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Introduction

A compact simply connected homogeneous Kihler manifold is represented
as a Kihler coset space G/U, where G is a compact connected semisimple Lie
group and U is the centralizer of a toral subgroup S in G. Conversely, let
G be a compact connected semisimple Lie group and U the centralizer of a
toral subgroup in G. Then, G/U is a compact simply connected C*-manifold
and carries a G-invariant complex structure. Moreover any G-invariant com-
plex structure on G/U admits a G-invariant Kihler metric. In this paper,
we shall consider the problem of classifying, up to equivalence, all G-invariant
complex structures on the coset space G/U. Borel-Hirzebruch [2] showed
that G-invariant complex structures on G/U are unique up to equivalence if
U is a maximal torus of G or if U is a subgroup with one-dimensional center.

We shall consider exclusively the case where G is a simple compact Lie
group and in this case we say that the coset space G/U is irreducible. We
shall classify all G-invariant complex structures on an irreducible compact
simply connected coset space G/U up to equivalence. An equivalence class
of G-invariant complex structures on G/U gives rise to a pair of a simple roct
systems (7, m,) such that 7z, is a subsystem of z and this pair is determined
uniquely up to equivalence. Here two pairs (7, 7,) and (z', z{) are said to
be equivalent if there is an isomorphism between the systems z and #z’ which
maps 7, to z§. Our classification will then be reduced to that of classifying,
up to equivalence, all pairs (7, 7o) associated tc G/U and in this way we shall
count up the number of equivalence classes of G-invariant complex structures
on G/U.

The author expresses her hearty thanks to Professor S. Murakami who
suggested her the problem and encouraged her during the preparation of this
paper. She also thank to Professor M. Takeuchi who read the manuscript
and gave her valuable advice.

1. G-invariant complex structures

Let G be a Lie group and U a closed subgroup of G. We denote by g
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the Lie algebra of G and u the Lie subalgebra corresponding to U in g, and
we write g and u¢ to denote their complexifications. Let M be the coset space
G|/U. Let T,M denote the tangent vector space of M at the point 0=U in
M and T MF its complexification. Suppose I is a G-invariant complex struc-
ture on M. Then I defines a linear transformation I, on T,M¢. Let T,M*
(resp. T,M~) be the eigenspace of I, with eigenvalue /—1 (resp. —+/—1) of
I,. 'Then we have

TMC¢ = TM*+T M~ (direct sum).

On the other hand, identifying g with the tangent vector space of G at the unit
element, the projection z: G—=G/U induces a complex linear map dz°: gc—
T,M¢. Let at=(dz§) (TeM™*). Then, a* is Lie subalgebras of g° and we
have

(1) g€ = at+a*, u®=atna*

where — means the complex conjugation in g¢ with respect to g. Conversely
any subalgebra a* satisfying (1) is obtained from a unique G-invariant complex
structure on M in this way. Thus the classification of G-invariant complex
structures on M reduces to that of subalgebras a* satisfying (1). (Frohlicher

[4D)-

Now, let G be a compact connected semisimple Lie group, U the cen-
tralizer of a toral subgroup S of G. Then U contains the center of G. If G
acts on G/U effectively, the center of G should be trivial. In the rest of this
paper, we always assume that the center of G is trivial. Let T be a maximal
torus containing S. Then it is a maximal torus of U. Let §) be the Lie al-
gebra of T and B¢ its complexification. Then §° is a Cartan subalgebra of g°.
Let A be the root system of g¢ with respect to §°, and

g¢ = b%égm

the decomposition of g¢ to the sum of eigenspaces of roots. Because u¢ con-
tains §°, there is a subset A, of A such that

u =5+ 3 g,.
a@ga,

Then, A, is a root system contained in A.

Now suppose I be a G-invariant complex structure on M and a* its de-
fining Lie subalgebra of g¢ satisfying (1). Then a*Du¢>DYF, so there is a subset
A" of A such that

at=u+3>g,.
asAt

Then At satisfies the following conditions.
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(2) A=AUATUA" (disjoint union)
where A~ denotes —A*={—a|asA*}.

(3) IfasAUAY, BEAY and a+B <A then a+LB At  (Koszul [8]).
Conversely if A% satisfies (2) and (3), then a*=u¢ +A§+ g, satisfies (1). Thus

to count G-invariant complex structures on M, we may look for subsets A* of
satisfying (2) and (3).

Lemma 1. Let A be a root system in an Euclidean vector space (E,(,)),
and A, a root system contained in A. Suppose that a subset A% of A satisfies
(2) and (3). Then the element s= 23 o satisfies (s,2)=0 if aE€A, and
(s, 2)>0 if aDA*. o=

Proof. See Koszul [8].

It is well known that a simple root system z of a root system A is given
as the set of all simple roots in a certain positive root system (with respect to
a given linear order), and we have a bijection between simple root systems
and positive root systems in a root system. In general, for a subset z, of
7, [7o] (resp. [mo]") denotes the set of roots which are represented as a linear
combination of elements of 7, with integral (resp. non-negative integral) co-
efficients. The positive root system with respect to z coincides with [z]*.

Theorem 1. Let A be a root system in an Euclidean vector space (E,(,))
and A, a root system comtained in A. Suppose that a subset A* of A satisfies (2)
and (3). Then there exists a simple root system m such that my=nNA, is a
simple root system of A, and At=[r]*—[z,]".

Conversely if r is a simple root system of A such that my=nNA, is a simple
root system of A, then A*=[r]*—[m,]* satisfies (2) and (3).

Proof. Let s be as in Lemma 1, and {v,, -+, 9} (/=dim E) a basis of E
such that v,=s. Define A>p if W—p, v))==N—un, v;-;)=0 and
(A—n, v;)>0 for some 7 (1=¢=[). Then the simple roots with respect to this
order in E form a simple root system 7z for which the positive root system con-
tains At. Let my=nNA, We prove that =, is a simple root system of A,.
The simple roots in A, with respect to the above order form a simple root
system 7§ of A,. Because each element of =, is a simple root in A, we have
wtDmy. Suppose mt=2m, Take acsni—n, Thus we take o= B-+v where
B and v are positive roots in A. Then from Lemma 1 follows that 0=(«, s)=
(B, $)+(7, s) and (B, 5)=0, (7,5)=0. Thus we have (B, 5)=(7, s)=0 and we
conclude B, vyEA,N [#]*, which contradicts our assumption. Therefore z,=7}
and 7, is a simple root system of A,. Combining Lemma 1 and the definition



42 M. NisHIYAMA

of order, we see
A* = [zt —[z]" N A,.

Hence to get A*=[z]*—[x,]*, it suffices to prove [z]*NAy=[z,]*. Put z=
{as, -, a} and assume zmy={ay, -+, a;}. If a=[z]* N A, then a=ma;+ -
+mn,0; for some 7,=0, -+, 7,=0. Since 0= (a,s)=m(a; s)+-+n(a;, s) and
(ay, §)=+=(ap $)=0, (A1, $)>0, -+, (ct;, $)>0, we have my;=-+=n,=0.
Thus we have a=ma,+ - +ma, E[x,]*. If aE[ry]", then a=ma;+ - +ma,
with 7,=0, «--,72,=0. Since (a, s)=my(cs, )+ +m(a, )=0, it follows that
asAN[z]*. Thus we have [z,]"=A,N[z]*.

Conversely, let z be a simple root system of A such that zy,==zNA, is a
simple root system of A,. Let A*=[z]*—[z,]*. We prove first that A* satis-
fies (2). By the definition of A*, A=[r,]UA* U A"~ (disjoint union) where A~
denotes —A*. It is sufficient to prove A,=[z,]. Let == {ay, ---, @y} and
zo={ay, =, a4}. Suppose aE[x,]". Then a is represented as a=mna,+ -
+mer, with 7,20, ---,7,=0. The property of the root system yields that o
is represented as a=a; +-+a;, with a;, -+, a;, Em, where a; +---+a;;EA
for any j=1, .-+, p. Because A, is a root subsystem of A, if a, BEA,, a+B€A
then a+B€EA, Hence we have a=a; +-*+a;,EA,. Therefore [z]* CA,.
Clearly A,C[m,]. So we have Ay=[r,]. The property (3) of A* follows from
the fact: A root a=ma;+++-+n; is in A* if and only if #,>0 for some i>&.
This proves Theorem 1. |

Now, let M=G/U, A and A, be as before. We denote by J, the set of
all G-invariant complex structures on M. Also we write &; for the set of all
simple root systems 7 of A such that z N A, is a simple root system of A,. Then
we get a surjection from S, onto J,. Namely, for a given z&S,, we define
A% as in Theorem 1 and, putting a*=uc+ m§+g,, we make correspond to =

the G-invariant complex structure on M defined by a*. We denote 9/(A) and
GW(A,) the Weyl groups of A and A, respectively. We may consider 9¥(A,)C

W(A).

Theorem 2. Let n, be a simple root system of A,. We denote by S, the
set of all simple root systems w of A such that n N\ Ay=mn, Then the mapping
81—, defined above induces a bijection Sy—J,.

Proof. First we see that the mapping is surjective. For a given I€J,,
we get a unique A* satisfying (2) and (3). By Theorem 1, there corresponds
to A* an element #’€S,. Let zt=n"N A, Because z{ is a simple root system
of A,, there exists o= (A,) such that ozt=n, Let z=ozn’. Then €S,.
Now we claim oA*=A*. Let o, be the reflection defined by a=A. For
aEr, we have o,ATC[z']" because a4([z']"— {a})=[z"]"— {a} and acA*.
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Furthermore since ozA;=A,, We get a4AT N A;=¢. Hence we have g,A*=A".
Since o (aEn,) generate FY(A,), we have cAT=A*. Since [z]*—[m]*=
[z 1" —[oni]* =0 ([x']"—[7§]T) = cA*, we have A" =[z]*—[r,]*. Therefore
the mapping is surjective.

Next we see that the mapping is injective. Since A*=[z]*—[x,]*, [z]"=
A*tU[m]*. Therefore z is the simple root system with respect to the positive
root system [z,]* UA*. Thus A* defines 7 uniquely. This proves that the
mapping is injective, and we get Theorem 2. |

We note that by a theorem of H.C. Wang [1], J, is not an empty set, and
so &, is not empty.

Remark. We may choose and fix 7z belonging to &, and put zy== N A,.
Let

Wy = {c=W(Ay)|larDry} .

Then we have a natural bijection from &, to 9%, Thus we can count the num-
ber of the elements in J, by counting of the cardinality of 9,. Hou-TZze-sin
[6] counted it when G is a simple Lie group of classical type.

2. Equivalent complex structures

Let M=G/|U be asin section 1. For a given G-invariant complex structures
I on M, let (M, I) denote the complex manifold defined by I. Let 4 be the
complex Lie group of biholomorphic automorphisms on (M, I). (See Bochner
and Montgomery [1].) Let H(M, I) be the maximal connected subgroup of 4.
Because G is supposed to be semisimple and have a trivial center, we have
G=G; X+ X @G,, (direct sum), where G, -**, G,, are compact simple Lie sub-
groups of G. Let S be a center of U. Then U coincides with the centralizer
of Sin G. Let T be a maximal torus in G containing S. Let S;=G;NS,
U;=G;NU and T;=G;NT (i=1, ---,m). Then S; is a torus in G;, U; is a
centralizer of S; in Gy, T; is a torus which is maximal in both U; and G; and
contains S;. Let M;=G,;/U;,., We have M= M, X -+ x M, (direct product).
Moreover the complex structure I on M defines G;-invariant complex structure
I; on M; for each 7. Then we have (M, I)= (M, I))X +x(M,,I,) (direct
product). The following theorem is due to Oniscik [10].

Theorem 3. In the above situation, we have H(M, I)= H(M,, I,)X -+ X
H(M,, 1,). Furthermore if the group G is simple, then except the three cases indi-
cated in Table 1, the Lie algebra g of G is a compact real form of §, where § de-
notes the complex Lie algebra of H(M, I).
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Table 1

Case 8 1 g
1 Ci(>1) Cioi+t Af -y

2 G, A+t B¢
3 By(1>2) A+t DYy

Here t denotes the real one dimensional abelian Lie algebra, and the Lie al-
gebra 1t of U is unique up to inner automorphisms of g.

From now on, we assume always that G is simple.

DerFINITION. Two elements I and I’ in Y, are said to be equivalent, noted
I~TI', if the complex manifolds (M, I') and (M, I) are biholomorphic.

Denoting by (=, z,) a pair of simple root systems with zDz, two pairs
(7, 7o) and (', =f) are said to be equivalent, if there exists a simple root system
somorphism 4+ from z onto 7z’ such that Yrz,==j. We write (z, 7z))~(z’, zt)
in this case. Let [z, z,] denote the equivalence class containing a pair (7, 7).

For M=G|U, let A and A, be as in section 1, and 7(g) denotes the action
of g&G on M. Fix a root system 7z, of A, and define S, as in section 1.

Theorem 4. For two complex structures I and I' belonging to Y,, let =
and 7' be the elements of S, corresponding to I and I' respectively (Theorem 2).
Then I~1' if and only if (7, mo)~ (', m,).

Proof. Suppose I~I'. We show (=, mo)~(z', m,) first when 7(G) is a
compact real form of H(M, I). Let f be a biholomorphic mapping from (M, I)
onto (M, I'). Then we have df oI=1I'odf and df "'oI'=1I0df™'. We may assume
f(0)=0 since f can be replaced by 7(g™")- f for g€ G such that 7(g)0=f(0). For
g€G, let 7(g) be the automorphism of M defined by »(g)x=f"'+7(g)- f(x) for
x€M. Then »(G)actson M. By the definition of %, we have dy(g)oI=Iodz(g).
Thus it follows that »(G)C H(M, I). Since 7(G) is a compact real form of
H(M, I), so is »(G). Since all compact real forms of H(M, I) are conjugate,
there exists a € H(M, I) such that a 'p(G)a=7(G). We may assume a0 =0
since a can be replaced by 7(g™)-a for g&G such that »(g)0=a0. Then we
have 7(U)=a'y(U)a. Thus a'yp(T)a is a maximal torus of 7(U). Since all
maximal tori in 7(U) are conjugate, there exists b&7(U) such that b~ (a '9(T)a)b=
7(T). Since 7(G)=a 'y(G)a, there exists an automorphism ¢ of G such that
T(p(g))=a"'n(g)a for all g&€G. Then we have ¢(U)=U. Thus ¢ induces an
automorphism ¢ on M=G/U. By the property of ¢, =a'of}, 'and hence

(4)  dfol' =Iod§.
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Moreover we have ¢(T)=T. Thus ¢ induces an automorphism ' of A
such that d¢°(g,) =8y forall a€A. Since dpc(u€)=uc, we have Jr'(Ag)=A,.
Let A*=[z]*—[m]* and A" =[z']*—[m]*. Let a€A’". For any Xeg,
with X %0, we have d¢°(X) Egy(4 and

(5)  I'(@n°(X)) = vV—1dn°(X) .

Combining (4) and (5) we have I(dz°(d¢°(X)))=+/—1dz¢(d$°(X)). Thus
V' (a@)EA*. Therefore we see that Y'A’"=A*. Since Y'Ay=4,, 'z, and
7, are simple root systems of A, and hence there exists uE9Y(A,) such that
pY'my=m, By the same argument as in the proof of Theorem 2 we see
that uA*=A*. Let Yy»=(uyr')"". Then 4 is an automorphism of A such that
Ymy=mn, and YA*=A"". Thus we have Yr=x" and (=, zo)~ (7', 7).

We show (z, 7))~ (', m,) when 7(G) is not a compact real form of H(M, I).
By Theorem 3, it suffices to prove this in three cases in Table 1. We denote
by D(z) the Dynkin diagram of a simple root system 7.

Case 1. Let ay, **+, a; be the elements of 7 such that

a a ;- Qq
D(n-): o o ces o & o.
In this case we have z,= {«,, ***, ;}. For any simple root system z'€S8,,

there exists c&9Y(A) such that ez=z='. Since the longer root @; in z is in
m, We have ca;=a;. Thus omy=m, and (7, m,)~ (7', ).

Case 2. Let a, a, be the elements of 7 such that

a, oy
D(z): o==>o.

Also in this case we have z,= {a,}. By the same argument as for Case 1,
it follows that (z, 7))~ (', 7).

Case 3. Let ay, -+, ; be the elements of 7 such that

o o (2 T N 4]
D(?z'): o o . o o,

In this case we have zy={ay, -**,a;-;}. For any =’ in &, the set of
longer roots in z’ coincides with z,. Thus for ¢ € YW (A) with or=7=’, it
follows that omy,=m, Therefore we have (z, m))~(z’, 7). Thus we have
proved for all cases that I~1' yields (7, 7,)~(7’, 7).

Conversely suppose (7, mo)~(z’, 7,). Then there exists an isomorphism
4r from 7 onto =’ such that Yrmy=m, We may extend 4r as an automorphism
of A naturally. Then +» induces an automorphism ¢ of g¢ such that ¢(h)=bh,
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H(8s)=8ww and ?(g)=g. And thus we have ¢p(1t)=u and ¢(a+)=a'+, where
a* and a’* are the subalgebras of g¢ corresponding to I and I’ respectively.
Since G is connected, ¢|g induces an automorphism f of G. Let f and &
denote the automorphisms on M and T, M respectively induced from f and ¢.
Then df,=¢ and dfy(dz°(a*))=dz°(a’"). Thus we have dfol’ =Iodf. It
follows that I~I’, which completes the proof. | |

3. The number of the elements in 9,/ ~

For a given M=G/U, we shall count the number of elements in J,/~.
We shall denote this number by n. Let

QO = {[7[1 7N AO]‘”ESI} .
If we choose a simple root system 7z, of A,, then
Dy = {[r, m) e =S} .

By Theorem 4, we get a bijection between 9, and J,/~. Thus the number
n is equal to the number of elements in 9),. Let / denote the rank of A and &
the rank of A,. Let (E,(,)) denote the Euclidean vector space in which A is
defined. Note that the inner product (, ) in E is defined uniquely up to scalar
multiplication, since A is assumed to be irreducible root system. We shall
regard E as a subspace of the Euclidean space R™ of an appropriate dimension
m. Let {&, -+, E,} be the canonical basis of R” with the usual inner product.

Fix z€ S, and let zp=wC A,. Let 9, denote the set of [z, ¢pm,)
wnere ¢ is ahy mapping from 7, into z with the following condition:

(*) ¢ is injective and (pa, pS8)=(ex, B) for all a, B <= x,.

Then 9, does not depend on the choice of #&S8,. Obviously we have
D, D,.

Lemma 2. Suppose A is of type A, B, or C,. Then we have D=9,

Proof. If A,=¢, there is nothing to prove. Suppose Ay+¢. FixzeS,
and let my==NA, (F¢). It suffices to show that [z, ¢z, ]9, for any ¢
with (*). Let first A be of type 4,, Then » may be assumed to consist of
&—&,, &—&;, +++, §—&4y. For any irreducible component z§ of =, there are
7 and p with 0=<p=<I—i=<I—1 such that z{={&—E;11, ***, Eirp—Eirpri}. Let
¢ be a mapping from z, into ~ with (x). Since we have ¢pz{Cz and ¢={ is
an irreducible component of ¢zg, there is j with j+p =1 such that ¢zi=
{€;—&j+1, ***y Ej+p—Ejipra}. Thus ¢ may be assumed to satisfy ¢(E;4;—Eisq41)=
Ejrg— Ejrqrr for g=0, «-- p.  Then it is easily seen that there exists ¢ €&, (the
symmetric group of /41 letters which is identified with 7/(A)) such that o(j)=:
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whenever ¢(6;—&;41) =E&;—&;+;. Also we obtain ozDm,, and hence oz €S,
Therefore we have [z, pny|=[o7, 7)) € D).

Now let A be of type B;. Then 7 may be assumed to consist of &—&,,
&—&s, », E.1—E, & If myPE, then ¢myPE. Thus we have 7,C {6,—6&,
-+, &-,—&} and the image of ¢ is contained in {&—¢&,, -+, §-,—&}. By the
same argument as for the previous case, it follows that [z, ¢=z,] is an element of
9,. Now suppose 7,2&,. Then we have ¢&,=&,. Let z} be the irreducible
component of z, containing §,. Then we have ¢pzi==. We denote by &,—§&,,
«++, &,—&E,4y the elements of #—n§. Let z¢’ denote =zy—=j. Then we have
7’ C{&—&, ++, &,-1—&,} and the image of the restriction of ¢ to z¢’ is con-
tained in {§,—§&; ++-, §,-1—&,}. Let &, be considered as the subgroup of 9Y(A)
which is generated by the reflections of {&—¢&,, +:+,&,-;—&,}. By the same
argument as for the case of A4;, we see there exists ¢€&, with opnf’ =n('.
Since z§ is contained in {€,41— &,z *+, &}, We have ori=nt, and hence we
obtain opmy=n,. Thus we have [z, p=,]=[o7, r]=D, The same argument
as in the case of B, works for the case of C,. Thus we have 9y=29), for all
cases. |

By counting the number of the elements in 9);, we get the following theo-
rem. To state the theorem, we need some notations. If &, -, k, are positive
integers, we write at(k,, **+, k,) for the number of the permutations of {k;, **-,%,}.
And we write B(ky, +++, k,) for the number of the permutations o of {&, *+, k,}
such that ky)=Fq(,-q for g=1, -+, [p/2].

Theorem 5. (i) Suppose A is of type A, and A, is of type Ay -+ Ay,
(Note that 0=p=Fk,+-+-+k,=k=k+p=I+41). Then the number n of elements
in Jo/~ is given by the following formula.

If both (I—k) and p are odd number, then

" %(l—;—l—l).a(kh e By

In other cases, if p==0
[l+p—k——1]
n = 2 ( p ) a(kh )kp)+\

[£]
2

If p=0, then n=1.

(i) Suppose A is of type B, (resp. C)) and A, is of type By+Ap++++4,,
(resp. Co+Ap,+++-+4y,). Here B, (resp. C,) denotes the type of the irreducible
component of A, containing shorter roots (resp. longer roots). Note that By=Cy=¢,
B\=C\=4,, B,=C,, and 0=p=k+++k,+t=k=k+p=<I+1. Then we

get

Bk, ++, k)
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If p+0, then nz(l;k>-a(kl,---,kp).

If p=0, then n=1.

Before to give a theorem for the case of type D,, we need some notations.
Suppose A is of type D,. Fix z&S, and let zy=nN A, Let a,, -+, a; denote
the elements of z such that

(241 (2723 A, Q1
D(n’): o . C o

o

o
We may assume that o;=§&;—&;4, for =1, -+, I—1, and o;=&,.,+&,. Then
GY(A) consists of such elements as ¢=(7, ay, ***, @;) where 7€), a;=1 or —1,
and the number of —1in {a;, :**, a;} is even, whose action is given by o(§;+&;)=
aie,(i):l:a,é,,(j). Put

¢, if mD{a;, a}
{ain a}, if mD{a, @} and mPa;,
the irreducible component of z, containing

{al—zy al—l) al}’ lf 7[03 {al—z’ al-—l: al} ]
and

D, = {[=, pr]| ¢ is any mapping from 7, into = with (*) such that
¢mt = mi}
if wi=o.
D, = {[x, ¢pmo]l ¢ is any mapping from 7z, into = with such that
¢moD {1, ai}}
if Zo=¢.
Lemma 3. Suppose Ay*=¢. If ntt¢p, we have Dy=9D,. If n'=¢,
we have Dy=9D;.

Proof. First we consider the case where zf{=¢. For any [z’, n,]E€D,,
there exists c €I (A) with or=xr'. Let o=(7,4a, **,a;). Since {§_,+&}
is contained in 7, it is also contained in 7= {@,6.()—aE.(2), ***, B1-1Erc1-1)—
@&y Gr-iEs-vt+aE.p}. We can show easily that {a,,&-p+a&n} =
{€,.1+€}. Thus we obtain o {&;;, @;} = {e;-y, .}, and hence we have ozi=r}.
Therefore [z', my|=[r, 0 'my] €D,. Conversely, let ¢ satisfy the condition as
in 9,. We denote by &—E&,, **+, §,—&,+1 the elements of z—=zg. Put zy’ =
mo—ms. 'Then we have zt/ C {§,—§&,, *+, §,-,—&,} and the image of the restric-
tion of ¢ to =y’ is contained in {&—&, -+, §-1—&,}. Then by the same
argument as in the Case B,, we see that there exists an element o € 9(A) with
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oprmy=m, Thus we obtain [z, ¢pn)]=[on7, 7] E D, And hence we have
Dy=9),. Next we consider the case where #t=¢. For any [z’, z,] €D, there
exists s €EY(A) with oz=='. Since {§,,4&} is not contained in 7,, o 'z, does
not contain {§,_,+&}. Therefore [z', zy|=[r, e 'r]ED;. Conversely let ¢
satisfy the condition as in 9);. Let f denote the following automorphism of .

(24} if a= Ay
flay= { a;-, if a=aq
a otherwise.

Since [z, fr,|=[r, m,), it is sufficient to prove the case where a;& 7, Suppose
¢m,Pa;. Then we have z,C {ay, -**, a;-;} and the image of ¢ is contained
in {a,, -, @;_;}. Thus by the same argument as in the case where A is 4,,
we have [z, ¢pm]€ D,. Suppose ¢z, > ;. Then we have ¢pzyP a;-,. Since
[, fopmo)=[r, 7,] and fopm,Pa;, we obtain [z, fopm]ED, Thus we have
Dy=19, and we have proved the lemma.. |

From Lemma 3, by counting the number of elements in 9, or D,, we get

Theorem 6. Suppose that A is of type D, and A, is of type Dy+ Ay +-++
+A,,. Here D, denctes the type of . Note that Dy=¢, D,=A,, Dy=A,+A,,
Dy=A4; and 0Z p <k+-+k,+t=k=k4+p=I1+1. Then we have following
formula for the number n of elements in Jo|~.

If p=+0, then n= (1;k>-a(k1, w0y ky)

If p=0, then n=1.

Before giving our theorems for the cases where A are of types E, F or G, we
need a lemma. Fix an irreducible root system A. For a subset 7, of A, put

D(ry)={[x’, m,] | =’ is any simple root system containing 7o} .

Lemma 4. In above notation, let n§ be another subset of A. If D(m)N
D(nt) =P then we have D(wy)=D(mp).

Proof. Suppose [z, zt’']€ D(7,) N D(7t). Then there exist simple root
systems z' and z” of A such that (z', ) ~(z, z¢’) and (z”, wt)~(x, §’).
Thus we have (7', 7)~(z", z}), and hence there exists o&Aut(A) with
omy=ms. Therefore we obtain D(zy)=D(x}). |

ReMARk. For a given A and A, let 9, and 9, denote the sets defined
before. Fix [z, mp]leD,. If we show 9,=9(n,), then we obtain Dy=9),. In
fact, we have DN D(z)*¢. On the other hand, for ' €S8, let zt=="N A,.
Then we have Dy=D(w;). Since DyND,*+¢, by Lemma 4, Dy=9D(x,).
Thus we obtain 9,=49),.
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In the case where A is of type E, F or G, this argument yields 9y=9),.

Theorem 7. Suppose that A is of type F,. Then we have Dy=9, and

we get the following table for the number n of elements in Jo/~.

Table 2
type of Ao n type of Ao n
é 1 A+ 4, 3
A, 2 B; 1
A, 1 Cs 1
B, 1 Ay +A4, 1

Proof. We may assume that 7 consists of &, —&;, &—&,, &,, 3(6:—&—&—E&,)-
For each element [z, z(] in 9),, D[z, n;] denotes the Dynkin diagram of =
whose vertices not belonging to ¢ are marked by X. Fix [z, n]E9D, and
for any [z, mj]€9),;, we can find a simple root system =’ such that [z’, m)]=
[z, 7] as in the following table. Thus we have 9,=9(x,) and, by above

remark, D,=9D,. |
type of 7, D[r, z§] and =’ ) n
A, T o —X=X—-X 2
E2—¢&3
n’ X o =3>X X
E4—E; E3—63 3(61—E,—E3—¢&y)
A, r X—X==o X 2
€4
i X X%X o
€165 E,— &3 F(—e1—&te3—¢y)
A, r o==>X—X 1
Az T X—X=—=>o o 1
B, T X o=—>o0 X 1
A,+4, T ° X=>o0 X 3
Ey—Eg A
’ ° X==>X 0y
€—63 €,— &2 ¥(e;—€,—63—¢,)
n’ X o =—=>X LA

€1—&; E3—E3 F(—&1—63+E3—&y)
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Table continued

Type of w, D[rq, 7ol and 7/ n
By T ° o=—3o0 X 1

Cs T X 0o==3o0 ° 1

A+ 4, T o —X=>o0 1
4,+4, ™ o o => ° 1

Theorem 8. Suppose that A is of type G,. Then we have Dy=9D, and
the following table holds.

Table 3
type of Ao n
[ 1
A, 1

Proof. Obviously 9, contains only one element in any case. Since 9,C 9,
we obtain the theorem. |

Theorem 9. Suppose that A is of type E. Then we have D=9, and
get the following table for the number n of elements in Jy~.

Table 4
n n
type of A type of A,
E, E,; Eg E, E, E,
[} 1 1 1 | A4,+A4,+4,+4,) — 2 7
A4, 4 7 8 4 1 3 4
4, 3 6 7 D; 1 2 2
A, +4, 6 15 21 A+ 4, 1 5 12
A, 3 6 7 A+ A+ A4, 1 3 8
A, +4, 5 18 28 D+ 4, —_ 1 2
A +A,+ 4, 4 11 21 As+4, — 3 10
A, 2 5 6 A+A,+4, — 3 10
D, 1 1 1 | A+4,+4,+4,) — 1 8
A+ A4, 2 11 20 A — 1 3
Ay+A, 1 4 8 Dy -_— 1 1
A+ A+ 4, 3 12 28 E; — 1 1
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Table 4 continued

type of Ao - type of Ao -
E; E,; Eq Eg E, Eg
As+4, - — 3 4 — - 1
Ds+ 4, - 1 3 Dy — - 1
At+4, - — 4 E, — - 1
A+A,+4, | — 1 4 E¢+4, — — 1
D,+4, — 1 1 Ds+ 4, — — 1
As+4, — 1 2 Ds+A4,+4, — — 1
A+ A, +4, | — = 4 A+ 4, - - 1
A+ A+ A+ 4, — - 2 | Atdt+4 | — - 1

Proof. Since root systems of type E; and E, are canonically root sub-
systems of that of type Ej, it is sufficient to show our assertion for the case of
E,. The system 7~ may be assumed to consists of &—&;,, &—&;, &—&,, &,—&s,
E—&, §—6&, &+E&, 3(E+E&—(6+E+E+E+E+E;)). The following table
is as in the case of F,. In the table, each equivalence class [z, z(] is numbered.
Suppose that [z, z,], [z, 7], [z, =.] and [z, =,] are numbered by a, b, ¢ and d.
Then “a—b"" has the following meaning: “[z, z,] €9, has already been proved.
Suppose 7z, do not contain the element §+&,. Let z/ be all irreducible com-
ponents contained in {&—&;, -, §,—&} and put #) == —=, Moreover
suppose there exist a mapping ¢ from z, onto 7, with (%) such that ¢z}’ ==/’
and ¢z, C {&,—&, -, &—&}. Then we can show [z, 7,]E€9D, by the same
argument as in the case of 4,.” “a—b (¢c—>d)” has the following meaning:
“Iz, ms]ED, has already been proved. And the existence of =’ such that
[z, wi]=[=', =.] has already been shown. Suppose 7, and z; are subsets of =,
and 7, respectively. Moreover suppose for cE9Y(A) with oz==" (note that
then o7,==.), we have oz,==;. Then we can show [z, z;]€9,.”

number type of 7, Diz, z{] and #’ such that D[z, n§]=D[=’, m,] n

1 A, T o—o0—0-—0—0—o0—o 1
x

2 D, f o—o0-—o0—o0—o0—o—X 1

[

o

3 E‘l 3 X—o0—o0—o0o—o0o—o0o—o 1

o
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continued
number type of mo D[r, n{] and 7’ such that D[x, n§]=D[x’, ]
4 E6+A1 T o—X—0—o0—o0—o0—o0
[
5 A5—|—‘41 T o—o—o—o_.clp_X_o
6 D5+A2 T O—O—X——o——o—o-—o
|
7 A4+A3 T 0-e0-—=0-—-X—o0—o0—o0
!
8 A4+A2+A‘ T o—-o—-—o——o—}lf_.o_o
9 Ae T o—o—o—o_T_o_X
X
10 €7 Eg, €6 €5y E5— €y, E4—E3y E3— €3, €216
7/ o—m—o0o——o—0—o0o—-X—ouUX
52——51 o —}(5‘-!-...
+ €
1 —Eg—E7, 67— &g E4—Ege E—ey
z X—o—0——0——0——0—0
|
X
3(e1tetegtes—(E4testegter))
12 Dy T X—-o—-o_o_..T_o._X
13 Es T X—X-—o—o—«]:—o._o
14 A5+Ax T o—-o—o.—o_T__X_o
X
15 —Eg—E7, 67— €4—E3, 63162
z X—o—m0——0—0—-X—o0
|
E3—Ep ©
3(ertes— (et +e7))
16 €g— &7y E7—Eg E5—¢&4 E€3—&z
7 o—X—o0o——0——0—0——0
) J
3(eytes— (&2t - +er)) X

t
}(614’52+53+54—'(55+"‘+53))
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continued
number type of 7, D[z, n§] and 7’ such that D[z, =g]=D[z’, no]
17 D5+A1 T 0o—X—o0o—o0o—o0o—o—X
|
18 &7—Eg, Eg— g E,—6; E5—€4
4 o—XX—X——0——o0——o0——0
3(e1test (et -ter)) o
&+ 6&;
19 Eg—E7y E7—Eg E,— 6y E5—€y
T —0 ——X——0——0 ~——— 0 —— 0
1 |
3(ertes— (et testertes)) o
€2+€l
20 A4+A2 ¥4 O—O—O—O—X—o—_o
|
X
21 €2 —E€1,63 €2, 64—E3, 65— €4 1 €7 &g
’ 0om———0—-X——0——0——0——o0
i |
3(eytes— (et +e7)) )T(
3(ert - tea—(est - +es))
22 E3—6 Eg—E5y E5—E4 &7—€g
n 60——o—-X—-X—0——0——o0
t 1 |
3(e1tes—(egt-e7)) | °&4—¢;
#(est - +es—(e1+e2)
23 —Eg €3 €26, —Eg 5 E5—E4 = E7—Es
x X—o——0—X——0—0+——o0
1 |
3(e;tes— (2t tep)) o
E4—E3
24 A4+A1+A1 b4 o—o—o—o_)lf_o_X
25 &7—¢&g E4—€3 Ea—&;
T o—o——0——0——X—u-X——0
7
3(esteg—(e2tegt+e)) o
Ext €&
(a1 tegt -+ er—(ezt¢s))
26 &te €7—¢& E5—¢& €261
4 o—X———0——o0——o0o——X———o0
? | 1
$(est - +e es—ezo F(e2teste
—(erteztertes)) +eg—et 65
+est¢7))
27 €21 61,6362, 62— 6 €g—Es v E4—E3
T o—-X——o0o—-X——0——0—o0

l

o

$(eat - tee— (61t ezt ert+6s)) e1—66
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continued
number type of g D[z, z§] and =z’ such that D[z, ng]=D[x’, mo]

28 Dy+ A4, T o—o0o—X—0—o0o—o0—X
!

29 Az+A4, ZT o—o0o—o0o—X—0—o0—o
X

30 T Erteg e Es—Egy 64t €y, E2—E;

o——0—"—0—-X—-—0--0o—-X

amest |
Q‘(;ri'es—(é'z-l- -+€1))

Fer—(ert - +eates))

31 A4+ Ayt A, | 7 o—o—o—X—o0—X—o

32 - Ep—E&g v E5E&, ez tég, 53"“52
n o—o—o—X—o-X—0—r

N

7
H(eategte +eg—(6+65+66+E7)) o

eyt te—

3(ertes— (&2t +er) (51+52+53+5s»

33 —Eg—E€7,E7—CEg 1 E5—Ey E4—E1, EaF €y, E3— 62
" SN i S

|
3(ert+eg—(eat -+ €7))

34 Ez‘l‘ €1, E3—E2, E2— €7, E7— g, Eg— €5, €51 €4
7ol D N P Pk

| /
€5—E4 ° /
$(e1teg—(ezt - ter))

55

35 |Ap+ A+ A +A4) = o_o_x_o_;lg_o_o

o

36 &3y €3 €75 67— €, €6 €5y €5 €2, E2— &
n:’ o——X—— ——o—X——0——0
| 7
ez 610 /
361t eg— (et te7))
37 As T o—o0o—o—o0o—o—X—X
|
X
38 X——-o-——o—o-—oi._o_X
3738 X
39 X—o0o—o0o—o0—o0o—X—X

|
37--39 (14-15) °

40 X—X—o0o—o0—o0—o0o—o

|
3740 (14—16) X
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continued
number type of 7g Dir, 5] and 7’ such that D(x, n;]=D[z’, 7o) '! n
41 Dy T X—-X—o—o—cl:—-n_—X 2
42 X—X—X—o0o—o0o—o—o
41-42 (17-18) i
43 A4, T o—o0o—o—o0o—X—0—X 12
X
44 6o—o—o0o—o—X—X—o
43—>44 (24—25) )li'
45 c—o0—o0—o0—X—X—X
43—45 (9—-10) t|>
46 X—o0o—o0—0—o0—X—o
43—46 (9 —11) )If
47 6o—X—0—o0—o0—o0—X
43—47 )If
® i S o B
$(egt -t e I )lf
— (a1t ezt ertep)) &1+ 6
49 X—o0o—X—o—o0o—o0—o
48—49 )If
50 X—X—o0o—o0o—o—X—o
46—50 (14—15) }:
51 o—X—0—o0—o0o—X—X
4751 (9-10) rlz
52 o —X—X—X—o0—o—o
48—52 (21—22) <|=
53 X—o0o—X—X—o0—o0—o
52—53 (18—19) l
54 Eg—Egy E2—&; Eg—Esy E5—E4

7 X—X—o—X—o0o——o0o—o0

? 1 | E4—¢E3
§€51+58*‘(52+"'+57)) | 0 E7—¢&g
$(ertestestes— (et est+ertes))
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continued
number type of m, D[z, 7g] and 7’ such that D[, n§]=D[x’, 7] n
55 D,+4, T °—X—X—°—T—°—X 2
56 X—o0o—X—0—o0—o0o—-X

l
55->56 (18—19) °

57 Az+ A, T o—o0o—o0—X—o0—o0—X 10
X
58 X—o0—0—0—X—o0—o
5758 (9 —11) )‘(
59 6—0—0—X—X—o0—o
58—59 )If
60 6—0—0—X—o0—X—X

|
57--60 (9 —10) °

61 o—o—X—o——T—o—X
57—61 X
62 0—0—X—o0—o0o—X—-X

|
61—62 (9 —10) °

63 O—O—X—X—ol_o_X
61—63 (21—22) °

64 X—-c—o——X—ia—o—X
63—64 (22-23) o

65 °—o—X——X—T—o—o
6365 (30—~29) X

66 X—o0o—o0—X—o0o—o0o—o

|
65—66 X

We omit the rest of this table because we may write it in the same way. W

From Theoiems 5, 6, 7, 8 and 9, we get the next corollary which has been
shown by Borel-Hirzebruch [2] in a different way.

Corollary. If U is a maximal torus of G or if U has one-dimensional center,
then G-invariant complex structures on G|U are unique up to biholomorphism.

Proof. Suppose that U is a maximal torus of G. Then we have A,=¢.



58

M. NisHIYAMA

Thus we obtain n=1. Let S be the center of U. Then we have rank [U, U]=
rank U—dim S. Suppose dim S=1. Then we have rank A,=rank [U, U]

—1.

(11
(21

B3]
[4]

(5]
(6]
[71
[8]

[9
[10]

[11]

From above theorems we obtain z=1. n
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