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0. Introduction. The principal purpose of the present paper is to
exhibit the eigen-space decomposition of the Laplacian of the Grassmann mani-
folds SG2^ι(R)=SO(n+l)ISO(n-l)xSO(2) and C2.«-i(Λ)=O(ιι+l)/O(n-l)
χθ(2) with their canonical Riemannian metrics respectively and to clarify
the relation between the eigen-space decompositions above and of the Lich-
nerowicz operator Δ on the standard sphere (Sn,g0), restricted to the graded
algebras K*(Sn,g0) of symmetric tensor fields on Sn> generated by Killing vector
fields.

In 1, we obtain fundamental properties of differential operators δ*, δ, 71*,
T and the Lichnerowicz operator Δ acting on the graded algebra S*(M) =
2 SP(M) (direct sum) of symmetric tensor fields on a Riemannian manifold (M,g).

In 2, a pseudo-connection of infinite order on M is defined as a collection of
linear differential operators Γ^: S/'(M)^S)/'(M) (p^l) splitting

(1.3), 0 —* <S>*-\M) ~^> ®*(M) - ^ Sp(M) —•* 0 ,

viewed as the short exact sequences of /2-modules, where 2)*(M) is the module
of C°°-differential operators of order at most p on M. In virtue of the existence
of a certain pseudo-connection on (Sn,g0), jfiΓ*(5'Λ,^0) is characterized as the
kernel of δ* in S*(Sn). In 3, the Radon-Michel transform ^: S*(SW)-^
Coo(SG2>n_1(R))y is defined by

(3.1) Γ(Γ)=

where i maps an oriented 2-plane Γ e S G ^ - ^ Λ ) to the geodesic rγ=Tf]Sn on
(Sn,g0) with the orientation induced from Γ. The key theorem is Theorem 3.1
A^ε^=(Δξ)~, where Δ^ is the Laplacian on S6r2fn_i(/?) with the canonical
Riemannian metric, which was first proved by R. Michel [9] for S2(Sn). In
4, a linear differential operator S of degree —2 is defined, with the aid of which
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we obtain the eigen-space decomposition of the Lichnerowicz operator Δ
restricted to K*(Sn,g0). This eigen-space decomposition of the Lichnerowicz
operator yields the one of the Laplacian Δ^ on C°°(SG2tn-ι(R)) via the Radon-
Michel transform.

In the appendix a linear differential operator Df of order k is introduced
so that an eigen-function / of the Laplacian of (Sn, g0) for the eigen-value
k(n+k— 1) satisfies the differential equation

Z>f/=O.

1. Fundamental operators. Let (M,g) be an oriented C°°-Riemannian
manifold of dimension n. Let x ^ M . The space of ^>-jets of C°°-mapping
/: Uf-+R a t x G ^ c M with Uf open is denoted by T*{P)(M) and the union

= (J T*^p) forms a vector bundle over M. The dual vector bundle

of T*iP)(M) is denoted by T(P)(M). As is well known the sequence of vector
bundles

(1.1), 0 —> Tip-ι\M) -^ T(p\M) -^t SpT(M) —» 0

is exact, where ιp, σp and SPT(M) are the canonical inclusion, the symbol map
and the symmetric tensor product of order p of the tangent bundle T(M) of M,
respectively. We mean by an (ascending) filtered Lie algebra ([4], p. in) a Lie
algebra L with an ascending chain of subspaces

satisfying [Lp

y L9] C Lp+q and L — (J Lp. The associated graded Lie algebra

G(L) [4] with an filtered Lie algebra L is the Lie algebra

G{L) = 2 U\U~X (direct sum)

with the bracket \XmoAU'\ YmoaU~l] = [Xy Y] modL^" 1 for XeL^ and
Y e L 9 . A C°°-section D of T(P\M) is called <2 ί w differential operator of
order p. It is written as

(1.2) D -

with respect to a local coordinate system Λ?1, •• ,ΛJM. The C°°(M)-module of
linear differential operators of order p on M is denoted by SD^M). We put
®(Λf)= U Sy(Λf). As [®^(M), ^ ( M ) ] c Sy+β-^M) for the bracket product

P>0

[A, Z>J=AAs—AA> ® W ί s a filtered Lie algebra if we put Z/=
(p^ — 1), L^= {0} (ptS;— 2). From (1.1), follows the exact sequence
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ιp σp

(1.3), 0 —> 2)'-1 (M) — * ®*(M) — * S'(M) — * 0

of C°°(M)-modules, where the C°°(7lf)-module of symmetric tensor fields of de-

gree ί o n i l ί i s denoted by SP(M). Put S*(M)= Σ SP(M) (direct sum). The

symmetric tensor product of ξ<^Sp(M) and η^Sq(M) is defined as the sym-

metrization of the tensor product ξ®η which we denote by £077. For latter

use we give an interpretation in terms of the symbol maps

(1.4) lo^σ^ZVA,),

where Dέ<Ξ®'(M) and A,e®*(M) are such that σ

p(D^)=ξ and aq(Dv)=v.

With respect to a local coordinate system {x1, •••, xn}, ξ^Sp(M) is expressed as

(1.5) ξ = (llp\)ξiϊ i*dldχΊo...odldxί> ,

where ξ^'"^ will be called the components of ξ. The symmetric tensor product

of ?GS'(Jlί) and ?7eS9(M) expeessed as in (1.5) is written as

where

(1.6)

and @>p+q is the symmetric group of degree p+q. We define the bracket product

on S*(M) by

(1.7) [I, 7] = σ*+*{Dh Dv],

where Dξ and /)„ are as in (1.4). Notice that [ξ,η]GSp+q-\M). S*(M) is

identified with the associated graded algebra of the filtered Lie algebra

The componentwise expression of (1.7) is given by

(1.8) [ξ, ̂ Ί W i = L Σ ξ'«ir'*«i*
(pl)l

for ξ(ΞSp(M) and η£ΞS\M).

Assume from now on that M be compact. SP(M) is equipped with the

positive definite inner product

(1.9) (ξ,v)=p
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where

and dσ is the volume element of (M,g). Let g=giidjdxi°djdxi be the con-
travarίant Riemannian metric of (M, g). We define a linear operator T*:
S*(M)->S*(M) of degree 2 by

(1.10) T*ξ = (l/2)goξ(ΞSp+2(M)

for ξ^Sp(M). Let T be the adjoint operator of Γ* with respect to the inner
product (1.9). T is of degree —2. The components of T*ξ and Tξ are given
by

(1.11) (21*?)|v-f>+2 ii

(1.12) (Γ£) V ',-t

Lemma 1.1. (i) [T, T*] = ((n/2)+/>)l,

(ii) [Γm, Γ*] = m((W/2)+^-7M

o« SP(M), where ίp is the identity operator of SP(M).

Proof. From (1.11) and (1.12)

(TT*ξ)Ί~'> = (lβ)gab

Thus (i) is obtained, (ii) follows from (i) by induction on m. Q.E.D.
Define δ*: S*(M)->S*(M) by

(1.13) 8*ξ = (1/2) [g, ξ].

δ* is a linear differential operator of degree 1. Define δ: S*(M)->S*(M) as
the adjoint operator of δ* with respect to the inner product (1.9). The
componentwise expression of δ* and δ are given by

(1.14) (i)

(»)

where V is the Riemannian connection on {M,g).

Lemma 1.2. (i) [T, δ] = 0 (i)* [T*, S*] = 0

(ii) [δ*,T] = δ (ii)* [Γ*,δ] = δ * .

Proof. From (1.12) and (1.14) (i) is immediately obtained, (ii) is also
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obtained from (1.12) and (1.14) by direct calculations, (i)* and (ii)* follow
from (i) and (ii), respectively. Q.E.D.

Lemma 1.3. δ* is a derivation on the associative algebra S*(M).

Proof. From (1.4) we have

[g, ξoη] = -<r"+«+1[A, DrDv] = -σ^««([Δ, Z>ξ]A, +Z>e[Δ, A,])

= [g, ξ]oV+ξ°[g, v].

where Δ=—£I;V,V,- is the Laplacian of (M,g) and Dξ's are as in (1.7). Q.E.D.

We define self-adjoint linear differential operators Π, 5, and Δ on S*(M)
by

(1.15) (i) D = [δ,δ*] (ii) S = -V*V.

(iii) Δ = 2 S - Π .

S and Δ are called the rough Laplacian and the Lichnerowicz operator on (M, g),
respectively [7]. The componentwise expression of • and Δ for ξ as in (1.5)
are

(1.16) (i)

(ii)

where (2Lf)Ί" '#= - v'V.f'»~y* and (κξ)Ί~'t = Σ Λ'*^ 1"' !*"'*-2
A = l 1

Ri"ab

ikξabiι"'i'''"ik'"i'' and J?j i* (resp. i?,v ) are the components of the curvature
tensor (resp. the Ricci tensor) of (M, g).

Lemma 1.4 (i) [Π, T\ = 0 (i)* [D, Γ*] = 0

(ii) [Δ,T] = 0 (ii)* [Δ,Γ*] = 0.

Proof. Since Π and Δ are self-adjoint, it suffices to prove (i) and (ii).
By Lemma 1.2

[•> T] = tδδ*> ?1]-[δ*δ, T] = (δ[δ*, Γ]+δΓδ*-Γδδ*)

- δ * δ Γ + [ Γ , δ*]δ+δ*Γδ = 0

which proves (i). (ii) follows from (i) by virtue of [Δ, T]=0. Q.E.D.

Lemma 1.5. Let (M, g) be locally symmetric.

(i) [Δ,δ] = 0 (i)* [Δ,δ*] = O.

Proof. For ξ e SP(M) as in (1.5)



56 T. SUMITOMO AND K. TANDAI

. V i = [v4,
 w ' V

On the other hand, we have
P-ι

k = l
([δ, tfjfyvvi = -v c ( i? β ^ t v ^

Adding these equalities, we obtain (i). (i)* follows from (i) directly. Q.E.D.

The Lichnerowicz operator Δ in a locally symmetric Riemannian manifold
is regarded as a generalization of the Laplacian Δ. We denote them by the
same notation, because the former acts on S*(M) while the latter is the restric-
tion of the former on S°(M) = C°°(M).

An element of (Ker d*)(M, g) is called a Killing tensor field. Ker d*
(M,g) is the graded subalgebra of S*(M) by virtue of Lemma 1.3. The graded
subalgebra of S*(M) generated by (Ker ί *)(Λf, g) Π S\M) is denoted as
K*(M,g)=J]Kp(Myg) ( d i r e c t s u m ) Obviously (Kerd*)(M9g)z>E*(M,g).

We are interested in (M, g) for which the equality holds (cf. Theorem 2.3).

2. Pseudo-connections. A splitting γp of the sequence (1.3)^ of C°°(M)~
modules is called an affine connection of order p. An infinite set {ϊp} p^i is called
an affine connection of infinite order.

EXAMPLE 1. Let V7 be an affine connection on M. Then

(2.1)

defines an affine connection γ£ of order p on M.
We define a pseudo-connection of order p by a linear differential operator

Γ*: S/>(M)->®/>(M) which is a splitting of (1.3), as an exact sequences of R-
modules. A set T~{ΓP)p7>λ of pseudo-connections Γ^ of order/) is called a
pseudo-connection of infinite order on M or simply a pseudo-connection for the sake
of brevity. Γ^ is called self-adjoint if

(2.2) Γ>(£)* = (-l)>Γ'(f)

for any ξ^Sp(M). A pseudo-connection Γ is called self-adjoint if Γ* is self-
adjoint for eachp^ 1.

EXAMPLE 2. Let V7 be as in Example 1. Put
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where (? Vs are the binomial coefficients. Γ v /= {Γ̂ /} is a self-adjoint pseudo-

connection on M. Notice that Γv/(|) can also be expressed as

( 2 , , WB-ĵ ttv,,..*..

We write formally as ΓV=7 0 exp (—δ/2). A pseudo-connection Γ = {Γ*} is
called an extension of an affine connection V' if Tp=Tζ' for p^ 1. Given a
pseudo-connection Γ, we have an isomorphism S*(Λί)-»3)(M) as Λ-modules,
which we can not expect to be an isomorphism of Lie algebras. However,
we might expect the formula:

[Γ(ξ), T(v)] = T([ξ, v])

for a certain fixed ξ^Sp(M). This situation leads us to the following

PROBLEM, Does there exist a self-adjoint pseudo-connection of infinite
order extending the Riemannian connection V on (M,g)7 letting both of the
diagrams

0

(2-4),

(Lp: Lie derivative by

[P, ]

and

Γ '

S"(M) > 0

0

(2.5), -[Δ/2, ] -[Δ/2, ]

0
i.P+1

ϊ

δ*
τP+1

•pp+i

commutative ?

Theorem 2.1. Lei (M, <§
f) ie locally flat. For the pseudo-connection Yp

v in
Example 2 with respect to the Riemannian connection V of (M,g) (2.4) and (2.5)
are commutative diagrams for p^ 1.

Proof. It suffices to show for ξ<=Sp(M)

(2.6) ( i ) [

(i) is a matter of straightforward calculations. For (ii) we have [8*, δ/+1] =
—(/+l)δ ;Δ (/^l) ( S = Δ is the Lichnerowicz operator). Hence for ξ&S*(M),
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On the other hand, in a locally flat space we can easily verify [Δ, Ύo(ζ)] =

for ξ(ΞSp(M). From these we obtain

= -2A+2A-2(Ύo exp (-δ/2)) (δ*f) = -

where 4̂ is the differential operator given as the first term of the right-hand
side of (2.7). Q.E.D.

Lemma 2.1 (K. Tandai, T. Sumitomo [10]). Let Λff (£=l,2) be differ-

entiable manifolds. Then there are subalgebras ®(MZ) of ίδ(M 1xJlί 2)(i=l,2),

canonίcally isomorphίc to ®(M,) respectively, and one of them is the centralίzer

of the other in (&{Mι x M2).

Let i: Sn^Rn+1 be the canonical imbedding of Sn onto the unit sphere in

a Euclidean space Rp+ι. Then ΐ: SnχR->Rn+1— {0} defined by (x, t)v^eh(x)

is a trivialization of the real line bundle Rn+1— {0} over Sn with the projection

π'-π(y)=yl<y,y>1/2 We identify f<ΞC°°(Sn) with 7r*/^C°°(i?w+1-{0}). By

Lemma 2.1 a vector field ξ on 5W is uniquely identified with the vector field

I on Sn X R such that

(2.8) [I, f] = 0 and [|, 9/8ί] = 0 .

I is obtained as the vector field ΐ*ξ via the diffeomorphism Γ. The mapp-
ing defined by ξi—>f is a monomorphism of Lie algebras. The condition (2.8)

for ξ= JlξAd/dyA(Ξ®(Jβ
w+1— {0}) is equivalent to

4 = 0

(2.9) Σ f V = o a n d Σ (9
A 0 B 0

since r-ΐ(x, t) = e* and Γ*(8/9ί)= 2 ^ 9 / 8 ^ ( r 2 = 2 (j^)2). From the latter
4 = 0 4 = 0

condition of (2.8) ξA is a homogeneous function of degree 1 with respect to yys.

Owing to Lemma 2.1 we can identify ®(SΛ) with the subalgebra 3)(SM)=

{flG®(ΛM+1-{0}): [D,r2]=0, [ f l , g / 9 / 8 / ] = 0 } of ®(Rn+1- {0}). Every

coefficient f̂ i""̂ * of D^(S)p(Sn) is a homogeneous function of degree k (p^k^O)

with respect to the variables j°, •• ,jΛ This identification is transferred to the
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identification of the two algebras S*(SM) and S*(S*)==σ *(®(Sw)), where σ is the

symbol map of ® ( Λ W + 1 - {0}). Namely,

(2.10)

is in Sp(Sn) if and only if

= ° a n d ΈdBl

A

The canonical identification between ®(SW) and ®(5M) (resp. S*(SW) and S*(SW))

preserves their algebraic structures of associative algebras and of filtered Lie

algebras (resp. of graded Lie algebras). Notice that the identification between

S)(5W) and ®(5W) preserves the adjointness of differential operators. In the

following, for an operator D in S)(iSM) the corresponding operator in

will be denoted by D.

Lemma 2.2 Let ξ<=Sp(Sn) expressed as in (2.10).

( i ) Tξ =

(jyΛk

(iv) Δ | = (l/f!) Σ {fiξ)Ai Ap+ρ(n+p-2)ξAι-Ap-4(T*^^^
Av-,Ap = 0

o-.. oQ I dyΛρ, where

dy dy

k dJΛl'"Λk"'Ap+1 _ 2 2
9 ^

Proof, (i) As the canonical contravariant Riemannian metric £0 on Sn

is given by {r2hAB-yAyB)djdyAod/dyB (8AB; Kroneker's, symbol) we have from

(1.12) and the canonical identification between S*(SM) and S*(SM)

n (V2%AB Λ,AΛ,B\ Λ

l'"AP-2 = V 1 ^ J7 ^ / g^^i-^/,-^ —- L

Ayio 2r4 2r2

(ii) From the definition of δ*,
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where A=—(fhA B— yAyB)d2/dyAdyB+nyA djdyA and γ? is the Riemannian con-
nection of (Sn,g0). From (1.8) and (2, 11) we obtain

Σ
dyB

Ό — yA*CP)γA*CP+l'))

, 2ϊ (p-l)l

A=l QyAk

(iii) From (ii) and Lemma 1.2

i>-l o / 1 \ %AύA6 , t £ + 1 Λ&

^ i 3 y Λ 2 r ? A / 2r2 ^

From this we obtain the desired expression of δf with the aid of (2.11) (ii).

(iv) From (ii) and (iii)

= —2 V vΛ V ^ 2 V ^^ 2 V» V
(dyA)2 τί«tA dyAdyA

In the right-hand side of the above equality the first and the fourth terms are
cancelled out. On the other hand, we have

- P d2ζAi"Ak''APA

dyΛkdyA

p n CsPA.-A

- Σ Σ.
A,ft=l 4=0
Aφ*

From (1.16)

"^== - Σ (r2δAB-yAyB)<
AJ3 = 0
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J KPAAχ ~Ak' Άp

,
dyAdyB rκ '* GA dy

Aφ*

P n

AφA

Notice that the last term above equals 4(T*Tξ)Ai'"AP. The desired expres-
sion of § | is obtained from (1.15) (iii). Q.E.D.

We define

(p— l)U=o dyA

which is nothing but the first term of the right-hand side of (iii) in Lemma
2.2. Let Γ£ be the pseudo-connection defined by

*(2.12) iY(?) = £ (- ^ j ^ i t i

where ξ(ΞSp(S").

Theorem 2.2. Γ£ w « pseudo-connection of (S",g0) making the diagrams
(2.4) and (2.5) commutative.

Proof. Let f eS»(5"). Then

(2.13) [Γί'(£M = 0.

which is obtained by straightforward calculations. We have also

(2.14) [r{'(f), g y β / a ^ ] = o

as an immediate consequence of the homogeneity of T^p(ξ). Since the Laplacian
A(Sn gQ) is represented as

it follows from (2.13) and (2.14) that

Hence again from (2.13) and (2.14) we see easily that Theorem 2.2 is re-

duced to Theorem 2.1 for Rn+1~ {0} with the flat metric j ] (dyA)\ Q.E.D.



62 T. SUMITOMO AND K. TANDAI

Theorem 2.3. Let ξ^Sp(Sn). The following three conditions are mu-
tually equivalent

( i )
(ii)
(iii) ξ=σp(D) for some U E ^ ( 5 " ) such that [Δ, D]=0.

Proof. (i)==>(ii) follows from Lemma 1.3. (ii)=φ(iii) is a direct conse-
quence of Theorem 2.2. (iii)=>(i) is proved in Theorem 1 in the previous
paper [10]. Q.E.D.

3. In this section we assume n^2. By a 2-frame in Rn+1 we mean an
ordered pair of two linearly independent vectors in Rn+1. Denote by W2{Rn+v)>
the manifold of all 2-frames in Rn+4. Let Ln be the linear group of regular
nxn matrices with positive determinants. Ln+1 acts transitively on W2(Rn+1)
from the left. W2(Rn+1)~Ln+1IHq, where Hq is the isotropy subgroup of Ln+1

at q^L W2(Rn+1). L2 acts on W2(Rn+1) from the right in the obvious manner.
The submanifold of W2(Rn+ι) consisting of all orthonormal 2-frames with re-
spect to the canonical inner product is designated as V2(Rn+1). V2(Rn+1) is
identified with the homogeneous space SO(n-\-\)ISO(n—\). Let SG2n_1(R)
be the Grassmann manifold of all oriented 2-planes through the origin of Rn+1.
SGt^R) is identified with SO(n+l)ISO(n-l)xSO(2). V2(Rn+1) is the
principal bundle over SG2>n-i(R) with the structure group *SΌ(2), where the
projection πv is identified with the canonical one:

SO(n+l)/SO(n-l) -> SO(n+l)/SO(n-l)xSO(2).

For q= {q0, Ql} e W2(Rn+1), the (2,2)-matrix p 2 = ( p ^ ) - « ^ , ζ r β » is positive
definite. Let p=(ρaβ) be the positive definite square root of (2,2)-matrix p2.

Lemma 3.1. There is a dίjfeomorphism φ=(ψ, πw):

1)^P2χ V2(Rn+1)

with ψ(q)=p and τrw(q)=qρ *, where P2 is the space of real positive definite (2,2)-
matrices.

Proof. πwq is easily proved to be an element of V2(Rn+1). The rest of
the proof is obvious. Q.E.D.

Let Geod(Sw) be the space of oriented geodesies on (Sn

yg0). Geod(Sw)
can be identified with SG^-iOR) ^y the canonical map c, attaching an orient-
ed 2-plane Γ through the origin to the geodesic ί(Γ) = 5fMΠΓ with the induced
orientation. For ξ(ΞSp(Sn) we define a function |"eCoo(S6?2>w_1(/2)) by

(3.1) Γ(Γ) = (1/2*)
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where yp is the p-th symmetric power in S*(γ) of the unit tangent vector
field y along Ύ=ι(Γ). For ξ^Sn(Sn) we define ξ~^C°°(SG2>n^(R)) by ξ~=f\
where f is the element of Sp(Sn) corresponding to ξ. We call ξ^ the Radon-
Michel transform of ξ.

Lemma 3.2. Let ξ<=Sp(Sn) correspond to ξ<=Kp(Sn,g0). Then the in-
tegrand of (3.1) is constant along y. Consequently, f^(Γ)=<f, ypjpϊ} for y as above.

Proof. As V27/ώ2=0, we have

l yp> = (p+ l)<δ*f, yP"> = 0 . Q.E.D.

Lemma 3.3. Let ξ=yΛdldyB—yBdldyA(O^A<B^n). Then PAB=ξ~ are
AB AB

the PlUcker coordinates of SG2jW-i(Λ) satisfying

(3.2)

Proof. Let p be a point on the geodesic 7=£(Γ). Put

P '

Then by Lemma 3.2

Γ(Γ) = <f, Σ ^c3/9/> = ZByΛ-ZAyB

4β 4B (7 0

The rest of the proof is obvious. Q.E.D.

The Plϋcker coordinates {PAB} satisfying (3.2) are called normalized PlUcker
coordinates in the following.

Lemma 3.4. Let P(M, G) be a principal bundle with the Lie group G
as its fibre. Let S)G(P) be the subalgebra of G-invariant differential operators
of 2>(P). Then 2)G(P)/S ^ ®(M), where S is the two-sided ideal of ®%P)
generated by G-invariant vertical vector fields on P.

Proof. The proof is essentially given in ([5] Chapter VI, Prop. II), where
only the module of vector fields is treated. Our assertion follows from this
special case as an application of the theory of the universal envelopping alge-
bra ([8] 1-2-4). n Q.E.D.

Applying Lemma 3.4 to the principal bundle V2(Rn~1)-^SG2^1(R) with
50(2) as its fibre, we obtain

where 3' is the principal ideal in ®S0(2)( V2{Rn+1)) generated by an 50(2)-
invariant vertical vector field.
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Lemma 3.5. (i) C°°(V2(Rtt+1)) is identified with the subalgebra

C°°(V2(Rn+1)y={f<ΞC°°(W2(Rn+1)\f is constant along each fibre of πw} of the

algebra C~(W2(R»+ι)).

(ii) ®(F2(72Λ+1)) is. identified with the subalgebra

® ( W + 1 ) ) I [Paβy D]=0 and [9/3^, D]=0 (α, β=0, 1)}

(iii) S*(V2(Rn+1)) is identified with the subalgebra S*(F 2(/2M + 1)) ί of

S*(W2(Rn'1)) generated by σ%(S){V2(Rn+ι)))\ where σ% denotes the symbol map of

Proof (i) is evident. Applying Lemma 2.1 to the decomposition in Lem-

ma 3.1, we obtain (ii) and (iii). Notice that P2 in Lemma 3.1 is of dimension

3 and is parameterized by p^ pOi(—Pio) a n d Pπ Q.E.D.

Lemma 3.6. Let g= Σ (dPABf be the canonical metric on SG2n^(R), Then

(ί) * * ( ? ) = Σ (δAB-pA

ap
B

βδ
a*)V*dpϊdρ!

A,B=0

where pi(a=0, 1) are components ofp= {po,pi}

(ii) (πyπw)*(g) = ± {*AB-qUKp2

where (p2fβ=(p-%β.

Proof. We can easily obtain (i). Making use of Lemma 3.1, we obtain

(ii) by straightforward calculations. Notice that

(3.5) δ-"-ι

since qβ= Σ Papaβ Q.E.D.
Cύ — O

The Laplacian with respect to g is denoted by Δ^\

Lemma 3.7. A representative (modS) in 3>( V2(Rn+ψ of Δ " is (Δ") f

Proof. (Δ^€Ξ®( F3(Λ-+1))T, since [p^, (Δ")1]=O and Γ-^-, (Δ Λ ) t]=0 are
i-Opaβ J

easily verified. Moreover, (Δ^)τ is found to be L2-invariant, since q* —-, (Δ^)f

L dqi J
= 0 (a, β=0, 1). Consequently, (Δ^)1" represents a differential operator in

®(SGJ

2fι.-i(Λ)). Notice that
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Comparing with Lemma 3.6, we can easily verify that — cτ^(Δ^)1" represents
g*, where g* is the contravariant metric tensor corresponding to g. As (Δ^)1"
is self-adjoint in ®(F 2(^w + 1)) t a n d annihilates constants, we conclude that
( Δ 7 represents the Laplacian Δ " of (SG2n^(R)y g). Q.E.D.

Lemma 3.8. (i) (Ay(p«βf) = p"β(Ayfy for/eC~(W2(Rn+ι))
(ii) (Δ^rfpVa)=-2yβδ^+2y«ίί?|δ-β +2(«-l)gίrfpVβ

(iii) ^ P 9 ί f ^ ( p % ( ~ S ^ + ^

Proof, (i) and (ii) follow from [ρaβ, (Δκ s) t]=0. (iii) follows immediately
from (ii). Q.E.D.

By Lemma 3.5 we identify/eC^SG^^Λ)) with (πy'π

Theorem 3.1. Let ξ(=Sp(Sn). Then

Δ~Γ

Proof. It is enough to show

for f as in (2.10).

Recall (ξy(q)=(\βπ) J <ξ,yPlp\>ds for qtΞ W2(Rn+1) such that (πv πw)(q)=

Γ (<y=i(Γ)), where yA= Σ ϊpp^w,, ((MO)2 + (MJ)2= 1). Interchanging the order
Ob ,β = 0

of the integration and the differential operator (Δ^)t, we obtain

(3.7) (2

D ) y i •yAP+2p(dycldq^)(dξA^Apldyc)

yAi yAP-ι QyApjQqξ +p(p—\)ξAϊ"Ap'yAi yAP-i

.yi...yAp-\-pξAϊ"ApyAi...yAp-idyAPldqA]ds,

where yA= Σ ^p"pMβ and 9i c /9^ = (9Σ ίγ

cpγδ/9?»)«δ On the other hand,
Λ,β = 0 γ=0

we see easily

(3.8) (i) Σ U Y ) 2 = 0 (ii) Σ
7=0 γ=o
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(iii) ϋy = —uy (iv) Saβ = uauβ+ύaύβ .

The first term of the first integral in (3.7) together with the first term of
the second integral, becomes from Lemma 3.8

(1/2*)

Similarly by Lemma 3.8 the last term of the first integral together with the
second term of the second integral in (3.7) is reduced to

(pβπ) [ Σ ((&yyAp)yΛi-yAp-iξΛi-Λpds
jy Λ1-ΛP=Q

The fourth term of the first integral becomes

(p(p-\)l2π)\ Σ ξAi"APyAi-yAP
Jy A^ Ap^O

ds = (p(p-1) ( D ^ ^ f *

((πv.πw)-> ΓKΎ)) •

Similarly, the second term of the first integral in (3.7) is calculated as

-0/2*) ( Σ ^AB-qUβ(pΎβ)(p2U9ycIQqy)(dyDldq!)
Jy Aλ-Ap-Q

yApds = —(ίβπ) f (8ΛBr2-yΛyB)(dψ^ApldyΛdyB)

because of the identity;

(3.9) ( Σ yAyB(d2ξAi-ApldyAdyB)yAi ' yApds=0.
Jy A^-Ap^O

(3.9) is deduced from

2τr((δ*)2|)^ = f [r4 Σ d2ξAϊ U A*"Ap
Jy h,k=i

+2r2 Σ
h,k = l

hdpk

and *Σ^yAyA=0. As Im δ* is annihilated by the Radon-Michel transform,
A 0
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This proves (3.9). Comparing these results with Lemma 2.2 (iv) we obtain

the theorem. Q.E.D.

4. Eigen-space decomposition of Lichnerwicz operator Δ on

From now on, if no confusion arise, we omit the symbols ~ and -f. For

example we write 8ξ instead of δf and Δ^ instesd of (Δ/S) t.

On (Sn,g0) the curvature tensor and the Ricci tensor are given respectively

by

R'jki = S/'(ft)*/-δί(&)y/ and Rjk = (n-ί)(go)jk,

So the Lichnerowicz operator on S"(S") is expressed as

(4.1) A=2p(n+p-2)lp-ST*T+Π,

where 1̂  is the identity operator on Sp(Sn).

Put

XPfk = 2(p-k)n+2p*-4(k+l)p+W+6k,

where p and k are integers such thatp^2k^tθ. As

(4.2) *p~\P.k = 2(k-i)(n+2p-2k~2i-3),

we find that

Let S: S*(Sn)->S*(S") be the differential operator of degree - 2 defined by

(4.3) S = Δ7Λ-λ ί ) 1Γ+(l/3)(16Γ*7Λ 2+[δ* ) TS])

on Sp(Sn).

Lemma 4.1. [δ*, S]=(4β)(n+2p)Tδ* on SP{S"). In particular, S induces

an endomorphism on K*(S",g0).

Proof. Owing to Lemma 1.4 and (4.1), we can express Δδ restricted to

SP(S") in three ways as

(i) Δδ = 2(ί-l)(«+£-3)δ-8Γ*Γδ+Πδ
(ii) Δδ = 2^(«+/)-2)δ-8δΓ*Γ+δΠ
(iii) Δδ = ((2p-l)n+2p2 -6p+3)δ-4Γ*Γδ-4δΓ*Γ+(l/2)(Πδ+δΠ)

By Lemma 1.4 and (4.3), we have

[δ*,S] = ((2p-\)n+2p2 -6p+3)[8*, T]-2((p-l)n+p*-4p+5)δ*T

+2(pn+p2-2p+2)Tδ*-4T*Tδ-4δT*T+—(Πδ+δ\3)
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+jT*[8*,Ί*\+±[δ*,[S*,8ΊT\

= (»+2j>-7)δ*ΪM-(π+2j>H-l)Γδ*-4|T*, B]T-8δT*T

+ ~ ( D δ + δ D ) + y T*[8*, Γ 2 ]+l[δ*, δ 2 - D Γ ] .

Since [δ*, δ 2 ]=-(Πδ+δD), we have

(4.4) [δ*, 5] = (n+2p-n)δ*T+(n+2p+l)Tδ*+±(Πδ+8Π)
6

-8δT*T+—T*δT-~[δ*, ΓΠ]

On the other hand, we can obtain the fourth expression of Δδ:

δΔ = [δ*, ΔΓ] = 2p(n+ρ-2)δ*T-8δ*TT*T+[δ*, ΓQ]

-2(p-l)(n+p-3)Tδ*+8T*T2δ*.

From this and the third equality of (4.3) we have

2p(n+ρ-2)δ*T-2(p-l)(n+p-3)Tδ*-8δ*TT*T+8T*T2δ*+[δ*,

Eliminating the term [δ*, ΓΠ] from the equality above and (4.4), we obtain
the desired formula Q.E.D.

Lemma 4.2. Let p ̂  2k ̂  0.

ί— {8(k+l)T*TM+[δ*, T"δ]} onTSATXPtlT\
2k-\-1 ' 2k-\-\

Proof. From the definition of S, Lemma 1.1 and Lemma 1.4 we have

(4.5) Γ*"15

+[δ*,

On the other hand, we have

(4.6) ΔΓ* = λ ί_2*,0T*-8Γ*Γ*+ 1+[δ ) B*]Tk

Eliminating Tk 'δ2 from (4.5) and (4.6), we obtain the desired formula. Q.E.D.
Put

(4.7) Bΐ = 2k*T*+(δ*)2 and At = ( Π BfJT"
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for a non-negative integer k.

Lemma 4.3.
on Kp(S\g0) for p^2k^0. In particular, At leaves K*(Sn,g0) invariant.

Proof. The first assertion follows immediately from Lemma 4.2. We
prove the second one by induction on k. For k=0 the assertion coincides with
(4.1). Suppose that Af (O^i^k) leave Kp(Sn

y g0) invariant for each^. Applying

Π Bft to the equality of the first assertion, we obtain

(4.8) (fl Bti)(3il2i+l)Tk-ιS = AAt-\p,kAt+A&il((2k+ !)(*+!)) -

As the left-hand side of (4.8) can be expressed as (3A/2Λ+l)β^^4f_iS, with
the aid of Lemma 4.1 we conclude from the induction hypothesis and (4.8) that
At_! leaves K*(S"g0) invariant. Q.E.D.

Let Πo: K*(S", go)-*K*(Sn,go) Π (Im T*)^ be the orthogonal projection with
respect to the inner product (1.9). Πo commutes with Δ. Put

(4.9) Hk = U,At

As the image of B%Af^S restricted to K\Sn,g0) is contained in T*(Kp-\S",g0))

(4.10) AHk-XPtkHk+{ίl(2k+l)(k+l))Hl+! = 0

on Kt(Sn,g0). Put

(411) P = B ±2£-4*-3 ψ (-1)'~* (n+2p-2k-2i- 5)11 g
y ' ' p k\'(n+2ρ-2k-3)\\ £i ( 2 i ) ! ( » * ) !

wherep>2k>0 and k\\=2W Γ(l+(^/2))
" Γ(l+(Λ/2)-[A/ZJ)

Notice that

(2*)!! = 2k k\,

for a non-negative integer k, (—1)!!=1, (—3)!!= —1.

Lemma 4.4. APp k = \p kPp k

Proof.

(-iy-k(n+2p-2k-2i-5)\\ Δ f l . =

(2i)\ (i-k)\ ' ί=ί(2i) !•(*-*)!

• (n+2p-2k-2£-5)! l(XPfiHi-Hi+1l((2i+1) (ί+1)))

= ( B + 2j>-4*-5) ! Wp,k
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f(-\y-k{n+2p-2k-2i-5)\\^

(-l) -*-1 («+2j>—2fe—2t—3) ί 1\ „
t (2ί-2)! ( i - * - l ) ! (2ί-l) / '

\p,i+2(i-k)(n+2p-2k- 2ί— 3)

(2*)! ( ί - * ) !

By (4.2) the right-hand side of the equality above coincides with

^P,k Σ / ^ . x . ,\ 7TΊ Hi .

Lemma 4.5. Lei 1̂ , 6e *Λe identity operator on KP(S", gQ) Π (Im
/ 2 ]t>/2]

Then we have Σ P ^ . ^ 1 , on Kp(Sn,g0) Π (Im Γ*)^.

Proof. The proof can be reduced to the following identity.

(4.12)
0 Π (jc-A-0 Π (*-«-»)

ί 0 i l
Π
ί-0

In particular, putting m=j in (4.12), we obtain

(4.13) g . ^k'x = o O'^i).

ι = 0

(4.12) is proved by induction on j . Substituting x=(n-\-2p—3)β into (4.13)
we obtain

j 2\-l)k(j)(n+2p-4k-3)(n+2p-2k--2j-5)\\

On the other hand,

(n+2p-2k-3)\

*=» ; ! .(2»! *=« (β+2/>-2A-3)ϋ
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From this and (4.13)' we obtain

on KP(S\ g0) Π (Im T*)\ Q.E.D.

Theorem 4.1. (i) The operator ̂ £fλ,,*P,f* on Kp(Sn,g0)Γi(Im T*)^ gives

the eigen-space decomposition of Δ restricted to Kp(Sn,g^)(λ(J.m T*)^.

(ii) P^ΦO for «^3, i.e., the \p>k eigen-subspace is non-trivial on Kp(Sn,g0)
ΓKImΓ*)-1-. PPik=Skfίp/2llp and Λp,ιp/2i=P(P+l) far n = 2y where 8{j is the
Kronecker's symbol.

IP/21

(iii) ^(5 B ,? 0 )= Σ (Γ7(^- 2 ί (S", ft) fl (Im Γ*)x) (direct sum) together

with (i) and (ii) gives the eigen-space decomposition of Δ on Kp(Sn,g0).

Proof of (i) follows from Lemmas 4.4 and 4.5. In fact

Δ = Δl, = Σ APPtk = Σ \p.kPp.k

Since Δ is self-adjoint, (i) follows, (iii) follows from [Γ*, Δ]=0. In order to
prove the rest of Theorem 4.1 we need the following five lemmas.

Lemma 4.6. Let φ and φ, ( ί = l , 2) be eigen-functions of the Laplacian of
(Sn, g0) for the first eigen-value n. Then

( i) Bfφ=O (ii) Btφ2=4T*φ2+2(δ*φy

(iii) Bffaφz) = 4T*φ1φ2+2(δ*φ1)(δ*φ2).

Proof. From (4.7) and a known theorem (cf. [2]) we have

Bfφ = 2Γ*φ+(S*)2φ = 0 .

By this equality

Bfφ2 - (8Γ*+(S*)2)φ2 = 8Γ*φ2+2(δ*φ)2+2φ(δ*)2φ

= 4Γ*φ 2+2(δ*φ) 2.

Moreover, δ*(β2*φ2)=8Γ*(φδ*φ)+4((δ*)2φ)o(δ*φ)=0. (iii) follows from (ii) by
polarization. Q.E.D.

Lemma 4.7. Let φ be as in Lemma 4.6. For k^lj^O

Proof. We prove the lemma by induction onj.
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Bfφk = 2k2T*φ2 φk-2+kδ*{δ*φ φk-1)

Suppose that the assertion be true for 7 ^ 1. Then

( Π BZ.2l)φk = Bί

= (k \/(k-2j-2) !)φ*-2'-20Bf φ2)'+ 1/2'+ 1. Q.E.D.

Lemma 4.8. Let φ, ( ί = l , 2) be as in Lemma 4.6.

Π 52* ((φ1)
2+(φ2)

2)* = ((2Λ)!/2*)(βf((φ!)2+(φ2)
2)*

Proof. At first we remark that when either k= 1 or none of φ,'s annihilates
our assertion coincides with Lemma 4.7. We write |:1~£2(ξί,eS*(S"'), i—\, 2)
if and only if ξι—^2^Im T*. Obviously this is an equivalence relation. From
the definition of B*'s we have

On the other hand, we have (δ*)*((φ1)
2+(φ2)

2)~0 (k^3). Hence

Π 52* ((φ1)
2+(φ2))*~(f) ( δ * ) W

As Π ( ^" ί)=(2^)!/2*, from the formula above we obtain the assertion by

induction on k. Q.E.D.

REMARK. (φi)2+(φ2)
2 m Lemma 4.8 can be replaced by any quadratic form

of φ/s.

Lemma 4.9. (δ*(//r))2+(//r)^0 = Σ(ya/9^-^9/9y)2, (A=09 .-,n).

The proof is a matter of straight-forward calculations.



KILLING TENSOR FIELDS ON THE STANDARD SPHERE 73

Lemma 4.10 Let ξ =y*JL_y»JL . For ξ=ξ^K\Sn)
ΛB ' Q\yB ' QyΛ 0 1

p'k
j>!.(«+2j>-4&-3)
kl(+2p2k3)U °kl'(n+2p-2k-3)U °L& (ί-*)! (p-2i)!2'

where ξp is the p-th symmetric power of ξ.

Proof. As Γ-P = 2 . ^ 2

By Lemma 4.6 (ii) and Lemma 4.9 we have

2% {p—2Ϊ)\ i=ioy y«oi/ ;

From this (i) and (ii), respectively, follow immediately. Q.E.D.

Now we prove (ii) in Theorem 4.1 for n=2. We recall the following ex-

Legendre polynomials Pn(z)=(l/

-fi( 1Y-J (2m+2j-l)U 2j

pansion formula for the Legendre polynomials Pn(z)=(l/(2n n\)) —-n(z2—l)n:
dz

(414) S
P (*)-*( 1).-J (2m+2;+l)ϋ

withPB(l)=l.

Lemma 4.11. Oκ ^ ( 5 2 , g0) Π (Im ϊ1*)^ roe

(i) g < = ^-(201 j
v ; (p-2i)\'2 "

(iΛ p - ρl (2p-4k-l) ^ ( - \ Y - k ' ( 2 p )
K) p " k\-(2p-2k-\)\\& (i-k)\-{p-2ΐ)\2i p'

Proof. It suffices to prove (i), because (ii) follows immediately from (i).
Let ξ=Aξ+Bξ+Cξ be a Killing vector field on (S2,g0), where ξ's(i<j) are

01 12 02 ij

as in Lemma 4.11 and A, B and C are constants. Then
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+(B2+C2)(y2lr)2-2ABy°flr2-2BCy°y1jrt-2CAfy1lr2]iξp-2i

From Remark to Lemma 4.8 we obtain

Applying Πo to the last relation, we obtain (i). Q.E.D.

Proof of (ii) in Theorem 4.1. for n=2. Let p=2p'.

p _ ft / lV-> (2p')\-[(ψ-2k-2i-l)\\+2(i-k) .(ψ-2k-2i-3)\\]
2p k &κ ' 2' k\(4ρ'-2k-l)\\(2p'-2£)\(i-k)l

(2p'V.
' 2i (2p'-2i)'(2i-2k)U

I (2j>')l ^ k2(i-k).(ψ-2k-2i-3)\\2ί-\1

2k\-(ψ-2k-l)ll ^ 2i'(2p'-2i)\'(2i-2k)\\ "

= (2p')\ ' '

(2p'-2i)\ (2i-2k)U

(2f'-2i)! (2ί-2Λ-2)ϋ

•(—I)*'"*"1"**'"0 '1*-

Substituting the first equality of (4.14) into the fromula above, we obtain for

k<p'

(2P')P (2P) P /n i
2p' k ~ 2k'kl (ψ-2k~ί)U 2 ( /"*> ( ' '

= 0 .

For k=p', we obtain from Lemma 4.11 (ii)

P 2 / / =P 2 / > / ( 2 p ' ) l l ' ( 2 p ' - l ) \ \ l » l p

For >̂ odd the proof is analogous as above except the employment of the second
equality of (4.14) in place of the first one, and is omitted. Q.E.D.
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In order to prove the first half of Theorem 4.1 (ii), we need the following
two lemmas.

Lemma 4.12. (i) The image of the Radon-Michel transform restricted to
K*(Sh,g0) is the subalgebra of C°°(SG2tn-i(R)) consisting of the polynomials of the
normalized Plίlcker coordinates, (ii) The kernel of the Radon-Michel transform
is the principal ideal generated by go-ί in K*(Sn,g0).

Proof. The algebra of polynomials of the normalized Plucker coordinates
is isomorphic to R\X\jI, where R[X] is the polynomial algebra generated by
indeterminates Xi/s(l^i<j^n) and /is the ideal generated by

(i ) ΠiJkl

d= XijXv
( ' } (H) Σj (*,/)•-1.

Ώijkι

ys are Plucker polynomials. (4.15) (ii) arises from the normalization of
Plucker coordinates.

Hence (i) is obvious. From (i) and Lemma 3.3, (ii) follows immediately.
Q.E.D.

Let/ be the Plucker ideal generated by Πί7*/s in R[X].

Lemma 4.13. K*(Sn

ygo)^R[X]IJ

Proof. Let Φ: R[X]-+K*(Sn,g0) be given by Φ(Xh)=ζ. Φ can be ex-
ij

tended to a surjective homomorphism of graded algebrs. Obviously Π^/EE
KerΦ. If we consider the homomorphism Φ followed by the Radon-Michel
transform, Lemma 4.12 tells us that the Ker Φ is exactly generated by Π w ' s .

Q.E.D.

Proof of (ii) in Theorem 4.1. for n^3, Lemma 4.10 is restated as in the
following form:

ίp/21

pAD>Σ

where c -J>K"+2j>-4*-3)(- l ) ' - ' (n+2j>-2*-2«-5) l l
'•*•' *! (fi+2p-2A-3)!l (*-*)! (/>-2»)! 2'

If this were identically zero, then

should be annihilated by X{/s which annihilate Uijkι and 2 (Xij)2 This is not
the case. For if we put
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Xol = \/ 2 , -̂ 23 = λ/— 2 , -Xθ2 — -̂ 03 — 1 >

we should have cpki=0. This is a contradiction. Q.E.D.

Theorem 4.2. 7%e ίpertra 0/ (Sί?2fΛ-i

where p and k are integers such that p^2k^0. The eigen-space for the eigen-

value \pk is the image by the Radon-Michel transform of the eίgen-subspace in

K*(Sn,g0) of the Lichnerowicz operator for the eigen-value Xp>k.

Proof. As is well known the polynomial algebra, generated by the nor-

malized Plϋcker coordinates PAB's separates two points in SGz^R) By the

Stone-Weierstrass theorem it is uniformly dense in C°°(SG2 n-ι(R)). Thus,

from Theorem 3.1, Theorem 4.1 and the non-triviality of the image by the

Radon-Michel transform of the non-trivial eigen-subspace of K*(Sn> g0) which

is essentially contained in the proof of (ii) in Theorem 4.1, we conclude the

proof of Theorem 4.2. Q.E.D.

The Grassmann manifold G2^1(R)=O(n+l)IO(n-ί)xO(2) which is the

space of 2-planes in Rn+1 has SGz^^R) as its 2-fold covering:

C°°(SG2fn.1(R)) is identified with the subalgebra {g(ΞCo°(SG2fn-1(R)\g=(πs)*f

f^C°°{G2tn^{R)} of C~(SG2tn-1(R)). On the other hand, πs being local

isometry, the Laplacian of 6r2>M_i(iS) can be viewed as the canonical one of

restricted to the subalgebra above. Hence we obtain

Theorem 4.3. The spectra of(G2n^1(R),g) are

χPtk = 2(p-k)n+2p2-4 (k+l)p+4k2+6k

for even integer p and integer k (pT^k^

Appendix. Differential equations for spherical ploynomials

Let Df be the linear differential operator of order &+1 defined by
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Cft/2)-l

δ Π B*-2i (k] non-negative even integer)

Df =
A/2]-l

Π B*-2i (k; non-negative odd integer).

Lemma A. Z)f(f/r*)=rk+2(d*)k+ιξ,

where ξjrk(ΞSp(Sn) and (d*ξ)Λ*" ΛP^=
ay J

Proof. For k=07 D$(ξlr°)=8*ξ=r2d*ξ. For k=l,

*(ξlr) = r3(d*)2ξ. Suppose that the assertion be affirmative for

0. Then

Df+2(Zlrk+2) = DfBt+2(ξlrk+2) = r

k+\d*)k+*ξ

by virtue of the Leibniz's formula. Q.E.D.

Theorem A. Letf(EC°°(Sn). D}f=0 if and only if

ίk/21

/ e Σ Ek-2t (direct sum),
ί=0

where Ek is the eigenspace of the Laplacίan for the eίgen-value k(n-\-k—\) on

(S",go)

Proof. Put Ψ=frk. Then from Lemma A, Dff=0 if and only if

rfc+2^g*^+iψ_Q Thus Z)*=0 if and only if ψ is a homogeneous polynomial of

degree k. Q.E.D.
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