators becomes the one
of asymptotic m.l. estimators of order O(n~"/%) with some >0.

2. Probabilities of deviations. Let Y, .-+, Y, be a sequence of random

variables (r.v.’s) and put S,,,:i Y, 1=m=n. Using the elementary in-
equality =
E|S,"’s Y EIY,", r=l,
i=1

it follows from Markov’s inequality that for x>0

2.1) P{|S,|za} <" N E|V,|".
If the r.v.’s satisfy the relations
(2.2) E(Yyi1lSy) =0 as. 1<sm=n—1,

then von Bahr and Esseen [1] showed that
(2.3) EIS,I"S2RE|Y,", 1=r=2.

The condition (2.2) is fulfilled if the r.v.’s are independent and have zero means.
In this case, (2.3) together with Markov’s inequality implies the following
inequality

(2.4) P{IS,|2x}<2x" 2 E|Y,|", 1=r=2,

for x>0.
The following theorem includes a uniform version of Corollary 2 in Nagaev

[91-

Theorem 1. Let Y,, -, Y, be a sequence of independent and identically
distributed random variables with a common distribution P,, 0K, where K is
any set. Let h(y, 0) be a measurable function of y for any fixed 6K and put

S,,.,:E” WY, 0). If E(h(Y,,0))=0 for all 6K and a‘j,:iup Eolh(Y,, 0)]<oo
i=1 EK
for some r>0, then
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(2.5) sup P{|S, ¢l =2} = O(nx""), 0<r=2,
(=9

Jor x>0, and

(2.6) sup Po{|S, 6| > x} = O(mx™),  r>2,
€K

Jor x=\/8(r—2)nlogn.

Proof. (2.5) is an immediate consequence of (2.1) and (2.4).
For the proof of (2.6) we use the following inequality which is a slight
modification of Theorem 1 in Nagaev [9]: For x>0 and y>0,

2/,
@) RIS, > <2 IH(Y, 0)| >3} +2[ s ]
{5, [7log y—log (nf,ed,) Vs 2
X exp IZn[ y g ]fr,ozl +1} ,

where d,=14(r+1)*2exp (—r) and &, = E,|k(Y,, 0)|". In order to show
(2.7) it is enough to note that the relation (2.3) in [9] becomes

1/k
'S-«. exp {H[( Yy, O)]}dPy—1| <2HPE, 3" .

Setting x=£, ¢'n"*t and y=x/2 for t=\/8(r—2)logn in (2.7), then we
obtain

(2.8) nPo{|W(Y,, 0)| >y} < nE, oy~
— Z'n(z—r)lzt-r
and
29) [ese | = 2rdgmoris.
yf
Let us assume that #> exp { 3 (rl—Z)} (For n< exp {ﬁ}, (2.6) is trivially

true.) Since 0=¢"'log t<1/2 for t=1, we have

2n [T IOgy _ lOg (nEr-Odr)]ZE' 02/7
y ,

= 8t~ %[r log f—}—%g log n—r log 2— log d,]?
=< 8t7?[r* (log t)2+(r;4—2)2(log n)?~+r(r—2) log n log t+¢,]

=< 2rz+';:4_—zlog n+rlogttc,,
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where ¢, and ¢, denote positive constants depending only on 7. From this
fact and (2.9) it follows that the second term on the right side of (2.7) has an
upper bound of the type c*@"/4¢~7.  This, together with (2.8), implies (2.6).

ReMARK. (1) In the case r=3, Michel [7] showed a result analogous to
Theorem 1 (cf. also Lemma 1 in Pfanzagl [12]).

(2) Let Y,, -+, Y, be a sequence of independent r.v.’s with zero means.
It follows from an inequality due to Marcinkiewicz and Zygmund [5] that

(2.10) E[QY,|'Scne- 92 E|Y,|", 22,

where ¢ is a positive constant depending only on » (see Chung [2], page 348).
This leads to Lemma 2 in Pfanzagl [12] which requires a stronger moment
condition than in Theorem 1 to evaluate probability of moderate deviations
or large deviations.

3. Asymptotic sufficiency. Let © be an open subset of the s-dimen-
sional Euclidean space R’ and for each §=®, let P, be a probability measure
on a measurable space (X, A). Itis assumed that Py, /=@, is dominated by
a g-finite measure u on (X, ) and has a positive density p(x, 6). For each
neN={1,2, .}, let (X", A") be the Cartesian product of # copies of (X, )
and P, 4 be the product measure of # copies of Py. Furthermore, let x, denote
the product measure of n copies of x and write p,(2,, 8)=dP, o/dp, for 6€0©
and z,=(x, -+, x,)EX".

For a function A(z, +): R*~>R denote the m-th derivative relative to @ of
h(z, 0) by

h(M)(z’ 0) = ( 9 9 h(za 0); ily °tty imE{l, *tty S})

00;,-+-80,

In particular, we write
hO(z, 0) = (ih(z, 9), ---, ih(z, 9))
0
19, ) = (- _i(s, 0
0 =G0.00," ),

that is, #* means a row vector and 2® a matrix. The Euclidean norm |[|+|| of

h is defined by
(m), 2 _ >
L I 51 ) -

For any o=(a, ***, o) ER’ define

Kz, 0" = 31 ﬁh(z, 9) ﬁ i, -

1
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Then, it is easy to see that
[h™(z, 0)a™ | <[|h™(z, O)II lla]l™ .

Let kN and r>0 be fixed. We shall impose the following Conditions
4, B, and C,, on p(x, 0).

Condition 4

(i) For each xeX, 60— p(x, ) admits continuous partial derivatives up
to the order 2 on ©.

Let g(x, @)=log p(x, ) and g™ be the m-th derivative of g defined above.
Moreover, for =0 let J(0)=Ey(—g®(-, 9)).

(i) For every 0©

(a) Eog™ -, 8))=0

(b) J(0) is positive definite.

Condition B,

For every compact KC©

sup Bx(lg(, O <o .

Condition C, ,

(i) For each xeX, 0—p(x, ) admits continuous partial derivatives up to
the order 2+1 on ©.

(if) For every 00 there exist a neighborhood U, of @ and a measurable
function A(x, €) such that

(a) forall xeX, 7, o€ U,, ||g*V(x, T)—g* I (x, o)l|=Z||7—0||\(x, 6)

(b) for every compact KC O, sup E(\(+, )< oo

(¢) sup E(Jlg*(s, 7)) <o,
where ’

y(r)zgj:, if 0<r<1,

=r+2, if Tgl.

(iii) For every compact KC® there exist 84>0 and 5,>0 such that
0K and 70O with ||§—T7||<8x imply

1B+, 6)—Eg®*(-, )l S mallo—]

RemMARrk. (1) Condition (iii) in C,, follows from conditions (3)(a) and
(3) (b) in Suzuki [15] (see also (3.4) in [14]).

(2) It is easily seen that condition (ii) in C,, and the following condi-
tion (iii)’ imply condition (iii) in C,,.

(iii)’  For every =0 there exist a neighborhood U, of  and a measura-
ble function A*(x, §) such that for all xe€ X, r€ U,
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|5, 7)[p(x, 0)—1| S[lr—6lIn*(x, 6)

and for every compact KC®

sup B, (M(+, 6"/ < oo
TEK

The following definition is due to Michel [7].

DerFINITION. T,, n€N, is a sequence of asymptotic maximum likelihood
(m.l.) estimators of order O(n~"?), >0, if there exist positive constants 7, and
7, (depending on r) such that for every compact KC O

() sup Ppolz, € X"; n|T,(z,)— ]| = (log n)1} = O(n™"")
(Br) sup Pyolz, & X5 wl| 33gM(s, Ty(z)l| Z(log nys} = O(n~").

Asymptotic m.l. estimators can be obtained from suitable initial estimators
by applying a Newton-Raphson method (see Michel [6] and Pfanzagl [13]).

To simplify our notations we shall use 7, (depending on compact K) as
a generic constant instead of the phrase ‘““for all sufficiently large »”’. In the
same manner we shall use ¢, as a generic constant to denote factors occurring
in the bounds which depend on compact K but not on §K and nE N.

Lemma 1. Assume that Condition C,, is fulfilled for some k&N and
r>0. Let T,, nEN, be a sequence of estimators with the property (c,). Then
for every compact K O

sup Poof - sup [I3[g¢(x, 7)—E (g0, )]l Zm N} =07,
ok " p/2| T,— | = (log )= i1
where
Y(n, r) = n®"2, if 0<r<1,
— nl/Z(log n)"1+1/2 s lf rgl .

Proof. Let 0<r<1 and K be a compact subset of ©. Condition (ii)
implies that there exist dx>0 and Ag(x) such that K and r=®© with
10—7l|<dg imply ||g*(x, 6)—g**D(x, T)[|</|0—7Agk(x) for all xEX, and
such that sup Eg(Ag(+)+?%) < oo, Let

€K
D,ox = {z,€X"; |‘Z=; k(%) —Eo(hg(+)]] <n} .
According to Theorem 1

(3.1) oséle Pn,o{(D,,,a,x)‘} = O(n—r/Z) .
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Furthermore, Theorem 1 together with condition (ii) (c) implies that
(3:2) sup P, o{(F, )} = O(n~""),

6EK
where

F,, = {z,€X"; || Zi} Lg% (x;, 6)—Eg(g*+V(-, 0))]Il<1/2 n®-72} |

Let x>0 be such that {r € R’; inf ||§—7|| < ez} ©O. Choose ng to satisfy
[:1=9:9

2n~"*(log m)"1<<min {dg, ex, Sx} for all n=n,, where 8x appears in condition
(iii). Then, by conditions (ii) and (iii), for n=n,, 0K, € R’ with ||0—7||=
2n(logn)r and 2,ED, 4 x N F, 4

133 Lg%, T)—Exg® (-, 7 )]

=12 84w, 7) =g (w, O+ 2312 (mi O)—Eo(g®* (-, O

+nlEo(g* (-, 0)—E(g* (-, )l
{1+ sup Ey(x(+))+nxlll0—7lI+1/2 n70"

<n@=nr;

Taking account of (3.1) and (3.2), for every compact K C® we obtain

sup Puol  sup || B3 (g, m)—EL (g4, m)IZnC )
ER /2|0 —7|<2(logn)™ =1
= O(n""?).

This together with the property («,) leads to the desired assertion.
In the case r=1, it is enough to show that there exists ¢,x>0 such that

(3.3) sup P, o{(Fy0,x)} = o(n™"),
where

Foox = {z,€X"; || ZJI [ D%, 6)—Eo(8**1(+, O))]l|=cx(n log n)"?} .

This follows from Theorem 1 and condition (ii) (c).

Lemma 2. Assume that Conditions A, B, and C,, are fulfilled for some
r>0. Let T,, nEN, be a sequence of asymptotic m.l. estimators of order O(n~""%).
Then for every compact K C©

sup P, o2, € X"; || T.(2.)—0—n" 23O, 0)J(60) || Za(m, )} =0(n™"),

where
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o(n, r) =n" D %logny,  if 0<r<1,
= n~Y(log n)?*1¥2 if r=1.

Proof. Let 0<r<1 and K be a compact subset of . Condition (ii)
in C,, implies that there exist dx>0 and Ax(x) such that x€ X, K and T€0
with [|—7||<dx imply [|g®(x, 8)— g®(x, 7)||=||6 — 7||Ag(x) and such that
sup Ey(Ak(+)"*®”2)<co. As in the proof of Lemma 1, we define

Do = {2 € X" 133 Do) —EoQu(- )] <},
Fpo = {2 & X" |13} [, O)+JO)I<1/2 8"} .

It follows from Theorem 1, condition (ii) (a) in 4 and Condition B, that there
exists cx >0 such that

(3’4) s@gg Pn,o{(Hn,O,K)c} = o(n—r/Z) )
where

H,ox = {z,€X" |2 g%(x;, 0)||<cx(nlog n)?} .

Let U, and V,, be defined by
U,s = {2,€X"; 0| T,(2,)— 0| <(log )1} ,
Var = {2, X" 0 2 g0, To(2,))l1<(log n)7} .

Choose ex>0 such that K*={r€R’; inf ||§—7||<ex} CO and n, such that
EK

n~*(log n)*<<min {dy, e, 8x} for all n=ny, where 8 is determined by condi-
tion (iii) in C, ,. It is obvious that n=n,, §= K and 2,€ U, o imply T,(z,)EK*.
Since K* is a compact subset of ®, conditions (ii) (b) in 4 and (iii) in C,,
imply that

pre = sup || J(r) | <o

Using the equality
2180, 0) = 330, T)+HO0—T) 28, T, 0)
with 2®(x, 0, )= S: £P(x, (1—1)0+ta)dt, we obtain
T,—0—n" 31g%(x,, 0)](0) 07 3N (i, TAJ(T,)™

= T,— 60— X3¢, O)J(6) '~ J(T,) 1+ (T~ O™ S g®(x,, T,, O)J(T,)



AsYMPTOTIC SUFFICIENCY [ 247

= (T, =)L) —JOU(T.) —n 2g(x, O)J(6) [T —JOJ(T.)™
(T~ 0™ 3 (2%, T, 0)—g®(xi, O)LJ(T,)
(T, )™ 33 [g®(xi, O)+JOLT) -

Hence we have for n=ng, 6K and 2,€D, 4 x N F,sNH, o xNU,,NV,,

1T, —0—n" 33 g0, 0)J(8)M]
< I 320, TJT) T, —0—n7 3360, 6)](6)

+n7 33 g, TJ(T)

=< prst” T2(log n) e+ (cxnrpien*(log n)?+1/2 pran?)|| T, —0||
+prl(1+2x+ sup Ey(A&(-IIT,—01

Scegn~Y(log )™

This implies the desired result because of (3.1), (3.2), (3.4) and the properties
(a,), (B,).

For the case r=1, the proof is also similar except that F, , is replaced by
F, 4 x in (3.3) with k=1.

For simplicity, we write

G™(z,, 0) = X g™(x,, 0), z,=(x, -, x,)EX", 6.

i=
Now we can present a result on asymptotic sufficiency of the statistic

Tu.k =T,, k=1,
= (Tm G$12)(zm T”), M) ng)(zm Tn)) ’ k;Z ’

where T,, nE N, is a sequence of asymptotic m.l. estimators.

Theorem 2. Assume that Conditions A, B,, C,, and C,, hold for some
keN and r>0. Let T,, nEN, be a sequence of asymptotic m.l. estimators of
order O(n~"%). Then there exists a sequence of families of probability measures
{0/%y; 08}, neN, such that

(a) for each neN, T, , is sufficient for {Q,}s; 0= 0O}

(b) for every compact KO
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sup [|1Pyo—Onioll = O(mn~"?), if r<k,
=0@m*"), if r=k.
Proof. Let
U, = {2,€X";n"||T,— 6l|<(log n)"},
Var = {m X" w31, T,)|<(log m)s},

= {zne sup E[g"’“’(x T)—E (", DlI<v(n, 1)},

n‘/leT —t|=(logm)= i=
where (s, 7) is the same as in Lemma 1. We define

qn,k(zm 0) IU,,onV,, r AWy, ,(zn) exp {Gn(zm Tn)—l_ 2 G)M)(zm T )(0 T )
[Eo(Gi (-, O))(6— T)”“}

(k+1)!
qn,lt(zm 0) = Wn(e)qn.k(zm 0) ’

where v,(0) = [an Ty (24 0)dp,]". Here and hereafter Iy(+) means the in-

dicator function of a set U. For §€© and =N, we denote by 0., and Q.%,
the measures given by

dQﬂ [ d dQnIfo J—
dp, =% B0 du,

Then it follows from the factorization theorem that for each neN, T, , is suffi-

cient for {Q,},; 6=©}.
In order to prove the second assertion (b) we fix a compact subset K of ®.
Using the Taylor expansion

Gn(zm 0) = Gn(zm n)+ 2 G(M)(zm T, )(0 Tn)m

G(k+l)(z,,, T*)(0 T )k+l

(k—|—1)'
where max {”Tﬁk-—a”; ”T;k_Tn”}'éuTn—en) we have for Z”E Un,oﬂ Vn,r n Wn,r
3.5) ‘log T2
( Pu(z )

=SNGz THNT,—6ll+ IGS* =z, TH)

(k+1)'
—Eo(GH (<, O IT,—6]1*+ .

Since



ASYMPTOTIC SUFFICIENCY 1 249

IGE* 0 (=,, T¥)—Eo(GEV(+, O)I
=SNG (=, TH)—[ELGE(+5 T)]r=yl
FHIEGE (e, Iz —Eo( G2+, ODI

it follows from (3.5) and condition (iii) in C,, that for n=n,, 6K and z,E
Un,o n Vn,r n Wn,r

(3.6)

log 71:.1;(2’”, 0). én—(f-l-l)/z(log n)vt1+1tz_l_n—(k+l)/2(log n)(k“)’”l\,lr(n, r) .
Pa(2, 0)

This implies that for n=n,, /=K and 2,€U, ,NV,, NW,,

(3.7)

_ 0)
log Zu.(3p 9) l <log2.
Puam 0) | 8

Using the inequality |1—exp (x)| <2|x| for |x|<log 2, then from (3.7) we
have for n=n, and 6K

(3.8)  1IPye—0lll

< — M c

S I vt Lt L LY
<25 |log Tetlo Dty g ()4 Prsd s Vo, )

By the properties (), (8,) and Lemma 1

(3.9) sup P, o{(U, 6N V,,NW,,)} = O@™).

Then it is obvious that the assertion (b) holds for the case 1=<r<k and for
the case k=2 and 0<r<1 because of (3.6), (3.8) and (3.9). It remains to
prove the assertion (b) for the case =% and for the case 2=1 and 0<<r<C1.

In the case r =k, we shall show that the first term on the right side of (3.8)
has upper bound of order O(n~*?). Because of condition (ii) in C,,, choose
dx>0, Ag(x) and D, 4 ¢ as in the proof of Lemma 1. Let

M, = {z,eX"; |T,—0—n" igm(x,—, 0)J(6)7Y|<n Ylog n)?1+¥2}
According to Lemma 2

(3.10) sup P, o{(M,.0} = O(n™") .

We must again estimate the second term on the right side of (3.5). Since for
0K and z,€M, 4

IT,—6ll<pxn~l| 32 gD, 6)]14n-log my<s+i”
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with px= sup [1J(8)7Yl, it follows from Minkowski’s inequality that

(BT~ 11T (DD < e (B 310, )l
+n~Y(log n)¥1+2
(2.10) with Condition B, implies that for /€ K
Ei(ll 3369, O)lIF)scntor,
which leads to
(3.11) BT, 012, (DD S con 2.
Thus we have for =7, and € K
(312 E(IGE (-, TH—=GE (e, O Ta—0lF Ty, g0 pr s )
< (14-5up Eo(ua(WESIT, 01y, () Scxn™.
By Holder’s inequality

E(IGF* (-, 0)—Eo(GE*V(+, O I T,—061* Ly, o +))
< [Eo(| IGS[H 1)( . 0)_E0(ng+ 1)( < 0))”k+2)]1/(k+2) [Eo(“ T,,—~ 6' |k+ZIM,.o)](k+l)/(k+2) s

so that (2.10) with condition (ii) (c) in C,, and (3.11) imply that for §c K
(3:13)  ElIGE (e, O)—Ef(GEH V(- O 1T, — 611y, () S cxn™2.

Taking account of (3.7), we obtain for n=n, and 6= K

()logq’l (0 0) Iy, e0v, 0w, (° ))

2a(+5 0)
<E< log% U,,onv,,,nW,.,“Dnox“Mno( ))

+(log 2)P, o{(D, 0,x N M, 6)°} -

Thus, the first term on the right side of (3.8) has upper bound of order O(n~*?)

because of (3.1), (3.5), (3.10), (3.12) and (3.13).
This, together with (3.8) and (3.9), implies that

sup ||P, o—0,ill = O(n*?).
bk

Since
sup |1—v,(0)!| = sup| P, o{ X"} — O} { X"} |
6K 0K

= O(n *?),
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we have
sup [|P, g—Qull < sup ||P, g— Ol + sup [|Oxts— Oubll
0EK 0EK 199
é sup ”Pn,o'—'gnlfoll'l" Supl 1—17”(0)_11
8K =4
= O(n~*?),

which is the desired result.
In the case k=1 and 0<r<<1, M, 4 is replaced by the following set M, ,,

M., = {z,€X"; IITn—0~n"‘i‘.g“’(x.-, 0)J(0)~!l|<n~*"(log m)1} .

Then, a similar argument shows that

sup [|P, g— Quell = O(mn~""%) .
0EK

This completes the proof.

Remark. (1) If r=k, it is possible to choose Q,f, independent of r
because V, , and W, , in the definition of g, , can be replaced by V, ; and W, ,,
respectively.

(2) In the case k=1, it follows from Theorem 2 that a sequence of as-
ymptotic m.l. estimators of order O(n /%) is asymptotically sufficient up to
order O(n~"?) if 0<r<1 and O(n~?) if r=1. The latter result has been al-
ready shown by Pfanzagl [10] under similar circumstances to ours.

(3) Michel [7] showed that T,, k=3, constructed by asymptotic m.l.
estimators of order o(n~*-2/?) is asymptotically sufficient up to order o(n~*-2/2),
According to Theorem 2, the convergence order concerning asymptotic suffi-
ciency of T, ; can be improved up to O(n~*?) if {T,} is a sequence of asymptotic
m.l. estimators with higher order than Michel’s one.

(4) In [14], [15] Suzuki assumes the existence of moment generating
function of g**!(x, 0) to evaluate probability of large deviations. Of course
this condition is stronger than ours.

4. Properties of m.l. estimators. We shall investigate conditions
under which a sequence of m.l. estimators has the properties (a,) and (8,) for
some 7>0.

Let © denote the closure of ® in R'=[—oo, co]". Assume that g(-, ):
X—R, 0= 0, admits a measurable extension g(+, §): X—R, 0<8®.

Condition 4*
(1) Eq(g(~, 7))<Eo(g(+, 0)) for all 0B, =@, 0=*1.
(ii) For every x& X, 8—g(x, 0) is continuous on 8.
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Condition B¥
(i) For every 80 and every compact KC O

sup E.(|g(+, 6)| D)< oo .
TEK

(it) For every 6@ there exists a neighborhood U, of 6 such that for
every neighborhood U of 8, Uc U, and every compact KC®

sup E,(|sup g(+, o) | ") < o .
TEK ocerT

(i11) For each x=X, 0—g(x, ) admits continuous partial derivatives
up to the order 2 on 8. For every §=© there exist a neighborhood U, of
0 and a measurable function A(x, 8) such that

(a) forall xeX, 7,0 U,, ||g®(x, T)—gP(x, o)||<||T—alIN(x, 0)

(b) for every compact KC®, sup E.(\(+, )rP?)< 00

(c) sup E(|lg®(-, 7| <o .
"'EU'O

(iv) 6—J(0) is continuous on ©.
A maximum likelihood estimator for the sample size 7 is an estimator T,
for which 7,=@ and

gg(x;, T,)= sup gg(x;, 6).

Condition (ii) in A* insures that m.l. estimators for the sample size n exist.
Let TA‘,,, nE N, be a sequence of m.l. estimators.

The following lemma can be obtained in a way analogous to the one used
in the proof of Lemma 4 in Michel and Pfanzagl [8] except that Theorem 1
is used instead of Chebyshev’s inequality.

Lemma 3. Let Condition A* and conditions (i), (ii) in B¥ be satisfied
for some r>0. Then for every €0 and every compact KC©

sup P, o{z.€X"; | T\(2,)—0]| =€} = O@n~"7) .
EK

The following proposition is an immediate consequence of Lemma 3.

Proposition 1. Let Condition A* and conditions (i), (ii) in B¥ be satisfied
for some r>0. Moreover, assume that for each x=X, 0—g(x, 0) is continuously
differentiable on ®. Then for every compact K C©

sup P, o{z,€ X" [| 2 gM(x, Tu(z))I>0} = O(n~").

Lemma 4 (cf. Lemma 5 in Michel and Pfanzagl [8]). Let Condition A*
and conditions (i1)-(iii) in B} be satisfied for some r>0. Then for every >0
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and every compact K C® there exists d>0 such that

sup P,o{z,EX"; sup “n-lg [¢®@(x;, 7)+J(O)]| =8} = O(n"").

T p-TII=d

Proof. Let §>0 be given and K be a compact subset of ®. By condi-
tion (iii) in B¥ we may choose dx>0, Ax(x) and D, 4 x as in Lemma 1 with k=1.
We write

Fpos= {z,€X"; |In~! z [¢®@(x;, 0)-+J(O)]II<<8/2} .

From condition (iii) (c) in B¥ it follows that
sup P, {(F,0,5)} = O(n™"").
EK

Taking 2d=min {dy, §/[2(1+ sup Eonk(+))]}, we see that for z,ED,ex N
EK
Fyo5 |1 T,—0ll<d and || T,—7||<d

7 33 (g (s SOOI 0™ 323 (6P 7) (s> O
Hint 3 [g®Cei O)LJONI <5 -

This together with Lemma 3 implies the desired assertion.
Lemma 3 and Lemma 4 yield the following proposition.

Proposition 2 (cf. Lemma 6 in [8] and Lemma 3 in Pfanzagl [12]). Assume
that Conditions A, A*, B, and B} are fulfilled for some r>0. Then for every
compact K C © there exists cx>0 such that

sup P, o{z,& X"; n| T,(2,)—6l| Zcx(log n)} = O(n™"").
EK
Proof. Let K be a fixed compact subset of ©. It follows from condi-

tions (ii) (b) in 4 and (iv) in B} that there exists §x>0 such that §=K and
matrix J with || J—J(6)||<8x imply that J is regular and || J7'—J(6)7Y||<<1. Let

Wit = (s X" sup o™ 2 [g¥x, THIOMI<8:},

NE =Tl Sdic
where d;>0 is chosen to satisfy that
sup P, o{(W,%)} = O(n~"?)
EK

because of Lemma 4. Choose e, >0 such that ez <dy and {TER’; oin£110—7|1__<_
ex} CO. Let <
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Uk = {z.eX"; | T,—0ll<e} .
In view of Lemma 3 we have
sup P, {(U %)} = O~").
EK

Since for =K and 2z, U,%

1eB(x,, 0) = (0—1,) D g¥x,, T, 0)
i=1 i=1

i=

it follows that for K and z,€ U X N W%,
1m0 <l 33 g0(x,, O)]I I(—n~t 3220, T, 0))7
< (14 sup 1J(O) =) 33 gz, Ol -

In order to complete the proof it is enough to note that there exists ¢, >0 such
that

sup Po{2,EX"; | 2 g,y 0)]|=cy(n log m) 2} = o(n~"7?) .
eK i=1

This follows from Theorem 1, condition (ii) (a) in 4 and Condition B,.

ReMARK. (1) Proposition 2 remains to hold for a sequence of minimum
contrast estimators with obvious modification.

(2) If every (r+2)/2 in Condition B¥ is replaced by a number greater
than it, then Proposition 2 holds with o(n~""%) instead of O(n~"?).

(3) Proposition 2 improves Lemma 3 of Pfanzagl [12] in the following
sense:
(a) This result still holds for 0<<r<1.
(b) In the case =1, the moment conditions used in Proposition 2 are weaker
than in [12] because of the use of Theorem 1 instead of Lemma 2 of [12] (see
Remark (2) of Theorem 1).

From Theorem 2, Proposition 1 and Proposition 2, the following theorem
is immediate.

Theorem 3. Assume that Conditions A, A*, B,, (), (ii) in B¥, C, and

C,, are fulﬁlled for some k&N and r>0. Then, T, ,,~(T,,, GP(2,, T), o

GM(z,, T,)) is asymptotically sufficient up to order O(n~"") if r<k and O(n™*")
if r=k. Here T,,  means T,

It is remarked that we need the (2+47)-th absolute moment of g® and
the (24-7)/(2—r)-th absolute moment of g® in order to show that a sequence
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of m.l. estimators is asymptotically sufficient up to order O(n~"/%) with 0<r=<1.
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