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1. Introduction with problem setting

Homogeneous programming problems were first studied by Eisenberg [1]
in finite dimensional spaces and next by Schechter [7]. In this paper we shall
be concerned with more generalized homogeneous programming problems and
their duality relations.

More precisely, let X and Y be real linear spaces which are in duality with
respect to a bilinear functional <., <>, and let Z and W be real linear spaces
which are in duality with respect to a bilinear functional <{-, +>,. Hereafter
we denote <{-, ->, and (., >, by <, «> for simplicity. In this paper, we
assume that each one of the paired spaces is assigned the weak topology unless
otherwise stated. We denote by 7(X, Y) the Mackey topology on X. We also
assume that the cones considered have their vertices at the origin of the space.

Let P and Q be closed convex cones in X and Z respectively and denote
by P° and Q° the dual cones of P and Q. Let f be an extended real valued
function on X which is lower semicontinuous and sublinear, i.e., the epigraph
{(x,)EXXR; f(x)<r} of f is a closed convex cone or the empty set, and let
g be an extended real valued function on W which is upper semicontinuous
and superlinear, i.e.,, —g is sublinear. Note that if f is finite at some point,
then f does not take the value —co. Let W be an extended real valued function
on XX W such that ¥,=W(x, ) is lower semicontinuous and sublinear on W
for every fixed x€X and ¥,=W¥(-, w) is upper semicontinuous and superlinear
on X for every fixed weW. We assume that ¥ (0, 0)=f(0)=g(0)=0.

For the quintuple (¥,P, Q° f, g), we consider the following generalized
homogeneous programming problems (=HP) and its dual problem (=DHP):

(HP)  Find M = inf {f(x); xS},

where S= {xEP; g(w)<¥(x, w) for all wesQ°}.
(DHP) Find M* = sup{g(w); weS*},

where S*={weQ°; f(x) >¥(x, ) for all x&P}.
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Here we use the convention that the infimum of a real function on the empty
set () is equal to 4 oo.

Our aim is to find some conditions which assure that the above two pro-
blems have the same value and have optimal solutions. In the case where ¥
is continuous and bilinear, Schechter [7] investigated duality relations for these
problems. In the next section, we introduce programming problems with con-
straints of convex processes studied in [5], and state some relations between
those problems. In §3 and §4, we give main results. In §4, we deal with the
case where ¥ is bilinear and improve a result in [7].

2. Reduction of HP and DHP

In order to obtain a convex process and its adjoint process from W, we
consider the following two sets:

dom; V¥ = {x€X; W¥(x,w) s finite for some ws W},
dom, ¥ = {weW; ¥(x, w) is finite for some x& X} .

If x&dom, ¥, then ¥(x, 0)=0 and ¥(x, w)=+=— oo for all we W. Thus dom,¥
= {xeX; ¥(x,0)=0} and this set is closed, since ¥(-,0) is upper semicontinuous
on X. If wedom,¥, then ¥(0, w)=0 and ¥(x, w)=*+ oo for all x&X. Thus
dom, V= {we W; ¥(0, w)=0} and this set is closed. Note that ¥(x, w) is finite
if and only if x&dom ¥ and wedom V.

We recall the subdifferential 8 f(0) of f and the superdifferential 8g(0) of g

at the origins:
8f(0) = {yeY; {x, y><f(x) forall xeX},
9g(0) = {zeZ; {2, w>>g(w) forallweW}.

It is well-known that 8f(0) and 9g(0) are nonempty closed convex sets, and
that f(x)=sup ,es <%, ¥> for all x€ X and g(w)=inf,cp,0<2, w> for all weW.
If f is (X, Y)-continuous, then 9 f(0) is weakly compact (cf. [5; Lemma 1]).

Since ¥, is lower semicontinuous and sublinear on W, we can define the
subdifferential 8% ,(0) of ¥, at the origin for x& dom,¥:

v, (0) = {z€Z; <z, wy<V¥(x,w) forallwesW}.
Now we define a set-valued mapping 4 from X to Z by
(2.1) Ax = 0¥,(0) if x&€domy¥, and Ax = @ if xcdom,W¥ .
As an infinite version of [6; Theorem 39.4], we have

Proposition 1. The mapping A is a closed convex process from X to Z, i.e.,
graph A= {(x, 2); x&dom, ¥, s Ax} is a closed convex cone in X X Z.
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Proof. It is easy to check that iz 4(tx) if 2 Ax and t>0. Let x,, x,
dom V¥, z,€4x, and z,€4x, Since W(x;,4x, 0)>¥(x;, 0)+¥(x,, 0)=0 and
¥(-, 0) does not take the value + oo, x;,+x,&dom,¥. For all we W, ¥(x,+x,,
w) > W, )+ P (x5, w) =<2y, wP+<2p w) =<2,+25, w). Thus z,+2,E4(x,+
x,) and graph 4 is a convex cone.

Let {(x, 2,)} be a net in graph 4 which converges to (x,, 2,). Since dom ¥
is closed, x,=domy¥. For all we W, ¥(x, w)>lim sup ¥(x,, w)=>lim sup <{z,,
w>=<2y, wy. Thus z,&Ax, and graph 4 is closed.

We regard 4 as a supremum oriented convex process (see [5] or [6]). Then
the adjoint A* of A4 is defined by A*w={yeY; {x, y>><z, w) for all (x, 2)E
graph A}.

Proposition 2. A*w=0¥ ,(0)={yeY;{x, y>>¥(x, w) for all x€X} if
we domy, V¥, and A*w=0 if we: domy V.

Proof. Note that W(x,w)=sup,es.{2, W) =inf oy <%, y) for all x&
dom,¥ and w&dom, ¥ (cf. [5; Lemma 1]). Let w,&dom,¥. If y,€0¥,(0),
then <{x, y,»>W(x, wy) =<2, wy> for all (x, z)Egraph 4. Thus 9¥, (0)C A*w,.
Conversely if y,eA*w,, then <{x,y,>><{z,w,> for all x&domy¥ and z&Ax.
Thus <%, Yo >sup e .<3, Wo>="(x, w,) for all x&dom,¥. Since W(x, w,)=
— oo if xgdomyW, <x, y,)>"¥(x, wy) for all x€X. Therefore y,=90¥, (0) and
A*w,=0¥,,(0).

Let wyeedom, ¥, If y,&A*w,, then similarly we see that <{x, y,>>sup,ca,
{2, wey="U(x, wo)=+ oo for all x&dom,W¥. This is a contradiction, since dom ¥
is nonempty. Thus A*w,=@. This completes the proof.

Corollary. If xedom;¥V or wedomy ¥V, then W(x, w)=sup e 4,3, w>=
inf e g, <%, Y.

In connection with HP and DHP, we consider the following extremum
problems defined by the quintuple (4, P, O, f, £):

(22) Find M= inf {f(x); xS} ,
where $= {x&P; (Ax—0g(0)) N Q==0}.
(2.3) Find M* = sup {g(w); we$*} ,

where $*= {weQ°; (8f(0)—A*w) N P° +0}.
We have

Proposition 3. (1) ScS, $*CS* and M*<M*<M <M.
(2) If O+0g(0)—Ax is closed for every x< P, then S=38.
(3) If P°—af(0)+A*w is closed for every wsQ°, then S*=S*.
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Proof. (1) LetxcS. Then there exist z,€ Ax, z,0g(0) and g€ Q such
that g=2,—2,. For all we0°, g(w) <2, wy=<2,—¢q, w)><{2;, w><¥(x, w).
Thus x€S. Similarly we see that $*C.S*. It is easy to check that M*<M.
Therefore M* <M*<M < M.

(2) We assume that xS and x&=S. Then (Ax—08g(0))N Q=0. If Ax is
emtpy, then ¥(x, 0)=—oco. This is impossible since ¥(x, 0)>g(0)=0. Thus
Ax is nonempty. Since 0& Q+0g(0)— Ax, by the separation theorem there exist
w,& W and >0 such that {g+=2,—=,, we>>p for all g=Q, 2,€0g(0) and z,&
Ax. Then w,€0Q°, <2, wp>>p+<2;, w,> and thus g(wy)=inf, eq,0)<21, we>>
SUP ,,e4: {22 Wo)="¥(¥, w,). This is a contradiction. Thus SoS. By (1), we

see that S=S. .
(3) By Proposition 2, we can similarly see that S¥*=.S*.

By the aid of Proposition 3, the following duality theorem for (2.2) and
(2.3) is also applicable to HP and DHP in the case where f is 7(X, Y)-con-
tinuous on X. See [5; Theorem 1].

Theorem A. Assume that f is (X, Y)-continuous on X and the following
two conditions are satisfied :

(2.4) The set G = {(x, —=z, f(x)+7); x&domy ¥, 2 Ax, r > 0} +(—P) x (Q+
0g(0)) X {0} 2s a closed subset of X X ZX R .

(2.5) S=£0 or S*=%0.
Then M=M?*. Furthermore if M is finite, then there exists x,&S such that
f(x,)=M, i.c., problem (2.2) has an optimal solution.

3. First duality theorem

In this section, we establish a duality theorem by using the method of
Rockafellar as in [7].

Theorem 1. Assume that the following two conditions hold :

(3.1) domy¥>DP or dom,¥>DQO°.

(3.2) There exists wy€ Q° such that g(w,) =+ — oo and the 7(Y, X)-interior of (9 f(0)
—P° — A*w,) contains the origin. Then M*=M*=DM. Furthermore if S=Q, then
HP has an optimal solution.

Proof. Condition (3.2) implies M*#—oo. Since M*<M*<M, we may
assume that M* is finite. We define a convex function ® on W X Y by

D(w, y) = —g(w)+8(w|Q°)+3(y |0 f(0)—P°—A*w),
where 8(w|Q°)=0 for w€Q° and 8(w|Q°)=-+F oo for weQ°. Then — M*=
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inf {®(w, 0); wW}. Let ®* be the conjugate function of ®:
D*(z, x) = sup {{z, wr+<{x, y>—D(w, y); wEW, ye Y},
for z&Z and x€X. Then

@*(0, x) = sup {<x, y>+g(w); w=0° Ndom, ¥, y=3f(0)—P°—A*w}
= sup {<x, Y —<, y+-(8(w) =<, y2);
weQ° Ndomy ¥, ¥,€8£(0), y,=P°, y,€ A*w} .

In case x€ S, —<x, ¥,><0 and g(w)—<x, y> <0 so that ®*(0, ¥)=sup,es s
x, y>=f(x). In case x& P, sup,epe—<x, y>=-+ oo so that ®*(0, x)=-4co. We
consider the case where x € P and ¥ (x, W) < g(@W) for some w=Q°. If w==dom, P,
then x&dom,, ¥ by (3.1) so that W¥(x, W)=+ oco. Thisis a contradiction. There-
fore w edom, ¥ and there exists yEA*w such that {x, y><g(w) by Corollary
of Proposition 2. Since ty& A*(tw) for all t>0, we have ®*(0, x)=+co. Thus
—M=sup,ex—D*(0, x).

Condition (3.2) implies that ®(w,, y) is bounded above by —g(w,) in a 7(Y,
X)-neighborhood of 0. By [2; Proposition 2.5 in Chapter I], we see that ®(w,, y)
is continuous in a 7(Y, X)-neighborhood of 0. Thus by [2; Proposition 2.3 in
Chapter III], we have M*=M and HP has an optimal solution. Since M*<
M*< M, this completes the proof.

Now we examine condition (3.2). First we define a closed convex process
A from X to Z which is obtained by a modification of ¥. We set ¥(x, w)=
W(x, w) if k&P and weQ°, ¥(x, w)=+co if x&P and weQ°, and V(x, w)=
—oo if xee P. We define 4 by replacing ¥ by ¥ in (2.1).

Proposition 4. Assume that ¥ is finite on PX Q°. If the (Y, X)-interior
int(0f(0)—P°) of 0f(0)—P° is nonempty, then the following three conditions are
equivalent :

(3.3) There exists wyc Q° such that A*w,Nint(0 f(0)—P°)==0.
(3.4) There exists wy= Q° such that V(x, w,)<f(x) for all x& P with x=+0 .
(3.5) x€P, AxN Q=0 and f(x) <0 imply x=0 .

Proof. First we assume that (3.3) holds. Let y,&4*w,Nint(df(0)—P°) and
xeP with x==0. Then there exist y€ Y and #>0 such that {x, y>>0 and y,+
tyedf(0)—P°. Then y,+ty=y'—y” for some y'€0f(0) and y”=P°. We have
W(x, wo) <&, Yoo=<&, y' —y" —ty><<x, y'>—tx, y><f(x). Thus (3.4) holds.

Next we assume that (3.4) holds. Let x be an element in P such that 4xN
O=+0¢ and f(x)<0. Then for z€dxNQ, ¥(x, w))><2, we>>0> f(x). Thus
from (3.4) it follows that x=0.
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Finally we assume that (3.5) holds. If (3.3) does not hold, then 4*(Q°)N
int(8f(0)—P°)=@. Then by the separation theorem, there exists x,&X with
%y%0 such that {x,, y'—y”"><0 for all y'€8f(0) and y”"P° and <{x,, y>>0
for all weQ° Ndom,¥ and yeA*w. From the first inequality, it follows that
%,EP°°=P and f(x,)<0. By the second inequality, we have W(x,, w)>0 for
all weQ°. Thus 04x,N QO and this is a contradiction. Hence (3.5) implies
(3.3). This completes the proof.

If A is continuous and linear, it is easy to check that 4 can be replaced
by 4 in (3.5). Thus Proposition 4 is an improvement of [7; Lemma 3.2].
From Theorem 1 and Proposition 4, we have

Corollary. Assume that g is finite on Q°, W is finite on PXQ° and 7(Y,
X)-interior of 0 f(0)—P° is nonempty. If (3.5) holds and M* is finite, then M*=
M*=M and HP has an optimal solution.

We shall show that 4 cannot be replaced by 4 in (3.5) in general.

ExampLE. We take X=Y=R? Z=W=R? P=R%= {(x}, x,); ,>0, x,>0}
and Q= {(2y, 25, 23); 510, 2,<0, —c0o <2<+ oo}, We set fx)=—x,2,/(x,+x,)
if x=(x,, x,) €P with x=+0, f(x)=0 if x=0, f(x)=+ oo if x& P and g(w)=w,+w,
for all w=(wy, w,, ws) EW. Then P°={(y,,%,); 1>0, y,>0}, 0°={(w,, w,, w;);
,<0, w, <0, w;=0} and 9g(0)= {(1, 1, 0)}. By the definition of 3£(0), (y,, ¥.)
€0(0) if and only if —x,x,>(%,7,4%,Y,) (¥,+x,) for all positive numbers x, and
x,. By setting t=ux,/x,, (y,,¥,) €0(0) if and only if £y,+#(y,+y,+1)+y,<0 for
all £>0. From this we easily see that 9f(0)={(y,, y.)€—R3; »1+,+1<0 or
49,92 (n+3.+1)%.

Next we set W(x, w) = —2[(xw,+x5w,)w,]¥2 if x = (x;, x,) ER% and w=(w,,w,,
w,) € — R}, ¥(», w)=-+o0 if xR} and weE —R3, and W(x, w)=—co if xRS,

We show that Ax= {(z,, 2,, 23); 2,2,>3, 2,2;>3, 2,>0} if x=(x;, x,) ER2
and Ax=@ if xER5. Let x,>0and x,>0. If (2, 2,, 2;)EA4x, then —2[(x?w,
+-xdew;)e, ]2 > w2, +w,2,+wsz, for all negative numbers w,, w, and w;. We easily
see that 2,>0, 2,>0 and 2;,>0. Furthermore we have (e, B)=[(w2,+w,2,+
w,25)2— H(wiw, 5w, w, ] | wi = aP2i+20(212,— 201 +2,258) + 8223+ 28(2,25— 2x3)
+22>0 where a=w,/w, and B=w,/w,. Since Y(a, 0)>0 for all «>0, we have
2%,>x1. Similarly 2,2,>x3. Conversely if 2,, 2, and 2, are nonnegative, 2,2,
>ux? and 2,2,> x5, then

(w121 ,%,+w3%3) > 420,20,%,2,+ 410,232, 3
> 4(xiw,+ x3ws)w,
for all negative numbers w,, w, and w;, and thus (2, 2,, 2;) € Ax.

Similarly we have Ax= {(2,, 2,, 25); 218, >3, 2,>0}. Thus we see that x&
P and AxN Q=@ imply x=0, but condition (3.5) is not satisfied.
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We can easily see that A*w=A*w= {(y,,y,); 1= —2(w,w,)"% y,>0}. Thus
M=M*=M*=—1. Since x=(%,, #,)S if and only if 0<x,<1 and x,>0, we
see that HP has no optimal solution. Finally we note that all the conditions
except (3.5) in Corollary hold.

ReEMARK. Fujimoto’s result [3; Theorem 2.1] follows from Proposition 4.

4. Second duality theorem

In this section, we give another duality theorem under the assumption
that ¥ is bilinear, W(x, +) is continuous on W for every x&X and ¥(-,w) is
continuous on X for every weW. This assumption is equivalent to that the
mapping 4 defined by (2.1) is continuous and linear.

For a closed convex subset C of X, we recall the asymptotic cone ac C of

C:
ac C = N 5t(C—x), where xC .

In connection with the asymptotic cone, we have two lemmas.

Lemma 1. Let C and D be closed convex subsets of X. If C is locally
compact and ac C N\ (—ac D) is a linear subspace, then C+D is closed.

This lemma was proved by Zalinescu [8; Proposition 7] in the case where
the projection of C to X/ X' (X'=ac CN(—ac D)) is locally compact. It suf-
fices to note that the projection of C is locally compact in this case.

Lemma 2. Assume that {weQ°; g(w)>—oo} is dense in Q°. Then
ac 02(0) is contained in Q. Furthermore if Q+0g(0) is closed, then ac(Q+9g(0))

—0.

Proof. If O-+0g(0) is closed, then ac(Q—+9g(0)) is well-defined. Let z€
ac(Q—+0g(0)) and z,=9g(0). Then z2+2,£0+0g(0) for all £>0. There exist
2,€0g(0) and ¢, 0 such that tz2+2y==2,+¢,. For all weQ° and t>0, {tz-+=z,,
w>=<2+¢q;, W)=z, wy>gw). It follows that <z, w)>>0 for all weQ° such
that g(w)>—oco and hence for all weQ°. Thus 2€Q°°=0. Since ac(Q+
02(0))D 0, ac(Q+0g(0))=0Q. Similarly we can check that ac 9g(0)c Q.

As the first step toward the second duality theorem, we prove

Lemma 3. The equality M= M¥* holds if the following four conditions are
Sfulfilled :

(4.1) P is locally compact and Q+0g(0) is closed.
(4.2) fis 7(X, Y)-continuous on X and g is finite on Q°.
(4.3) x€P, Ax=Q and f(x) <0 imply x=0.
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(44) S+0 or S*+0.

Proof. We apply Theorem A to (4, P, Q,f,g). Since f is 7(X, Y)-con-
tinuous, 9f(0) is weakly compact and thus P°—9£(0) is closed. By Proposition
3, we see that S=S and S*=S*. From (4.4) it follows that condition (2.5)
in Theorem A is satisfied.

We set G,= {(x, —Ax, f(x)+7); x€X r>0}. We show that the set G=
G+ (—P) X (Q+0g(0)) x {0} is closed. By the continuity of 4 and the lower
semicontinuity of f, we easily check that G,+ {0} x (Q-+9dg(0)) x {0} is closed.
By (4.2) and Lemma 2, we see that ac[Gy+ {0} x (Q+0g(0)) x {0} ]=G,+ {0}
ac(Q+0g(0)) x {0} =G,+ {0} x O x {0}, and by (4.3), we see that ac[G,+ {0} X
(O+8g(0))x {0} 1N Px {0} x {0} ={(0,0,0)}. From(4.1)and Lemma 1 it follows
that G=[G,+ {0} X (0+0g(0)) x {0} ]+(—P)x {0} x {0} is closed and thus con-
dition (2.4) also holds. Thus by Theorem A and Proposition 3, we see that
M=DM*.

As for the existence of an optimal solution fcr HP, we obtain

Lemma 4. Assume that (4.1) and (4.3) are satisfied. If g is finite on Q°
and S=@, then HP has an optimal solution.

Proof. We may assume that M=#-+oo. Let {x,} CS be a net such that
{f(x,)} convergesto M. Since P is locally compact, there exists a neighborhood
U of the origin of X such that PN U is compact. We set

K= {xePnNU; x&2'U%} ,

where U’ is the interior of U. Then there exist £,>0 and %, K such that x,=
t,%, Since K is compact, there exists a subnet of {x,} which converges to an
element K. We may assume that {&,} converges to X. We show that there
exists a subnet of {z,} which converges to a real number #,>0. Otherwise, lim ¢,
=-+oo. Let 2,£0g(0) and s>0. Then sA(t;'x,)+(1—st;")z,=0+0g(0) for
all a such that sz;'<1. Since Q-+9g(0) is closed, lim {sA(¢;'x,)+(1—st;")2} =
sAx+4-2,€0+08g(0). Thus we see Ax=ac(Q+0g(0))=Q by Lemma 1. Since
f(®)<lim inf f(&,)=lim inf ¢;' f(x,) <0, from (4.3) it follows that *=0. This is a
contradiction, since 0&eK. Thus {t,} contains a convergent subnet. Denote
the subnet by {t,} again and let ¢, be its limit. Then lim x,=lim ¢,%,=%,% and
M=lim f(x,)> f(t,%). Since S is closed, t,¥< S and f(¢,%)>M. Thus M=f(t%)
and HP has an optimal solution. This completes the proof.

Now we prove the second duality theorem.

Theorem 2. Assume that (4.3), (4.4) in Lemma 3 and the following (4.1)
and (4.2') are satisfied :

(4.1") P is locally compact and P°—3 f(0), Q+0g(0) are closed.
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(4.2") g is finite on Q°.
Then M=M*. Furthermore if S=Q, then HP has an optimal solution.

Proof. For arbitrary y,, -+, y,€8(0), the function A(x)=max{<{x, y,>;
j=1, ---, k} is continuous and sublinear on X. By J we denote the set of all such
functions. Then J is directed by a natural ordering and increases to f at each
point in X. For each A€ J, we set

M, = inf {h(x); xS},
S¥ = {weQ°; {4x, wd><h(x) foral xP},
M= sup {g(w); weS}} .

By Proposition 3, we see that S¥={weQ°; A*weoh(0)—P°} and S*={we
Q°; A*wedf(0)—P°}. Since {0h(0); k= J} is an increasing net of sets and
U 1e/0h(0)=08£(0), {S#; he J} increases to S* and lim,e;MF=M*.

In order to show that lim,c;M,=M and M,= M} for all sufficiently large
he J, we examine condition (4.3). Condition (4.3) is equivalent to the condition
that f(x) >0 for all x& PN A~Y(Q) such that x+0. Let K be the set as in the
proof of Lemma 4. Then f(x)>0 for all x&KNA™Q). Since f is lower
semicontinuous and K N A~Y(Q) is compact, inf,cxn 4-10)f(¥) > p for p>0. For
any x,€K N A7Y(Q) there exists y,&0 f(0) such that {x,, y,>> p, since sup.es s
{x, y>=f(x) for all k& X. Since {-, y,> is continuous on X, there exists a neigh-
borhood ¥V of x, such that {x, y,>>pu for all x&V,. Since KN A7YQ) is com-
pact, there exist x,, -+, x,€K, »3, ---, yo€0£(0) and V), -, V, such that V;is a
neighborhood of x;, {x, y?>>pu for each j and x€V;, and U%.,V;,DKNAY(Q).
Then hy(x)=max {x, y3>; j=1, -+, n} >u on KNAYQ). We set J'={heE J;
h>h}. Then xeP, Ax<Q and h(x) <0 imply x=0 for all ke J'.

First we assume that S#@. Then from Lemmas 3 and 4 it follows that
there exists a net {x,; k€ J'} €S such that A(x,)=M,=Mj for all ke J'. If
lim ¢ ;h(x;)=+ oo, then M=M*=+oco. So we may assume that lim,c;k(x;) is
finite. Then as in the proof of Lemma 4, we see that there exists a subnet of
{x,} which converges to an element x,&S. We may assume that {x,; < J'}
converges to x,. If we fix an arbitrary A, € J', then h(x,)=lim,c;h,(x;) <lim,e;/
h(x,)=lim,epMF=M*. Thus M< f(x,)=sup,e;h(x) <M*. Since M>M?*,
M=M*—f(x,).

Next we assume that S=@ and S*=*¢@. Then M,=Mf¥=+oco for he ]’
such that S¥=¢. Since M} <M* <M, we have M=M*=+oco. This completes
the proof.

In the finite dimensional case, we can omit condition (4.1°) in Theorem 2.
To prove this we prepare
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Lemma 5. Assume that X, Y, Z and W are all finite dimensional spaces
and set dom g= {we W; g(w) is finite}. Then (dom g)°+9g(0) is closed. Similarly
(dom f)°—0a£(0) is also closed.

Proof. Let z&(dom g)° and 2,&9g(0). Since {tz-+2,, w)>> 20, W= g(w)
for all wedom g and >0, z=ac 9¢(0). From Lemma 2 it follows that ac 9g(0)
=(dom g)°. Hence (—dom g)° Nac 9g(0)=(—dom g)° N (dom g)° and this is a
linear subspace. Since Z and W are finite dimensional, 0g(0) is locally compact,
so that we see by Lemma 1 that (dom g)°+0g(0) is closed. The last statement
can be similarly proved.

Corollary. Assume that X, Y, Z and W are finite dimensional spaces and
that conditions (4.2"), (4.3) and (4.4) are satisfied. Then M=M%*. Furthermore
if S0, then HP has an optimal solution.

Proof. Let P be the closure of {x&P; f(x)<<-+oo}. We set F(%)=f(x) for
xE P, f(x)=-+ oo for x& P, g(w)=g(w) for u €Q° and F(w)=— ocofor we= Q°.
Then P is the closure of dom f and Q° is dom g. Thus by Lemma 5, we see
that P°—9f(0) and Q+8g(0) are closed. By applying Theorem 2 to (4, P, O,
f, #), we complete the proof.

This is a more precise version of Corollary of Theorem 1 and an improve-
ment of [7; Theorem 3.1]. In this corollary the assumption that all spaces
are finite dimensional cannot be omitted. See [4; Example 3.1]. By the fol-
lowing example, we observe that condition (4.2’) cannot be omitted either.

ExampLE. We take X=Y=Z=W=R? P=R’ and O0={(0, 0)}. We set
W(x, w)=x,w,+x,w, and f(x)=x, for x=(x,, x,) €X and w=(w,, w,) EW, g(w)=
2(wyw,) for (w,, w,)ER: and g(w)=—co for (w;, w,)eERE. Then A is the
identity mapping from X to Z so that condition (4.3) is satisfied. Since x=
(%}, x;) €S if and only if x,x,>1 and x, >0, M=inf {x,; xS} =0 and HP has no
optimal solution.
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