DIVISIBILITY BY 16 OF CLASS NUMBER OF QUADRATIC FIELDS WHOSE 2-CLASS GROUPS ARE CYCLIC

Yознініко YAMAMOTO*

(Received August 5, 1982)
0. Introduction. Let $K=\boldsymbol{Q}(\sqrt{D})$ be the quadratic field with discriminant D, and $H(D)$ and $h(D)$ be the ideal class group of K and its class number respectively. The ideal class group of K in the narrow sense and its class number are denoted by $H^{+}(D)$ and $h^{+}(D)$ respectively. We have $h^{+}(D)=2 h(D)$, if $D>0$ and the fundamental unit $\varepsilon_{D}(>1)$ has the norm 1 , and $h^{+}(D)=h(D)$, otherwise. We assume, throughout the paper, that $|D|$ has just two distinct prime divisors, written p and q, so that the 2 -class group of K (i.e. the Sylow 2-subgroup of $H^{+}(D)$ because we mean in the narrow sense) is cyclic. Then the discriminant D can be written uniquely as a product of two prime discriminants d_{1} and $d_{2}, D=d_{1} d_{2}$, such that $p \mid d_{1}$ and $q \mid d_{2}$ (cf. [16], for example).

By Redei and Reichardt [13] (cf. proposition 1.2 below), $h^{+}(D)$ is divisible by 4 if and only if D belongs to one of the following 6 types:
(R1) $D=p q, d_{1}=p, d_{2}=q, p \equiv q \equiv 1(\bmod 4)$, and $\left(\frac{p}{q}\right)=1\left(=\left(\frac{q}{p}\right)\right.$ by reciprocity);
(R2) $D=8 q, d_{1}=8(p=2), d_{2}=q$, and $q \equiv 1(\bmod 8)$;
(I1) $D=-p q, d_{1}=-p, d_{2}=q, p \equiv 3(\bmod 4), q \equiv 1(\bmod 4)$, and $\left(\frac{-p}{q}\right)=1$ ($=\left(\frac{q}{p}\right)$ by reciprocity);
(I2) $D=-8 p, d_{1}=-p, d_{2}=8(q=2)$, and $p \equiv 7(\bmod 8)$;
(I3) $D=-8 q, d_{1}=-8(p=2), d_{2}=q$, and $q \equiv 1(\bmod 8)$;
(I4) $D=-4 q, d_{1}=-4(p=2), d_{2}=q$, and $q \equiv 1(\bmod 8)$;
where (-) is the Legendre-Jacobi-Kronecker symbol.
Conditions for $h^{+}(D)$ to be divisible by 8 have been given by several authors for each case or cases ($[1,2,3,5,6,7,8,9,11,12,15]$). Some of them are reformulated in section 3. The purpose of this paper is to give some conditions for the divisibility by 16 of $h^{+}(D)$ for each case (cf. theorems $5.4,5.5$, $5.6,5.7,5.8$, and 6.7). The main ideas were announced in [18] and [19].

While in preparation of the manuscript P. Kaplan informed me that theorem 6.7 was proved also by K.S. Williams with a different method and furthermore he gave a congruence for $h(-4 q)$ modulo 16 ([17]).

[^0]1. 2-class field; divisibility by 4. Let 2^{e} be the order of the 2-class group of K, so that $2^{e} \| h^{+}(D)(e \geqq 1)$. Since the 2 -class group of $H^{+}(D)$ is cyclic, we have the following chain of subgroups:

$$
H^{+}(D) \supset H^{+}(D)^{2} \supset \cdots \supset H^{+}(D)^{2^{e}} .
$$

Denote by $K_{2^{k}}$ the class field of K corresponding to the subgroup $H^{+}(D)^{2^{k}}$. We have a tower of of class fields:

$$
K \subset K_{2} \subset \cdots \subset K_{2^{e}}
$$

$K_{2^{k}}$ is unramified at every finite prime in K and $\left[K_{2^{k}}: K\right]=\left(H^{+}(D): H^{+}(D)^{2^{k}}\right)=$ $2^{k}(1 \leqq k \leqq e)$.

Proposition 1.1 (Reichardt [14]). $\quad K_{2^{k}}$ is normal over \boldsymbol{Q}. The Galois group $G\left(K_{2^{k}} / \boldsymbol{Q}\right)$ is isomorphic to the dihedral group $D_{2^{k}}$ of order 2^{k+1}.

In particular $G\left(K_{2} / K\right) \cong Z_{2} \times Z_{2}$, where Z_{2} denotes a cyclic group of order 2. It is well-known and easy to see that

$$
K_{2}=\boldsymbol{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}\right)=A B
$$

where $A=\boldsymbol{Q}\left(\sqrt{d_{1}}\right)$ and $B=\boldsymbol{Q}\left(\sqrt{d_{2}}\right)$.
We write $\mathfrak{a} \sim \mathfrak{b}$ (resp. $\mathfrak{a} \approx \mathfrak{b}$), if ideals $\mathfrak{a}, \mathfrak{b}$ of K are in the same ideal class (resp. in the same narrow ideal class). As p and q are ramified in K, we have $(p)=\mathfrak{p}^{2},(q)=\mathfrak{q}^{2}$, where \mathfrak{p} and \mathfrak{q} are prime ideals of K. Denote the narrow ideal class containing $\mathfrak{p}($ resp. $\mathfrak{q})$ by $C^{+}(\mathfrak{p})\left(\right.$ resp. $\left.C^{+}(\mathfrak{q})\right)$. Then $C^{+}(\mathfrak{p})^{2}=C^{+}(\mathfrak{q})^{2}=1$.

It is also well-known that the elementary 2-subgroup of $H^{+}(D)$, which is isomorphic to Z_{2} in the present case, is generated by $C^{+}(\mathfrak{p})$ and $C^{+}(\mathfrak{q})$. So one of the three alternatives holds:
(i) $\quad C^{+}(\mathfrak{p})=1$ and $C^{+}(\mathfrak{q}) \neq 1$,
(ii) $\quad C^{+}(\mathfrak{p}) \neq 1$ and $C^{+}(\mathfrak{q})=1$,
(iii) $C^{+}(\mathfrak{p})=C^{+}(\mathfrak{q}) \neq 1$.

In case $D>0$ and $d_{i} \neq-4(i=1,2)$ we see easily that the condition (iii) holds if and only if $N_{K} \varepsilon_{D}=-1$. By class field theory, we get the following proposition which is a special case of a theorem of Redei and Reichardt [13].

Proposition 1.2. The following assertions are equivalent:
(a) $4 \mid h^{+}(D)$;
(b) both $C^{+}(\mathfrak{p})$ and $C^{+}(\mathfrak{q})$ belong to $H^{+}(D)^{2}$;
(c) both \mathfrak{p} and \mathfrak{q} split completely in K_{2};
(d) p and q split completely in B and A, respectively;
(e) $\left(\frac{d_{1}}{q}\right)=\left(\frac{d_{2}}{p}\right)=1$.

As a direct consequence of proposition 1.2 we have $4 \mid h^{+}(D)$ if and only if D belongs to one of the types (R1), (R2), (I1), (I2), (I3), (I4) in section 0.
2. Construction of \boldsymbol{K}_{4}. In this section we assume $4 \mid h^{+}(D)$, so that D belongs to one of (R1), \cdots, (I4) in section 0 . The class field K_{4} is normal over \boldsymbol{Q} and the Galois group $G\left(K_{4} / \boldsymbol{Q}\right)$ is isomorphic to the dihedral group D_{4} of order 8. The subfields of K_{4} are given as follows:

$$
\begin{aligned}
& A=\boldsymbol{Q}\left(\sqrt{d_{1}}\right) \\
& B=\boldsymbol{Q}\left(\sqrt{d_{2}}\right) \\
& A_{2}=A(\sqrt{\alpha}) \\
& A_{2}^{\prime}=A\left(\sqrt{\alpha^{\prime}}\right) \\
& B_{2}=B(\sqrt{\beta}) \\
& B_{2}^{\prime}=B\left(\sqrt{\beta^{\prime}}\right)
\end{aligned}
$$

where $\alpha \in A, \beta \in B, \alpha^{\prime}$ (resp. β^{\prime}) is the conjugate of α (resp. β) over \boldsymbol{Q}, and $\alpha \alpha^{\prime} \equiv d_{2}\left(\bmod \left(A^{\times}\right)^{2}\right), \beta \beta^{\prime} \equiv d_{1}\left(\bmod \left(B^{\times}\right)^{2}\right)$.

From proposition 1.2 it follows that q (resp. p) splits completely in A (resp. B). Let $(p)=\mathfrak{p}_{A}^{2},(q)=\mathfrak{q}_{A} \mathfrak{q}_{A}^{\prime}$ (resp. $\left.(q)=\mathfrak{q}_{B}^{2},(p)=\mathfrak{p}_{B} \mathfrak{p}_{B}^{\prime}\right)$ be the prime decompositions in A (resp. B) with prime ideals $\mathfrak{p}_{A}, \mathfrak{q}_{A}, \mathfrak{q}_{A}^{\prime}$ in A (resp. $\mathfrak{q}_{B}, \mathfrak{p}_{B}, \mathfrak{p}_{B}^{\prime}$ in B).

Let Q (resp. Q^{\prime}) be a prime divisor of $\mathfrak{q}_{A}\left(\right.$ resp. $\left.\mathfrak{q}_{A}^{\prime}\right)$ in K_{4}. Since the extension K_{4} / K is unramified at every finite prime the inertia field of Q with respect to K_{4} / Q is either A_{2} or A_{2}^{\prime}. We may choose A_{2}^{\prime} (resp. A_{2}) to be the inertia field of Q (resp. Q^{\prime}). Then we get easily that
(2.1) $\mathfrak{q}_{A}\left(\right.$ resp. $\left.\mathfrak{q}_{A}^{\prime}\right)$ is the only finite prime in A which ramifies in A_{2} (resp. $\left.A_{A}^{\prime}\right)$.

In the same way, by a suitable choice of B_{2} and B_{2}^{\prime}, we have
(2.2) $\mathfrak{p}_{B}\left(\right.$ resp. $\left.\mathfrak{p}_{B}^{\prime}\right)$ is the only finite prime in B which ramifies in $B_{2}\left(\right.$ resp. $\left.B_{2}^{\prime}\right)$.

As for the ramification of infinite primes, we can argue in the same way if $D<0$. Indeed when $D<0$ (types (I1), (I2), (I3), and (I4)), the infinite prime ∞ of \boldsymbol{Q} ramifies in $A, \infty=\infty_{A}^{2}$, and splits in $B, \infty=\infty_{B} \infty_{B}^{\prime}$. By a suitable choice of ∞_{B} and ∞_{B}^{\prime} we see that
(2.3) if $D<0$, then both A_{2} and A_{2}^{\prime} are unramified at ∞_{A}, and B_{2} (resp. B_{2}^{\prime}) is ramified at $\infty_{B}\left(\right.$ resp. $\left.\infty_{B}^{\prime}\right)$ and unramified at $\infty_{B}^{\prime}\left(\right.$ resp. $\left.\infty_{B}\right)$.

If $D>0$, both A and B are real, so that ∞ splits in A and $B, \infty=\infty_{A} \infty_{A}^{\prime}, \infty=$ $\infty_{B} \infty_{B}^{\prime}$. To go further, we have to take the absolute class number $h(D)$ into account. If $4 X h(D)$, then $2 \| h(D)$ and $N_{K} \varepsilon_{D}=1$, so that K_{4} is ramified at
every infinite prime of K, which implies that K_{2} is the inertia field of ∞ with respect to K_{4} / \boldsymbol{Q}, for K_{2} is normal over \boldsymbol{Q}. Hence we have
(2.4) if $D>0$ and $2 \| h(D)$, then every infinite prime of $A($ resp. B) ramifies in A_{2} and A_{2}^{\prime} (resp. B_{2} and B_{2}^{\prime}).
If $D>0$ and $4 \mid h(D)$ then K_{4} is unramified at every infinite prime over \boldsymbol{Q}. Hence we have
(2.5) if $D>0$ and $4 \mid h(D)$, then every infinite prime of $A($ resp. B) does not ramify in A_{2} and A_{2}^{\prime} (resp. B_{2} and $\left.B_{2}^{\prime}\right)$.

We denote by O_{F} the ring of integers of a number field F. Let f_{A} and χ_{A} (resp. f_{B} and χ_{B}) be the conductor and the Hecke ideal character attached to the quadratic extension A_{2} / A (resp. $\left.B_{2} / B\right)$.

Proposition 2.6. Suppose D belongs to type (R1). Then
(a) if $2 \| h(d)$, we have

$$
\begin{array}{lll}
f_{A}=\mathfrak{q}_{A} \infty_{A} \infty_{A}^{\prime}, & \chi_{A}((\lambda))=\left(\frac{\lambda}{\mathfrak{q}_{A}}\right) \operatorname{sgn} N_{A} \lambda & \left(\lambda \in O_{A}-\mathfrak{q}_{A}\right) ; \\
f_{B}=\mathfrak{p}_{B} \infty_{B} \infty_{B}^{\prime}, & \chi_{B}((\mu))=\left(\frac{\mu}{\mathfrak{p}_{B}}\right) \operatorname{sgn} N_{B} \mu & \left(\mu \in O_{B}-\mathfrak{p}_{B}\right)
\end{array}
$$

(b) if $4 \mid h(D)$, we have

$$
\begin{array}{lll}
f_{A}=\mathfrak{q}_{A}, & \chi_{A}((\lambda))=\left(\frac{\lambda}{\mathfrak{q}_{A}}\right) & \left(\lambda \in O_{A}-\mathfrak{q}_{A}\right) \\
f_{B}=\mathfrak{p}_{B}, & \chi_{B}((\mu))=\left(\frac{\mu}{\mathfrak{p}_{B}}\right) & \left(\mu \in O_{B}-\mathfrak{p}_{B}\right)
\end{array}
$$

where $\left(\frac{}{\mathfrak{q}_{A}}\right)\left(\right.$ resp. $\left(\overline{\mathfrak{p}_{B}}\right)$) denotes the quadratic residue symbol modulo \mathfrak{q}_{A} (resp. \mathfrak{p}_{B}).
Proof. If $2 \| h(D)$ then $N_{K} \varepsilon_{D}=1$. It follows from (2.1), (2.2), and (2.4) that the quadratic extension $A_{2} / A\left(\right.$ resp. $\left.B_{2} / B\right)$ is ramified at $\mathfrak{q}_{A}, \infty_{A}, \infty_{A}^{\prime}$ (resp. \mathfrak{p}_{B}, $\infty_{B}, \infty_{B}^{\prime}$) and unramified outside them. Hence

$$
\begin{aligned}
\chi_{A}((\lambda)) & =\left(\frac{\lambda, A_{2} / A}{\mathfrak{q}_{A}}\right)\left(\frac{\lambda, A_{2} / A}{\infty_{A}}\right)\left(\frac{\lambda, A_{2} / A}{\infty_{A}^{\prime}}\right) \quad \text { (norm-residue symbol) } \\
& =\left(\frac{\lambda, \alpha}{\mathfrak{q}_{A}}\right)\left(\frac{\lambda, \alpha}{\infty_{A}}\right)\left(\frac{\lambda, \alpha}{\infty_{A}^{\prime}}\right) \quad \text { (Hilbert symbol) } \\
& =\left(\frac{\lambda}{\mathfrak{q}_{A}}\right)(\operatorname{sgn} \lambda)\left(\operatorname{sgn} \lambda^{\prime}\right) \\
& =\left(\frac{\lambda}{\mathfrak{q}_{A}}\right) \operatorname{sgn} N_{A} \lambda \quad\left(\lambda \in O_{A}-\mathfrak{q}_{A}\right),
\end{aligned}
$$

which implies $f_{A}=\mathfrak{q}_{A} \infty_{A} \infty_{A}^{\prime}$. We have $\chi_{B}((\mu))=\left(\frac{\mu}{\mathfrak{p}_{B}}\right) \operatorname{sgn} N_{B} \mu$ and $f_{B}=\mathfrak{p}_{B} \infty_{B} \infty_{B}^{\prime}$ in the same way.

If $4 \mid h(D)$, then, from (2.1), (2.2), and (2.5), it follows that A_{2} / A (resp. $\left.B_{2} / B\right)$ is ramified only at \mathfrak{q}_{A} (resp. \mathfrak{p}_{B}). Hence the assertion (b) follows in the same way.
Q.E.D.

Proposition 2.7. Suppose D is of type (R2). Then
(a) if $2 \| h(D)$, we have

$$
\begin{array}{lll}
f_{A}=\mathfrak{q}_{A} \infty_{A} \infty_{A}^{\prime}, & \chi_{A}((\lambda))=\left(\frac{\lambda}{\mathfrak{q}_{A}}\right) \operatorname{sgn} N_{A} \lambda & \left(\lambda \in O_{A}-\mathfrak{q}_{A}\right) ; \\
f_{B}=\mathfrak{p}_{B}^{3} \infty_{B} \infty_{B}^{\prime}, & \chi_{B}((\mu))=\left(\frac{\mu}{\mathfrak{p}_{B}}\right) \operatorname{sgn} N_{B} \mu & \left(\mu \in O_{B}-\mathfrak{p}_{B}\right) ;
\end{array}
$$

(b) if $4 \mid h(D)$, we have

$$
\begin{array}{lll}
f_{A}=\mathfrak{q}_{A}, & \chi_{A}((\lambda))=\left(\frac{\lambda}{\mathfrak{q}_{A}}\right) & \left(\lambda \in O_{A}-\mathfrak{q}_{A}\right) ; \\
f_{B}=\mathfrak{p}_{B}^{3}, & \chi_{B}((\mu))=\left(\frac{\mu, 2}{\mathfrak{p}_{B}}\right) & \left(\mu \in O_{B}-\mathfrak{p}_{B}\right) ;
\end{array}
$$

where $\left(\frac{\mu, 2}{\mathfrak{p}_{B}}\right)=\left\{\begin{array}{r}1 \text { if } \mu \equiv 1,7\left(\bmod \mathfrak{p}_{B}^{3}\right), \\ -1 \text { if } \mu \equiv 3,5\left(\bmod \mathfrak{p}_{B}^{3}\right) .\end{array}\right.$
Proof. If $2 \| h(D)$ then $N_{K} \varepsilon_{D}=1$. It follows from (2.1), (2.2), and (2.4) that the quadratic extension A_{2} / A (resp. $\left.B_{2} / B\right)$ is ramified only at $\mathfrak{q}_{A}, \infty_{A}, \infty_{A}^{\prime}$ (resp. $\mathfrak{p}_{B}, \infty_{B}, \infty_{B}^{\prime}$). We have $\chi_{A}((\lambda))=\left(\frac{\lambda}{\mathfrak{q}_{A}}\right) \operatorname{sgn} N_{A} \lambda$ in the same way as in the proof of proposition 2.6 , while $\left(\frac{\mu, \beta}{\mathfrak{p}_{B}}\right)=\left(\frac{\mu, 2}{\mathfrak{p}_{B}}\right)$, which implies (a). Assertion (b) is proved similarly.
Q.E.D.

We obtain the corresponding results for the other types similarly.
Proposition 2.8. Suppose D is of type (I1), then

$$
\begin{array}{lll}
f_{A}=\mathfrak{q}_{A}, & \chi_{A}((\lambda))=\left(\frac{\lambda}{\mathfrak{q}_{A}}\right) & \left(\lambda \in O_{A}-\mathfrak{q}_{A}\right) ; \\
f_{B}=\mathfrak{p}_{B} \infty_{B}, & \chi_{B}((\mu))=\left(\frac{\mu}{\mathfrak{p}_{B}}\right)\left(\frac{\mu, \beta}{\infty_{B}}\right) & \left(\mu \in O_{B}-\mathfrak{p}_{B}\right) .
\end{array}
$$

Proposition 2.9. Suppose D is of type (I2), then

$$
f_{A}=\mathfrak{q}_{A}^{3}, \quad \chi_{A}((\lambda))=\left(\frac{\lambda, 2}{\mathfrak{q}_{A}}\right) \quad\left(\lambda \in O_{A}-\mathfrak{q}_{A}\right) ;
$$

$$
f_{B}=\mathfrak{p}_{B} \infty_{B}, \quad \chi_{B}((\mu))=\left(\frac{\mu}{\mathfrak{p}_{B}}\right)\left(\frac{\mu, \beta}{\infty_{B}}\right) \quad\left(\mu \in O_{B}-\mathfrak{p}_{B}\right)
$$

Proposition 2.10. Suppose D is of type (I3), then

$$
\begin{array}{lll}
f_{A}=\mathfrak{q}_{A}, & \chi_{A}((\lambda))=\left(\frac{\lambda}{\mathfrak{q}_{A}}\right) & \left(\lambda \in O_{A}-\mathfrak{q}_{A}\right) \\
f_{B}=\mathfrak{p}_{B}^{3} \infty_{B}, & \chi_{B}((\mu))=\left(\frac{\mu,-2}{\mathfrak{p}_{B}}\right)\left(\frac{\mu, \beta}{\infty_{B}}\right) & \left(\mu \in O_{B}-\mathfrak{p}_{B}\right),
\end{array}
$$

where $\left(\frac{\mu,-2}{\mathfrak{p}_{B}}\right)=\left\{\begin{aligned} 1 & \text { if } \mu \equiv 1,3\left(\bmod \mathfrak{p}_{B}^{3}\right), \\ -1 & \text { if } \mu \equiv 5,7\left(\bmod \mathfrak{p}_{B}^{3}\right) .\end{aligned}\right.$
Proposition 2.11. Suppose D is of type (I4), then

$$
\begin{array}{lll}
f_{A}=\mathfrak{q}_{A}, & \chi_{A}((\lambda))=\left(\frac{\lambda}{\mathfrak{q}_{A}}\right) & \left(\lambda \in O_{A}-\mathfrak{q}_{A}\right) \\
f_{B}=\mathfrak{p}_{B}^{2} \infty_{B}, & \chi_{B}((\mu))=\left(\frac{\mu,-1}{\mathfrak{p}_{B}}\right)\left(\frac{\mu, \beta}{\infty_{B}}\right) & \left(\mu \in O_{B}-\mathfrak{p}_{B}\right),
\end{array}
$$

where $\left(\frac{\mu,-1}{\mathfrak{p}_{B}}\right)=\left\{\begin{aligned} 1 & \text { if } \mu \equiv 1\left(\bmod \mathfrak{p}_{B}^{2}\right), \\ -1 & \text { if } \mu \equiv-1\left(\bmod \mathfrak{p}_{B}^{2}\right) .\end{aligned}\right.$
In propositions 2.8 to 2.11 the infinite prime ∞_{B} is defined by $\left(\frac{\beta, \beta}{\infty_{B}}\right)=-1$, so that $\left(\frac{\mu, \beta}{\infty_{B}}\right)$ is the sign of μ with respect to ∞_{B}.

Proposition 2.12. For each D, α and β can be taken so that they satisfy the following conditions:
(a) $\alpha \in O_{A}, \beta \in O_{B},\left(\alpha, \alpha^{\prime}\right)=1,\left(\beta, \beta^{\prime}\right)=1 ;$
(b)
(R1): $\left\{\begin{aligned} \alpha \alpha^{\prime} & =q^{h(p)}, \\ \alpha^{3} & \equiv 1(\bmod 4),\end{aligned}\right.$

$$
\begin{aligned}
\beta \beta^{\prime} & =p^{h(q)} \\
\beta^{3} & \equiv 1(\bmod 4) \\
\beta \beta^{\prime} & =2^{h(q)} \\
\beta+\beta^{\prime} & \equiv 2^{h(q)}+1(\bmod 4)
\end{aligned}
$$

(R2): $\left\{\begin{aligned} \alpha \alpha^{\prime} & =q, \\ \alpha & \equiv 1 \text { or } 3+2 \sqrt{2}(\bmod 4),\end{aligned}\right.$
(I1) : $\left\{\begin{aligned} \alpha \alpha^{\prime} & =q^{h(-p)}, \\ \alpha^{3} & \equiv 1(\bmod 4),\end{aligned}\right.$

$$
\begin{aligned}
\beta \beta^{\prime} & =-p^{h(q)} \\
\beta^{3} & \equiv 1(\bmod 4)
\end{aligned}
$$

(I2) : $\left\{\begin{array}{l}\alpha \alpha^{\prime}=2^{h(-p)}, \\ \alpha+\alpha^{\prime} \equiv 2^{h(-p)}+1(\bmod 4),\end{array}\right.$

$$
\beta \beta^{\prime}=-p
$$

$$
\beta \equiv 1 \text { or } 3+2 \sqrt{2}(\bmod 4)
$$

(I3) : $\left\{\begin{aligned} \alpha \alpha^{\prime} & =q, \\ \alpha & \equiv 1 \text { or } 3+2 \sqrt{-2}(\bmod 4),\end{aligned}\right.$
$\beta \beta^{\prime}=-2^{h(q)}$,
$\beta+\beta^{\prime} \equiv-2^{h(q)}+1(\bmod 4) ;$
(I4) : $\left\{\begin{aligned} \alpha \alpha^{\prime} & =q, \\ \alpha & \equiv \pm 1(\bmod 4),\end{aligned}\right.$

$$
\begin{aligned}
& \beta \beta^{\prime}=-1 \\
& \beta+\beta^{\prime} \equiv 0(\bmod 4) .
\end{aligned}
$$

Conversely, for each α (resp. β) satisfying (a) and (b) the field $A_{2}\left(\right.$ resp. $\left.B_{2}\right)$ is the field $A(\sqrt{\beta})(r e s p . B(\sqrt{\alpha}))$.

We remark that the condition $\alpha^{3} \equiv 1(\bmod 4)\left(\right.$ resp. $\left.\beta^{3} \equiv 1(\bmod 4)\right)$ is equivalent to $\alpha \equiv 1(\bmod 4)(\operatorname{resp} . \beta \equiv 1(\bmod 4))$ if $p \equiv 1(\bmod 8)(\operatorname{resp} . q \equiv 1(\bmod 8)$).

Proof. Since \mathfrak{q}_{A} is the unique finite prime which is ramified in $A_{2}=$ $A(\sqrt{\alpha})$ and $\alpha \alpha^{\prime} \equiv d_{2}\left(\bmod \left(A^{\times}\right)^{2}\right)$, we have $(\alpha)=\mathfrak{q}_{A} \mathfrak{a}^{2}$ with an ideal \mathfrak{a} in A. It is well-known that the class number $h\left(d_{1}\right)$ is odd. Put $\mathfrak{a}^{h\left(d_{1}\right)}=(\gamma)$. We may replace α by $\alpha^{h\left(d_{1}\right) \gamma^{-2}}$, then $(\alpha)=q_{A}^{h\left(d_{1}\right)}$, so that $\alpha \in O_{A},\left(\alpha, \alpha^{\prime}\right)=1$, and $\alpha \alpha^{\prime}=$ $\pm N_{A} q_{A}^{h\left(d_{1}\right)}= \pm q^{h\left(d_{1}\right)}$. The sign of the right hand side is determined by the multiplicative congruence $\alpha \alpha^{\prime} \equiv d_{2}\left(\bmod \left(A^{\times}\right)^{2}\right)$. Let r_{A} be a prime ideal in A such that $\mathfrak{r}_{A} \mid(2)$ and $\mathfrak{r}_{A} \neq \mathfrak{q}_{A}$. The ideal \mathfrak{r}_{A} is unramified in A_{2} if and only if there exists an integer $\delta \in O_{A}$ such that $\alpha \equiv \delta^{2}\left(\bmod \mathrm{r}_{A}^{2 e}\right)$, where e is the index of ramification of \mathfrak{r}_{A} with respect to A / \boldsymbol{Q}, that is, $\mathfrak{r}_{A}^{e} \|(2)$. Hence we have

$$
\begin{array}{ll}
\alpha^{3} \equiv 1(\bmod 4) & \text { if } p \neq 2 \text { and } q \neq 2 ; \\
\alpha \equiv \text { a square }(\bmod 4) & \text { if } p=2 \text { and } q \neq 2 ; \\
\alpha \equiv 1\left(\bmod \mathfrak{q}_{A}^{\prime 2}\right) & \text { if } p \neq 2 \text { and } q=2 .
\end{array}
$$

In the last case $(p \neq 2, q=2)$, it follows from $\alpha^{\prime} \equiv 1\left(\bmod q_{A}^{2}\right)$ that $(\alpha-1)\left(\alpha^{\prime}-1\right)$ $=2^{n\left(d_{1}\right)}-\alpha-\alpha^{\prime}+1 \equiv 0(\bmod 4)$. We can argue similarly for β except in the case (I4), in which we may proceed as follows. Since $\beta \beta^{\prime} \equiv-4\left(\bmod \left(B^{\times}\right)^{2}\right)$, we have $\beta \in O_{B}$ and $\beta \beta^{\prime}=-1$, that is, β is a unit, by a suitable choice of representative β modulo $\left(B^{\times}\right)^{2}$. As $B(\sqrt{\beta}) / B$ is ramified at \mathfrak{p}_{B} and unramified at $\mathfrak{p}_{B}^{\prime}$, we have $\beta \equiv-1\left(\bmod \mathfrak{p}_{B}^{2}\right)$ and $\beta \equiv 1\left(\bmod \mathfrak{p}_{B}^{\prime 2}\right)$. Hence $\beta-1 \equiv 0\left(\bmod \mathfrak{p}_{B} \mathfrak{p}_{B}^{\prime 2}\right)$ and $(\beta-1)\left(\beta^{\prime}-1\right)=-\beta-\beta^{\prime} \equiv 0(\bmod 8)$, which implies $\beta+\beta^{\prime} \equiv 0(\bmod 8)$. Conversely, if we take α, β satisfying conditions (a) and (b) then it is easily seen that $A\left(\sqrt{\alpha}, \sqrt{\alpha^{\prime}}\right)\left(\right.$ resp. $\left.B\left(\sqrt{\beta}, \sqrt{\beta^{\prime}}\right)\right)$ is a Galois extension of \boldsymbol{Q} with Galois group isomorphic to D_{4} and it is a cyclic extension of K unramified at every finite prime. Hence it must be K_{4} by class field theory. So we have $A_{2}=A(\sqrt{\alpha})$ and $B_{2}=B(\sqrt{\bar{\beta}})$.
Q.E.D.

We remark that in case (I4) we mac take $\beta=T+U \sqrt{ } \bar{q}=\varepsilon_{q}$, the fundamental unit of $B(T, U \in Z, T>0, U>0)$, in which case $T \equiv 0(\bmod 4)$ follows as a corollary.

Putting, for each D, respectively:

$$
\begin{equation*}
\alpha=\frac{x+y \sqrt{p}}{2}, \quad \beta=\frac{z+w \sqrt{q}}{2} ; \tag{R1}
\end{equation*}
$$

(R2)*: $\quad \alpha=x+y \sqrt{2}, \quad \beta=\frac{z+w \sqrt{q}}{2}$;
(I1)* :
$\alpha=\frac{x+y \sqrt{-p}}{2}, \quad \beta=\frac{z+w \sqrt{q}}{2} ;$
(I2)* : $\alpha=\frac{x+y \sqrt{-p}}{2}, \quad \beta=z+w \sqrt{2} ;$
(I3)*: $\quad \alpha=x+y \sqrt{-2}, \quad \beta=\frac{z+w \sqrt{q}}{2}$;
(I4)*: $\quad \alpha=x+y \sqrt{-1}, \quad \beta=z+w \sqrt{q}$;
$(x, y, z, w \in Z)$, it is easy to see
Proposition 2.13. The conditions (a), (b) of proposition 2.12 is equivalent to the following conditions:
(c) $x, y, z, w \in \boldsymbol{Z}$ and $q X(x, y), p \nmid(z, w)$;
(d)
(R1)**: $\begin{cases}x^{2}-p y^{2}=4 q^{h(p)}, & z^{2}-q w^{2}=4 p^{h(q)}, \\ \left(\frac{x+y \sqrt{p}}{2}\right)^{3} \equiv 1(\bmod 4), & \left(\frac{z+w \sqrt{q}}{2}\right)^{3} \equiv 1(\bmod 4) ;\end{cases}$
$(\mathrm{R} 2)^{* *}:\left\{\begin{array}{l}x^{2}-2 y^{2}=q, \\ (x, y) \equiv(1,0) \text { or }(3,2)(\bmod 4),\end{array}\right.$

$$
\begin{aligned}
& z^{2}-q w^{2}=2^{h(q)+2} \\
& z \equiv 2^{h(q)}+1(\bmod 4)
\end{aligned}
$$

$(\mathrm{I} 1)^{* *}:\left\{\begin{array}{l}x^{2}+p y^{2}=4 q^{h(-p)}, \\ \left(\frac{x+y \sqrt{-p}}{2}\right)^{3} \equiv 1(\bmod 4),\end{array}\right.$

$$
\begin{aligned}
& z^{2}-q z w^{2}=-4 p^{h(q)} \\
& \left(\frac{z+w \sqrt{q}}{2}\right)^{3} \equiv 1(\bmod 4)
\end{aligned}
$$

$(\mathrm{I} 2)^{* *}:\left\{\begin{array}{l}x^{2}+p y^{2}=4 q^{h(-p)}, \\ x \equiv 2^{h(-p)}+1(\bmod 4),\end{array}\right.$
$z^{2}-2 w^{2}=-p$,
$(\mathrm{I} 3)^{* *}:\left\{\begin{array}{l}x^{2}+2 y^{2}=q, \\ (x, y) \equiv(1,0) \text { or }(3,2)(\bmod 4),\end{array}\right.$
$(z, w) \equiv(1,0)$ or $(3,2)(\bmod 4)$;
$z^{2}-q w^{2}=-2^{h(q)+2}$,
$z \equiv-2^{h(q)}+1(\bmod 4) ;$
$(\mathrm{I} 4) * *:\left\{\begin{array}{l}x^{2}+y^{2}=q, \\ y \equiv 0(\bmod 4),\end{array}\right.$

$$
\begin{aligned}
& z^{2}-q w^{2}=-1 \\
& z \equiv 0(\bmod 4)
\end{aligned}
$$

We remark that $\left(\frac{x+y \sqrt{d}}{2}\right)^{3} \equiv 1(\bmod 4)$ if and only if

$$
\begin{aligned}
& (x, y) \equiv(2,0) \text { or }(6,4)(\bmod 8) \\
& \begin{array}{c}
\text { if } d \equiv 1(\bmod 8) \\
(x, y) \equiv(2,0),(6,4),(3,1),(3,7),(7,3), \text { or }(7,5)(\bmod 8) \\
\text { if } d \equiv 5(\bmod 16) \\
(x, y) \equiv(2,0),(6,4),(3,3),(3,5),(7,1), \text { or }(7,7)(\bmod 8) \\
\text { if } d \equiv 13(\bmod 16) .
\end{array}
\end{aligned}
$$

3. Divisibility by 8. Assume $4 \mid h^{+}(D)$, then, in the same way as in section 1, we have the following criterion for the class number $h^{+}(D)$ to be divisible by 8 :

Proposition 3.1. The following conditions are equivalent:
(a) $8 \mid h^{+}(D)$;
(b) both $C^{+}(\mathfrak{p})$ and $C^{+}(\mathfrak{q})$ belong to $H^{+}(D)^{4}$;
(c) both \mathfrak{p} and \mathfrak{q} split completely in K_{4}.

Using the notation of section 2 , we obtain easily:
Lemma 3.2. The following conditions are equivalent:
(a) $C^{+}(\mathfrak{p}) \in H^{+}(D)^{4}\left(\right.$ resp. $\left.C^{+}(\mathfrak{q}) \in H^{+}(D)^{4}\right)$;
(b) $\mathfrak{p}($ resp. $\mathfrak{q})$ splits completely in K_{4} / K;
(c) $\mathfrak{p}_{A}\left(\right.$ resp. $\left.\mathfrak{q}_{B}\right)$ splits completely in $A_{2} \mid A\left(\right.$ resp. $\left.B_{2} \mid B\right)$;
(d) $\mathfrak{p}_{B}^{\prime}\left(\right.$ resp. $\left.\mathfrak{q}_{A}^{\prime}\right)$ splits completely in $B_{2} \mid B\left(r e s p . A_{2} \mid A\right)$;
(e) $\chi_{A}\left(\mathfrak{p}_{A}\right)=1\left(\operatorname{resp} . \chi_{B}\left(\mathfrak{q}_{B}\right)=1\right)$;
(f) $\chi_{B}\left(\mathfrak{p}_{B}^{\prime}\right)=1\left(\right.$ resp. $\left.\chi_{A}\left(q_{A}^{\prime}\right)=1\right)$.

Proposition 3.3 (cf. [12] [3] [9]). Suppose D is of type (R1). Then we have
(a) $2 \| h(d)$ if and only if $\left(\frac{p}{q}\right)_{4}\left(\frac{q}{p}\right)_{4}=-1$;
if $\left(\frac{2}{q}\right)_{4}=-1$ and $\left(\frac{q}{2}\right)_{4}=1$ then $\mathfrak{p} \approx 1$ and $\mathfrak{q} \not \approx 1$;
if $\left(\frac{2}{q}\right)_{4}=1$ and $\left(\frac{q}{2}\right)_{4}=-1$ then $\mathfrak{p} \not \approx 1$ and $\mathfrak{q} \approx 1$;
(b) $4 \| h(D)$ and $N_{K} \varepsilon_{D}=-1$ if and only if $\left(\frac{p}{q}\right)_{4}=\left(\frac{q}{p}\right)_{4}=-1$;
(c) $8 \mid h^{+}(D)$ if and only if $\left(\frac{p}{q}\right)_{4}=\left(\frac{q}{p}\right)_{4}=1$;
(d) $\left(\frac{p}{q}\right)_{4}=(-1)^{h(D) / 2}\left(\frac{z}{p}\right)$ and $\left(\frac{q}{p}\right)_{4}=(-1)^{h(D) / 2}\left(\frac{x}{q}\right)$,
where x, z are rational integers satisfying the conditions (c), (d) (R1)** of proposition 2.13.

Proof. Assume $2 \| h(D)$. Since $N_{K} \varepsilon_{D}=1$ we have $\mathfrak{p} \approx 1$ and $\mathfrak{q} \neq 1$ or $\mathfrak{p} \neq 1$ and $\mathfrak{q} \approx 1$ alternatively. In the first case we have $C^{+}(\mathfrak{p}) \in H^{+}(D)^{4}$ and $C^{+}(\mathfrak{q}) \notin H^{+}(D)^{4}$, hence, by proposition 2.6 (a) and lemma 3.2,

$$
1=\chi_{A}\left(\mathfrak{p}_{A}\right)=\chi_{A}((\sqrt{p}))=\left(\frac{\sqrt{p}}{\mathfrak{q}_{A}}\right) \operatorname{sgn} N_{A} \sqrt{p}=-\left(\frac{p}{q}\right)_{4},
$$

$$
-1=\chi_{B}\left(\mathfrak{q}_{B}\right)=\chi_{B}((\sqrt{q}))=\left(\frac{\sqrt{q}}{\mathfrak{p}_{B}}\right) \operatorname{sgn} N_{B} \sqrt{q}=-\left(\frac{q}{p}\right)_{A} .
$$

In the same way we have $\left(\frac{p}{q}\right)_{4}=1$ and $\left(\frac{q}{p}\right)_{4}=-1$ for the latter case.
Next, assume $4 \mid h(D)$, then, by proposition $2.6(\mathrm{~b})$, we have $\chi_{A}\left(\mathfrak{p}_{A}\right)=$ $\left(\frac{\sqrt{p}}{\mathfrak{q}_{A}}\right)=\left(\frac{p}{q}\right)_{4}$ and $\chi_{B}\left(\mathfrak{q}_{B}\right)=\left(\frac{\sqrt{q}}{\mathfrak{p}_{B}}\right)=\left(\frac{q}{p}\right)_{4}$. If $8 \nmid h^{+}(D)$ then $4 \| h(D)$ and $N_{K} \varepsilon_{D}=-1$, hence $\mathfrak{p} \approx \mathfrak{q} \neq 1$ and we see, by proposition 3.1 and lemma 3.2, $C^{+}(\mathfrak{p})=C^{+}(\mathfrak{q}) \notin H^{+}(D)^{4}$ and $\chi_{A}\left(\mathfrak{p}_{A}\right)=\chi_{B}\left(\mathfrak{q}_{B}\right)=-1$. If $8 \mid h^{+}(D)$, then we get $\chi_{A}\left(\mathfrak{p}_{A}\right)=\chi_{B}\left(\mathfrak{q}_{B}\right)=1$ in the same way. To sum up, we get the assertions (a), (b), (c), and that

$$
\chi_{A}\left(\mathfrak{p}_{A}\right)=(-1)^{h(D) / 2}\left(\frac{p}{q}\right)_{4} \text { and } \chi_{B}\left(\mathfrak{q}_{B}\right)=(-1)^{h(D) / 2}\left(\frac{q}{p}\right)_{4} .
$$

On the other hand, since $h\left(d_{1}\right)$ and $h\left(d_{2}\right)$ are odd,

$$
\begin{aligned}
\chi_{A}\left(\mathfrak{p}_{A}\right) & =\chi_{B}\left(\mathfrak{p}_{B}^{\prime}\right) \quad(\text { lemma 3.2) } \\
& =\chi_{B}\left(\mathfrak{p}_{B}^{\prime}\right)^{h\left(d_{2}\right)}=\chi_{B}\left(\left(\beta^{\prime}\right)\right) \\
& =\left(\frac{\beta^{\prime}}{\mathfrak{p}_{B}}\right) \quad \text { (proposition 2.6, proposition 2.12) } \\
& =\left(\frac{\beta+\beta^{\prime}}{\mathfrak{p}_{B}}\right)=\left(\frac{z}{p}\right) \quad\left(\text { by }(\mathrm{R} 1)^{*}\right)
\end{aligned}
$$

and similarly $\chi_{B}\left(\mathfrak{q}_{B}\right)=\left(\frac{x}{q}\right)$, which imply the assertion (d).
Q.E.D.

Proposition 3.4 (cf. [12] [3] [9]). Suppose D is of type (R2). Then we have
(a) $2 \| h(D)$ if and only if $\left(\frac{2}{q}\right)_{4}\left(\frac{q}{2}\right)_{4}=-1$;

$$
\begin{aligned}
& \text { if }\left(\frac{p}{q}\right)_{4}=-1 \text { and }\left(\frac{q}{p}\right)_{4}=1 \text { then } \mathfrak{p} \approx 1 \text { and } \mathfrak{q} \neq 1 \\
& \text { if }\left(\frac{p}{q}\right)_{4}=1 \text { and }\left(\frac{q}{p}\right)_{4}=-1 \text { then } \mathfrak{p} \neq 1 \text { and } \mathfrak{q} \approx 1
\end{aligned}
$$

(b) $4 \| h(D)$ and $N_{K} \varepsilon_{D}=-1$ if and only if $\left(\frac{2}{q}\right)_{4}=\left(\frac{q}{2}\right)_{4}=-1$;
(c) $8 \mid h^{+}(D)$ if and only if $\left(\frac{2}{q}\right)_{4}=\left(\frac{q}{2}\right)_{4}=1$;
(d) $\left(\frac{2}{q}\right)_{4}=\left(\frac{z-2^{h(q)}}{2}\right)$ and $\left(\frac{q}{2}\right)_{4}\left(\frac{x}{q}\right)$,
where x, z are rational integers satisfying the conditions (c), (d) (R2)** of proposition 2.13 and

$$
\begin{aligned}
& \left(\frac{a}{2}\right)=1 \text { if } a \equiv 1(\bmod 8),\left(\frac{a}{2}\right)=-1 \text { if } a \equiv 5(\bmod 8) \\
& \left(\frac{a}{2}\right)_{4}=1 \text { if } a \equiv 1(\bmod 16),\left(\frac{a}{2}\right)_{4}=-1 \text { if } a \equiv 9(\bmod 16) .
\end{aligned}
$$

Proof. Using the following:

$$
\left\{\begin{array}{l}
\left(\frac{\sqrt{q}, 2}{\mathfrak{p}_{B}}\right)=\left(\frac{q}{2}\right)_{4} \tag{3.5}\\
\left(\frac{\beta^{\prime}, 2}{\mathfrak{p}_{B}}\right)=\left(\frac{z-2^{h(q)}}{2}\right),
\end{array}\right.
$$

we can argue in the same way as in the proof of proposition 3.3. The first equlity of (3.5) is checked straightforwardly. Since $\beta^{\prime} \equiv 1\left(\bmod \mathfrak{p}_{B}^{2}\right)$, we see $\left(\frac{\beta^{\prime}, 2}{\mathfrak{p}_{B}}\right)=1$ if and only if $\beta^{\prime} \equiv 1\left(\bmod \mathfrak{p}_{B}^{3}\right)$, that is, if and only if $(\beta-1)\left(\beta^{\prime}-1\right)$ $\equiv 0\left(\bmod \mathfrak{p}_{B}^{3}\right)$, for β 丰 $1\left(\bmod \mathfrak{p}_{B}\right)$; on the other hand $(\beta-1)\left(\beta^{\prime}-1\right)=\beta \beta^{\prime}-$ $\beta-\beta^{\prime}+1=2^{h(q)}-z+1$; so we get the latter equality of (3.5).
Q.E.D.

Proposition 3.5 (cf. [12] [9]). Suppose D is of type (I1), then

$$
\left(\frac{-p}{q}\right)_{4}=\left(\frac{x}{q}\right)=\left(\frac{z}{p}\right)=(-1)^{h(D) / 4} \text { and }\left(\frac{w}{p}\right)=\operatorname{sgn} w,
$$

where x, z, w are rational integers satisfying the conditions (c), (d) (I1)** of proposition 2.13.

Proof. Since $\mathfrak{p q}=(\sqrt{-p q}) \approx 1$, we have $\mathfrak{p} \approx \mathfrak{q} \neq 1$. It follows from proposition 3.1 and lemma 3.2 that $\chi_{A}\left(\mathfrak{p}_{A}\right)=\chi_{B}\left(\mathfrak{q}_{B}\right)=\chi_{B}\left(\mathfrak{p}_{B}^{\prime}\right)=\chi_{A}\left(\mathfrak{q}_{A}^{\prime}\right)=(-1)^{h^{+}(D) / 4}$. By proposition 2.8 we have

$$
\begin{aligned}
& \chi_{A}\left(\mathfrak{p}_{A}\right)=\left(\frac{\sqrt{-p}}{\mathfrak{q}_{A}}\right)=\left(\frac{-p}{\mathfrak{q}_{A}}\right)_{4}=\left(\frac{-p}{q}\right)_{4} \\
& \chi_{A}\left(\mathfrak{q}_{A}^{\prime}\right)=\chi_{A}\left(\mathfrak{q}_{A}^{\prime}\right)^{k(-p)}=\chi_{A}\left(\left(\alpha^{\prime}\right)\right)=\left(\frac{\alpha^{\prime}}{\mathfrak{q}_{A}}\right)=\left(\frac{\alpha+\alpha^{\prime}}{\mathfrak{q}_{A}}\right)=\left(\frac{x}{q}\right), \\
& \chi_{B}\left(\mathfrak{p}_{B}^{\prime}\right)=\chi_{B}\left(\mathfrak{p}_{B}^{\prime}\right)^{h(q)}=\chi_{B}\left(\left(\beta^{\prime}\right)\right)=\left(\frac{\beta^{\prime}}{\mathfrak{p}_{B}}\right)\left(\frac{\beta^{\prime}, \beta}{\infty_{B}}\right)=\left(\frac{z}{p}\right), \\
& \chi_{B}\left(\mathfrak{q}_{B}\right)=\chi_{B}((\sqrt{q}))=\left(\frac{\sqrt{q}}{\mathfrak{p}_{B}}\right)\left(\frac{\sqrt{q}, \beta}{\infty_{B}}\right) .
\end{aligned}
$$

It follows from $\left(\frac{\beta, \beta}{\infty_{B}}\right)=-1$ that $\left(\frac{\sqrt{q}, \beta}{\infty_{B}}\right)=-\operatorname{sgn} w$. Since $\beta=\frac{z+w \sqrt{q}}{2}$
$\equiv 0\left(\bmod \mathfrak{p}_{B}\right)$, we have $\sqrt{q} \equiv-\frac{z}{w}\left(\bmod \mathfrak{p}_{B}\right)$, so that $\chi_{B}\left(\mathfrak{q}_{B}\right)=\left(\frac{-z / w}{p}\right)(-\operatorname{sgn} w)$ $=\left(\frac{z w}{p}\right) \operatorname{sgn} w$, which implies $\left(\frac{w}{p}\right)=\operatorname{sgn} w$.
Q.E.D.

Proposition 3.6 (cf. [9]). Suppose D is of type (I2), then

$$
\left(\frac{-p}{2}\right)_{4}=\left(\frac{x-2^{k(-p)}}{2}\right)=\left(\frac{z}{p}\right)=(-1)^{h(D) / 4} \text { and }\left(\frac{w}{p}\right)=\operatorname{sgn} w,
$$

where x, z, w are rational integers satisfying the conditions (c), (d) (I2)** of proposition 2.13.

Proof. Since $\mathfrak{p q}=(\sqrt{-2 p}) \approx 1$, we see that $\mathfrak{p} \approx \mathfrak{q} \neq 1$. By proposition 3.1 and lemma 3.2 we have $\chi_{A}\left(\mathfrak{p}_{A}\right)=\chi_{B}\left(\mathfrak{q}_{B}\right)=\chi_{A}\left(\mathfrak{q}_{A}^{\prime}\right)=\chi_{B}\left(\mathfrak{p}_{B}^{\prime}\right)=(-1)^{h(D) / 4}$. By proposition 2.9 we have

$$
\begin{aligned}
& \chi_{A}\left(\mathfrak{p}_{A}\right)=\chi_{A}((\sqrt{-p}))=\left(\frac{\sqrt{-p}, 2}{\mathfrak{q}_{A}}\right)=\left(\frac{-p}{2}\right)_{4}, \\
& \chi_{A}\left(\mathfrak{q}_{A}^{\prime}\right)=\chi_{A}\left(\left(\alpha^{\prime}\right)\right)=\left(\frac{\alpha^{\prime}, 2}{\mathfrak{q}_{A}}\right)=\left(\frac{x-2^{h(-p)}}{2}\right), \\
& \chi_{B}\left(\mathfrak{p}_{B}^{\prime}\right)=\chi_{B}\left(\left(\beta^{\prime}\right)\right)=\left(\frac{\beta^{\prime}}{\mathfrak{p}_{B}}\right)\left(\frac{\beta^{\prime}, \beta}{\infty_{B}}\right)=\left(\frac{z}{p}\right), \\
& \chi_{B}\left(\mathfrak{q}_{B}\right)=\chi_{B}((\sqrt{2}))=\left(\frac{\sqrt{2}}{\mathfrak{p}_{B}}\right)\left(\frac{\sqrt{2}, \beta}{\infty_{B}}\right)=\left(\frac{z w}{p}\right) \operatorname{sgn} w,
\end{aligned}
$$

in the same way as in the proof of proposition 3.3, proposition 3.4, and proposition 3.5.
Q.E.D.

Proposition 3.7 (cf. [9]). Suppose D is of type (I3), then

$$
\left(\frac{-2}{q}\right)_{4}=\left(\frac{x}{q}\right)=\left(\frac{z+2^{h(q)}}{2}\right)=\left(\frac{q}{2}\right)_{4}(-\operatorname{sgn} w)=(-1)^{k(D) / 4}
$$

where x, z, w are rational integers satisfying the conditions (c), (d) (I3)** with $z+w \equiv 0(\bmod 4)$.

Proof. Since $\mathfrak{p q}=(\sqrt{-2 q}) \approx 1$, we have $\mathfrak{p} \approx \mathfrak{q} \neq 1$. By proposition 3.1 and lemma 3.2 we have

$$
\chi_{A}\left(\mathfrak{p}_{A}\right)=\chi_{B}\left(\mathfrak{q}_{B}\right)=\chi_{A}\left(\mathfrak{q}_{A}^{\prime}\right)=\chi_{B}\left(\mathfrak{p}_{B}^{\prime}\right)=(-1)^{h(D) / 4}
$$

By proposition 2.10, we have

$$
\chi_{A}\left(\mathfrak{p}_{A}\right)=\chi_{A}\left((\sqrt{-2})=\left(\frac{\sqrt{-2}}{\mathfrak{q}_{A}}\right)_{4}=\left(\frac{-2}{q}\right)_{4}\right.
$$

$$
\begin{aligned}
& \chi_{A}\left(\mathfrak{q}_{A}^{\prime}\right)=\left(\left(\alpha^{\prime}\right)\right)=\left(\frac{\alpha^{\prime}}{\mathfrak{q}_{A}}\right)=\left(\frac{x}{q}\right), \\
& \chi_{B}\left(\mathfrak{p}_{B}^{\prime}\right)=\chi_{B}\left(\left(\beta^{\prime}\right)\right)=\left(\frac{\beta^{\prime},-2}{\mathfrak{p}_{B}}\right)\left(\frac{\beta^{\prime}, \beta}{\infty_{B}}\right)=\left(\frac{\beta^{\prime},-2}{\mathfrak{p}_{B}}\right)=\left(\frac{z+2^{h(q)}}{2}\right), \\
& \chi_{B}\left(\mathfrak{q}_{B}\right)=\chi_{B}((\sqrt{q}))=\left(\frac{\sqrt{q},-2}{\mathfrak{p}_{B}}\right)\left(\frac{\sqrt{q}, \beta}{\infty_{B}}\right) .
\end{aligned}
$$

We may safely assume $\sqrt{q} \equiv 1\left(\bmod \mathfrak{p}_{B}^{2}\right)$, by transposing \mathfrak{p}_{B} and $\mathfrak{p}_{B}^{\prime}$ if necessary, obtaining $\left(\frac{\sqrt{q},-2}{\mathfrak{p}_{B}}\right)=\left(\frac{q}{2}\right)_{4}$ and $2 \beta \equiv z+w \sqrt{q} \equiv z+w\left(\bmod \mathfrak{p}_{B}^{2}\right)$. Hence we have $z+w \equiv 0(\bmod 4)$, which determines the sign of w. It follows from $\beta<0$ and $\beta^{\prime}>0$ with respect to ∞_{B} that $w \sqrt{q}<0$ with respect to ∞_{B}, which implies $\left(\frac{\sqrt{q}, \beta}{\infty_{B}}\right)=-s g n w$.
Q.E.D.

Proposition 3.8 (cf. [11] [4] [10]). Suppose D is of type (I4), then

$$
\begin{aligned}
& \left(\frac{2}{q}\right)_{4}\left(\frac{q}{2}\right)_{4}=(-1)^{z / 4}=(-1)^{h(d) / 4} \\
& \left(\frac{x}{q}\right)=1, \quad \text { and } \quad w \equiv 1(\bmod 4)
\end{aligned}
$$

where x, z, w are rational integers satisfying the conditions (c), (d) (I4)** of proposition 2.13.

Proof. Since $q=(\sqrt{-q}) \approx 1$, we get $\mathfrak{p} \neq 1$, so that, by proposition 3.1 and lemma 3.2, we have $\chi_{A}\left(\mathfrak{p}_{A}\right)=\chi_{B}\left(\mathfrak{p}_{B}^{\prime}\right)=(-1)^{h(D) / 4}$ and $\chi_{A}\left(\mathfrak{q}_{A}^{\prime}\right)=\chi_{B}\left(\mathfrak{q}_{B}\right)=1$. By proposition 2.11, we have

$$
\begin{aligned}
\chi_{A}\left(\mathfrak{p}_{A}\right) & =\chi_{A}((1+\sqrt{-1}))=\left(\frac{1+\sqrt{-1}}{\mathfrak{q}_{A}}\right)=\left(\frac{2 \sqrt{-1}}{\mathfrak{q}_{A}}\right)_{4} \\
& =\left(\frac{2}{q}\right)_{4}\left(\frac{q}{2}\right)_{4} .
\end{aligned}
$$

Since $B_{2}=B(\sqrt{\beta})$ and $\beta \equiv 1\left(\bmod \mathfrak{p}_{B}^{\prime 2}\right)$, we have $\chi_{B}\left(\mathfrak{p}_{B}^{\prime}\right)=1$ if and only if $\beta \equiv 1\left(\bmod \mathfrak{p}_{B}^{\prime 3}\right)$. As $\mathfrak{p}_{B} \|(\beta-1)$, we have $\beta \equiv 1\left(\bmod \mathfrak{p}_{B}^{\prime 3}\right)$ if and only if $(\beta-1)\left(\beta^{\prime}-1\right)=-2 z \equiv 0(\bmod 16) . \quad$ On the other hand,

$$
\begin{aligned}
& \chi_{A}\left(\mathfrak{q}_{A}^{\prime}\right)=\chi_{A}\left(\left(\alpha^{\prime}\right)\right)=\left(\frac{\alpha^{\prime}}{\mathfrak{q}_{A}}\right)=\left(\frac{x}{q}\right)=1, \\
& \chi_{B}\left(\mathfrak{q}_{B}\right)=\chi_{B}((\sqrt{q}))=\left(\frac{\sqrt{q},-1}{\mathfrak{p}_{B}}\right)\left(\frac{\sqrt{q}, \beta}{\infty_{B}}\right)=1 .
\end{aligned}
$$

Since $\sqrt{q} \equiv \pm 1\left(\bmod \mathfrak{p}_{B}^{2}\right)$, we have $\left(\frac{\sqrt{q}, \beta}{\infty_{B}}\right)= \pm 1$, which implies $w \lessgtr 0$,
while $\beta^{\prime}=z-w \sqrt{ } \bar{q} \equiv \mp w \equiv 1\left(\bmod \mathfrak{p}_{B}^{2}\right) . \quad$ Hence $|w| \equiv 1(\bmod 4) . \quad$ Q.E.D.
4. Construction of \boldsymbol{K}_{8}. We assume $8 \mid \boldsymbol{h}^{+}(\boldsymbol{D})$ throughout the rest of this paper. By proposition 1.2, K_{8} is a dihedral extension of \boldsymbol{Q} and both G (K_{8} / A_{2}) and $G\left(K_{2} / B_{2}\right)$ are isomorphic to $Z_{2} \times Z_{2}$. The intermediate fields of K_{8} / A_{2} and K_{8} / B_{2} are given in the following diagram:

$$
\begin{aligned}
& A_{2}=A_{4}\left(\sqrt{\alpha_{2}}\right), \quad \alpha_{2} \in A_{2} \\
& A_{4}^{\prime \prime}=A_{2}\left(\sqrt{\overline{\alpha_{2}^{\prime \prime}}}\right), \\
& B_{4}=B_{2}\left(\sqrt{\beta_{2}}\right), \quad \beta_{2} \in B_{2} \\
& B_{4}^{\prime \prime}=B_{2}\left(\sqrt{\beta_{2}^{\prime \prime}}\right), \\
& \alpha_{2} \alpha_{2}^{\prime \prime} \equiv \alpha^{\prime}\left(\bmod \left(A_{2}^{\times}\right)^{2}\right), \\
& \beta_{2} \beta_{2}^{\prime \prime} \equiv \beta^{\prime}\left(\bmod \left(B_{2}^{\times}\right)^{2}\right) ;
\end{aligned}
$$

where $\alpha_{2}^{\prime \prime}$ (resp. $\beta_{2}^{\prime \prime}$) denotes the conjugae of α_{2} over A (resp. of β_{2} over B). By proposition 3.1, both \mathfrak{p}_{A} and $\mathfrak{q}_{A}^{\prime}$ (resp. both $\mathfrak{p}_{B}^{\prime}$ and \mathfrak{q}_{B}) split completely in A_{2} (resp. in B_{2}) and $\mathfrak{q}_{A}\left(\right.$ resp. $\left.\mathfrak{p}_{B}\right)$ is ramified in A_{2} (resp. in B_{2}). We put

$$
\begin{array}{lll}
\mathfrak{p}_{A}=P_{A} P_{A}^{\prime \prime}, & \mathfrak{q}_{A}=\hat{Q}_{A}^{2}, & \mathfrak{q}_{A}^{\prime}=Q_{A} Q_{A}^{\prime \prime}, \\
\mathfrak{p}_{B}=\hat{P}_{B}^{2}, & \mathfrak{p}_{B}^{\prime}=P_{B} P_{B}^{\prime \prime}, & \mathfrak{q}_{B}=Q_{B} Q_{B}^{\prime \prime},
\end{array}
$$

with prime ideals $P_{A}, P_{A}^{\prime \prime}, \hat{Q}_{A}, Q_{A}, Q_{A}^{\prime \prime}$ in A_{2} (resp. $\hat{P}_{B}, P_{B}, P_{B}^{\prime \prime}, Q_{B}, Q_{B}^{\prime \prime}$ in B_{2}).
Since K_{8} / K is unramified at every finite prime, Q_{A} (resp. P_{B}) ramifies in either A_{4} or $A_{4}^{\prime \prime}$ (resp. B_{4} or $\left.B_{4}^{\prime \prime}\right)$. By a suitable choice, we may suppose that:
(4.1) $Q_{A}\left(\right.$ resp. $\left.P_{B}\right)$ is the only finite prime of $A_{2}\left(\right.$ resp. $\left.B_{2}\right)$, which is ramified in A_{4} (resp. B_{4}).

Arguing the ramification of the infinite primes in A_{2} (resp. B_{2}) as in section 2, we obtain:
(4.2) If $D<0$, then there is no (resp. only one (denoted by V_{B})) infinite prime in $A_{2}\left(\right.$ resp. $\left.B_{2}\right)$ which is ramified in $A_{4}\left(\right.$ resp. $\left.B_{4}\right)$.
(4.3) If $D>0,4 \| h(D)$, and $N_{K} \varepsilon_{D}=1$, then every infinite prime in A_{2} (resp. B_{2}) is ramified in $A_{4}\left(\right.$ resp. $\left.B_{4}\right)$.
(4.4) If $D>0$ and $8 \mid h(D)$, then every infinite prime in $A_{2}\left(\right.$ resp. $\left.B_{2}\right)$ is unramified in $A_{4}\left(r e s p . B_{4}\right)$.

Let ψ_{A} (resp. ψ_{B}) be the Hecke character of A_{2} (resp. B_{2}) which is attached to the quadratic extension A_{4} / A_{2} (resp. B_{4} / B_{2}). By (4.1), (4.2), (4.3), and (4.4) we determine ψ_{A} and ψ_{B} as follows:

Proposition 4.5. Suppose D is of type (R1) and $8 \mid h^{+}(D)$. Then
(a) if $4 \| h(D)$, we have

$$
\begin{array}{ll}
\psi_{A}((\lambda))=\left(\frac{\lambda}{Q_{A}}\right) \operatorname{sgn} N_{A_{2}} \lambda & \left(\lambda \in O_{A_{2}}-Q_{A}\right) ; \\
\psi_{B}((\mu))=\left(\frac{\mu}{P_{B}}\right) \operatorname{sgn} N_{B_{2}} \mu & \left(\mu \in O_{B_{2}}-P_{B}\right) ;
\end{array}
$$

(b) if $8 \mid h(D)$, we have

$$
\begin{array}{ll}
\psi_{A}((\lambda))=\left(\frac{\lambda}{Q_{A}}\right) & \left(\lambda \in O_{A_{2}}-Q_{A}\right) ; \\
\psi_{B}((\mu))=\left(\frac{\mu}{P_{B}}\right) & \left(\mu \in O_{B_{2}}-P_{B}\right) .
\end{array}
$$

Proof. (a) By (4.3) the primes of A_{2} which ramify in A_{4} consist of Q_{A} and all of the four infinite primes, so that

$$
\psi_{A}((\lambda))=\left(\frac{\lambda, A_{4} / A_{2}}{Q_{A}}\right) \prod_{v \mid \infty}\left(\frac{\lambda, A_{4} / A_{2}}{v}\right) .
$$

We have

$$
\left(\frac{\lambda, A_{4} / A_{2}}{Q_{A}}\right)=\left(\frac{\lambda, \alpha_{2}}{Q_{A}}\right)=\left(\frac{\lambda}{Q_{A}}\right)^{\operatorname{ord}\left(\omega_{2}\right)}=\left(\frac{\lambda}{Q_{A}}\right),
$$

where $\operatorname{ord}\left(\alpha_{2}\right)$ is the order of α_{2} with respect to Q_{A}, and

$$
\prod_{v \mid \infty}\left(\frac{\lambda, A_{4} / A_{2}}{v}\right)=\prod_{v \mid \infty} \operatorname{sgn} \lambda^{v}=N_{A_{2}} \lambda .
$$

This complete the proof of the first part of (a). The second part is obtained in the same way.
(b) The only prime of A_{2} which ramifies in A_{4} in this case is Q_{A}. Hence we have $\psi_{A}((\lambda))=\left(\frac{\lambda, A_{4} / A_{2}}{Q_{A}}\right)=\left(\frac{\lambda}{Q_{A}}\right)$. We can calculate $\psi_{B}((\mu))$ similarly.
Q.E.D.

Proposition 4.6. Suppose D is of type (R2) and $8 \mid h^{+}(D)$. Then
(a) if $4 \| h(D)$, we have

$$
\psi_{A}((\lambda))=\left(\frac{\lambda}{Q_{A}}\right) \operatorname{sgn} N_{A_{2}} \lambda \quad\left(\lambda \in O_{A_{2}}-Q_{A}\right) ;
$$

$$
\psi_{B}((\mu))=\left(\frac{\mu, 2}{P_{B}}\right) \operatorname{sgn} N_{B_{2}} \mu \quad\left(\mu \in O_{B_{2}}-P_{B}\right) ;
$$

(b) if $8 \mid h(D)$, we have

$$
\begin{array}{ll}
\psi_{A}((\lambda))=\left(\frac{\lambda}{Q_{A}}\right) & \left(\lambda \in O_{A_{2}}-Q_{A}\right) \\
\psi_{B}((\mu))=\left(\frac{\mu, 2}{P_{B}}\right) & \left(\mu \in O_{B_{2}}-P_{B}\right)
\end{array}
$$

Proof. Since $B_{4}^{\prime \prime}=B_{2}\left(\sqrt{\beta_{2}^{\prime \prime}}\right)$ is unramified at P_{B},

$$
\begin{aligned}
\left(\frac{\mu, B_{4} / B_{2}}{P_{B}}\right) & =\left(\frac{\mu, \beta_{2}}{P_{B}}\right)=\left(\frac{\mu, \beta_{2} \beta_{2}^{\prime \prime}}{P_{B}}\right)=\left(\frac{\mu, \beta^{\prime}}{P_{B}}\right) \\
& =\left(\frac{\mu, \beta \beta^{\prime}}{P_{B}}\right)=\left(\frac{\mu, 2}{P_{B}}\right)
\end{aligned}
$$

The rest of the proof is the same as that of proposition 4.5.
Q.E.D.

In the same way we have:
Proposition 4.7. Suppose D is of type (I1) and $8 \mid h(D)$, then

$$
\begin{array}{ll}
\psi_{A}((\lambda))=\left(\frac{\lambda}{Q_{A}}\right) & \left(\lambda \in O_{A_{2}}-Q_{A}\right) \\
\psi_{B}((\mu))=\left(\frac{\mu}{P_{B}}\right)\left(\frac{\mu, \beta_{2}}{V_{B}}\right) & \left(\mu \in O_{B_{2}}-P_{B}\right)
\end{array}
$$

Proposition 4.8. Suppose D is of type (I2) and $8 \mid h(D)$, then

$$
\begin{array}{ll}
\psi_{A}((\lambda))=\left(\frac{\lambda, 2}{Q_{A}}\right) & \left(\lambda \in O_{A_{2}}-Q_{A}\right) \\
\psi_{B}((\mu))=\left(\frac{\mu}{P_{B}}\right)\left(\frac{\mu, \beta_{2}}{V_{B}}\right) & \left(\mu \in O_{B_{2}}-P_{B}\right)
\end{array}
$$

Proposition 4.9. Suppose D is of type (I3) and $8 \mid h(D)$, then

$$
\begin{array}{ll}
\psi_{A}((\lambda))=\left(\frac{\lambda}{Q_{A}}\right) & \left(\lambda \in O_{A_{2}}-Q_{A}\right) \\
\psi_{B}((\mu))=\left(\frac{\mu,-2}{P_{B}}\right)\left(\frac{\mu, \beta_{2}}{V_{B}}\right) & \left(\mu \in O_{B_{2}}-P_{B}\right)
\end{array}
$$

Proposition 4.10. Suppose D is of type (I4) and $8 \mid h(D)$, then

$$
\psi_{A}((\lambda))=\left(\frac{\lambda}{Q_{A}}\right) \quad\left(\lambda \in O_{A_{2}}-Q_{A}\right)
$$

$$
\psi_{B}((\mu))=\left(\frac{\mu,-1}{P_{B}}\right)\left(\frac{\mu, \beta_{2}}{V_{B}}\right) \quad\left(\mu \in O_{B_{2}}-P_{B}\right) .
$$

5. Divisibility by 16. We assume $8 \mid h^{+}(D)$ in this section and obtain a criterion for $h^{+}(D)$ to be divisible by 16 in the same way as in section 3:

Proposition 5.1. The following conditions are equivalent:
(a) $16 \mid h^{+}(D)$;
(b) both $C^{+}(\mathfrak{p})$ and $C^{+}(\mathfrak{q})$ belong to $H^{+}(D)^{8}$;
(c) both \mathfrak{p} and \mathfrak{q} split completely in K_{8}.

Using the notation of previous sections, we obtain easily:
Lemma 5.2. The following conditions are equivalent:
(a) $C^{+}(\mathfrak{p}) \in H^{+}(D)^{8}\left(\right.$ resp. $\left.C^{+}(\mathfrak{q}) \in H^{+}(D)^{8}\right) ;$
(b) \mathfrak{p} (resp. \mathfrak{q}) splits completely in K_{8};
(c) $\hat{P}_{B}\left(\right.$ resp. $\left.\hat{Q}_{A}\right)$ splits completely in $B_{4}\left(\right.$ resp. $\left.A_{4}\right)$;
(d) $\psi_{B}\left(\hat{P}_{B}\right)=1\left(\right.$ resp. $\left.\psi_{A}\left(\hat{Q}_{A}\right)=1\right)$.

If $d_{1} \neq-4$, we can set

$$
(\alpha)=\mathfrak{q}_{A}^{h\left(d_{1}\right)}=\hat{Q}_{A}^{2 h\left(d_{1}\right)}, \quad(\beta)=\mathfrak{p}_{B}^{h\left(d_{2}\right)}=\hat{P}_{B}^{2 k\left(d_{2}\right)} .
$$

Hence we have:
Lemma 5.3. If $d_{1} \neq-4$, then

$$
\hat{Q}_{A}^{h\left(d_{1}\right)}=(\sqrt{\alpha}) \quad \text { and } \quad \hat{P}_{B}^{h\left(d_{2}\right)}=(\sqrt{\beta}) .
$$

Theorem 5.4. Suppose D is of type (R1) and $8 \mid h^{+}(D)$. Then we have (a) $4 \| h(D)$ if and only if $\left(\frac{z}{p}\right)_{4}\left(\frac{x}{q}\right)_{4}=-1$;

$$
\begin{aligned}
& \left(\frac{z}{p}\right)_{4}=1 \text { and }\left(\frac{x}{q}\right)_{4}=-1 \quad \text { if and only if } \mathfrak{p} \approx 1 \text { and } \mathfrak{q} \neq 1 ; \\
& \left(\frac{z}{p}\right)_{4}=-1 \text { and }\left(\frac{x}{q}\right)_{4}=1 \quad \text { if and only if } \mathfrak{p} \neq 1 \text { and } \mathfrak{q} \approx 1 ;
\end{aligned}
$$

(b) $8 \| h(D)$ and $N_{K} \varepsilon_{D}=-1$ if and only if $\left(\frac{z}{p}\right)_{4}=\left(\frac{x}{q}\right)_{4}=-1$;
(c) $16 \mid h^{+}(D)$ if and only if $\left(\frac{z}{p}\right)_{4}=\left(\frac{x}{q}\right)_{4}=1$;
where x, z are rational integers satisfying the conditions (c), (d) (R1)** of proposition 2.13.

Proof. Assume first that $4 \| h(D)$. Then, by proposition 4.5 and lemma 5.3, we have

$$
\begin{aligned}
& \psi_{B}\left(\hat{P}_{B}\right)=\psi_{B}\left(\hat{P}_{B}\right)^{h(q)}=\psi_{B}((\sqrt{\beta}))=\left(\frac{\sqrt{\beta}}{P_{B}}\right) \operatorname{sgn} N_{B_{2}} \sqrt{\beta}, \\
& \left(\frac{\sqrt{\beta}}{P_{B}}\right)=\left(\frac{\beta}{P_{B}}\right)_{4}=\left(\frac{\beta}{\mathfrak{p}_{B}^{\prime}}\right)_{4}=\left(\frac{\beta+\beta^{\prime}}{\mathfrak{p}_{B}^{\prime}}\right)_{4}=\left(\frac{z}{p}\right)_{4}, \quad \text { and } \\
& N_{B_{2}} \sqrt{\beta}=N_{B}(-\beta)=\beta \beta^{\prime}=p^{h(q)}>0 .
\end{aligned}
$$

Hence $\psi_{B}\left(\hat{P}_{B}\right)=\left(\frac{z}{p}\right)_{4}$. We obtain $\psi_{A}\left(\hat{Q}_{A}\right)=\left(\frac{x}{q}\right)_{4}$ similarly. On the other hand, as $N_{K} \varepsilon_{D}=1$, we have either $\mathfrak{p} \approx 1$ and $\mathfrak{q} \neq 1$ or $\mathfrak{p} \neq 1$ and $\mathfrak{q} \approx 1$. By lemma 5.2, we have $\psi_{B}\left(\hat{P}_{B}\right)=1$ and $\psi_{A}\left(\hat{Q}_{A}\right)=-1$ in the first case and $\psi_{B}\left(\hat{P}_{B}\right)=-1$ and $\psi_{A}\left(\hat{Q}_{A}\right)=1$ in the latter case.

Next, we assume that $8 \mid h(D)$. By proposition 4.5 (b), we have

$$
\begin{aligned}
& \psi_{B}\left(\hat{P}_{B}\right)=\psi_{B}((\sqrt{\beta}))=\left(\frac{\sqrt{\beta}}{P_{B}}\right)=\left(\frac{\beta}{P_{B}}\right)_{4}=\left(\frac{z}{p}\right)_{4} \\
& \psi_{A}\left(\hat{Q}_{A}\right)=\psi_{A}((\sqrt{\alpha}))=\left(\frac{\sqrt{\alpha}}{Q_{A}}\right)=\left(\frac{\alpha}{Q_{A}}\right)_{4}=\left(\frac{x}{q}\right)_{4}
\end{aligned}
$$

If $8 \| h(D)$ and $N_{K} \varepsilon_{D}=-1$, we have $\mathfrak{p} \approx \mathfrak{q} \neq 1$, hence $\psi_{B}\left(\dot{P}_{B}\right)=\psi_{A}\left(\hat{Q}_{A}\right)=-1$ by lemma 5.2. If $16 \mid h^{+}(D)$, then, by proposition 5.1 and lemma 5.2 , we have $\psi_{B}\left(\hat{P}_{B}\right)=\psi_{A}(\hat{Q})=1$.
Q.E.D.

Theorem 5.5. Suppose D is of type (R2) and $8 \mid h^{+}(D)$. Then we have
(a) $4 \| h(D)$ if and only if $\left(\frac{z-2^{h(q)}}{2}\right)_{4}\left(\frac{x}{q}\right)_{4}=-1$;

$$
\begin{aligned}
& \left(\frac{z-2^{h(q)}}{2}\right)_{4}=1 \text { and }\left(\frac{x}{q}\right)_{4}=-1 \quad \text { if and only if } \mathfrak{p} \approx 1 \text { and } \mathfrak{q} \neq 1 \\
& \left(\frac{z-2^{h(q)}}{2}\right)_{4}=-1 \text { and }\left(\frac{x}{q}\right)_{4}=1 . \quad \text { if and only if } \mathfrak{p} \neq 1 \text { and } \mathfrak{q} \approx 1
\end{aligned}
$$

(b) $8 \| h(D)$ and $N_{K} \varepsilon_{D}=-1 \quad$ if and only if $\left(\frac{z-2^{h(q)}}{2}\right)_{4}=\left(\frac{x}{q}\right)_{4}=-1$;
(c) $16 \mid h^{+}(D)$ if and only if $\left(\frac{z-2^{h(q)}}{2}\right)_{4}=\left(\frac{x}{q}\right)_{4}=1$;
where x, z are rational integers satisfying the conditions (c), (d) (R2)** of proposition 2.13.

Proof. If $4 \| h(D)$, then, by proposition 4.6 (a), we have

$$
\begin{aligned}
\psi_{B}\left(\hat{P}_{B}\right) & =\psi_{B}((\sqrt{\beta}))=\left(\frac{\sqrt{\beta}, 2}{P_{B}}\right) \operatorname{sgn} N_{B_{2}} \sqrt{\beta} \\
& =\left(\frac{\sqrt{\beta}, 2}{P_{B}}\right)=\left(\frac{\beta}{\mathfrak{p}_{B}^{\prime}}\right)_{4}
\end{aligned}
$$

where $\left(\frac{\beta}{\mathfrak{p}_{B}^{\prime}}\right)_{4}=1$ if $\beta \equiv 1\left(\bmod \mathfrak{p}_{B}^{\prime 4}\right)$ and $\left(\frac{\beta}{\mathfrak{p}_{B}^{\prime}}\right)_{4}=-1$ if $\beta \equiv 9\left(\bmod \mathfrak{p}_{B}^{\prime 4}\right)$. Since $\beta \equiv 1\left(\bmod \mathfrak{p}_{B}^{\prime 3}\right)$ and $\beta^{\prime} \equiv 1\left(\bmod \mathfrak{p}_{B}^{\prime}\right)$, we see that $\beta \equiv 1\left(\bmod \mathfrak{p}_{B}^{\prime 4}\right)$ if and only if $(\beta-1)\left(\beta^{\prime}-1\right)=2^{k(q)}-z+1 \equiv 0(\bmod 16)$, so that $\psi_{B}\left(\hat{P}_{B}\right)=\left(\frac{z-2^{h(q)}}{2}\right)_{4}$. The rest of the proof can be done in the same way as in theorem 5.4. Q.E.D.

Theorem 5.6. Suppose D is of type (I1) and $8 \mid h(D)$, then

$$
\left(\frac{x}{q}\right)_{4}=(-1)^{h(D) / 8}
$$

where x is a rational integer satisfying the conditions (c), (d) (I1)** of proposition 2.13.

Proof. Since $\mathfrak{p} \approx \mathfrak{q} \neq 1$, it follows from proposition 5.1 and lemma 5.2 that $\psi_{B}\left(\hat{P}_{B}\right)=\psi_{A}\left(\hat{Q}_{A}\right)=(-1)^{h(D) / 8}$. By proposition 4.7 and lemma 5.3, $\psi_{A}\left(\hat{Q}_{A}\right)=$ $\psi_{A}((\sqrt{\alpha}))=\left(\frac{\sqrt{\alpha}}{Q_{A}}\right)=\left(\frac{\alpha}{Q_{A}}\right)_{4}=\left(\frac{x}{q}\right)_{4}$.
Q.E.D.

Theorem 5.7. Suppose D is of type (I2) and $8 \mid h(D)$, then

$$
\left(\frac{x-2^{h(-p)}}{2}\right)_{4}=(-1)^{k(D) / 8}
$$

where x is a rational integer satisfying the conditions (c), (d) (I2)** of proposition 2.13.

Proof. Since $\mathfrak{p} \approx \mathfrak{q} \neq 1$, it follows from proposition 5.1 and lemma 5.2 that $\psi_{B}\left(\hat{P}_{B}\right)=\psi_{A}\left(\hat{Q}_{A}\right)=(-1)^{h(D) / 8}$. By proposition 4.8 and lemma 5.3, we have $\psi_{A}\left(\hat{Q}_{A}\right)=\psi_{A}((\sqrt{\alpha}))=\left(\frac{\sqrt{\alpha}, 2}{Q_{A}}\right)$, and we deduce that $\left(\frac{\sqrt{\alpha}, 2}{Q_{A}}\right)=\left(\frac{x-2^{k(-p)}}{2}\right)_{4}$ as in the proof of theorem 5.5.
Q.E.D.

Theorem 5.8. Suppose D is of type (I 3$)$ and $8 \mid h(D)$, then

$$
\left(\frac{2 x}{q}\right)_{4}=(-1)^{h(D) / 8}
$$

where x is a rational integer satisfying the conditions (c), (d) (I3)** of proposition 2.13.

Proof. Since $\mathfrak{p} \approx \mathfrak{q} \not \approx 1$, we have $\psi_{B}\left(\hat{P}_{B}\right)=\psi_{A}\left(\hat{Q}_{A}\right)=(-1)^{h(D) / 8}$. By proposition 4.9, we have $\psi_{A}\left(\hat{Q}_{A}\right)=\psi_{A}((\sqrt{\alpha}))=\left(\frac{\sqrt{\alpha}}{Q_{A}}\right)=\left(\frac{\alpha}{Q_{A}}\right)=\left(\frac{2 x}{q}\right)_{4} \quad$ Q.E.D.

For discriminants of type (I4), the above argument does not work well.

An alternative method is therefore given in the next section.
6. D of type (I4). We assume that D is of type (I4) and $8 \mid h(D)$ in this section. It is easy to see that

$$
K_{4}=K_{2}\left(\sqrt{\varepsilon_{q}}\right)=\boldsymbol{Q}\left(\sqrt{-1}, \sqrt{\varepsilon_{q}}\right)
$$

where $\varepsilon_{q}=T+U \sqrt{q}>1$ is the fundamental unit of B. The field K_{8} has been explicitly constructed by H. Cohn and G. Cooke [4] (cf. also [10]):

Lemma 6.1 (Cohn-Cooke).

$$
K_{8}=K_{4}\left(\sqrt{(f+\sqrt{-q})(1+\sqrt{-1}) \sqrt{\varepsilon_{q}}}\right)
$$

where e and f are rational integral solutions of

$$
\begin{equation*}
-q=f^{2}-2 e^{2} ; e>0, f \equiv-1(\bmod 4) . \tag{6.2}
\end{equation*}
$$

We let $\lambda=(f+\sqrt{-q})(1+\sqrt{-1}) \sqrt{\varepsilon_{q}}$, so that $K_{8}=K_{4}(\sqrt{\lambda})$. As P_{B} is ramified in K_{4}, we have $P_{B}=\mathscr{P}^{2}$ where \mathscr{P} is a prime ideal of K_{4}. It is easy to see that the completion of K_{4} at \mathscr{P} is isomorphic to $\boldsymbol{Q}_{2}(\sqrt{-1})$ and we may fix the isomorphism by taking

$$
\begin{equation*}
\sqrt{q} \equiv \frac{q+1}{2}\left(\bmod \mathfrak{p}_{B}^{\prime 3}\right) \quad \text { and } \quad \sqrt{\varepsilon_{q}} \equiv \frac{\varepsilon_{q}+1}{2}\left(\bmod P_{B}^{3}\right) \tag{6.3}
\end{equation*}
$$

We remark that $\mathscr{P}^{2}\left|P_{B}\right| \mathfrak{p}_{B}^{\prime} \mid(2)$. Denote by $O_{\mathscr{P}}$ the ring of \mathscr{P}-adic integers, then $\pi=1-\sqrt{-1}$ is a prime element of $O_{\mathscr{P}}$ and its maximal ideal is $\pi O_{\mathscr{P}}$, which is also denoted by \mathscr{P}. Since the ramification index of \mathscr{P} is 2 , we obtain easily:

Lemma 6.4. Let the \mathscr{P}-adic units be denoted by $O_{\mathscr{P}}^{\times}$. Then

$$
\mu \in O_{\mathscr{P}}^{\times^{2}} \text { if and only if } \mu \equiv \pm 1\left(\bmod \mathscr{P}^{5}\right)
$$

As $\lambda / \pi^{2} \in O_{\mathscr{Q}}^{\times}$, we have
Lemma 6.5. The following conditions are equivalent:
(a) $16 \mid h(D)$;
(b) \mathcal{P} splits completely in K_{8};
(c) $\lambda / \pi^{2} \equiv \pm 1\left(\bmod \mathscr{P}^{5}\right)$.

By simple calculations we have:
Lemma 6.6. (a) $f \equiv-\frac{q+1}{2}(\bmod 8)$;
(b) $\frac{f+\sqrt{-q}}{\pi} \equiv-\frac{q+1}{2}\left(\bmod \mathscr{P}^{5}\right)$.

Theorem 6.7 (Williams [17]). Suppose D is of type (I4) and $8 \mid h(D)$. Then $16 \mid h(D)$ if and only if $T \equiv q-1(\bmod 16)$, equivalently, $(-1)^{T / 8}\left(\frac{q}{2}\right)_{4}=$ $(-1)^{h(\mathcal{D}) / 8}$, where $\varepsilon_{q}=T+U \sqrt{q}>1$ is the fundamental unit of $\boldsymbol{Q} \sqrt{ }(\bar{q})$.

Proof. By (6.3) and lemma 6.6, we have

$$
\lambda / \pi^{2}=\frac{f+\sqrt{-q}}{\pi} \sqrt{\overline{\varepsilon_{q}}} \equiv-\frac{q+1}{2} \frac{\varepsilon_{q}+1}{2}\left(\bmod \mathscr{Q}^{5}\right),
$$

and so $\lambda / \pi^{2} \equiv \pm 1\left(\bmod \mathscr{Q}^{5}\right)$ if and only if

$$
\begin{equation*}
\frac{\varepsilon_{q}+1}{2} \equiv \pm \frac{q+1}{2}\left(\bmod \mathscr{P}^{5}\right) . \tag{6.8}
\end{equation*}
$$

As $q \equiv 1(\bmod 8)$ and $\varepsilon_{q} \equiv 1\left(\bmod \mathfrak{p}_{B}^{3}\right)$, that is, $q \equiv \varepsilon_{q} \equiv 1\left(\bmod \mathscr{P}^{6}\right)$, we obtain (6.8) if and only if $\varepsilon_{q} \equiv q\left(\bmod \mathscr{P}^{7}\right)$, that is, if and only if $\varepsilon_{q} \equiv q\left(\bmod \mathfrak{p}_{B}^{\prime}\right)$. It follows from lemma 6.5 that $16 \mid h(D)$ if and only if $\varepsilon_{q} \equiv q\left(\bmod \mathfrak{p}_{B}^{\prime}\right)$. Since $\varepsilon_{q} \equiv 1\left(\bmod _{B}^{\prime 3}\right)$ and $\varepsilon_{q} \equiv-1\left(\bmod \mathfrak{p}_{B}^{2}\right)$, we have $\varepsilon_{q} \equiv 1\left(\bmod \mathfrak{p}_{B}^{\prime}\right)$ if and only if $\left(\varepsilon_{q}-1\right)\left(\varepsilon_{q}^{\prime}-1\right)=2 T \equiv 0(\bmod 32)$. Hence we deduce $\varepsilon_{q}-1 \equiv T\left(\bmod \mathscr{P}_{B}^{\prime}\right)$.
Q.E.D.

References

[1] P. Barrucand and H. Cohn: Note on primes of type $x^{2}+32 y^{2}$, class number, and residuacity, J. Reine Angew. Math. 238 (1969), 67-70.
[2] E. Brown: The class number of $\mathbf{Q}(\sqrt{-p})$, for $p \equiv 1(\bmod 8)$ a prime, Proc. Amer. Math. Soc. 31 (1972), 381-383.
[3] J. Bucher: Neues über die Pell'schen Gleichung, Naturforschende Gesellschaft Mitteilungen Luzern 14 (1943), 1-18.
[4] H. Cohn and G. Cooke: Parametric form of an eight class field, Acta Arith. 30 (1976), 367-377.
[5] H. Hasse: Uber die Klassenzahl sap Körpers $\boldsymbol{P}(\sqrt{-2 p})$ mit einer Primzahl $p \neq 2$, J. Number Theory 1 (1969), 231-234.
[6] H. Hasse: Uber die Klassenzahl des Körpers $\boldsymbol{P}(\sqrt{-p})$ mit einer Primzahl $p \equiv 1$ mod. 2^{3}, Aequationes Math. 3 (1969), 165-169.
[7] H. Hasse: Uber die Teilbarkeit durch 2^{3} der Klassenzahl imaginär-quadratischer Zahlkorper mit genau zwei verschiedenen Diskriminantenprimteilern, J. Reine Angew. Math. 241 (1970), 1-6.
[8] H. Hasse: Uber die Teilbarkeit durch 2^{3} der Klassenzahl der quadratischen Zahlkörper mit genau zwei verschiedenen Discriminantenprimteilern, Math. Nachr. 46 (1970), 61-70.
[9] P. Kaplan: Divisibilité par 8 du nombre des classes des corps quadratiques dont le 2-groupe des classes est cyclique, et réciprocité biquadratique, J. Math. Soc. Japan 25 (1973), 596-608.
[10] P. Kaplan: Unité de norme -1 du $\boldsymbol{Q}(\sqrt{p})$ et corps de classes de degrée 8 de $\boldsymbol{Q}(\sqrt{-p})$ ou p est un nombre premier congru à 1 modulo 8, Acta Arith. 32 (1977), 239-243.
[11] E. Lehmer: On the quadratic character of some quadratic surds, J. Reine Angew. Math. 250 (1971), 42-48.
[12] L. Rédei: Uber die Grundeinheit und die durch 8 teilbaren Invarianten der absoluten Klasseengruppe im quadratischen Zahlkörpers, J. Reine Angew. Math. 171 (1934), 131-148.
[13] L. Rédei und H. Reichardt: Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1933), 69-74.
[14] H. Reichardt: Zur Struktur der absoluten Ioealklassengruppe im quadratischen Zahlkörper, J. Reine Angew. Math. 170 (1933), 75-82.
[15] H. Reichardt: Uber die 2-Klassengruppe gewisser quadratischer Zahlkörper, Math. Nachr. 46 (1970), 71-80.
[16] C.L. Siegel: Lectures on advanced analytic number theory, Bombey, 1961.
[17] K.S. Williams: On the class number of $\boldsymbol{Q}(\sqrt{-p})$ modulo 16 , for $p \equiv 1(\bmod 8)$ a prime, Acta Arith. 34 (1981), 381-398.
[18] Y. Yamamoto: 16-divisibilities of class numbers of quadratic fields, RIMS Kokyuroku 378 (1980), 82-87. (in Japanese)
[19] Y. Yamamoto: On the 2-parts of class numbers of quadratic fields, Report of symposium on group theory and its applications held at Osaka Univ. (1981), 66-74. (in Japanese)

Department of Mathematics Osaka University
Toyonaka, Osaka 560, Japan

[^0]: * Reseach supported partly by Grant-in-Aid for Scientific Research.

