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1. Introduction with problem setting

Homogeneous programming problems were first studied by Eisenberg [1]
in finite dimensional spaces and next by Schechter [7]. In this paper we shall
be concerned with more generalized homogeneous programming problems and
their duality relations.

More precisely, let X and Y be real linear spaces which are in duality with
respect to a bilinear functional <( , \ and let Z and W be real linear spaces

which are in duality with respect to a bilinear functional < , >2 Hereafter
we denote < , \ and < , >2 by < , •> for simplicity. In this paper, we
assume that each one of the paired spaces is assigned the weak topology unless
otherwise stated. We denote by τ(X, Y) the Mackey topology on X. We also
assume that the cones considered have their vertices at the origin of the space.

Let P and Q be closed convex cones in X and Z respectively and denote
by P° and Q° the dual cones of P and Q. Let / be an extended real valued
function on X which is lower semicontinuous and sublinear, i.e., the epigraph
{(#, r)^XxR\f(x)<r} of / is a closed convex cone or the empty set, and let

g be an extended real valued function on W which is upper semicontinuous
and superlinear, i.e., — g is sublinear. Note that if / is finite at some point,
then / does not take the value — oo. Let Ψ be an extended real valued function
on Xx W such that Ψx=Ψ(x, •) is lower semicontinuous and sublinear on W
for every fixed x^X and ΨW=Ψ( , w) is upper semicontinuous and superlinear
on X for every fixed w&W. We assume that Ψ(0, 0)=/(0)=£(0)=0.

For the quintuple (Ψ,P, Q°9f, g), we consider the following generalized
homogeneous programming problems (=HP) and its dual problem ( = DHP):

(HP) Find M = inf {/(*) x <= 5} ,

where S={x<ΞP',g(w)<Ψ(x,w) for all w<=Q°}.

(DHP) Find M* = sup{g(zv); wϊΞS*} ,

where S*={w€ΞQ° ;f(x)>Ψ(x, ic) for all x<=ΞP}.



900 R. NOZAWA

Here we use the convention that the infimum of a real function on the empty

set 0 is equal to +°°
Our aim is to find some conditions which assure that the above two pro-

blems have the same value and have optimal solutions. In the case where Ψ
is continuous and bilinear, Schechter [7] investigated duality relations for these
problems. In the next section, we introduce programming problems with con-
straints of convex processes studied in [5], and state some relations between

those problems. In §3 and §4, we give main results. In §4, we deal with the
case where Ψ is bilinear and improve a result in [7].

2. Reduction of HP and DHP

In order to obtain a convex process and its adjoint process from Ψ, we
consider the following two sets :

dom^Ψ = {x& X\ Ψ(#, w) is finite for some w^. W} ,

W\ Ψ(x, w) is finite for some x^X} .

If x^domxψy then Ψ(x, 0)=0 and Ψ(x, α;)Φ — oo for all w^W. Thus dom^Ψ
— {x^X\ Ψ(tf, 0)— 0} and this set is closed, since Ψ( , 0) is upper semicontinuous
on X. If w<=domxψ, then Ψ(0, w)=Q and Ψ(x, w) Φ + oo for all x&X. Thus
donvΨ= {w& W\ Ψ(0, w)—Q} and this set is closed. Note that ψ(#, w) is finite
if and only if x^domxψ and w^domwψ.

We recall the subdifferential 3/(0) of / and the superdiff erential 9^(0) of g

at the origins :

9/(0) = {y€Ξ y <*, y><f(x) for all x^X} ,

ar, wy>g(w) for all α><E W} .

It is well-known that 9/(0) and 9^(0) are nonempty closed convex sets, and

that /(#)— sup .yc=θ/(o)<X jC> f°r all x^X and g(w)= infzeθί(0)<.s:, w) for all w^W.
If /is r(Xy Y)-continuous, then 9/(0) is weakly compact (cf. [5; Lemma 1]).

Since Ψx is lower semicontinuous and sublinear on W, we can define the
subdifferential 9ΨΛ(0) of Ψx at the origin for

9Ψ,(0) = (sCΞZ; O, wy<Ψ(x, w} for all w<EΞ W} .

Now we define a set-valued mapping A from X to Z by

(2.1) Ax = 9Ψ,(0) if A edom^Ψ, and Ax = 0 if χ(£domxψ .

As an infinite version of [6; Theorem 39.4], we have

Proposition 1. The mapping A is a closed convex process from X to Z, i.e.,
graph A= {(x, #); ^edom^Ψ, z^Ax} is a closed convex cone in XxZ.
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Proof. It is easy to check that tz^A(tx) if z^Ax and *>0. Let xl9 x2&

dom^ψ, zl^Axl and z2<=Ax2. Since Ψ(x1+x2, 0)>Ψ(^, 0)+Ψ(#2> 0)=0 and
Ψ( , 0) does not take the value +°°, Xi+x^doπi^Ψ. For all w^W, Ψ(xι+x2,
^)>Ψ(^,eϋ)+Ψ(Λ;2,^)><^,«;>+<^,«;> = <^+02,«;>. Thus zl+*2€ΞA(xl+
x2) and graph A is a convex cone.

Let {(#Λ, #Λ)} be a net in graph A which converges to (x09 #0). Since dom^ψ

is closed, Λ0edoπiyψ. For all w&W, Ψ(xQy zo)>lim sup Ψ(xΛ, α>)>lim sup <#Λ,
wy= <#0, «;>. Thus s0e.4#0 and graph -4 is closed.

We regard A as a supremum oriented convex process (see [5] or [6]). Then
the adjoint A* of A is defined by A*w— {y^ Y\ <#,3/>><X w/> for all (x, z)&
graph A} .

Proposition 2. A*w= 6ψtt;(0)= {je Y; <ΛT, ;y>>Ψ(#, w) /or α// jceJί} if

y and A*w—

Proof. Note that Ψ(#, w) = sup ̂ ^X^, w> = inf<yeθΨa;(0)<Λi, j> for all
dom^Ψ and ^edom^Ψ (cf. [5 Lemma 1]). Let α;0<Ξdon%Ψ. If y0e8ΨWo(0),

then <Λ?, JO>>Ψ(Λ:, ̂ 0)><^ ̂ o> f°r all (Λ?, ^)egraph ^4. Thus dΨWQ(Q)c:A*wQ.
Conversely if y0^A*w0, then <#, J0>><^, ̂ 0> for all Λ?edomzψ and ,s:e^4 .̂

Thus <X jΌ^^s^zeκX^ ^o^— ̂ (̂ > wo) f°r all ^Gdom^ Ψ. Since Ψ(ΛT, ZUQ)=
— oo if Λrφdom^ψ, < Λ ? , > ^ Ψ Λ ? , w0 for all x<=X. Therefore 0 e9ψ w 0 and

Let z^oφdom^Ψ. If y0^A*w0, then similarly we see that <X
<sr, ZUO>=Ψ(Λ;, eϋ0)— + oo for all Λ edom^Ψ. This is a contradiction, since dom^-ψ

is nonempty. Thus A*w0=φ. This completes the proof.

Corollary. If x^domxψ or 2#edon%Ψ, then Ψ(x, w)=sup z<ΞAx(z, w^==

In connection with HP and DHP, we consider the following extremum
problems defined by the quintuple (A, P, Q>f,g)'

(2.2) Find ΛUΓ = inf {/(*) x e S} ,

where S- {jceP; (̂ -9 (̂0)) Π gΦ0} .

(2.3) Find Λ^Γ* = sup

where S*= {^eQ°

We have

Proposition 3. (1) ScS, S*cS* and
(2) // g + 9^(0) — Ax is closed for every x<=P, then S= S.

(3) IfP°-df(Q)+A*w is closed for every wtΞQ°, then S*=S*.
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Proof. ( 1 ) Let x e S. Then there exist zl e Ax, z2 e dg(0) and q^Q such
that q=z1—z2. For all w&Q°, £(α>)<<#2, «>>= <X~ <?, «0>^<#ι, «>><Ψ(tf, w).
Thus Λ?e5. Similarly we see that S*cS*. It is easy to check that M*<M.
Therefore ΛUΓ* <M* <M < ]£t.

(2) We assume that x^S and #$ S. Then (Ax—dg(ty) Γi £?=0 If Ax is
emtpy, then Ψ(#, 0)= — oo. This is impossible since Ψ(x, 0)>£(0)=0. Thus
Ax is nonempty. Since Q&Q+dg(Q)—Ax, by the separation theorem there exist

WQ&W and μ->0 such that <j'+#ι— #2> ^o/'^A6 f°r all ?eδ> ^1^9^(0) an<i ^2^
.̂ Then ^oe0°> < ι̂> ^o>>/^+<^2, ^o> and thus ^(w0)=infι1edί(o)<^ι> ^o>>

SUP*2 6-4*^2? WO>=Ψ(Λ?, «>0). This is a contradiction. Thus SuS. By (1), we
see that S=S.

(3) By Proposition 2, we can similarly see that S* — S*.

By the aid of Proposition 3, the following duality theorem for (2.2) and
(2.3) is also applicable to HP and DHP in the case where / is τ(X, Y)-con-
tinuous on X. See [5; Theorem 1].

Theorem A. Assume that f is τ(Xy Y)-continuous on X and the following
two conditions are satisfied :

(2.4) The set G = {(x, -#, f(x)+r) *eΞdomzΨ, z^Ax, r > 0} + (-P) X (Q+
dg(Q)) X {0} is a closed subset ofXxZxR.

(2.5) Sφ0orS*Φ0.

Then ΛdΓ=M*. Furthermore if $ is finite y then there exists #0eS such that
f(x^=M, i.e., problem (2.2) has an optimal solution.

3. First duality theorem

In this section, we establish a duality theorem by using the method of
Rockafellar as in [7].

Theorem 1. Assume that the following two conditions hold:

(3.1) doni rΨlDJP or donvΨDζ)0.

(3.2) There exists wQ<=Q° such that g(wQ) Φ — oo and the τ( Y, X)-interior o/(9/(0)
— P°— A*WQ) contains the origin. Then ΊUL *=M*=M. Furthermore if SΦ0, then
HP has an optimal solution.

Proof. Condition (3.2) implies Λ^Γ*Φ — oo. Since Λ2Γ*<M*<M, we may
assume that M* is finite. We define a convex function Φ on W X Y by

Φ(w,j0 = ~g(w)+δ(w\Q°)+δ(y\df(Q)-P°-A*w) ,

where 8(w\Q°)=0 for w<=Q° and S(w\Q°)= + oo forw&Q0. Then — ΛUΓ*=
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inf {Φ(w, 0); we. W}. Let Φ* be the conjugate function of Φ:

Φ*(#, x) = sup {<#, «0>+<X y>— Φ(w, y); α e WΓ, J<Ξ Y} ,

for #eZand#eX Then

Φ*(0,*) =

= SUp {<*, 3/!> — <ΛJ, 3>2>+(£(«>)-<X 3>3» ί

In case ΛieS, — <>,>>2><0 and #(«;)— <Xj>3><0 so that
<^ yy=f(x). In case #<$P, sup^-— <#, j>= -f oo so that Φ*(0, x)= + <χ>. We
consider the case where x eP and ψ(#, w) < (̂M;) for some W^Q°. If ΰ; Φ dom^Ψ,
then jcedom^ψ by (3.1) so that Ψ(x, w)=-\-&°. This is a contradiction. There-
fore W^domwΨ and there exists y^A*w such that <#, yy<g(W) by Corollary
of Proposition 2. Since ty^A*(tw) for all f >0, we have Φ*(0, ΛT)= + OO. Thus
—Af=supjc6^— Φ*(0, x).

Condition (3.2) implies that Φ(w0, y) is bounded above by — g(wQ) in a τ(F,
^-neighborhood of 0. By [2; Proposition 2.5 in Chapter I], we see that Φ(w0,y)
is continuous in a τ( Y, ^-neighborhood of 0. Thus by [2; Proposition 2.3 in
Chapter III], we have M*— M and HP has an optimal solution. Since Λ^Γ*<
M*<M, this completes the proof.

Now we examine condition (3.2). First we define a closed convex process
A from X to Z which is obtained by a modification of Ψ. We set Ψ(#, «;) =
ψ(#, w)if #<ΞPand w^Q°, Ψ(x, w) = + co if X^P and «;φρo, and Φ(ΛJ, w) =
— oo if x&P. We define A by replacing Ψ by Ψ in (2.1).

Proposition 4. Assume that Ψ is finite on PxQ°. If the τ( Y, X)-interior
int(3/(0)— P°) 0/ 9/(0)— P° ώ nonempty, then the following three conditions are
equivalent :

(3.3) Γλm? ^Λirfj ^0^δ° ^̂ ^ ί*«ί A*ιo0n int(8/(0)— P°)Φ0.

(3.4) ΓA^r^ βΛώίί wQtΞQQ such that ψ(x, w0)<f(x)for all x<=P with

(3.5) #<=P, AxΠ 0Φ0 andf(x)<0 imply x=0 .

Proof. First we assume that (3.3) holds. Let y0^A*w0 Π int(9/(0)— P°) and
with Λ?ΦO. Then there exist y£Ξ Y and ί>0 such that <X ^)>>0 and y0-\-

ζye8/(0)-P°. Then ̂ o+^-j'-y7 for some j'eθ/ίO) and /'eP0. We have

ψ(χ, O<O> ^o>=<^ j'-/'-^)^^ y'>-K^ y><f(χ) Thus (3.4) holds.
Next we assume that (3.4) holds. Let x be an element in P such that Ax Π

ρΦ0 and /(#)<0. Then for zzΞAxΓiQ, Ψ(*, ^0)><X ^0>>0>/(^) Thus
from (3.4) it follows that x=Q.
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Finally we assume that (3.5) holds. If (3.3) does not hold, then A*(Q°) Π
int(9/(0)— P°)=0. Then by the separation theorem, there exists x0^X with
#0ΦO such that <#0, y'~y"><0 for all /e8/(0) and /'eP° and <#0>;y>>0
for all w^Q° Π dom^Ψ and y^A*w. From the first inequality, it follows that
#0eP°°=P and/(#0)<0. By the second inequality, we have Ψ(xQy w)>0 for
all w^Q°. Thus Q^AxQΓ\Q and this is a contradiction. Hence (3.5) implies
(3.3). This completes the proof.

If A is continuous and linear, it is easy to check that A can be replaced
by A in (3.5). Thus Proposition 4 is an improvement of [7; Lemma 3.2].
From Theorem 1 and Proposition 4, we have

Corollary. Assume that g is finite on Q°y Ψ is finite on PxO° and r(Yy

X)-ίnteήor of 9/(0)— P° is nonempty. If (3.5) holds and ΛΛΓ* is finite, then $* =
M*=M and HP has an optimal solution.

We shall show that A cannot be replaced by A in (3.5) in general.

EXAMPLE. We take X= Y=R2

y Z= W=R\ P=Rl = {(xl9 x2) sel > 0, x2 > 0}

and Q= {(*ι,*2,*3); *ι^°> *2<0, — <*><z3< + °°}.
if # = (#!, Λ?2)eP with ΛiΦθ,/(Λ?)— 0 if x=Q,f(x)=-{-co if #

for aU »=(»!, w^WsJeίΓ. ThenP°={(y1,y2);y1^Of

^<0, w2<0, zϋ3=0} and 8^(0)= {(1, 1, 0)}. By the definition of 9/(0), (yl9 y2)

e3/(0) if and only if — XιX2>(Xιyι+x2y2) (Xι+x2) for all positive numbers xl and
x2. By setting i= 2̂, CVι,y2)e8/(0) if and only if ̂ i+ί^+Λ+lJ+Λ^O for
all ί>0. From this we easily see that 3/(0)= {(ylt y2)^—Rl yι+y2+ί <0 or

Next we set Ψ(x, w) — — 2[(xlw2+xlw3)w1]
1/2 Ίfx = (xl> x2)^R2+ and ^— (wl9 w2y

ιo3)G—Rl, Ψ(x, w)= + oo if ΛieΛ2

+ andwφ— /2J, and Ψ(Λ, «o)= — oo if

We show that Ax= {(zlt z2, *3); z&^xl, st&^xl, ^ι>0} if x=(xl9 x2

and Ax=0 if ΛiφΛ 2 . Let JC^O and Λ?2>0. If (zly z2, z3)^Ax, then —2[(xlw2
Jrxlw3)w^\l/2>wlzl-\-w2z2-\-w3z3 for all negative numbers wly w2 and zt3. We easily
see that ^>0, #2>0 and ̂ 3>0. Furthermore we have i|r(or, β)=[(ίΰ1z1+w2z2+

(xlw2+xlw3)w1]/wl = a2zl+2a(z1z2-2xl+z^^
2 >0 where a=w2/w1 and β=w3fzϋ1. Since -^(α, 0)>0 for all α>0, we have

2>^ι Similarly ZιZz>x\. Conversely if zlt z2 and z3 are nonnegative, .s:1(2:2
>xl and .srι^3> |̂, then

for all negative numbers w^, eί;2 and w3y and thus (^j, z2y

Similarly we have Ax= {(zly z2y z3)y zλz2>xly #!>()}. Thus we see that

P and AxΓ\Q^0 imply x=0y but condition (3.5) is not satisfied.
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We can easily see that A*w = A*w = {(yί9y2) y\ > —2(iΰ1w2)
1/2, y2 > 0} . Thus

Λf=M*=M*= — 1. Since x= (xl9 x2)^S if and only if 0<^<1 and x2>0, we
see that HP has no optimal solution. Finally we note that all the conditions
except (3.5) in Corollary hold.

REMARK. Fujimoto's result [3; Theorem 2.1] follows from Proposition 4.

4. Second duality theorem

In this section, we give another duality theorem under the assumption
that Ψ is bilinear, ψ(#, •) is continuous on W for every x&X and Ψ( , zo) is
continuous on X for every w^W. This assumption is equivalent to that the
mapping A defined by (2.1) is continuous and linear.

For a closed convex subset C of X, we recall the asymptotic cone ac C of
C:

ac C = Π t>ot(C— x)> where x&C .

In connection with the asymptotic cone, we have two lemmas.

Lemma 1. Let C and D be closed convex subsets of X. If C is locally
compact and ac Cf l (— ac D) is a linear sυbspace, then C-\-D is closed.

This lemma was proved by Zalinescu [8; Proposition 7] in the case where
the projection of C to X/X' (^Γ'^ac Cfl(— ac D)) is locally compact. It suf-
fices to note that the projection of C is locally compact in this case.

Lemma 2. Assume that {w&Q°; g(w)> — °°} is dense in Q° . Then
ac 9^(0) is contained in Q. Furthermore if Q+dg(0) is closed, then ac(<2+9g(0))

= β

Proof. If Q+dg(Q) is closed, then ac(£+9£(0)) is well-defined. Let *e
ac(ζ?+9£(0)) and *0e9£(0). Then tz+z0(=Q+dg(Q) for all t>0. There exist
#,e9£(0) and qt^Q such that tz+z0=zt+qt. For all w^Q° and £>0, <te+#0,
«;>=<#ί+ίί, wy>(zt, wy>g(w). It follows that <£, zϋ>>0 for all w^Q° such
that g(w)> — oo and hence for all w^Q° . Thus z^Q°° = Q. Since ac(£)+

0, ac(δ+9£(0)H£? Similarly we can check that ac 9g(Q)c:Q.

As the first step toward the second duality theorem, we prove

Lemma 3. The equality M=M* holds if the following four conditions are
fulfilled:

(4.1) P is locally compact and ^+9^(0) is closed.

(4.2) f is r(Xy Y)-continuous on X and g is finite on Q°.

(4.3) #eP, Ax^Q andf(x)<0 imply x=Q.
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(4.4) SΦ0orS*Φ0.

Proof. We apply Theorem A to (A, P, QJ,g). Since / is τ(X, Y)-con-
tinuous, 3/(0) is weakly compact and thus P° — 9/(0) is closed. By Proposition
3, we see that S=S and 5f*=S*. From (4.4) it follows that condition (2.5)
in Theorem A is satisfied.

We set Gr0={(#, —AxJ(x)+r)\ x<=X r>0}. We show that the set G=
G0+(—P)x(Q+dg(Q))x {0} is closed. By the continuity of A and the lower
semicontinuity of/, we easily check that G0+ {0} X(Q+dg(0))X {0} is closed.
By (4.2) and Lemma 2, we see that ac[G0+{0} x(Q+dg(0))x {0}]=G0+{0} X
ac(£+9£(0))x {0}=G0+{0} xQx {0}, and by (4.3), we see that ac[G0+{0} x

(£?+9<?(0))X {0}]ΠPx {0} X {0}- {(0,0,0)}. From (4. 1) and Lemma 1 it follows
that G=[G0+ {0} X(Q+dg(0))X {0}]+(-P)x {0} X {0} is closed and thus con-
dition (2.4) also holds. Thus by Theorem A and Proposition 3, we see that
M=M*.

As for the existence of an optimal solution fcr HP, we obtain

Lemma 4. Assume that (4.1) and (4.3) are satisfied. If g is finite on Q°
and SΦ0, then HP has an optimal solution.

Proof. We may assume that Mφ + oo. Let {XΛ} dS be a net such that
{f(xΛ)} converges to M. Since P is locally compact, there exists a neighborhood
U of the origin of X such that P (Ί U is compact. We set

K= frePΓIt/ ΛKtEZ-1^} ,

where U* is the interior of U. Then there exist £Λ>0 and %Λ^K such that XΛ=
tΛxΛ. Since K is compact, there exists a subnet of {%#} which converges to an
element %&K. We may assume that {#Λ| converges to x. We show that there
exists a subnet of {t#} which converges to a real number £0>0. Otherwise, lim tΛ

= + 00. Let *0e9£(0) and s>0. Then sA(t-lxΛ)+(l—st-l)zQGQ+Qg(0) for
all a such that st~l<\. Since ^+9^(0) is closed, lim{sA(t~1x<A)+(l—st-1)z0} =
sA%+zQ<=Q+dg(0). Thus we see Az^ac(Q+dg(Q))= Q by Lemma 1. Since

/(*)<lim inf/(ΛΛ)=lim inf tfftxJ^O, from (4.3) it follows that Λ=0. This is a
contradiction, since Q&K. Thus {tΛ} contains a convergent subnet. Denote
the subnet by {ta} again and let t0 be its limit. Then lim #Λ— lim tΛ%Λ=t0% and
Λf=lίm/(ΛJΛ)>/(ίo*). Since S is closed, t0x<=S and/(^)>M. Thus M=f(tj£)
and HP has an optimal solution. This completes the proof.

Now we prove the second duality theorem.

Theorem 2. Assume that (4.3), (4.4) in Lemma 3 and the following (4.Γ)

and (4.2/) are satisfied :

(4.10 P is locally compact and P° — 9/(0),
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(4.2') g is finite on Q°.

Then M=M*. Furthermore if S Φ 0, then HP has an optimal solution.

Proof. For arbitrary yl9 •••, yk^df(Q), the function A(#) =
/=!, •••, k} is continuous and sub linear on X. By / we denote the set of all such
functions. Then / is directed by a natural ordering and increases to / at each
point in X. For each Ae/, we set

Sϊ = {w^Q° <Ax, w><h(x) for all x<=P} ,

By Proposition 3, we see that S£={w<=Q°', A*w<=dh(Q)-P°} and S*={wtΞ
Q°',A*wζΞdf(Q)-P°}. Since {9A(0); h<=J} is an increasing net of sets and
U Ae/8A(0)=8/(0), {S?; A<EΞ/} increases to S* and limA6/Af?=M*.

In order to show that limAe/MA=Λf and Mk=M% for all sufficiently large
Ae/, we examine condition (4.3). Condition (4.3) is equivalent to the condition
that/(*)>0 for all x^PΠA'^Q) such that #ΦO. Let K be the set as in the
proof of Lemma 4. Then f(x)>Q for all x^KΓ\A~\Q). Since / is lower

semicontinuous and KΓ\A~\Q) is compact, m{xGKf]A-ι(Q)f(x)>μ for At>0. For
any x0^KΓ\A~1(Q) there exists y0 e 9/(0) such that <tf0, ^o^^A''* since supxe9/(0)

<Λ;, yy= f(x) for all x^X. Since < , ̂ 0> is continuous on Xy there exists a neigh-
borhood VΌ of Λ;O such that <#, %>>/>6 for all Λie F0. Since jfiΓ Π A~\Q) is com-

pact, there exist xl9 ••-, ^eίΓ,^?, , ̂ 2 e 9/(0) and Fj, ••-, FM such that Vj is a
neighborhood of xh <Λ, 3^°>> μ for each; and #e Fy, and U J.i^OiT Π -Λ'XQ)-

Then A0(Λ)=max{<Λ?,yJ>;</=l, -,n»μ on ̂ Π^'1^). We set/={AeJ;
h>h0}. Then Λ?eP, ^Λ?eρ and h(x)<0 imply jc-0 for all Ae/'.

First we assume that *SΦ0. Then from Lemmas 3 and 4 it follows that
there exists a net {xh'y h^J'}dS such that h(xh)=Mh=M% for all Ae/'. If

limAe//A(jcA) = + °°, then M=M*= + oo. So we may assume that limΛ e//A(ΛJA) is
finite. Then as in the proof of Lemma 4, we see that there exists a subnet of
{xh} which converges to an element #0eS. We may assume that {xk; Ae/'}
converges to x0. If we fix an arbitrary A^ /', then A1(Λ0)=limΛe//A1(Λ;A)<limAe//

A(ΛΛ)=limA 6 //Aff=Λί*. Thus M<f(x0)=suph^h(xQ)<M^. Since M>M*,

Next we assume that S=0 and S*Φ0. Then M^^Mf^ + oo for

such that S? =t= 0 . Since Mf < M* < M, we have M= M* = + oo . This completes
the proof.

In the finite dimensional case, we can omit condition (4.1X) in Theorem 2.
To prove this we prepare



908 R. NOZAWA

Lemma 5. Assume that X, Ύ , Z ana W are all finite dimensional spaces

and set dom g= {w e W\ g(w) is finite} . Then (dom g) ° + 9^(0) is closed. Similarly
(dom/)°-9/(0) is also closed.

Proof. Let #e(dom g)° and *0eθ£(0). Since
for all α edom £ and />0, #eac 9^(0). From Lemma 2 it follows that ac 9^(0)
=(dom£)°. Hence (— dom^)° Πac 9^(0) =(— dom g)° Π (dom g)° and this is a
linear subspace. Since Z and W are finite dimensional, 9^(0) is locally compact,

so that we see by Lemma 1 that ( dom g)°+ 9^(0) is closed. The last statement
can be similarly proved.

Corollary. Assume that X} Y, Z and W are finite dimensional spaces and

that conditions (4.2'), (4.3) and (4.4) are satisfied. Then M=M*. Furthermore
if *SΦ0, then HP has an optimal solution.

Proof. Let P be the closure of {#eP; /(#)< + °°} We set f(x)=f(x) for

#eP, /(#)= + oo for #$P, g(w)=g(w) for ae£>° and g(ιo)= — oofor w$O°.
Then P is the closure of dom / and Q° is dom g. Thus by Lemma 5, we see
that P°-9/(0) and Q+dg(0) are closed. By applying Theorem 2 to (A, P, Q,

f> g)> we complete the proof.

This is a more precise version of Corollary of Theorem 1 and an improve-
ment of [7; Theorem 3.1]. In this corollary the assumption that all spaces
are finite dimensional cannot be omitted. See [4; Example 3.1]. By the fol-
lowing example, we observe that condition (4.2X) cannot be omitted either.

EXAMPLE. We take X= Y=Z= W=R2, P=Ri and Q= {(0, 0)} . We set

Ψ(x, w)=x1zv1+x2w2 andf(x)=v1 for x=(xί9 x2)^X and w=(zvly w2)^W,g(w)=
2(wlw2)

l/2 for (ttjj, w2)^R2

+ and g(w) = — oo for (wl9 w2)<ξRi. Then A is the
identity mapping from X to Z so that condition (4.3) is satisfied. Since x=
(xly x2)^S if and only if xλx2> 1 and ̂ >0, M= inf {̂  Λie5} =0 and HP has no
optimal solution.
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