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0. Introduction. Let K=Q(\/J)) be the quadratic field with discrimi-

nant Z), and H(D) and h(D) be the ideal class group of K and its class number

respectively. The ideal class group of K in the narrow sense and its class num-

ber are denoted by H+(D) and h+(D) respectively. We have h+(D)=2h(D)> if

D>0 and the fundamental unit £D (>1) has the norm 1, and h+(D) = h(D),

otherwise. We assume, throughout the paper, that | D | has just two distinct

prime divisors, written p and q, so that the 2-class group of K (i.e. the Sylow

2-subgroup of H+(D) because we mean in the narrow sense) is cyclic. Then the

discriminant D can be written uniquely as a product of two prime discrimi-

nants dλ and d2y D=dιd2y such that p\dλ and q\d2 (cf. [16], for example).

By Redei and Reichardt [13] (cf. proposition 1.2 below), h+(D) is divisible

by 4 if and only if D belongs to one of the following 6 types:

(Rl) D = pq, dx = p, d2=q, p = q=l (mod4), and (£-) = 1 (=(±) by

reciprocity) * r

(R2) Z)=8g, .^=8 (ρ=2), d2=qy and q= 1 (mod 8);

(11) D=-pq, dλ=-p, d2=q, p = 3 (mod4), q=\ (mod4), and

ί Q\
 q

(=ί -!L \ by reciprocity);
\pJ

(12) Z)=—8/>, d,= -p, d2=$ (?=2), andp = 7 (mod 8);

(13) D = - 8 } , ^ = - 8 (p=2), d2=q, and q=\ (mod 8);

(14) D=-4q, dγ=-\ (p=2), ^ = ί f αiiJ j = l (mod 8);

where (—) is the Legendre-Jacobi-Kronecker symbol.

Conditions for h+(D) to be divisible by 8 have been given by several

authors for each case or cases ([1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 15]). Some of them

are reformulated in section 3. The purpose of this paper is to give some con-

ditions for the divisibility by 16 of h+(D) for each case (cf. theorems 5.4, 5.5,

5.6, 5.7, 5.8, and 6.7). The main ideas were announced in [18] and [19].

While in preparation of the manuscript P. Kaplan informed me that

theorem 6.7 was proved also by K.S. Williams with a different method and

furthermore he gave a congruence for Λ(—Aq) modulo 16 ([17]).
* Reseach supported partly by Grant-in-Aid for Scientific Research.
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1. 2-class field; divisibility by 4. Let 2e be the order of the 2-class
group of Ky so that 2e\\h+(D) (e^ 1). Since the 2-class group of H+(D) is cyclic,
we have the following chain of subgroups:

Denote by K2* the class field of K corresponding to the subgroup H+(D)2k.
We have a tower of of class fields:

K2k is unramified at every finite prime in K and [K2κ K]=(H+(D): H+(D)2k)=^
2 k l k )

Proposition 1.1 (Reichardt [14]). K2k is normal over Q. The Galois group
is isomorphίc to the dihedral group D2k of order 2k+1.

In particular G(K2/K)^Z2xZ2i where Z2 denotes a cyclic group of order 2.
It is well-known and easy to see that

K2 = Q(VJV VT2) = ΛB ,

where A=Q(y/~%) and B=Q{VT2)
We write α^b (resp. a^b)> if ideals α, b of K are in the same ideal class

(resp. in the same narrow ideal class). As p and q are ramified in K> we have
(^)=p2

? (gr)=q2, where p and q are prime ideals of K. Denote the narrow ideal
class containing p (resp. q) by C+(p) (resp. C+(q)). Then C + (p) 2 =C + (q) 2 =l.

It is also well-known that the elementary 2-subgrouρ of H+(D), which is
isomorphic to Z2 in the present case, is generated by C+(p) and C+(q). So
one of the three alternatives holds:

(i)
(ii)
(iii)

In case D>0 and J, φ — 4 (i=l, 2) we see easily that the condition (iii) holds
if and only if NK£D= — 1. By class field theory, we get the following pro-
position which is a special case of a theorem of Redei and Reichardt [13].

Proposition 1.2. The following assertions are equivalent:
(a) i\h+(D);
(b) both C+(p) and C+(q) belong to H+(D)2;
(c) both p and q split completely in K2

(d) p and q split completely in B and A, respectively;

(e)
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As a direct consequence of proposition 1.2 we have 4\h+(D) if and only

if D belongs to one of the types (Rl), (R2), (II), (12), (13), (14) in section 0.

2. Construction of K4. In this section we assume 41 h+(D), so that D

belongs to one of (Rl), •••, (14) in section 0. The class field K4 is normal over

Q and the Galois group G(KJQ) is isomorphic to the dihedral group D4 of

order 8. The subfields of K4 are given as follows:

A =

A2 = A(V~cc)

A'2 = A(V^)

B2 = B(VJ)

Bί = B(VW)

where α G i , jβGδ, a' (resp. /?') is the conjugate of a (resp. β) over Q, and
aa' = d2 (mod(Ax)2)yββ'=dι (mod(Bx)2).

From proposition 1.2 it follows that q (resp. p) splits completely in A

(resp.B). Let (p)=p2

A, ( ? H q ^ (resp. (g)=q| , (p)=PBPί) be the prime de-

compositions in A (resp. B) with prime ideals pAy qA, qA in A (resp. (\By pBy pB

in B).
Let (2 (resp. Q') be a prime divisor of C\A (resp. C\A) in K4. Since the

extension KJK is unramified at every finite prime the inertia field of Q with

respect to KJQ is either A2 or A'2. We may choose A2 (resp. A2) to be the

inertia field of Q (resp. 0'). Then we get easily that

(2.1) qA (resp. qA) is the only finite prime in A which ramifies in A2 (resp. AA).

In the same way, by a suitable choice of B2 and B'2, we have

(2.2) pB (resp. pB) is the only finite prime in B which ramifies in B2 (resp. B2).

As for the ramification of infinite primes, we can argue in the same way if

D<0. Indeed when D < 0 (types (II), (12), (13), and (14)), the infinite prime

oo of Q ramifies in A, 00 = 00^, and splits in B> 00 = 00^00^. By a suitable

choice of oo5 and 00 B we see that

(2.3) // D < 0 , then both A2 and A2 are unramified at 00^ and B2 (resp. B2) is

ramified at 00B (resp. 00^) and unramified at 00B (resp. °°#).

If Z » 0 , both A and B are real, so that 00 splits in A and By 00 = 00^00^, oo~
OOBOOB' To go further, we have to take the absolute class number h(D) into

account. If \χh(Ό\ then 2\\h(D) and NκεD=l, so that K4 is ramified at
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every infinite prime of K, which implies that K2 is the inertia field of oo with
respect to KJQ, for K2 is normal over Q. Hence we have

(2.4) if D>0 and 2\\h(D), then every infinite prime of A (resp. B) ramifies in
A2 and Af

2 (resp. B2 and B'2).

If Z » 0 and 4\h(D) then KA is unramified at every infinite prime over Q.
Hence we have

(2.5) if D>0 and 4\h(D), then every infinite prime of A (resp. B) does not
ramify in A2 and A2 (resp. B2 and B2).

We denote by OF the ring of integers of a number field F. Let fA and XA

(resp. fB and XB) be the conductor and the Hecke ideal character attached to
the quadratic extension A2\A (resp. B2jB).

Proposition 2.6. Suppose D belongs to type (Rl). Then
(a) if2\\h(d), we have

fA = <\A<*>A<*>'A , %Λ(λ)) = ( — ) sgnNAX

fB = pB™B™'B , χB((μ)) = (it) sgn NBμ

(b) if 4\h(D), we have

where ( — ) (resp. ( — ) ) denotes the quadratic residue symbol modulo C\A (resp. pB).
V ^ / XPB/

Proof. If 2\\h(D) then Λ ^ = l . It follows from (2.1), (2.2), and (2.4)
that the quadratic extension A2/A (resp. B2\B) is ramified at qAy oo^ cx̂ ^ (resp. pB)
00B> °°B) and unramified outside them. Hence

XA((X)) = (x> Λ*IΛ\(λ> ^ V λ , A2/A\ ( n o r m _ r e s ί d u e symbol)
V qA J\ oo^ Λ oo^ /

^ f ^ j α ) (Hubert symbol)

sgn NA\
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which implies fΛ=qA°oΛ<χ>Ά. We have XB((μ))=(—μgnNBμ a n d / ^ ^ o o ^ o o ^

in the same way.
If 4|A(Z>), then, from (2.1), (2.2), and (2.5), it follows that A2\A (resp.

B2jB) is ramified only at qA (resp. pB). Hence the assertion (b) follows in the
same way. Q.E.D.

Proposition 2.7. Suppose D is of type (R2). Then
(a) if 2\\h(D), we have

fA = (\A™A™Ά , XA(M) = (—) sgn NA\

(b) if 4\h(D), we have

where ( ^ ) = | 1 {f ^=^ 7 ( m o d ^ ) »
V p 5 / ( _ ! z / ^ ^ 3 , 5 (modpi).

Proof. If 2\\h(D) then NKSD=1. It follows from (2.1), (2.2), and (2.4)
that the quadratic extension A2jA (resp. B2jB) is ramified only at q ,̂ °o^ OÔL

(resp. pBy oo5, oo£). We have %^((λ)) = ί — )sgnNA\ in the same way as in
\QA'

the proof of proposition 2.6, while ( μ ' )= (——)> which implies (a). Asser-
^ PB ' X

 PB '
tion (b) is proved similarly. Q.E.D.

We obtain the corresponding results for the other types similarly.

Proposition 2.8. Suppose D is of type (II), then

() (λ e OA-qA)
^A/

Proposition 2.9. Suppose D is of type (12),

U = qϊ,
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= PB°°B,

Proposition 2.10. Suppose D is of type (13), then

)ί
PB I 1-1 ifμ=5, 7 (mod pi).

Proposition 2.11. Suppose D is of type (14), then

pB J\ooB

where (1^1-)= \ l if *=H™d Pi),
V
 $ ' ( - 1 tfμ = -

In propositions 2.8 to 2.11 the infinite prime ooB is defined by \^y ^)=—l>

\ ooβ /

so that (^y P ) is the sign of μ with respect to °o5.
\ oos /

Proposition 2.12. For each D, a and β can be taken so that they satisfy
the following conditions:
(a) aeOA,β<ΞθB,(a, a')=ί, (β, β')=l;
(b)

= 1 (mod 4), β3
 Ξ= 1 (mod 4);

= q, /?/?' = 2*ω,

= 1 or 3 + 2 \ / T (mod 4), β+β' = 2*<9>+l (mod 4);

( ' ' ' α 3 = l ( m o d 4 ) , jS3Ξl(mod4);

# fαα' = 2*<-«, ββ'=-ρ,

' l α + α ' Ξ 2*<-«+l (mod 4), β = 1 or 3+2vΎ (mod 4);

= q, ββ'=-2*>,
) - | α Ξ 1 or 3 + 2 \ / - 2 (mod 4), /8+/8 's-2*«+l (mod 4);
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(14)
y J ' x α = ± l ( m o d 4 ) , β+βf = 0 (mod 4).

Conversely, for each a (resp. β) satisfying (a) and (b) the field A2 (resp. B2) is the

field A(V~β) (resp. B(y/Έ)).

We remark that the condition a3= 1 (mod 4) (resp. β3=ί (mod 4)) is equiva-

lent to α = l (mod 4) (resp. β=ϊ (mod4)) if p=\ (mod 8) (resp. q=ί (mod 8)).

Proof. Since q^ is the unique finite prime which is ramified in A2 =

A(\/^x) and aa' = d2(mod(A*)2), we have (a)=(\Aa
2 with an ideal α in A. It

is well-known that the class number h(dλ) is odd. Put ah(dι)=(rγ). We may

replace a by ah(di)fγ~2, then (a)=c\h

A

(dl\ so that a^OAy (a, a')=ϊ, and aa'=

ztNA qψi)=:izq
HdiK The sign of the right hand side is determined by the

multiplicative congruence aa' = d2 (mod (Ax)2). Let xA be a prime ideal in A

such that xA\(2) and ϊ^Φq^ The ideal r^ is unramified in A2 if and only if

there exists an integer S^OA such that α = δ2(modriβ), where e is the index of

ramification of xA with respect to A/Q, that is, xj||(2). Hence we have

a3 = 1 (mod 4) if £ φ 2 and

or = a square (mod 4) if p=2 and

α = 1 (mod q^2) if pφ2 and q=2 .

In the last case (/>Φ2, ?=2), it follows from a'=\ (mod qi) that (a—l)(a'—l)

=2h(di)—a—a'+l = 0 (mod 4). We can argue similarly for β except in the

case (14), in which we may proceed as follows. Since ββf=— 4 (mod (Bx)2),

we have βEzOB and ββr= — 1, that is, β is a unit, by a suitable choice of

representative β modulo (Bx)2. As B{\Z~β)jB is ramified at pB and unramified at

p'B, we have /3ΞΞ-1 (mod t>|) and β=l (mod^ 2 ). Hence /3-l = 0 (mod pBpB

2)

and ( y S - l ) ( / 3 ' - l ) = - / 3 - / 3 ' = 0 (mod 8), which implies β+β' = 0 (mod 8).

Conversely, if we take or, β satisfying conditions (a) and (b) then it is easily

seen that A(\/~a, Vcc7) (resp. B{\/~β, \/W)) ιs> a Galois extension of Q with

Galois group isomorphic to D4 and it is a cyclic extension of K unramified at

every finite prime. Hence it must be K4 by class field theory. So we have

) and B2=B(\/~β). Q.E.D.

We remark that in case (14) we mac take β=T+U\/~q^=£q, the funda-

mental unit of B (Γ, [/GZ, T > 0 , Z7>0), in which case ΓΞΞO (mod 4) follows

as a corollary.

Putting, for each Z>, respectively:
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(R2)*:

(11)* :

(12)* :

(13)* :

(14)* :

(x,y, z, we

Y. YAMAMOTO

a—x+y\/2 ,

_x-iΓyΛy—p

2 '

_ x+yy/ZIp

2

a=x+yV-2,

a = χ+y^/— 1 ,

lZ)y it is easy to see

2

s_z+wVΎ.
2

2

Proposition 2.13. The conditions (a), (b) of proposition 2.12 is equivalent
to the following conditions:
(c) x,y,z,weZ and qX(x, y), pX{z, w)
(d)

((*, y)=(l, 0) or (3, 2) (mod 4), * = 2 * « + l (mod 4);

(II)* :
= ! ( m o d 4 ) ;

(mod 4 ) , (*, w ) = (1, 0) or (3, 2) (mod 4);

(x2+2y2 = q, ^ - g w 2 = -2*<«>+2,

" \(χ, y) = (h 0) or (3, 2) (mod 4 ) , ^ Ξ -2*<«>+l (mod 4);

(14)**: \
v ; I j = 0 ( m o d 4 ) ,

We remark that f « ) = 1 (mod 4) if and only if

(*, y)=(2, 0) or (6, 4) (mod 8) if d= 1 (mod 8),

(*, y)=(2, 0), (6, 4), (3, 1), (3, 7), (7, 3), or (7, 5) (mod 8)

if d=S (mod 16),

(x, y)={2, 0), (6, 4), (3, 3), (3, 5), (7, 1), or (7, 7) (mod 8)

if d=U (mod 16).
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3. Divisibility by 8. Assume 4|A+(Z>), then, in the same way as in
section 1, we have the following criterion for the class number h+(D) to be divi-
sible by 8:

Proposition 3.1. The following conditions are equivalent:
(a) 8\h+(D);
(b) both C+(p) and C+(q) belong to H+(D)4;
(c) both p and q split completely in KA.

Using the notation of section 2, we obtain easily:

Lemma 3 2. The following conditions are equivalent:
(a) C+(p)<=H+(D)4 (resp. C+(q)ei7+(Z>)4);
(b) p (resp. q) splits completely in KJK;
( c) PA (resp. qB) splits completely in A2\A (resp. B2/B);
(d) pi (resp. qA) splits completely in B2\B (resp. A2jA)\
(e) XA(PA)=1 (resp. XB(qB)=l);
(f) XB(P'B)=l(resp.XA(q'A)=l).

Proposition 3.3 (cf. [12] [3] [9]). Suppose D is of type (Rl). Then we
have

(a) 2\\h(d) if and only if (*λ (SΛ = - 1
V q / 4 V p / 4

if(-) = -1 and(ί) = 1 then p**l andq^l;
\ q /4 \ 2 /4

if(-) = 1 and (Sr) = - 1 then ί>φl andq^l;
\ q /4 \ 2 /4

(b) 4| \h(D) and NκεD= -1 if and only if (£) =(l-)=-l;
\ q /4 \ p /4

( c ) 8 1 & + ( £ > ) ί / « « r f o « f y if ( £ - ) = ( )
\ q / 4 \ p / 4.

(d) (AW-l^WA)
\<jJ/4 \ ^ ) / p 9

zϋA^̂  x, # are rational integers satisfying the conditions (c), (d) (Rl)** 0/ >̂ro-
position 2.13.

Proof. Assume 2||Λ(D). Since NKSD=1 we have £>^1 and q φ l or

£ φ l and q ^ l alternatively. In the first case we have C+(p)&H+(D)4 and

C+(q)φ/ί+(Z))4, hence, by proposition 2.6 (a) and lemma 3.2,
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sgn NBVJ =

In the same way we have ( — 1 = 1 and ( —) = — 1 for the latter case.
\Q/4 \P/4

Next, assume 4|A(D), then, by proposition 2.6 (b), we have XA(PA)=

and XM=(?hr)=(f\ If 8/A+(Z)) then m(D) and

D= — lf hence p ^ q φ l and we see, by proposition 3.1 and lemma 3.2,
C+(p)=C+(q)$H+(Dy and % ^ ) = X5(qiJ) — 1 . If 8|A+(D), then we get

X>A(PA)='X'B(C\B)=1
 m Λe same way. To sum up, we get the assertions (a),

(b), (c), and that

q /4 V p /*

On the other hand, since h{d^) and h(d2) are odd,

*A(PA) = MM) (lemma 3.2)

= XB(PB)"^ = XB((β'))

~ ( ) (proposition 2.6, proposition 2.12)

and similarly XB(QB)—\ — ) , which imply the assertion (d). Q.E.D.
\qJ

Proposition 3.4 (cf. [12] [3] [9]). Suppose D is of type (R2). Then we
have

(a) 2\\h(D) if and only if

if (£) = — 1 and (^L) = 1 then J)»l and
J \q/i \p/t

if (Iλ = 1 anii^Λ = —1 then pφl and q»l;
7 VαΛ \p A

(b) 4\\h(D) and Ntf^-l if and only if (A) = ( | _ ) = _ 1 ;

q

(c) %Wψ) if and only if (λ)=(£)=l;
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where x> z are rational integers satisfying the conditions (c), (d) (R2)** of pro-

position 2.13 and

ί±\ = 1 ifa=\ (mod 8), (±) = - 1 if a=S (mod 8);

(-*.) = 1 ifa=\ (mod 16), (—) = - 1 if a=9 (mod 16).

Proof. Using the following:

(3.5)
β\ 2\ _ (z-

we can argue in the same way as in the proof of proposition 3.3. The first
equlity of (3.5) is checked straightforwardly. Since /3' = 1 (mod p | ) , we see

fβ'y 2)=\ if and only if β' = l (modpl), that is, if and only if (j9—l)G8'--l)
V
 PB

 J

= 0 (mod pi), for β^βl (modt)5); on the other hand (β—1)(/3'— \)=ββ'—
β—β'+l=2hM—z+l\ so we get the latter equality of (3.5). Q.E.D.

Proposition 3.5 (cf. [12] [9]). Suppose D is of type (II), then

f ).-(f)-(j)-<-
where x, z, w are rational integers satisfying the conditions (c), (d) ( I I ) * * of pro-
position 2.13.

Proof. Since ίc j=(v / —ί?)» l , we have J>»qφl. It follows from pro-
position 3.1 and lemma 3.2 that %^)=% i ? (q 5 )=% 5 (W)=% y l (qi) = ( - l )
By proposition 2.8 we have

XB(P'B) = = XB{(β')) =

It follows from l that Since ff^
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= 0 (mod pB), we have \Jq ==—— (mod pB)y so that XB(<\B) = (—— )(—
«; \ p /

= ( — ) agw w, which implies (—) =ί£w «;. Q.E.D.
V p / \ p I

Proposition 3.6 (cf. [9]). Suppose D is of type (12), then

where x> z> w are rational integers satisfying the conditions (c), (d) (12)** of pro-

position 2.13.

Proof. Since p q = ( \ / _ 2 j f ) ) ^ l , we see that p ^ q φ l By proposition 3.1

and lemma 3.2 we have %^(^)=% j B(q^)=%^(q^)=% j B(t»^)=(—1)Λ ( Z > ) / 4 . By pro-

position 2.9 we have

in the same way as in the proof of proposition 3.3, proposition 3.4, and pro-

position 3.5. Q.E.D.

Proposition 3.7 (cf. [9]). Suppose D is of type (13), then

x, #, w αr^ rational integers satisfying the conditions (c), (d) (13)**

= 0 (mod 4).

Proof. Since pq=(v / —2^)^1, we have p ^ q φ l . By proposition 3.1 and

lemma 3.2 we have

XA(PA) = *B(C\B) = XAWL) = XB(Pί) = ( -

By proposition 2.10, we have

XΛ(PΛ) =
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We may safely assume Λ / ^ Ξ 1 (mod p |), by transposing pB and p^ if necessary,

obtaining ί—^ ) = (~2~) a n c * 2/8=«+wvΓ j" = ̂ +« ' (mod t>|). Hence we

have #+&> = () (mod 4), which determines the sign of w. It follows from β<0
and β'>0 with respect to oo5 that 2^Λ/"5"<0 with respect to oo5, which

implies (—^—)=—sgnw. (j.b.D.
\ B /

Proposition 3.8 (cf. [11] [4] [10]). Suppose D is of type (14),

w = l ( m o d 4 ) ,

where x> z> w are rational integers satisfying the conditions (c), (d) (14)** of pro-

position 2.13.

Proof. Since q=(\/^q)&ly we get p φ l , so that, by proposition 3.1
and lemma 3.2, we have XA(PA) = XB(p'B)=(-l)HD)/4 and XΛ(qΆ) = X&B)=l
By proposition 2.11, we have

Since B2 = B(y/~β) and / 3 Ξ 1 (mod *>£), we have %B(t>β)=l if and only if
/3ΞΞ1 (mod P'B). AS })B||(/S—1), we have β = l (mod ^ 3 ) if and only if
(β—l)(β'—l) = —2z=0 (mod 16). On the other hand,

^ — )Since ^ " { " = ± 1 (mod p|), we have (—^—)=±1> which implies
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while βf=z—w\/q Ξ = F « ; Ξ 1 (modpl). Hence | w | = l (mod 4). Q.E.D.

4. Construction of K8. We assume S\h+(D) throughout the rest of
this paper. By proposition 1.2, K8 is a dihedral extension of Q and both G
(K8jA2) and G(K2jB2) are isomorphic to Z2xZ2. The intermediate fields of
K8/A2 and K8jB2 are given in the following diagram:

Ξ-a! (mod^?) 2 ),

' = β' (mod(£2

x)2);

where α:" (resp. /?") denotes the conjugae of α2

 o v e r ^ (resp. of β2 over
By proposition 3.1, both pA and (\A (resp. both pέ and qB) split completely in
(resp. in B2) and q4 (resp. pB) is ramified in A2 (resp. in 52) We put

with prime ideals PΛ, Pi', §Ay QA, Qf

A' in A2 (resp. PB, PBy P'B', QB, Q'B
f in B2).

Since K8/K is unramified at every finite prime, QA (resp. PB) ramifies in
either A4 or A" (resp. 5 4 or B"). By a suitable choice, we may suppose that:

(4.1) QA (resp. PB) is the only finite prime of A2 (resp. B2)> which is ramified in
A4 (resp. B4).

Arguing the ramification of the infinite primes in A2 (resp. B2) as in sec-
tion 2, we obtain:

(4.2) If Z)<0, then there is no (resp. only one (denoted by VB)) infinite prime
in A2 (resp. B2) which is ramified in A4 (resp. B4).

(4.3) If D>0, 4\\k(D), and NκSD=l, then every infinite prime in A2 (resp. B2)
is ramified in A4 (resp. B4).

(4.4) If Z » 0 and 81 h(D), then every infinite prime in A2 (resp. B2) is unramified
in A4 (resp. B4).



DIVISIBILITY BY 16 OF CLASS NUMBER 15

Let ψA (resp. ψB) be the Hecke character of A2 (resp. B2) which is attached
to the quadratic extension AJA2 (resp. BJB2). By (4.1), (4.2), (4.3), and (4.4)
we determine ψA and ψB as follows:

Proposition 4.5. Suppose D is of type (Rl) and 81 h+(D). Then
(a) if 4\\h(D), we have

= ( ^ ) sgn N

(b) if S\h(D), we have

(μ<ΞθBi-PB).

Proof, (a) By (4.3) the primes of A2 which ramify in A4 consist of QA

and all of the four infinite primes, so that

ΛIAλ π

QA ' ί' |oβ

We have

/λ, AJAΛ _ (X, αΛ _

where ord(α2) is the order of a2 with respect to QAi and

Π C^AJΔλ = Π sgn X' = iVX2λ .

This complete the proof of the first part of (a). The second part is obtained
in the same way.
(b) The only prime of A2 which ramifies in A4 in this case is QA. Hence

we have ψA((\))=(X> AJA2\/\\ W e c a n c a l c u l a t e ψB((μ)) similarly.
^ QA

 J
 ^QA'

Q.E.D.

Proposition 4.6. Suppose D is of type (R2) and 81 h+(D). Then
(a) if 4||A(D), we have

£) sgn NA2X
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= 0^) SgnNB2μ

(b) if S\h(D), we have

Proof. Since BY=B2{\/~βζ') is unramified at PB,

fμ, BJBΛ = ίμ^βή = ίμ, ββ'Λ = ίμ, β'\

)

The rest of the proof is the same as that of proposition 4.5. Q.E.D.

In the same way we have:

Proposition 4.7 Suppose D is of type (II) and 81 h(D), then

Proposition 4.8. Suppose D is of type (12) and 81 h(D), then

Proposition 4.9. Suppose D is of type (13) and 81 h{D), then

(\<ΞθA2-QA);

Proposition 4.10. Suppose D is of type (14) and 81 h{D), then
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5. Divisibility by 16. We assume S\h+(D) in this section and obtain
a criterion for h+(D) to be divisible by 16 in the same way as in section 3:

Proposition 5.1. The following conditions are equivalent:
(a) 16|A+(D);
(b) both C +(p) and C +(q) belong to H+(D)*
(c) both p and q split completely in Ks.

Using the notation of previous sections, we obtain easily:

Lemma 5.2. The following conditions are equivalent:
(a) C+(p)^H+(Df (resp. C+(q)eE#+(D)8);
(b) p (resp. q) splits completely in Ks;
(c) PB (resp. QA) splits completely in BA (resp. A4);
(d) ΨB(£B)= $

If JXΦ — 4, we can set

(a) = (#'!> = &*<Ί>, (β) = p

Hence we have:

Lemma 5.3. If d^— 4, then

&W = (Vά) and P&dl

Theorem 5.4. Suppose D is of type (Rl) and 8|λ+(Z>). Then we have

(a) 4\\h(D) if and only if (-*-) (—) = - 1 ;
\p /4\ q /4

\j)A = 1 and (—)4 = - 1 if and only if p^ί and

y ) 4 = — 1 and ^—J4 = 1 if and only if p^\ and q«*l

(b) 8|\h(D) and NKSD= - 1 if and only if (—) = (—) =~ί;
\p /4 \ q /4

(c) 161 h+(D) if and only if (-*-) = (*-) = 1
\p JA \ q /4

where x, z are rational integers satisfying the conditions (c), (d) (Rl)** of pro-
position 2.13.

Proof. Assume first that 4\\h(D). Then, by proposition 4.5 and lemma
5.3, we have
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sgn NB

^ = NB(-β) = ββ' = ff

Hence ψB{PB)={—) • We obtain ΨA(OA)=(—) similarly. On the other
\ p J \ \ q / 4

hand, as Nκ£D=l, we have either p « l and q φ l or p φ l and q ^ l . By lemma

5.2, we have ^ ( ^ = 1 and ^ ( ^ , 4 ) = —1 in the first case and ψB(PB)= — 1

and ΨA(UA)=^
 m t ^ latter case.

Next, we assume that 8\h(D). By proposition 4.5 (b), we have

If 8\\h(D) and ^ ^ = - 1 , we have J)«q4*l, hence ^ 5 ( Λ ) = ^ ( ^ ) = - 1 by
lemma 5.2. If 16|A+(Z)), then, by proposition 5.1 and lemma 5.2, we have

Λ 0 i Q E.D.

Theorem 5.5. Suppose D is of type (R2) and 81 A+(i>). Then we have

(a) 4||A(Z>) if and only if
2 /4\ q

\ = j and Cx\ = _ j if an(ι only if p^l and qή*l;
2 /4 \ q /A

ίz-2hω\ = _j α M ί / C-fLΛ = 1 if and only if pή*l andq^ί;
\ L /4 \ q /4

(b) 8||Λ(Z>) W JVjrfiJ,= - 1 »/ «κ* only */ ( ^ = | ^ ) = ( — ) 1;
V Z /4 \ q / 4

(c) 16|/i+(Z>) if and only if (Z-=P^) = (—) = 1
\ 2 /4 \ J /4

Λ?, ^ αr^ rational integers satisfying the conditions (c), (d) (R2)** 0/
positίon 2.13.

Proof. If 4||A(Z>), then, by proposition 4.6 (a), we have

, 2
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where ( £ ) = 1 if β=l (mod^4) and (£-) = - 1 if β = 9 (modpi4). Since

β=l (modt>£) and / 3 ' ί l (mod^), we see that β=l (modpί4) if and only

if ύ8- l )GS / - l )=2*< f >-*+l = 0 (mod 16), so that ψB(pB)=(z-~2hω) . The
\ 2 /4

rest of the proof can be done in the same way as in theorem 5.4. Q.E.D.

Theorem 5.6. Suppose D is of type (II) and 81 h(D\ then

where x is a rational integer satisfying the conditions (c), (d) ( I I ) * * of proposition

2.13.

Proof. Since p^q^ί, it follows from proposition 5.1 and lemma 5.2

that ^ ( Λ ) = ^ ( O Λ ) = ( - 1 ) * < D ) / 8 B y proposition 4.7 and lemma 5.3, ψA(ζ>A)=
Q E D

Theorem 5.7. Suppose D is of type (12) and 81 h(D), then

x w α rational integer satisfying the conditions (c), (d) (12)** of proposition

2.13.

Proof. Since p ^ q φ l , it follows from proposition 5.1 and lemma 5.2

that ψB(^B)=ΨA(UA)=(-^)h(D)/8' By proposition 4.8 and lemma 5.3, we have

and we deduce that

in the proof of theorem 5.5. Q.E.D.

Theorem 5.8. Suppose D is of type (13) and 81 h(D)9 then

x is a rational integer satisfying the conditions (c), (d) (13)** of proposition
2.13.

Proof. Since p ^ q φ l , we have ψ ̂ j?)=Ψ>i(^)=(—1)* ( I > ) / 8 . By pro-

position 4.9, we have ψA($A)=ψA((VΈ))=(^) = (^) = (^) . Q.E.D.

For discriminants of type (14), the above argument does not work well.
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An alternative method is therefore given in the next section.

6. D of type (14). We assume that D is of type (14) and 8|A(Z>) in
this section. It is easy to see that

where 6q=T+U\/~q~>l is the fundamental unit of B. The field Kz has been
explicitly constructed by H. Cohn and G. Cooke [4] (cf. also [10]):

Lemma 6.1 (Cohn-Cooke).

κB =
where e andf are rational integral solutions of

(6.2) -q=f-2e2; e>0, / = - l (mod 4).

We let λ = ( / + Λ / = ί ) ( l + V / ^ ϊ ) v ^ , so that K8=K4(V\) As PB is
ramified in K4t we have PB=3?2 where £P is a prime ideal of K^ It is easy
to see that the completion of K4 at 9* is isomorphic to Q2(Λ/—1) and we may
fix the isomorphism by taking

(6.3) VJ^^imoάpg) and y/e~q=^±l (modPi).

We remark that < P 2 | P J H > £ | ( 2 ) . Denote by Og the ring of £P-adic integers,

then zr=l — \/— 1 is a prime element of Og and its maximal ideal is
which is also denoted by j?. Since the ramification index of £P is 2, we obtain
easily:

Lemma 6.4. Let the ζB-adic units be denoted by O^>. Then

μGΞO^ if and only if μ=±ί (mod S>5).

As λ/;r2eθ^>, we have

Lemma 6.5. The following conditions are equivalent:
(a) 16\h(D);
(b) 9? splits completely in Ks;
(c) λ/;r 2Ξ±l(mod3> 5).

By simple calculations we have:

Lemma 6.6. (a) / = _ £ + ! (mod 8);

(b)
π
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Theorem 6.7 (Williams [17]). Suppose D is of type (14) and $\h(D).

Then 16\h{D) if and only if T = q~ί (mod 16), equivalently, ( - 1 ) ™ ^ =

{-\)HD)/\ where eq=T+Uχ/~q>l is the fundamental unit

Proof. By (6.3) and lemma 6.6, we have

Ξl ^ s _£±1 ̂ 1 ( m o d2 2

and so λ/τr2= ± 1 (mod £P5) if and only if

(6.8) !s+l =

As ^ = 1 (mod 8) and £̂  = 1 (mod pβ), that is, # = £ 9 = 1 (mod ίP6), we obtain
(6.8) if and only if Sq = q (mod S>7)> t h a t ίs> i f a n d only if Sq = q (mod p^4). It
follows from lemma 6.5 that 16\h(D) if and only if Sq~q (modp^4). Since
6q=l (modi?3) and βq = — 1 (modt)|), we have 6q = l (rnodp^4) if and only if
(Sq-l)(S'q-l)=2T = 0 (mod 32). Hence we deduce 6q-l==T(mode's).

Q.E.D.
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