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0. Introduction. The principal purpose of the present paper is to
exhibit the eigen-space decomposition of the Laplacian of the Grassmann mani-
folds SG, ,_,(R)=SO(n+1)[SO(n—1)x SO(2) and G, ,_,(R)=0(n+1)/0O(n—1)
X O(2) with their canonical Riemannian metrics respectively and to clarify
the relation between the eigen-space decompositions above and of the Lich-
nerowicz operator A on the standard sphere (S, g,), restricted to the graded
algebras K*(S", g,) of symmetric tensor fields on S”, generated by Killing vector
fields.

In 1, we obtain fundamental properties of differential operators §*, §, T*,
T and the Lichnerowicz operator A acting on the graded algebra S*(M)=
>3 8?(M) (direct sum) of symmetric tensor fields on a Riemannian manifold (M, g).

»20
In 2, a pseudo-connection of infinite order on M is defined as a collection of
linear differential operators T'?: S(M)—D?(M) (p=1) splitting

(1.3), 0 —> DY M) 4, DI(M) L S (M) — 0,

viewed as the short exact sequences of R-modules, where D?(M) is the module
of C=-differential operators of order at most p on M. In virtue of the existence
of a certain pseudo-connection on (S g,), K*(S", g,) is characterized as the
kernel of 8* in S*(S"). In 3, the Radon-Michel transform ~: S*(S")—
C=(SG,,,-,(R)), is defined by

1
(3.1) ) = o . <8 G 2D,

where ¢ maps an oriented 2-plane T€8G,,_,(R) to the geodesic Y=T"N.S" on
(S", g) with the orientation induced from T'. 'The key theorem is Theorem 3.1;
A" =(AEY", where A” is the Laplacian on SG,, ,(R) with the canonical
Riemannian metric, which was first proved by R. Michel [9] for S*S™). In
4, a linear differential operator S of degree —2 is defined, with the aid of which
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we obtain the eigen-space decomposition of the Lichnerowicz operator A
restricted to K*(S", g,). This eigen-space decomposition of the Lichnerowicz
operator yields the one of the Laplacian A™ on C*(S@,,_,(R)) via the Radon-
Michel transform.

In the appendix a linear differential operator D} of order k is introduced
so that an eigen-function f of the Laplacian of (S”, g,) for the eigen-value
k(n+k—1) satisfies the differential equation

D¥f=0.

1. Fundamental operators. Let (M, g) be an oriented C~-Riemannian
manifold of dimension n. Let x&M. The space of p-jets of C~-mapping
f: U/—R at x€U,CM with U, open is denoted by TF¥?(M) and the union
T*(M)= QMT F® forms a vector bundle over M. The dual vector bundle

of T*®(M) is denoted by T®(M). As is well known the sequence of vector
bundles

1.1 0 — T Ly 7O T SPT(M) — 0
» (M)

is exact, where ¢?, o’ and S?T(M) are the canonical inclusion, the symbol map
and the symmetric tensor product of order p of the tangent bundle T'(M) of M,
respectively. We mean by an (ascending) filtered Lie algebra ([4], p.iii) a Lie
algebra L with an ascending chain of subspaces

w.C Lt lcLtc Lt ic...
satisfying [L?, L'l C L*** and L= (] L*. The associated graded Lie algebra

reZ

G(L) [4] with an filtered Lie algebra L is the Lie algebra
G(L) =XYL*/L*7*  (direct sum)
iz

with the bracket [X mod L?7!] Y mod L*"'|=[X, Y] mod L***"! for XL’ and
YeL’. A C=-section D of TW(M) is called a linear differential operator of
order p. It is written as

(1.2) D= ,ﬁl (1R )& 14" [ - O

with respect to a local coordinate system x%, ---,x". The C*(M)-module of
linear differential operators of order p on M is denoted by D?(M). We put
D(M) = 19[é]o‘é)”(M). As [D(M), D(M)] c D**"Y(M) for the bracket product

[D,, D;]=D,D,—D,D,, ®(M) is a filtered Lie algebra if we put L?*=Dr(1M)
(p=—1), L*={0} (p=—2). From (1.1), follows the exact sequence
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(1.3), 0— Dt (]W)—i@”(M)ip*S”(.M) —0

of C*(M)-modules, where the C~(M)-module of symmetric tensor fields of de-
gree p on M is denoted by S?(M). Put S*(M)= g S?(M) (direct sum). The
»=20

symmetric tensor product of E€S?(M) and n=SY(M) is defined as the sym-
metrization of the tensor product £Q% which we denote by Eon. For latter
use we give an interpretation in terms of the symbol maps;

(1.4) Eon = o?*Y(D¢-D,),

where D;e®?(M) and D,eD (M) are such that o?(D¢)=¢& and o*(D,)=n.
With respect to a local coordinate system {x!, ---, 2"}, £ S?(M) is expressed as

(1.5) £ = (1/pV)E*r~is9[0x10-+- 00 Ox' ,

where £ will be called the components of £. The symmetric tensor product
of £=8?(M) and n=S*(M) expeessed as in (1.5) is written as

l [PEY ) i i
fon = L (Eony- s ofasi-ofest,
where
(1.6) (Eon)iipn — 3 B im0

TES)+q r'q!
and &,,, is the symmetric group of degree p+q. We define the bracket product
on S*(M) by

(1.7) [, ] = o**[Dg, D,],
where D¢ and D, are as in (1.4). Notice that [£, ] S?* " Y(M). S*(M) is
identified with the associated graded algebra of the filtered Lie algebra D(M).
The componentwise expression of (1.7) is given by

Eiray e -0t

1
1.8 )i =
( ) (£, 7] (p—l)’ q! ﬂe(‘?mw—l

« On'eco) Frcora- Ot — 1

pig— 1! ne@23+q-1

pieayira-nh
< QE @y ircpra- D[t

for £8*(M) and n=8SY(M).
Assume from now on that M be compact. S?(M) is equipped with the
positive definite inner product

(19) € n=r'| & EnesOD),
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where
K&, n> =giiy8ipi £ o
and do is the volume element of (M, g). Let g=g/0/dx'o8/0x’ be the con-
travariant Riemannian metric of (M, g). We define a linear operator T*:
S*(M)—S*(M) of degree 2 by
(110) T* — (1/2) goE € S" (M)

for £&S?(M). Let T be the adjoint operator of T* with respect to the inner

product (1.9). T is of degree —2. The components of T*£ and T& are given

(111) (T*f)il"'ip+z _ 2 gihikgil"";h"'fk"'ip+2
1Sh<k<p+2
(112) (TE)'H"")—z — (1/2)gabgabi1~~ip_2 .

Lemma 1.1. (i) [T, T*] = ((n/2)+p)1,
(i) [T7 T*] = m{(n]2)+-p—m4-1)T"
on S*(M), where 1, is the identity operator of S*(M).
Proof. From (1.11) and (1.12)
(TTHEYis — (112)gs 3] ghongiv-iariaie
1<h<k=Z?P

_l_(I/Z)gab ISE’ISP Zgih,'zfi1"'ih"'ipb +(1/2)gi1..-ipgabgab
= (T*T&) s+ ((n]2)+p)Er" .

Thus (i) is obtained. (ii) follows from (i) by induction on m. Q.E.D.
Define 8*: S*(M)—S*(M) by
(1.13) 8% = (1/2) [g, £] .

8* is a linear differential operator of degree 1. Define §: S*(M)—>S*(M) as
the adjoint operator of 8* with respect to the inner product (1.9). The
componentwise expression of 8* and & are given by

(L14) (i) (8*E)sire = St gy giriuipes
h=1
(i) (BEint = —v Fiinms,
where V is the Riemannian connection on (M, g).

Lemma 1.2. (i) [T,8]=0 (i)* [T* &]=0
(i) [8% T]1=8  (i)* [T* 8] =8*.

Proof. From (1.12) and (1.14) (i) is immediately obtained. (ii) is also
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obtained from (1.12) and (1.14) by direct calculations. (i)* and (ii)* follow
from (i) and (ii), respectively. Q.E.D.

Lemma 1.3. 8* is a derivation on the associative algebra S*(M).

Proof. From (1.4) we have
lg, Eon] = —o?™M[A, Dy-D,] = —a?*"([A, De]D, +Di[A, D,])
= [g, Elon+Eelg, 1],
where A=—g'/V,V; is the Laplacian of (M, g) and D¢’s are as in (1.7). Q.E.D.

We define self-adjoint linear differential operators [, &, and A on S*(M)
by

(1L15) (i) O=[s, 8% (i) &=—VV,
(i) A =25—[].

A and A are called the rough Laplacian and the Lichnerowicz operator on (M, g),
respectively [7]. The componentwise expression of [] and A for £ as in (1.5)
are

(L16) (i) (D8)ss = (BE)r—(u)is™s
(ll) (AE)'-I"") e (Kg)ilmiﬁ—l—(lcg)il"'i’ ,
where (BE)rr= —V°V,Er s and  (kE)i = ;,:21 Rihagail... iy ZISK"SP

Riniige¥v-ininiy and Riy, (resp. R;;) are the components of the curvature
tensor (resp. the Ricci tensor) of (M, g).

Lemmal4 (i) [J,T]=0 (i)* [0, T*=0
() [AT]=0 Gi)* [A T4 =0.

Proof. Since [J and A are self-adjoint, it suffices to prove (i) and (ii).
By Lemma 1.2

[, T] = [88%, T]—[8*8, T] = (3[8*, T]+8T8*—T55*)
_S*ST [T, 8*¥]8+8*T8 = 0

which proves (i). (ii) follows from (i) by virtue of [A, T']=0. Q.E.D.
Lemma 1.5. Let (M, g) be locally symmetric.
(i) [A8]=0 ()* [A 8%=0.
Proof. For £&8?(M) as in (1.5)



56 T. Sumitomo aND K. TANDAI
([8, R)g)riv-1 = [V, VJVE 51—V [V,, V,JE" -1
— VR 2 3 R )
On the other hand, we have
([8, #]E)sis-1 — —V"(Ra,,E”"l""ﬂﬂwZ:g]R,,,,c"ha_‘fb“'l"'fk""ﬁ—l) _
Adding these equalities, we obtain (i). (i)* follows from (i) directly. Q.E.D.

The Lichnerowicz operator A in a locally symmetric Riemannian manifold
is regarded as a generalization of the Laplacian A. We denote them by the
same notation, because the former acts on S*(M) while the latter is the restric-
tion of the former on S%M) = C~(M).

An element of (Ker 8%)(M,g) is called a Killing tensor field. Ker 8*
(M, g) is the graded subalgebra of S*(M) by virtue of Lemma 1.3. The graded
subalgebra of S*(M) generated by (Ker 8*)(M, g)NSY(M) is denoted as
K*(M, g)= Z% K*(M, g) (direct sum). Obviously (Ker 8*)(M, g)DK*(M, g).

We are interested in (M, g) for which the equality holds (cf. Theorem 2.3).

2. Pseudo-connections. A splitting v? of the sequence (1.3), of C*(M)-
modules is called an affine connection of order p. An infinite set {y?} 5, is called
an affine connection of infinite order.

ExampLE 1. Let ¥V’ be an affine connection on M. Then

(2.1)  7E((1[p1)E " #0[0x 10 - 0B 0n's) = (1[p!)E 1V -V,
defines an affine connection 74 of order p on M.

We define a pseudo-connection of order p by a linear differential operator
T?: S*(M)—~D?(M) which is a splitting of (1.3), as an exact sequences of R-
modules. A set I'={I'},», of pseudo-connections I'? of order p is called a
pseudo-connection of infinite order on M or simply a pseudo-connection for the sake
of brevity. T is called self-adjoint if

2.2) T(g)* = (—1)T2(E)

for any £&8?(M). A pseudo-connection I is called self-adjoint if T is self-
adjoint for each p=1.

ExampLE 2. Let V’ be as in Example 1. Put

21 ’ 1 (giripo! ’
T4() = § 27[)! (i)V;‘,“'V{k(E f’Vi,,H'"Vi,,) >
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where (%:)’s are the binomial coefficients. T'ys={I'Z/} is a self-adjoint pseudo-

connection on M. Notice that I'g/(£) can also be expressed as

Do )bk (SPEE)ir i

I R A
We write formally as TI'y/=7v,-exp (—8/2). A pseudo-connection T'={I'*} is
called an extension of an affine connection V' if T?=T4, for p=1. Given a
pseudo-connection T', we have an isomorphism S*(M)—3D(M) as R-modules,
which we can not expect to be an isomorphism of Lie algebras. However,
we might expect the formula:

[T(E), T(n)] = T([&, 7))

for a certain fixed £S?(M). This situation leads us to the following

ProBLEM, Does there exist a self-adjoint pseudo-connection of infinite
order extending the Riemannian connection V on (M, g), letting both of the
diagrams

a.i’
0 — DY) 4, DAM) > S(M) — 0
r
(2'4')p [e, ]l p[P’ ]{ ) Lal

0 —> DY M) —> DM — S (M) —> 0
]_"P

(Lp: Lie derivative by pe K'(M, g)) and

» o?

0 —> DY M) —s DH(M) = S(M) —0
T
@25),  —[A ]l —[A2, ]l Lo
0—> D) s SDI’“«(M)%_—’_S’“(M)———»O
P +1

commutative ?

Theorem 2.1. Let (M, g) be locally flat. For the pseudo-connection T% in
Example 2 with respect to the Riemannian connection V of (M, g) (2.4) and (2.5)
are commutative diagrams for p=1.

Proof. It suffices to show for £ S?(M)
(26) (i) [p, THE)] =THLE) (i) —(1/2)[A, TH(E)] = I'E(3%E).

(i) is a matter of straightforward calculations. For (ii) we have [8%, §'*']=
—(I++1)8'A (I=1) (A=A is the Lichnerowicz operator). Hence for £€S*(M),
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1 U8 \\ xS 1 (= 1pH(ERS Ry
@7) ?(7" xp ( 2 >)(AE) S (R41)! (p—Fk)1 27
Vi Vi, — (Yo exp (—8/2)) (8%E) .

On the other hand, in a locally flat space we can easily verify [A, ¥§(§)]=
—2951(8*E)+-v(AE) for E=8S?(M). From these we obtain

PR O B o ) o 0t e
i, T = —24+ 3 S ORE

— 244242y, exp (—8]2)) (3*E) = — AT (8*8),

ViV,

where A is the differential operator given as the first term of the right-hand
side of (2.7). Q.E.D.

Lemma 2.1 (K. Tandai, T. Sumitomo [10]). Let M;(i=1,2) be differ-
entiable manifolds. Then there are subalgebras D(M,) of D(M,x M,) (i=1, 2),
canonically isomorphic to D(M,) respectively, and one of them is the centralizer
of the other in D(M, x M,).

Let ¢: S"—R"*! be the canonical imbedding of S” onto the unit sphere in
a Euclidean space R?**. Then 7: S"XR—R""'— {0} defined by (x, #)—e’e(x)
is a trivialization of the real line bundle R"*'— {0} over S" with the projection
m:w(y)=y/[{y, yo¥2. We identify feC=(S") with »*feC=(R""'—{0}). By
Lemma 2.1 a vector field £ on S” is uniquely identified with the vector field
£ on S” X R such that

(2.8) [E,]=0 and [§ 8/0t]=0.
£ is obtained as the vector field 7,£ via the diffeomorphism 7. The mapp-

ing defined by £—£ is a monomorphism of Lie algebras. The condition (2.8)
for = ) £49/oy* € DR — {0}) is equivalent to
A4=0

(2.9) AZ:;]gAyA —0 and ;’;\o(agA/ayB)yB — B,

since 7+7(x, t)=¢' and 7,(0/0t)= éy’*a/ay’1 (7= Z"] (»*)?). From the latter
A=0 A4=0

condition of (2.8) £4 is a homogeneous function of degree 1 with respect to y’s.

Owing to Lemma 2.1 we can identify ©(S") with the subalgebra D(S")=

{DEDER"'—{0}): [D,7]=0, [D, 31y"0/oy"]=0} of D(R*"'—{0}). Every

coefficient 414 of DED?(S") is a homogeneous function of degree k (p=k=0)
with respect to the variables 3° ---, y". This identification is transferred to the
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identification of the two algebras S*(S") and S*(S™)=s*(D(S")), where & is the
symbol map of D(R"*'— {0}). Namely,

(2.10) (1/p")E4r 453 3y410-+- 00 [dy4r & S (R — {0})
is in §?(S") if and only if

p—
=4 Ap

(2.11) S1EA 4438 = 0 and A= pEAT
A=0

4=0 ayA

The canonical identification between D(S") and D(S™) (resp. S*(S") and S*(S™))
preserves their algebraic structures of associative algebras and of filtered Lie
algebras (resp. of graded Lie algebras). Notice that the identification between
D(S") and (S") preserves the adjointness of differential operators. In the
following, for an operator D in D(S") the corresponding operator in D(S")
will be denoted by D

Lemma 2.2 Let E&S?(S") expressed as in (2.10).
(i) TE=(@(p—2))), 31 EH4"4r-20[oyho--o0[oyts-
sdydpy_p=0
+1 AL 1“"}/:""4 1
(ii) (2/(P+1)') 2 X %48/83,:410...08/33,%“
~ n FAA; A,y
(i) 3 = (—1/p-+1)Y, , 3T (agﬁ’f—
Aydp =0

+ kz__} (1/rz)yAthr"fk'“Ap—1AA)8/8yA10 vee Oa/ay“’ﬁﬂ

(iv) BE=(lp!) 31 {BBMMr-tp(n-rp—2)84t—d( T*TEM 4} 0Joy"
0---00/0y4s, where

BEyts = — 33 (84 —y yB)a 5 =g
23 BRI ) S (1 3 g i,
k=1 ayAp+1 PE 4=0
hyk=1

Proof. (i) As the canonical contravariant Riemannian metric g, on S”
is given by (r?642—y41y5)9/0y*-8/dy® (64%; Kroneker’s, symbol) we have from
(1.12) and the canonical identification between S*(S”) and S*(S")

28AB

(Tg)Al.uAp—z = z’.} (_r_———-y_AﬂgABAl-..AI,_Z — L 25”‘“1 Ay 2.
4,B=0 27t 202 £

(i) From the definition of 8%,
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SE = o[ —K/2, Y4B,

where A=—(r*848—y*y?)0%/0y*0y®+ny* 9/0y* and v§ is the Riemannian con-
nection of (S% g,). From (1.8) and (2, 11) we obtain

(BBt — 31 (PO — yhecoy?) OEA x>

EE@‘H\.I P!'l! 8yB
_— ErayAncs-1B B(r? 84y Arcr+1) — YAncr) yAucr+ 1)
©€8yyy 2!+(p—1)! oy®
_ 2’4_1 65"1""2&'"‘4»“
=1 ayAk

(iii) From (ii) and Lemma 1.2

(gg)ﬂl---ﬂp_l = (5* TE)AI-..AP_I_( TS*{:) AyAy_y
rzp_l 0 (L ~AAA1"'4I:"'A;'-1> _ 34pa Pz“rz 0F4r 4k 4p 1

#=10y4 \2¢° 272 k=1 o0y

From this we obtain the desired expression of 8¢ with the aid of (2.11) (ii).
(iv) From (ii) and (iii)

SS*EVA; 4y _ 0 [ sxp AdyAy -2y " Ap( SEEVA Ay ApAA
(35+) 7y 0D 7231 31 yh(Brpa

2 ” 4 ? agAAl'"‘fl:mAP_ 2 ” angl"'Aﬁ 2 ™ P angAlm‘fkmAP

4=0 k=1 ay*’* 4=0 (ayA)z == ay"ay“k
n 65‘41"%1’ ” b a‘E‘Al...,}*...,}h...ApAA
— 2v4 . 4,067 %
.42=o y ayA A=0’:;F=kl ayAh
” 4 A, A, AL A
23 S1ym BT

4=0 k=1 6y-4

In the right-hand side of the above equality the first and the fourth terms are
cancelled out. On the other hand, we have

» 625‘41."‘3’?""41"4

(B*8) i dp— —p2 3T

—? z’l é7—4(’,25.4,,Ak_ZyA,,A,,)‘gAl--ugh-"f,,"-A,AA

A0k QyAgy4 hyk=14=0
y oy et
G 4 QFAT Ay Ak A4
Kk=1 4=0 oy4s
hk Y

From (1.16)

(8t = (@B —*BEy~4 = — 31 (19547 —y4y")-



KiLLING TENSOR FIELDS ON THE STANDARD SPHERE 61

GBS | )ty g 3 Oy,
ayA0y® =

LI yAhy TA, Ay A, 4, AA FA, A
—h,k2=l§—;2__§ VI A —p(ntp—2)E0 4
bk

»
+ 3 z”:r—Z(rZBAhAk_yAhyAk)gAln-fh'--fk"'Al,AA .
hk=14=0
bk

Notice that the last term above equals 4(7*7T&)"% 4. The desired expres-

sion of 8 is obtained from (1.15) (iii). QE.D.
We define
g,g: —1 " 6&‘4‘41 Ay 16/8:))1410 oa/ayAP—l

(-1 oy
which is nothing but the first term of the right-hand side of (iii) in Lemma
2.2. Let I'j be the pseudo-connection defined by

o8 b (BB G e oy
(2.12) I3'() = 2( 1) Wa [Oy*s---0[0y*s,

where £€5?(S").

Theorem 2.2. T is a pseudo-connection of (S”,g,) making the diagrams
(2.4) and (2.5) commutative.

Proof. Let E&8?(S"). Then
2.13) [T9()-r] = 0.

which is obtained by straightforward calculations. We have also
(2.14) [T5@), 23y"0/0y*] =0

as an immediate consequence of the homogeneity of T'}*(£). Since the Laplacian
Asn g 1s represented as

K =3 (yy"—rsan)ajay*ay™+n 3y0f0y",
,B=0 A=0
it follows from (2.13) and (2.14) that

[Ast g T5(E)] = — 2[2 . 0y ,,)2, T3(8)].

Hence again from (2.13) and (2.14) we see easily that Theorem 2.2 is re-
duced to Theorem 2.1 for R**'— {0} with the flat metric z"] (dy*)?. Q.E.D.
4=0
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Theorem 2.3. Let £=S?(S"). The following three conditions are mu-
tually equivalent

(i) ESKX(S", g)

(ii) &%t =0

(ili) E=o?(D) for some D<D*(S"™) such that [A, D]=0.

Proof. (i)=(ii) follows from Lemma 1.3. (ii)=(iii) is a direct conse-
quence of Theorem 2.2. (iii)=(i) is proved in Theorem 1 in the previous
paper [10]. Q.E.D.

3. In this section we assume n=2. By a 2-frame in R"*' we mean an
ordered pair of two linearly independent vectors in R**!. Denote by W,(R"*?),
the manifold of all 2-frames in R*™. Let L, be the linear group of regular
nXn matrices with positive determinants. L,,, acts transitively on W,(R"*')
from the left. Wy(R"™")=L,,,/[H,, where H, is the isotropy subgroup of L,,
at g€ W,(R"*). L, acts on W,(R"") from the right in the obvious manner.
The submanifold of W,(R"*') consisting of all orthonormal 2-frames with re-
spect to the canonical inner product is designated as V,(R™). V,(R"") is
identified with the homogeneous space SO(n+1)/SO(n—1). Let SG,,_(R)
be the Grassmann manifold of all oriented 2-planes through the origin of R**’.
SG,, (R) is identified with SO(n+-1)/SO(n—1)xSO(2). Vy(R""") is the
principal bundle over SG, ,_,(R) with the structure group SO(2), where the
projection 7y, is identified with the canonical one:

SO(n+1)/SO(n—1) — SO(n+1)/SO(n—1)x SO(2) .
For ¢g= {q,, a.} € W,(R"*"), the (2,2)-matrix p’=(p’s)=(<{qa,gp)) is positive
definite. Let p=(pag) be the positive definite square root of (2,2)-matrix p?
Lemma 3.1. There is a diffeomorphism ¢=(\r, 7y):
Wz(Rn'f'l)gPZX ‘V’Z(Rﬂ+l)
with \r(q)=p and wy(q)=qp~"', where P, is the space of real positive definite (2,2)-

matrices.

Proof. myq is easily proved to be an element of V,(R"*'). The rest of
the proof is obvious. Q.E.D.

Let Geod(S") be the space of oriented geodesics on (S” g). Geod(S")
can be identified with SG,,_,(R) by the canonical map ¢, attaching an orient-
ed 2-plane T' through the origin to the geodesic ¢((I")=S"NT with the induced
orientation. For £&€S?(S") we define a function £°eC~(SG,,-(R)) by

3. Em = | i,

Y=
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where ¥? is the p-th symmetric power in S*(v) of the unit tangent vector
field ¥ along y=¢(T'). For £€8"(S") we define £~ =C~(SG,,-,(R)) by £ =E£",
where £ is the element of .§"(S”) corresponding to £&. We call £~ the Radon-
Michel transform of &.

Lemma 3.2. Let £€S%(S") correspond to € K*(S", g,). Then the in-
tegrand of (3.1) is constant along vv. Consequently, £~ (T)=<&,¥?|p!> for ¥ as above.

Proof. As V%*y/ds’=0, we have
(d)ds)<E, 47> = (p+1)KE*E, 477> = 0. Q.E.D.
Lemma 3.3. Let gfyﬁa/ayB—yBB/ayA (0£A<B<mn). Then PAE=E" are
AB
the Pliicker coordinates of SG ,-,(R) satisfying

(3.2) SV(PAB2 =1,

reg]

Proof. Let p be a point on the geodesic Y=¢(T"). Put

71, = 212%0)0y* .

A=

Then by Lemma 3.2

’\(1") - <§3g C" anlayc> _ ZByA_ZAyB .

B =0

aoYR

The rest of the proof is obvious. Q.E.D.

The Plicker coordinates {P4%} satisfying (3.2) are called normalized Pliicker
coordinates in the following.

Lemma 3.4. Let P(M,G) be a principal bundle with the Lie group G
as its fibre. Let D°(P) be the subalgebra of G-invariant differential operators
of D(P). Then DY(P)|I =D(M), where J is the two-sided ideal of DE(P)
generated by G-invariant vertical vector fields on P.

Proof. The proof is essentially given in ([5] Chapter VI, Prop. II), where
only the module of vector fields is treated. Our assertion follows from this
special case as an application of the theory of the universal envelopping alge-
bra ([8] I-2-4). - Q.E.D.

Applying Lemma 3.4 to the principal bundle Vz(R"'l)—KSGZ,,,_l(R) with
SO(2) as its fibre, we obtain

DSG,,u-1(R))=DOO(VR"))[I’",

where J' is the principal ideal in D% V,(R"*')) generated by an SO(2)-
invariant vertical vector field.
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Lemma 3.5. (i) C*(V,(R") s identified with the subalgebra
Co(V(R" ™" )W={feC*(WyR"")|f is constant along each fibre of my} of the
algebra C=(W(R")).

(i) D(V(R*)) is identified with the subalgebra D(V,(R*™))I'={De
D(W{R*)| [pas, D=0 and [0]0pa, D=0 (ct, =0, 1)} of DW(R).

(i) S*(V,(R"*Y) is identified with the subalgebm S*(V,(R*™)' of
S*(W,(R"™")) generated by ois(D( V(R"™)))!, where oify denotes the symbol map of
D(WHR™)).

Proof (i) is evident. Applying Lemma 2.1 to the decomposition in Lem-
ma 3.1, we obtain (ii) and (iii). Notice that P, in Lemma 3.1 is of dimension
3 and is parameterized by py, pu(=p1) and py. Q.E.D.

Lemma 3.6. Let gzgj (dP45)? be the canonical metric on SG,,_(R). Then
<B

(i) =5@) = 31 (°—piphd) s dpidpt,
where p4(a=0, 1) are components of p= {p,, p} E Vo(R"™).

(i) (o) *(@) = 33 (5*—glaB(p))™)(o") " das dat

where (p*)=(p"*)ap.

Proof. We can easily obtain (i). Making use of Lemma 3.1, we obtain
(ii) by straightforward calculations. Notice that

3.3) 0" —qage (p°) = 847 —pypa 8%,
since gg= GZ:O DoPap Q.E.D.
The Laplacian with respect to g is denoted by A™.

Lemma 3.7. 4 representatifve (mod 9) in @( Vy(R*™) of A™ s (A)!
if—(SAB—qﬁqﬁ )P Ws — =

aq‘,yqa ( - )qa} an *

Proof. (A™)'ED(V,(R™)', since [pag, (A)]=0 and [8—6_ (AA)T]=O are
Pap

easily verified. Moreover, (A™)"is found to be L,-invariant, since [q;,f1 6%, (AA)T]
9

=0 (a, 8=0, 1). Consequently, (A™)" represents a differential operator in
Y(SG,,-,(R)). Notice that

—ai(A7) = (847 —q543(p*)™) (P°)vs 0/0gy 0/0gs .
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Comparing with Lemma 3.6, we can easily verify that —of(A™)! represents
2%, where g* is the contravariant metric tensor corresponding to 2. As (A™)f
is self-adjoint in D(V,(R**'))' and annihilates constants, we conclude that
(A™)! represents the Laplacian A™ of (SG, ,_,(R), 8). Q.E.D.

Lemma 3.8. (i) (A")'(p™f) = p®(AM)f, for fEC=(W,(R"*))
(ii) (A")(gags p™p?’)=—28"854-28"q,q58"" +2(n—1)qsqs PP

(i) 8(%%*)6(%"3’? ) () sl — 345+ gAgE () ™) = — 87(8°P— g g2()*).

Proof. (i) and (ii) follow from [pgg, (A7)]=0. (iii) follows immediately
from (ii). Q.E.D.
By Lemma 3.5 we identify f € C”(S G, ,_,(R)) with (zy 7y ) *fEC=(W(R"™Y)).

Theorem 3.1. Let E€S/(S"). Then
ATE” = (AE)".
Proof. It is enough to show
(3.6) @YE = (Bg))
for £ as in (2.10).
Recall (2")(q)=(1/2x) Sy CE,5*|p'>ds for g€ W,(R™) such that (ry+my)(q)—
1
T (y=¢T)), where y4= ué()qﬁ P%ug ()2 -+ (u)?=1). Interchanging the order

of the integration and the differential operator (A™)!, we obtain

67 EYEN = [ 5 =g )
< [(05°/0g40g8) (O 45/05)5-+-34-+(03¥[0g4) (95 0g2)
(@B 44]0y 0y -5+ 2p(0y° g4 ) OBA4/05F)
e 4107+ p(p—1)EH sy i
. (j;Ap-l/aq:;) (851“‘#/6q§)—|—p§"1““4p5ﬂ41- --y4» 0%941/3g; Oqy |ds
=12 |, 3 a20yfog2) (084 4105°)
e -_)';Ap—|—p,§‘41""4pj;‘41- - yA9-19942[0g, 1ds ,

1

where j/"’=w?_0q p™Pig and ayc/aq,,—(GZq., p"[8g5)is. On the other hand,

we see easily

3.8) (i) yz;‘,)(u.,y:o (ii) guyuyzo
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(iii) ﬁy = —Uy (iV) 8,;‘3 == uaug—{—itaitg .

The first term of the first integral in (3.7) together with the first term of
the second integral, becomes from Lemma 3.8

(A %)) B s
(112)§, B0 (B (SaEpug)) % e yids

= p(n—1) ") ((zy-7w) ™' 7(7)) -

Similarly by Lemma 3.8 the last term of the first integral together with the
second term of the second integral in (3.7) is reduced to

(pf2r) Sy Al.é,:o((y)*y”’)y"l---y”P-IE’*l""’»ds
= p(n—1) ") ((my 7)Y (7)) -

The fourth term of the first integral becomes

(pp—1)2m) ||| 3 Bt gio-s(— 50+ glgh (1))

- (3y*s-1/0g7) (3y*+/0g3) (P*pwods = (p(p—1) (E")'—4(T*TE)")Y)
(myemy)™ 7)) -

Similarly, the second term of the first integral in (3.7) is calculated as

—(pm) [ 30 (577 ah (o)) (Pu(0y [0gi) (3" [og)

17 4p=0
(@A 40/0y 0P - ods = —(1[2m) || (8407 —yy?) (0% 42j0y"0y")
« A1 Jhrds

because of the identity;

39 [ 3 reEsoyioynine gt = 0.

44y

(3.9) is deduced from

27[((5*)2?)/\ — Sy [1'4 % 62§A1'"fh“";‘k""“p+2/6y"h8y“’*

h,k=1
h¥kk
gtz SA A e A A4 A
+2r" 53 yMOENT AN e [Qy ]yt hovads
h,k=1

hck
and ‘j y494=0. As Im 8* is annihilated by the Radon-Michel transform,
A4=0

(@78 =0.
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This proves (3.9). Comparing these results with Lemma 2.2 (iv) we obtain
the theorem. Q.E.D.

4. Eigen-space decomposition of Lichnerwicz operator A on
K*(S", g0)

From now on, if no confu~sion arise, we omit the symbols ~ and t. For
example we write 6F instead of 6 and A™ instesd of (A™)T.

On (87, g,) the curvature tensor and the Ricci tensor are given respectively
by

R = af(go)kz—&i(go)ﬂ and  Rj, = (n—1)(g0)je »

So the Lichnerowicz operator on S8”(S") is expressed as

4.1) A=2p(n+p—2)1,—8T*T+[],
where 1, is the identity operator on S?(S™).
Put

My = 2(p—R)n+-2p"—4(k+1)p+4k*+-6k ,

where p and k are integers such that p=2k=>0. As

(4.2) Mpi—App = 2(k—i) (n1-2p—2k—2i—3),
we find that

M=, (R=0).

Let S:S*(S")—S8*(S") be the differential operator of degree —2 defined by

(4.3) S = AT, T--(1/3)(16T* T2+ [8%, T3])
on S?(S").

Lemma 4.1. [8%, S]=(4/3)(n+2p)T8* on S*(S™). In particular, S induces
an endomorphism on K*(S", g,).

Proof. Owing to Lemma 1.4 and (4.1), we can express AS restricted to
S?(S”) in three ways as

(1) A8 =2(p—1)(n+p—3)6—8T*T8+[18

(ii) A8 = 2p(n+p—2)8—83T*T+38(]

(i) A8 = ((2p—1)n+2p* —6p+3)8—4T*T8—48T*T+(1/2)((18+80).
By Lemma 1.4 and (4.3), we have

[6%, 8] = ((2p—Vn+2p* —6p+3)[8%, T]—2((p—1)n-+p*—4p+5)8*T
—|—2(pn+p2—-2p+2)T8*—4-T*T8—4-8T*T+%(D8+SD)
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+13_6T*[8*, T2]+%[8*, [5%, 8T7]
— (nF2p—T)S* T+ (n+-2p+1)TS* —4[T*, 8]T—S8ST*T
+2(08-+800)+ 10 T[8%, T+ [3%, #—07].

Since [8*, 8*]=—([J8+38(]), we have
(4.4) [6%, §]— (n+2p—11)8*T—|—(n—]—2p+1)T8*+%([|8+8[])

_SST*TJ%Z T*8T—%[8*, T[]

On the other hand, we can obtain the fourth expression of AS:

SA = [8%, AT] = 2p(n+p—2)8*T—88*TT*T-[8*, T[]
—2(p—1)(n+p—3)TS*+8T*T25* .

From this and the third equality of (4.3) we have

((Zp——1)n+2p2~6p+3)8—4T*T8—|—%(DB+SD) —
2p(n+-p—2)5* T—2(p—1)(n-+-p—3)TS*—88* TT* T 8T*T26* - [6*, [1T].

Eliminating the term [8*, T[]] from the equality above and (4.4), we obtain
the desired formula Q.E.D.

Lemma 4.2. Let p=2k=0.

3k _ 1 "
_ 2% TEIS—= ATk, \T*+ —— {8(k-+1)T*T*1-[8%, T*S S?(S™.
2kt 1 Apt +2k—|—1{ (k+1) + ]} on S*(S")

Proof. From the definition of S, Lemma 1.1 and Lemma 1.4 we have
(4.5) T*'S = AT*—x, , T*+(1/3)(16 T+ *T*T?*—8T*8*+ T*8*T'5)
= AT*—\, ,T*+(1/3) (16 T*T*'-8(k—1) (n-+2p—2k—4) T*
+[8%, 8T*]—(k—1)T*18%).
On the other hand, we have
(4.6) AT* = np_py o T*—8T*T*14-[3, §*]T*
= Npogp o TF—8T*TH1 L [8T*, 8*]4-kT* 8.

Eliminating 7%7'8 from (4.5) and (4.6), we obtain the desired formula. ~Q.E.D.
Put

@.7) Bf = 2BT* (3% and Af— (I BE)T*
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for a non-negative integer k.

Lemma4.3. (3k/2k+1)T*'S=AT*—n, , T*+(1/(2k-+1)(R+1))Blus, T
on K*(S", g,) for p=2k=0. In particular, A¥ leaves K*(S", g,) invariant.

Proof. The first assertion follows immediately from Lemma 4.2. We
prove the second one by induction on k. For k=0 the assertion coincides with
(4.1). Suppose that A¥ (0=<i=<k) leave K*(S", g,) invariant for each p. Applying

k
II B%, to the equality of the first assertion, we obtain
i=1

(4.8) (fI BY)(3i[2i+1) TS = AAF —n, ,AF+ A1 [(2k+1) (k+1)) -

As the left-hand side of (4.8) can be expressed as (3k/2k+1)B%A¥ .S, with
the aid of Lemma 4.1 we conclude from the induction hypothesis and (4.8) that
A leaves K*(S" g,) invariant. Q.E.D.

Let IT,: K*(S", go)—>K™*(S", go) N (Im T*)* be the orthogonal projection with
respect to the inner product (1.9). II, commutes with A. Put

(+.9) H, = ILA}¥ .
As the image of B4 .S restricted to K?(S", g,) is contained in T*(K?~*(S", g,))
(4.10) AH,— N, Hy - (1/(2k+1) (k- 1)) Hypy = 0
on K?(S", g,). Put

(411) P,,— . mH2—4k=3 (1) (e 2p— k2SIl
’ P Rl (nf2p— 2k —3)11 = (2i)- (i—k)!

i

where p=2k=>0 and kl1—2wm _ TU+(2)
T(1+(k/2)—[k/2])

Notice that
(2R)1N = 2F-R!,  (2R+1)!! = (2k++1)1/(2%-R))
for a non-negative integer &, (—1)!!=1, (=3)!!l=—1.

Lemma 44. AP,,=),,P,,
on K*(S", g,).

Proof.

QR (— 1) Hnt-2p—2k—2i—5)I1 @B (—1)i*
2 (20)!-(i—k)! A= 25 20!+ (i—k)!
*(n4-2p—2k—2i—5)1\(\y i Hi— H 1 [((2i4-1) (1+1)))

= (n4-2p—4k—5)1In, H,J(2k)!
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>

QW3 (—1)Hnt2p—2k—2i—5)!1
+ ( (24)!-(i—E)! M
(=1 (e 2p—2R—2i—3) 11\

i+(2i—2)!-(i—k—1)!-(2i—1) )H'

x>

+1

=

_ (ﬁi_%_]f_s)“xmlfﬁ_i: )} ((—1y~*n-+ 2p—26—2i—5)!!

g i+ 20—F) (n+-2p—2k— 2i— 3) H_)
(24)!-(i—k)! ‘).

By (4.2) the right-hand side of the equality above coincides with

K (= 1) (n4-2p—2k—2i=5)!! 1. E.D.
Mo 22 (20)!-(i—k)! g Qe

Lemma 4.5. Let 1, be the identity operator on K*(S",g) N (Im T*)*.
(/2
Then we have pzz P,,=1, on K(S", g) N (Im T%*)*.
k=0

Proof. The proof can be reduced to the following identity.

o () (D@—20) (1 (i1
P j)(k)(x )_¢ (70 .
#=e I (x—k—1) 1 (x—m—i)

In particular, putting m=j in (4.12), we obtain

(=) ) (—2k
(4.13) z:( j)<k>( ):0 G=1).
=L (ki)

(4.12) is proved by induction on j. Substituting x=(n+2p—3)/2 into (4.13)
we obtain

2"(——l)k(£>(n+2p—4k—3)(n+2p—2k—2j—5)!!
(*+13)" 23 (- 2p—2k—3)11

=0 (j=1).
On the other hand,

(= V(L) rt2p—42=3),, 0 (— 1/({)n-+2p— 22 —5)1

[2/21

P =0 i X @)
@y A 1(])r-+2p— 4 3)- (n-+ 2p—2k—2j—5)!!
T &) & (n+-2p—2k—3)I! H;.
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From this and (4.13)" we obtain

[p/21
2 Pp,k = Ho = lp

k=0

on K*(S", g) N (Im T*)*. QE.D.

/
Theorem 4.1. (i) The operator SIn, P, on K¥(S", g) N (Im T*)* gives
k=0

the eigen-space decomposition of A restricted to K*(S”, g,) N (Im T*)™*.
(i) P,,=*0 for n=3, i.e., the £, , eigen-subspace is non-trivial on K*(S”, g,)
NAm T*)*. P, =08 1,yml, and n\,pyn=p(p+1) for n=2, where 5;; is the

Kronecker’s symbol.
[p

/
(i) K/(S™ g)= 33 (T*){(K*#(S", g) N (Im T*)~) (direct sum) together
. k=0
with (i) and (ii) gives the eigen-space decomposition of A on K*(S”, g;).

Proof of (i) follows from Lemmas 4.4 and 4.5. In fact

A == Al‘b == ;APp,kz zkx‘ﬁ,kPP,k’

Since A is self-adjoint, (i) follows. (iii) follows from [T%#, A]=0. In order to
prove the rest of Theorem 4.1 we need the following five lemmas.

Lemma 4.6. Let ¢ and ¢;(i=1, 2) be eigen-functions of the Laplacian of
(S”, &) for the first eigen-value n. Then

(i) Bf¢p=0 (i) Bf¢p*=4T*p*+2(8*p)’ = K*(S", g)-

(i) BE($rpe) = 4T b1cpo+2(8%h1) (8 o).

Proof. From (4.7) and a known theorem (cf. [2]) we have

Bfp = 2T*¢-+(5%p = 0.
By this equality
B = (8T*-+(5%P) = ST*¢*+-2(3*4)"-+ 2(6*¢
= 4T*p*+2(8* )’ .

Moreover, 8*(B¥ ¢?)=8T*($3*p)+4((8%)?p)o(8%*p)=0. (iii) follows from (ii) by
polarization. Q.E.D.

Lemma 4.7. Let ¢ be as in Lemma 4.6. For k=2j=0
ﬁ B " = (R(k—2j)")(1/27)(B¥? "% .

Proof. We prove the lemma by induction onj. For j=1
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B;k¢k — ZkZT*d)Z.¢k—2+k8*(8*¢.¢k—1)
— 2k2T*¢2.¢k-2+k(8*)2¢.¢k—1+k(k_1)8*¢0(8*¢)¢k—2
= (R IRTH§ ¢ R 1) By
= (R!/(k—2))(1/2) (4T*$*+2(5*$)")p"**

Suppose that the assertion be true for j=1. Then
(g Bi )" = Bt (k! (R—2))") (1/27)(BF$) ¢ )
= 2(k—2j)’(RY|(k—2j)) (1/2/)T*(Bf ) - '~
(R (R—2j—2)1) (S*$Y(B* g2 ¢ 212!

+(k!(R—2j—1)1) (8%’ pogp* =2 "1o(BE %) [2/
= (k))(R—2j—2)!)p*~2 5B p?)i+1[2i QE.D.

Lemma 4.8. Let ¢, (i=1, 2) be as in Lemma 4.6.
,.lj, B (4 +($2))" = ((2k)!/25) (BE(($a)*+ (o))" (mod Im T* NK*(S”, gy)) -

Proof. At first we remark that when either =1 or none of ¢,’s annihilates
our assertion coincides with Lemma 4.7. We write &,~§,(£,€8*(S"), i=1, 2)
if and only if £,—£,&Im T*. Obviously this is an equivalence relation. From
the definition of B*’s we have

TT BE(($0H P~ (8H (35 + () =
33 (%) ¥ (- (33" ()
On the other hand, we have (8%)"((¢)*+($2))~0 (k=3). Hence
11 B1(@ -+ ~(5) G+ G PGP+

As i:I: <2k221)=(2k)!/2”, from the formula above we obtain the assertion by
induction on k. Q.E.D.

REMARK.  (¢;)*+(¢,)? in Lemma 4.8 can be replaced by any quadratic form
of ¢;'s.

Lemma 4.9. (5*(y* [n)f-+(" Vo= 33(y*0/0y"—y"0[0y", (4=0, -+, ).

BkA

The proof is a matter of straight-forward calculations.
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_ a0 50 — (S
Lemma 4.10 Let §B_y 3y y For E—geK(S)

oy4’
i er . _(2)!-p! SV EVL S i, Ep-2i
0 s = O I e B

i s Ple(n+2p—4k—3) o [&4(—1)""*(n4-2p—2k—2i—5)!!
(W) Bou k!-(n+2p—2k—3)!!n°[§ (G—R)!+(p—2i)! 2

(EE By,
where E? is the p-th symmetric power of E.
igp p! 01,2 1/\2\igp—2i
Proof. As Tig? = 2‘(p———21)!((y [r)*+('[r)*)'EP7%,

xpp— (20)!-p! $( a0 1)\ 2_L B¥( 1 /p)2)i o £p-2% * n
A= G o2 BEO I BE Yy o™ (mod Im TN K5, &) -

By Lemma 4.6 (ii) and Lemma 4.9 we have

* =_(%E)'_P'_ 2 . 2\i o gp—2i
A,EP_Z‘.(P_ZZ,)!(Z;%-I—%%) g

From this (i) and (ii), respectively, follow immediately. Q.E.D.

Now we prove (ii) in Theorem 4.1 for n=2. We recall the following ex-
pansion formula for the Legendre polynomials P,(2)=(1/(2"+n!)) %(zz—l)”:
%
d o; Cm+42—DIt 5
P, (z) = S} (— 1) ( j
w®) = B D™ o am— 2

N qym-i Cm42/+D! o
Pare) = B D™ G D am—zyn®

(4.14)

with P,(1)=1.

Lemma 4.11. On K*(S? g,) N (Im T*)* we have

N g pl(2)!

0 =0z

(i) P,,— Dl@p—4k—1) WI(—1)"(2p—2k—2i—3)!
PR R p—2k—)N T —R)l-(p—2i)12F T

Proof. It suffices to prove (i), because (ii) follows immediately from (i).
Let #=AE+BE+CE be a Killing vector field on (S? g,), where ?’s (1<y) are
01 12 02 i

as in Lemma 4.11 and A4, B and C are constants. Then
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i — ‘ 2 ' 2 2 0 /)2 2 2 1/,\2
T = O [ COP A+ BY )
+(B+C?) (I —2ABy Y Ir—2BCyy I~ 2CAyy g™

From Remark to Lemma 4.8 we obtain

» 1 (22)! 2y (2 9/,))2 2 g2 1/,))2
At b B A CNTOIHA BV ()
(B CY (V) 2BV (MY ()~ 2BC(V () (1)

—2AC(V (P IN)V (5] 2'~2_'P‘(T(21)2i)" e

Applying II, to the last relation, we obtain (i). Q.E.D.

Proof of (ii) in Theorem 4.1. for n=2. Let p=2p’".
2( )i+ (2p")!-[(4p’' —2k—2i— 1)1 -2(i—K) - (4p'—2k—2i—3)!!]

Pay s = 20k (4p'—2k—1)!1 (2p'—2i)! (i—k)!
(2p")! ik 2R (4p'—2k—2i— 1)1 |
T Rl-(4p'— 2k — 1)!!2( D 2¢+(2p"'—24)- (2i—2k)!! L
(2p")! = ik 2(1—R)+(4p'—2k — 2i—3)11 217+
o -(4p'—2k— 1)1'2( b 21+(2p"'—26)!-(2i—2k)!! L
— 2p)! S 2p —R)F2(p )] (= 1)P A
2kk\-(4p’ —2k—1)!1 »=Tm0 (2p'—24)!-(2i—2k)!! ?
2p)! YT (4" —2k—2i—3)!!

T2RRl-(Ap'—2k—1)11 v (2p'—2i)1-(2i— 2k— 2)I!
.(_l)p’—k—l—(p’—o.lp .
Substituting the first equality of (4.14) into the fromula above, we obtain for
k<p’

251
P = i (4;1)) -l
|
(2p")! Pyysp(1)-1, =

2Rl(4p'— 2k— 1)

For k=p’, we obtain from Lemma 4.11 (ii)

2)! _
P = Gpn-@p—nyit =

For p odd the proof is analogous as above except the employment of the second
equality of (4.14) in place of the first one, and is omitted. Q.E.D.
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In order to prove the first half of Theorem 4.1 (ii), we need the following
two lemmas.

Lemma 4.12. (i) The image of the Radon-Michel transform restricted to
K*(S", g,) is the subalgebra of C=(SG,,,-,(R)) consisting of the polynomials of the
normalized Pliicker coordinates. (ii) The kernmel of the Radom-Michel transform
is the principal ideal generated by g,-1 in K*(S", g,).

Proof. The algebra of polynomials of the normalized Pliicker coordinates
is isomorphic to R[X]/I, where R[X] is the polynomial algebra generated by
indeterminates X;;’s (1=7<j=n) and [ is the ideal generated by

def ..
(4.15) (1) I = XiiXy— XX+ XX (0=i<j<k<I=n)
' () X(X,)—1.

i<y
I1;;/s are Pliicker polynomials. (4.15) (ii) arises from the normalization of
Pliicker coordinates.

Hence (i) is obvious. From (i) and Lemma 3.3, (ii) follows immediately.

Q.E.D.

Let J be the Plicker ideal generated by II,j,,’s in R[X].

Lemma 4.13. K*(S", g,)=R[X]/]

Proof. Let ®@: R[X]—>K™*(S", g) be given by ®(X;;)=&. & can be ex-

i
tended to a surjective homomorphism of graded algebrs. Obviously II;;,E
Ker ®. If we consider the homomorphism & followed by the Radon-Michel

transform, Lemma 4.12 tells us that the Ker @ is exactly generated by II;;,’s.
Q.E.D.

Proof of (ii) in Theorem 4.1. for n=3, Lemma 4.10 is restated as in the
following form:

PoEY = Ty 346,82 (V33 (E)IEI,
_ Pl (n+2p—4k—3)(— 1) H(nt-2p—2k—2i—5)!!
R~ (n+-2p—2k—3)! 1+ (i—K)!-(p—24)! 2/

where ¢, ; ;

If this were identically zero, then
[p/21

23 il 2( X'+ 25 (Xo))* +H( Xy )T (Xe) ™

i=k

should be annihilated by X;,’s which annihilate II,;, and 2 (X,;)%. This is not
the case. For if we put i>i



76 T. Sumitomo aND K. TanDar1

Xm: \/7, X23= \/——2: on=X03= 1, "‘X12=X13= \/—-—1’
X;;=0 (Max {5 j} =4),

we should have ¢, ; ;=0. This is a contradiction. Q.E.D.
Theorem 4.2. The spectra of (S G, ,-(R), 2) are

Mok = 2p— Rt 25— (k- p 416k =3
No Lot = p(p+1) n=2,

where p and k are integers such that p=2k=0. The eigen-space for the eigen-
value M\, ; is the image by the Radon-Michel transform of the eigen-subspace in
K*(S", g,) of the Lichnerowicz operator for the eigen-value 1, ;.

Proof. As is well known the polynomial algebra, generated by the nor-
malized Plicker coordinates P4%’s separates two points in SG,,-,(R) By the
Stone-Weierstrass theorem it is uniformly dense in C*(SG,,-,(R)). Thus,
from Theorem 3.1, Theorem 4.1 and the non-triviality of the image by the
Radon-Michel transform of the non-trivial eigen-subspace of K*(S”", g,) which
is essentially contained in the proof of (ii) in Theorem 4.1, we conclude the
proof of Theorem 4.2. Q.E.D.

The Grassmann manifold G, ,-,(R)=0(rn+1)/O(n—1)x O(2) which is the
space of 2-planes in R"*! has 8@, ,_,(R) as its 2-fold covering:

s
SGZ,n—-l(R) I Gz,n—l(R) .

C~(SG,,,-(R)) is identified with the subalgebra {g=C~(SG,,,-,(R)|g=(7,)*f,
fE€C~(G,,-(R)} of C(SG,,,(R)). On the other hand, =, being local
isometry, the Laplacian of @,,_,(R) can be viewed as the canonical one of
S G, ,-,(R) restricted to the subalgebra above. Hence we obtain

Theorem 4.3. The spectra of (G, ,-(R), g) are

Mpp = 2p—R)n+2p7—4(k+-1)p+4k2+6k  n=3
N =p(p+1) n=2

for even integer p and integer k (p=k=0).

Appendix. Differential equations for spherical ploynomials

Let D be the linear differential operator of order k41 defined by
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8* TI B¥..; (k; non-negative even integer)
i=0
D¥ =
[k/2]-1 . .
B (k; non-negative odd integer) .

Lemma A. D¥(E/r*)=r*"3(0%)""E,

where E/rkesp(sn) and (6*5)‘41"“41:“: p+1 M
ji=1 8ij
Proof. For k=0, DI(E/r)=8*¢=r0*¢. For k=1, D¥(E/r)=BHE/N—
(O*)X(E[r)+ 2T*(E[r)=7*(0*)’%€. Suppose that the assertion be affirmative for
k>0. Then

DZ‘}Z(E/’IH'Z) — D;,kB;k+z(§/rk+2) — rk+4(a*)k+3g

by virtue of the Leibniz’s formula. Q.E.D.
Theorem A. Let f€C~(S"). Dif=0if and only if
[k/2]

fe E,_,; (direct sum),

i=0

where E, is the eigen-space of the Laplacian for the eigen-value k(n+k—1) on
(S”, &)-

Proof. Put ¥=fr*. Then from Lemma A, D{f=0 if and only if
r**3(9*)** ¥ =0. Thus D¥=0 if and only if ¥ is a homogeneous polynomial of
degree k. Q.E.D.
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