Miyanishi, M.
Osaka J. Math.
19 (1982), 901-921

REGULAR SUBRINGS OF A POLYNOMIAL RING, 1i

Dedicated to Professor Yozé Matsushima on his sixtieth birthday

MasayosHr MIYANISHI

(Received December 26, 1980)

Introduction. This is a continuation of the previous work of the author’s
[7] on a finitely generated, two-dimensional, regular subring contained in a
polynomial ring. Let & be an algebraically closed field of characteristic zero,
which we fix as the ground field throughout this article. Let X=Spec(4) be
a nonsingular affine surface defined over k. An A'-fibraton on X over a curve Y
is a surjective morphism p: X—Y from X to a nonsingular curve Y whose
general fibers are isomorphic to the affine line A;. It is known that every fiber
of p is supported by a disjoint union of irreducible components, each of which
is isomorphic to A} (cf. [7]). Let F=p*(P) be a fiber of p lying over a point

P of Y, and write F' =2 n,C;, where C; is isomorphic to A} and #,>0 for every
i=1

i. We say that F is a singular fiber of the first kind (resp. the second kind) if s=2
and n;=1 for some 7 (resp. ;=2 for every 7). We also say that F is a multiple
fiber of multiplicity p if u:=G.C.D. (ny, -+, n)>1.

Let R:=R[u,, -+, u,] be a polynomial ring of dimension 7 over k, and let
A be a finitely generated, two-dimensional, regular k-subalgebra of R. Let
X:=8pec(4), which is a nonsingular affine rational surface. We know that the
group A* of invertible elements of A coincides with k*:=k—(0), that X has
logarithmic Kodaira dimension #(X)=— oo, and that 4 is isomorphic to a poly-
nomial ring of dimension 2 over & provided 4 is a unique factorization domain
(cf. [7]). The condition that z(X)=—co implies that there exists an A!-fibra-
tion p: X—Y over a nonsingular curve Y (cf. Miyanishi-Sugie [8], Fujita [2]).
In the present case, since X is dominated by the affine 7-space A;=Spec(R), Y
is isomorphic to A} or the projective line P;.

The purpose of this paper is to study the converse: When is a nonsingular
affine surface X with an A'-fibration p over A} or P; dominated by A; (r=2)?
If X=Spec(A4) has an A'-fibration over A}, we can give the following criterion
(Theorem 3.3):

X is dominated by Aj, that is, 4 is contained in R as a k-subalgebra, if and
only if p has at most one singular fiber of the second kind.
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This is done by solving a Diophantine equation in E[u;, «++, %,] (Theorem 1.2).
Meanwhile, if X=Spec(4) has an A'-fibration over P%, the situation becomes
very much complicated. Namely, in order to discuss the embeddability of A
into k[u,, ---, ,] in full generality, we have to know what the solutions of the
following Diophantine equation in k[w,, -+, u,] look like:

xf1 cee x?1+y€1 eee y”l:m_}_zil eee z:u =0 ,

where @;,22, b;=2, ¢,=2 for every index { (1=iZ1),j(1Sj=m), s (1=s=n).
We only give partial answers to the embeddability problem in terms of multiple
fibers of p, which are stated as follows:

(1) Assume that 4 is contained in R as a k-subalgebra. Then the fibration
p has at most three multiple fibers. If p has three multiple fibers, their multi-
plicities {u;, w,, us} are given, up to permutation, by one of the following triplets:
{2,2,n} (n=2),{2, 3, 3}, {2, 3, 4} and {2, 3, 5} (cf. Theorem 3.5).

(2) Assume, conversely, that p satisfies the following two conditions:

(i) p has no singular fibers of the second kind except at most three multiple
fibers, each of which is supported by a single irreducible component;

(if) if p has three multiple fibers, the set of multiplicities {u;, pp us} is,
up to permutation, one of the triplets given in the assertion (1).
Then 4 is contained in a polynomial ring as a k-subalgebra (cf. Theorem 3.7).

In order to obtain these results, we consider an affine hypersurface S, , s,
in A}=Spec(k[x,, x;, x;]) defined by an equation

whit-abet-afs =0 with py, py, p3=2,
and also a complete intersection 5, 5, 5, 5, in A¢=Spec(k[x;, %, x3, x,]) defined
by equations
ahitxbatats=0 and axfid-xbetxie=0

with pi, p,, ps, p1=2 and a€k— {0, 1}. Indeed, we have to compute #(S%_ », »,)
where S% 5, 5,=S5,,5,—(0), and determine when there exists a dominant
morphism from A} to S% 5, 5, 0t Z% 5, . 5,2 =2, 4, 0,,5,—(0) (cf. Theorems 2.8
and 2.15).

The terminology and the notations in this article conform to the use in the
previous paper [7] and the general current practice. 'We shall list up the notations
in frequent use.

Aj:  the affine space of dimension 7 defined over &;

P;: the projective space of dimension 7 defined over k;

#(X): the logarithmic Kodaira dimension of a nonsingular algebraic

variety X;
A*: the multiplicative group consisting of the invertible elements of 4;
(@, -+, a,) (or G.C.D. (ay, -++,a,)): the greatest common divisor of positive
integers a,, **+, a,;
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L.C.M. (a,,++,a,): theleast common multiple of positive integers a;, ***,a,;

{a), -*+, a,} : an n-tuple of integers;

D~D’: adivisor D is linearly equivalent to a divisor D’;

For a dominant morphism z: X—C and a point P of C, z*P denotes the
(scheme-theoretic) complete inverse image, and z~'(P) denotes the set-theoretic
inverse image.

1. A Diophantine equation, I

1.1. Let R:=Fk[u,, -+, 4,] be a polynomial ring of dimension r over k. Let
us consider a Diophantine equation in (m--n)-variables,

x‘l’x...xfnm_y’{p..yzn =1, e, ( 1 )

where m, n=1 and a;’s and b,’s are integers larger than 1, and look for its solu-
tions in R. A solution {x,=f;, y,=g;; 1=i<m, 1<j=<n} is called a constant
solution if f;k and g;k for every 7 and every j. Otherwise, it is called a non-
constant solution.

1.2. We shall prove the following

Theorem. A non-constant solution of the equation (1) in R has one of the
following forms:

(1) x;=0 for some 1<i<m, y,=c;Ek for every 1 <j <n, where c}1---clr =
—1;

(2) y;=0 for some 1<j<mn, and x,=c,Ek for every 1=1=<m, where

cteeecom=1.
The proof will be given in the paragraph 1.3.

1.3. Let {x,=f;, y,=g;} be a non-constant solution such that f;ék and g;&k
for some 7 and j. By reducing the number of variables in the equation (1) if
necessary, we may assume that f;&ck and g;&k for every 1<:/<m and every
I=j<n.

On the other hand, we may assume that R is a polynomial ring in one
variable #. In effect, let v,(u), -+, v,(«) be sufficiently general polynomials in
Rful, and let @:=fi(vi(w), -, 7)) and voj:=g,(m(), =, ,(u)). Then
{#;=@;, y;=1;} is a non-constant solution of the equation (1) in k[«] such that
@&k and +r;Ek for every 1=<i<m and every 1I<j<n. Such polynomials
v,(%), +++, 7,(u) exist because k is an infinite field. If we can show the non-
existence of such a solution in k[«], it implies the non-existence of a non-con-
stant solution of (1) in R such that f;&k and g;e&: & for some 7 and j. Thus, we
may assume that R=Fk[«].

By replacing again the equation (1) by an equation of the same kind in more
unknowns if necessary, we may assume that f,=c,(x—a;) and g;=d;(u;—g@;),
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where ¢;, a;, d;, B;Ek, and a;Faf, B;+ [} whenever i+’ and j#;'. Finally,
we obtain a relation in a variable u, '

c(t— )1+ (U— @) " — AU — L)1+ (U—B,) o = 1, wereveenees (2)

where ¢, d €k*. We shall show that such identity in % is impossible.

Note that every a; is distinct from 3y, ---, B, and every @; is distinct from
ay, ++ a,. By differentiating both hand sides of the equation (2) in u, we
obtain a relation,

C,_l:Il (u—a;)%- {zm} d } =d f[ (u—pB;)bi- {z"j b; } eeeees (3)

iSly—q j=1 ji=1 u——ﬁj

Note that we have

deg(f:Il (u—a; {;:; ujia‘})ém—l, and
deg(j;(%b’,-)-{g u_fj,é“.})é”_l :

Since ;=2 and b;=2 by assumption, the relation (3) implies that

,ﬁ=1 (u—pB;)- {jz:; uﬁjﬁj}

is divisible by 11 (u—a;). Hence we obtain m<n—1. Similarly, we have
i=1

n<m—1. 'Thisis a contradiction. Therefore, we have shown that if {x,=f;,
y;=g;} is a non-constant solution of the equation (1), then either f;Ek for every
Iis=morg,€ kforevery 1l <j=< n.
Suppose that the first case takes place, i.e., f;=c;Ek for every 1=<i=<m.
Then g;&k for some j. If ﬁ c%i=*1, then g; would be a unit in R; thisisa
i=1
contradiction. Hence I] ¢%=1, and g;=0 for some j. The other case can be

i=1

treated in a similar way. Q.E.D.
2. A Diophantine equation, II
2.1. In this section, we shall consider a Diophantine equation

afidabed-x8s =0, e (4)

where p,, p, and p; are integers larger than 1, and look for non-constant solu-
tions in R:=k[u,, ---,u,]. Let S, ,, , be the affine hypersurface in Aj:=
Spec(k[x,, x,, %;]) defined by the equation (4), and let 8% ,, 5,:=S, s, »,—(0),
where (0) is the point (0, 0, 0). When there is no fear of confusion, we denote
Sp,.,,0, and S% 5, » simply by S and S*, respectively. It is easy to see that S
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is a normal surface with the unique singular point (0). The resolution of singu-
larity of S at the point (0) is completely understood (cf. Orlik-Wagreich [10]).
We recall some of the results which we need in our subsequent arguments.

2.2. Let G, be the multiplicative group scheme defined over k.. We need the
following:

- Lemma. Let X be a nonsingular quasi-projective surface with an effective
separated G,-action. Assume that X has no fixed points. Let Y:=X|G,, be the
quotient variety and let w: X —Y be the canonical projection. Then we have:

(1) Y is a nonsingular curve;

(2) = Yy)==Ak for every point y&Y, where A} is the affine line A with
one point deleted off;

(3) =™y is a multiple fiber with multiplicity p if and only if the stabilizer
group o, is a cyclic group of order u for a point x in =7(y).

Proof. Let x be a point of X. By virtue of Sumihiro [11; Cor. 2], there
exists a G,-stable affine open neighborhood U:=Spec(4) of x. Let B be the
subalgebra of G,-invariants in 4. Then U:=Spec(B) is an affine open nei-
phborhood of y:==(x). Since 4 is regular, B is normal. Hence Y is a non-
singular curve. It is known by the theory of quotient varieties with respect to
reductive group actions (e.g., Mumford [9; Chap. 1]) that =~!(y) consists of a
single orbit under the stated assumption. Hence the assertion (2) holds.

Consider a G,,-equivariant completion X —Z, where we may assume that Z
is a nonsingular projective surface (cf. Sumihiro [11]). Let O(x) be the orbit
through x, and let C be the closure of O(x) in Z. Then C contains a fixed point
2. We can find a system of local coordinates (%, ) at & such that u=0 defines
a branch of C through = and the induced G,-action on the tangent space T, , is
normalized as #(&, )=(t"¢, t°5), where t€k*, o and B are integers and £=0/0u
and »=0/0v. Replacing the G,-action (¢, 2)—*z on Z by a G,,-action (¢, 2)—* "'z
and interchanging the roles of # and v if necessary, we may assume that 8>0.
Since é,,z%k[[u, 9]], @ and B are prime to each other; if =0 then 8=1. Let
y:=nr(x). Then @Ay,ygk[[u‘*v"”]], and the orbit O(x) is defined by #=0 in a
neighborhood of 2. Hence the multiplicity of z*y is 3, and the stabilizer group
of a point (hence of the point x) of the orbit O(x) is Z/3Z. Hence the assertion
(3) holds true. Q.E.D.

2.3. Let p,, p, and p,; be the same as for the equation (4). Let d:=L.C.M.(p,,
b2 bs) and define the integers ¢; (1=7=<3) by d=p,q;. The group scheme G,
acts effectively on S%_,, », by

B(%1, %5, %3) = (F0;, 2y, tocy) .

Then S% ,, 5, has no fixed points. Let C:=S8%/G, and let z: S*— C be the
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canonical projection. Then we have:

Lemma. (1) The genus g of C is given by

e L —_ i{(q“ qZ) + (qZ) Q3) + (43» ql)}+ 1.
299,95 2\ quq, 9293 %0

(2) = has no multiple fibers but possibly LCAYD) fibers with multiplicity (g, 4.),
092

U9 8) fibers with multiplicity (g, ¢;) and %92 D) fibers with multiplicity (g5, q5).
9295 UEVS!

Proof. (1) Let T be the hypersurface in A}:=Spec(k[y,, ¥, ¥5]) defined
by ¥i+y3+y3=0, and let T*:=T—(0). Let ®: T*—S* be the morphism
defined by (x,, #,, x5)—> ({1, y%, y$). Let G, act on T via t(y,, ¥, ¥5)=(ty1,
ty, ty;). Then @ is a G,-equivariant morphism. Let D:=T%*/G,. Then
@ induces a surjective morphism @: D— C such that n-®=¢-z’, where z":
T*—D is the canonical quotient morphism. Then it is easy to show that
deg »=¢,¢,¢, and the morphism @ ramifies at d points (on D) with ramification
index ¢4(qy, ¢,), at d points with ramification index ¢,(¢;, ¢;) and at d points with

ramification index ¢, (g, ¢5). Since D has genus %(d—l)(d—Z), the genus g of

C is obtained by the Riemann-Hurwitz formula applied to ¢: D—C. The
assertion (2) can be verified by means of Lemma 2.2. Q.E.D.

2.4. Letp; (1=i¢=4) be integers larger than 1. Let 3 », s, be the surface
in A:=Spec(k[x,, x,, x5, x,]) defined by equations,

ahtafetafs =0 and axhitaxbetaft =0,

where a€k— {0, 1}. Let 3% ,, , , :=3) 5, 4,5, —(0); we denote these objects
by 3 and =* if there is no fear of confusion. Then Z* is a nonsingular surface
with an effective action of the group scheme G,, defined by

1(xy, Xy, X3, %) = (810, %2, t%axs, tUn,)
where the integers ¢; (1 =<7 <4) are defined by
d=pq 1=i<4) and d= L.C.M. (py, ps Ps Ds) -

The G,-action on 3* given above has no fixed points. Let C:=3>*/G,, and
let z: 3* — C be the canonical quotient morphism. We have the following:

Lemma. (1) The genus g of C is given by the formula:

= _d_af- _iz{(qu 92 93)_,_(%» 2 94)_,_(91» [/EY 94)+(92: /ED 94)}_+_1 .
0999, 2 09293 0199 4199, 929394
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) = has no multiple fibers but possibly * 4 9o 35) fibers with multiplicity
99293

2
(90 925 95)s 49 9 %) fibers with multiplicity (q,, 2, q.), 49 9v 9.) fibers with

1 4 1 4

multiplicity (q,, gy ¢,) and S 9 %) fibers with multiplicity (g, s, 4,)-
929394

Proof. Similar to the proof of Lemma 2.3.

2.5. As an application of Lemma 2.4, we have the following examples:

{p1, D2, Ps, P4} 2(Z*/G,) | multiple fibers of 7: T* — C:=3%/G,,
{2,2,2,2s} 1 4 fibers with multiplicity s
{2,2,2,2s+1} 0 4 fibers with multiplicity 2541
{2,2,3,3} 2 no multiple fibers
2 fibers with multiplicity 2
{2,2,3,43 0 . .
4 fibers with multiplicity 3
2 fibers with multiplicity 5
{2,2,3,5} 0

2 fibers with multiplicity 3

2.6. From this paragraph on up to 2.14, we shall retain the notations of 2.1.
Let pi:=p1/(92 ¢), P4:=2:/(q1, g:) and p3:=p5/(q1, ¢2); pi (1=7=3) are integers
because, for example, d=p,¢, and (g, (¢,, ¢5))=1 imply that p, is divisible by

(g2 g5). As an easy application of Lemma 2.3, we know that g=0 (resp. g=1,

resp. g>>1) if and only if l—l—l+l>1 (resp.=1, resp.<1).
pi P pi

2.7. We have the following:

Lemma. Assume that p,< p,< p, and 1,1 +1—}~=1. Then we have:

1 2 3

(1) {Ph b2 PB}: {2’ 3,6}, {2, 4, 4} or {3’ 3,3}

(2) C:=S8%*G,, is a nonsingular elliptic curve, and n: S*—C has no multiple
fibers, i.e., S* is an Aj-bundle over C.

(3) Let b:=d|qiq,qs. Then b=1, 2, 3 for {p,, ps, ps} =12, 3, 6}, {2, 4, 4}
and {3, 3, 3}, respectively. There exists an invertible sheaf L of degree b over C
such that the ruled surface V:=Proj(O.B-L) over C with the zero section M, and
the infinity section M., deleted off is isomorphic to S*.

“4) =(S*)=0.

Proof. (1) follows from a well-known straightforward computation.
(2) follows from Lemma 2.3. Since S* is an Aj-bundle over C, S* is obtained
from a ruled surface in the way as specified in the assertion (3). Then (M) =
—b, (M%)=b and (M,-M.)=0. The number b:=degL is equal to d/q.q.g;
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because M, is the unique exceptional curve which arises from the minimal re-
solution of singularity of the point (0, 0, 0) of S (cf. Orlik-Wagreich [10]).
Note that the canonical divisor K, of V is linearly equivalent to —M,—M...
The boundary divisor of S* in V is D:=M,+M.. Hence D+K,~0. There-
fore, we have &(S*)=0. Q.E.D.

2.8. We shall prove

Theorem (cf. litaka [4]). S% ,, ,, has the logarithmic Kodaira dimension

7(S*}, p,.0)=—02°, 0, 1 according as i-l—i—l——1—>1, =1, <1, respectively.

b P2 P
The proof will be given in the paragraphs 2.9~2.11.

2.9. Let V be a nonsingular projective surface with a surjective morphism
@: V—-C:=8%G, satisfying the following conditions:

(i) V contains S%_,, ,, as a dense open set, and @|gs=7: S*—>C;

(i) V—S8* contains no exceptional curves of the first kind which are
contained in fibers of @.

It is clear that general fibers of @ are isomorphic to P;. The resolution of
singularity of S, ,, », at the unique singular point (0)=(0, 0, 0) is described in
detail in Orlik-Wagreich [10]. We recall some of the necessary results. The
morphism 7: S*—C has multiple fibers if one of (g, ¢,), (g2 ¢5) and (gs, qy) is
larger than 1. If (g, ¢;)>1, there are d(q,, ¢;)/q.9, fibers of multiplicity (g, ¢,)
(cf. Lemma 2.3). For a multiple fiber F' of multiplicity (g,, gz), set a:=(g;, ¢»)
and determine an integer 3 uniquely by the condition that g;3=1 (mod ) and
0<B<a. Define positive integers by, --+, b;=2 by writing a/(e¢—f) in the
form of a continued fraction

a 1
e« L
a—pR ! b,— 1

“ 1
b’

which we write in the form af(a—@)=[b,, -, b]. For multiple fibers of
multiplicity (gy, ¢s) or (¢, ¢;), we determine the corresponding integers «, /3,
by, -++, b, etc. Let N be the number of the multiple fibers of z. Let

b: = d —i’&,
0.9:9; i=ta;

where {a;, B;} ranges over all pairs of integers which are determined for all
multiple fibers of 7 in the above-mentioned fashion. Let g be the genus of C.
Then the dual graph of the exceptional curves which arise from the resolution
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of singularity of the point (0) of Sj 5, », has a vertex with weight —b—N (corre-
sponding to a nonsingular curve of genus g) and has N branches, each of which
is a linear chain of nonsingular rational curves as exhibited in the following
figure:

—b—N

'_bs - bs -1 _bl T :'
curve of
genus g

~

2.10. The fibration @: V—C has two cross-sections M§ and M. and N
singular fibers ®,, -+, ®, such that:

(i) M¢and M. are nonsingular curves of genus g; (M 62)=——b—N and
(ML*)=b;

(ii) Let @ be a singular fiber of @; then ® N S*=aF with F=~Aj, i.e., a
multiple fiber of multiplicity a@>1; the component F of @& (=the closure of F
in V) is connected to the cross-section M § by s components as exhibited in

O

F _bs _—bs—l _bl M6 .

By assumption, ® — F contains no exceptional curves of the first kind. Hence
F is the unique exceptional curve of the first kind contained in the singular fiber
®. Then it is easily ascertained that the dual graph of the fiber ® is a linear
chain. It looks like the one given in Miyanishi [6; p. 95]. To fix the nota-
tions, we represent it in the next page. The upper half of the chain between
E, and E(a, m,) (with E(a, m,) excluded) corresponds to the chain

o oo o

"'bs _bs—l —bl .

Hence we have —&% =[by, :++, b,

[m+1, 2, ) 2, ma~4-2, 2, o+, 2, m,_,+2, 2, -+, 2] if a is even

= m,—1 m,—1
[my+1, 2, -, 2, me+4-2, 2, -+, 2, m,_p+2, 2, -+, 2, m,+1] if a is odd .
mz—l ma—l_l
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(1) a:even
—(m;+1) Eq
-2 E2,1)
"I2—1
-2 E(2,m;—1)
—(m3+2) E(2,m;)
—2 E4,1)
-2
—(ma—l"l‘z) E(a_2yma—2)
-2 E(a,1)
mg—1 :
-2 E(a,m;—1)
-1 E(a,m;):=F
—(my+1) E(a—1,m,-1)
-2
me—1—1 :
-2 E(a—1,1)
—(ma-2+2) E(a—3,m,-3)
-2
-2 E@3,1)
—(my+2) E(1,m,)
-2 E(1,m;—1)
my—1
-2 l E1,1)

. MI1YANISHI

(2) a:odd
—(my+1) E,
-2 E@2,1)
"I2—1
-2 EQ2,my,—1)
—(m3+2) E(2,m3)
-2 E4,1)
-2
_(ma—2+2) E(a_3’ma—3)
-2 E(a—1,1)
ma-l—l E
-2 E(a—1,m;-1—1)
—~(my+1) E(a—1,m,-y)
-1 E(a,m,): =F
-2 E(a,m,—1)
my—1
-2 E(a,1)
—(mg-1+2) E(a—2,m,-5)
-2
—2 E(3,1)
—(m+2) E(1,m,)
-2 E(1,m;—1)
m,—]
-2 l E(1,1)

Note that « is the multiplicity of F in the fiber ®. This is clear because

dNS*=aqF. We can check this fact as follows.

The multiplicity u(z, 5)

(1=i=<a; 1=<j=<m,;) of the component E(7,j) in & is given by the function
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w(7, ) defined inductively by:

O, m): =1, u(l,j)=j for 1<j<m,,
w(, 1) = pi—1, m;_))+pGE—2,m;_,)  for 1<i<a,
w(t, 3) = p(t, j—1)+u(@E—1, m;_,) for 1<j<m;.

On the other hand, the integer « is regained by the method as indicated in the

appendix of [10; p. 76] from the above development of a/(¢—/3) into a con-
tinued fraction.

2.11. Note that —S* consists of nonsingular components crossing normally.
It is also easy to see that there exists a unique contraction o: V' —V,, where

(1) @o: Vy—C is a relatively minimal ruled surface;

(i) Let My:=o,M§ and M.:=o,M.; Then (M§)= —(b+N) and
(MZ)=b+N.

The canonical divisor Ky, is given by

KVON—MO—Mu+¢3k(Kc) and M.~ o+¢’:)k(8)a

where K, is the canonical divisor of C and & is a divisor on C with deg(8)=
b+N. In effect, Vy=Proj(O.BO(8)), and M, and M., correspond to the zero
section and the infinite section of V,, respectively.

Each irreducible component E(Z, j) of the singular fiber has the contribution
k(z, j) in the canonical divisor K, determined inductively as follows:

k0, mp): =0, k(1,j) =J for 1<j=<m,,
k(i, 1) = k(i—1, m;_))+k(E—2, m;_,)+1 for 1<i<a,
k(z, j)=k(i, j—1)+-k(E—1, m;_;)+1 for 1<j<m,.

On the other hand, E(Z, j) has multiplicity (s, j) in o*(M.), which is

determined by
n(0, my): = 0, n(1,j) =1 for 1=<j=<m,,
n(i, 1) = n(i—1, m;_,)+n(i—2, m;_,) for 1<i<a,
n(, j) = n(i, j—1)+n(i—1, m;_;) for 1<j<m,.

Let D be the reduced effective divisor such that Supp(D)=V—S*. Then
it is straightforward to show that the coefficient »(z, j) of E(s, j) in D+ K,—®
is given by,

. 0 if @G )+ (a m,)
v(i, j) = e o
—1 if (l,])——((l, ma)'

Therefore we have:
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N N
DK, ~31 @~ 3 Pt p*(Ko)

251 (1- Dot orKo),

a;

where q; is the multiplicity of F; in ®;. Let

A:— (ﬁ} (1—l><1>,.+cp*(KC) -M{,) .

i=1 o;

Note that a; has one of the values (g, g2), (¢2» ¢5) and (g5, q1) (cf. 2.9) and that
4 is, in effect, equal to

(=(1- 0—1;)¢*<P)+¢*(Kc>-Ma) ,

Prec
where 7*(P)=apFp with Fp=~A}. Then we can calculate 4 as follows:

A — d(q,, Qz)+d(92» q3)+d(q3, q)_dgng), 1
9:19. 993 EVR 0g: (9 %)
_d(gz g5) . 1 dgsq) . 1 +2g—2
@9 (92 95) a0 (4 ¢)

S P
019295 b P2 Ps
We have clearly #(S*)=1 if A>0, because D+ K, is linearly equivalent to a

divisor supported by fibers and the components contained in fibers of . If

A=0 we have #(S*)=0 (cf. 2.7). If A<0,1i.e., 1<—1~+i+i, we have the

b P2 P
following under an additional assumption 2= p, < p,< ps: {py, pa, Ps} =12, 2, n}

(n=2), {2, 3, 3}, {2, 3,4} or {2, 3,5}. In each of the above four cases for
A<0, the foregoing arguments of evaluating DK, shows that #(S*)=—co;
note that if 4<<0 then g=0. This completes the proof of Theorem 2.8.

212, If i—l—l-i—i>1, the surface S, », », is the quotient variety of A} with

Pl PZ 3
respect to a linear action of a Kleinian subgroup G of GL(2, k) (cf. Brieskorn [1]).
In effect, G acts freely on 4;—(0). Hence there exists an étale finite morphism
p: Ai—(0)—>S*, and A}—(0) is algebraically simply connected.
Suppose that the ground field & is the field C of complex numbers. Let
U be the universal covering space of S% , ,. Then it is known™ that:

¢ This was communicated by Dr. A. Fujiki.
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UsxC—(0) o 1<tslql
P P2 P
Use? o1=t4141
P P Ps
U=CxD @1>i+l+_1_’
b P Ps

where D is a unit disc.

2.13. For later use, we shall prove:

Lemma. Suppose that #(S% ;,,)>0 and C=P}. Then n: S*—>C has
three or more multiple fibers.

Proof. We have the inequalities,

(92 95) _|_(93, 0.) +(91y (Iz)> 1 >L+i +i ,
b 2 bs b P2 P

(cf. 2.6 and 2.8). Hence it is impossible that (g;, ¢;)=(gs, .)=(q1, ¢;)=1. If
(92> 45)>1, (5 ¢)>1 and (q,, ¢;)>1, = has three or more multiple fibers. We
shall consider the cases where one or two of (g, gs), (¢s, ¢:) and (g;, ¢,) equal 1.
Assume first that (g;, gs)=1, (g5, ¢:)>1 and (¢;, ¢,)>1.  Suppose that d(gs, ¢:)/¢;q,

=d(q, ¢)/99:=1. Then ¢;=p\(q,, ¢;) and ¢=pi(¢:, ¢:). Hence (g, ¢3) is
divisible by p,. Since p,>1, this contradicts the assumption that (g, ¢;)=1.

Hence 4gs q‘)>1 or Aq q2)>1. Thus 7= has three or more multiple fibers.
UEL) 09:

Consider next the case where (g, ¢5)=(¢s, ¢;) =1 and (q,, ¢;)>1. Then the
above inequalities imply that (g,, ¢;)>p;. Hence g5(¢;, ¢,)>d, and

1 g(%: 42)>i .
q: 9293

However, since (g,, ¢5)=1, d is divisible by ¢,g;. This is a contradiction. Thus
this case does not occur. The other cases can be treated in a similar fashion.

Q.E.D.
2.14. We shall prove the following:

Theorem. (1) If 1 + 1 +i =<1, then there are no mon-constant mor-

1 2 3
phisms from A} to S% ;. 5.

2 If Pi-l- l—t—%>l, then there are dominant morphisms from A to S% ,, ,..

1 2 3

Proof. (1) If l-i-—l—-I—l=1, S* is an A}-bundle over a nonsingular

1 P2 Ps
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elliptic curve C. Thus, if f: A;— S* is a non-constant morphism, f(A}) is
contained in a fiber of 7, which is isomorphic to A%. This is impossible. So,

we may assume that —1—+l+i<l, i.e., ®(S*)>0. Letf: A;—S* be a non-

.P 1 2 3
constant morphism if such a morphism exists at all. If f is dominant, we may

assume without loss of generality that r=2. Then we have
—oo = g(A})ZR(S*) =1,

which is impossible. Hence f(A4}) is a rational curve with at most one place at
infinity, and f(A4}) is not contained in any fiber of . Thus we have a dominant
morphism

Y =mf: A > S*—>C.

Hence C is isomorphic to P}, and y+(A}) is isomorphic to A} or P;. Consider
first the case where Jr/(A;)=A}i. By 2.13, there exist points P, Q of C such
that P, Qe=+r(A}) and that z*P and z*Q are multiple fibers of multiplicity u
and v, respectively. Choose an inhomogeneous coordinate ¢ of A; such that P
and O are defined by t=0 and #=1, respectively. Then there exist non-con-
stant polynomials g and % in R: =k[u,, -+, u,] such that r*(£)=g" and *(t—1)
=h*. This implies that {x=g, y=Fh} is a solution of the Diophantine equation

at—y'=1.

This contradicts Theorem 1.2. Consider next the case where Yr(4;)=Pj. In
order to prove, by reductio ad absurdum, the non-existence of such a non-con-
stant morphism as +r, we may assume, by embedding the ground field % into the
field C of complex numbers in a suitable way, that k=C. Restricting +» onto a
suitable line A} in A7, we may assume that 7=1. Then the Nevanlinna theory
(cf. Hayman [3]) implies that

$ 1—i)—2§0,

i=1 Qa;
where N is the number of multiple fibers of 7 and afs are multiplicities. The
left-hand side of the above inequality is, in effect, equal to 4 in 2.11. Hence

we have l+—1-+lgl. This is a contradiction. Thus there are no non-

b P2 Ps
constant morphisms f: A;—S* provided #(S*)=0.
(2) We may assume that p, < p,< p;. Then {p,, p,, ps} is one of the following
triplets: {2, 2, n} (n=2), {2, 3, 3}, {2, 3,4}, {2, 3,5}. Except in the case
where {py, pz, ps} =12, 3, 5}, one can easily find a solution {x,=f,, x,=f,, x;=f,}
of the equation

ti-bcto-cts = 0
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in a polynomial ring R: =k[u,, -++, %,] such that the subvarieties {f;=0} (1</<3)
have no common points in A} and that trans. deg,k(f,, fz, f;)=2. Then the
assignment x;— f; (1<7=<3) gives rise to a dominant morphism f: A;— S*.
For example, if {p,, p,, ps} = {2, 2, 2}, such a solution is given by

2 2 2.2 JR—
x1=§_§7]’ xzzzg\/jl’ x3=\/——1og,7’

where £, 5 are polynomials in R such that {§=0} and {»=0} have no common
points in A} and that trans. deg,k(&, n)=2. The case where {p,, p,, ps} =12,
3, 5} seems more subtle.® We look for a dominant morphism f: A —S*.
Since A} is algebraically simply connected, such a morphism f (if it exists at all)
is factored by a dominant morphism f: A}—A?—(0) such that f=p- f (cf. 2.12).
Conversely, if a dominant morphism f is given, f:=p- f is a required dominant
morphism., Hence we have only to find a dominant morphism f: 42— A4%—(0).
Such a morphism f exists because a dominant morphism f: A?—S¥,, pro-
vides one. Note that this argument works also for the other cases. Q.E.D.

2.15. We shall prove:

Theorem. Let 3% ,, 5, 5, be the nonsingular surface defined in2.4. Assume
that {py, P, Ps, s} is one of the following quadruplets: {2, 2, 2, 2s+1} (s=1),
12,2, 3,4}, {2,2, 3, 5}, i.e., those in the examples in 2.5 with g(=*|G,)=0. Then

there are no non-constant morphisms from A to =% ,, s »,.

Proof. We only consider the case where {p,, p,, ps, P} =12,2,2,3}. The
other cases can be treated in a similar fashion. Suppose that f: A;—3* is a
non-constant morphism. With the notations of 2.4, C is then isomorphic to
P;. Let yr:=n-f. Then y(A;) is isomorphic to A} or P;. The case where
Yr(A})== A} is impossible because 7 has four multiple fibers of multiplicity 3
(cf. 2.5 and the proof of Theorem 2.14). Hence yr(A4;)=P;. Let 3F; (1=1:
=<4) be the multiple fibers of . Then f*(F;) is defined by f;=0 with f,e R:=
k[uy, -+, u,). Since 3F,~3F,~3F,, for example, we have a relation

f3i=f3+0bf3, where bek*.
Since f*(Fy) N f*(F,) N f*(F5)=¢, we can define a non-constant morphism
g: A; — S#;:C Spec(k[xy, x5, x5)/(x3+x3+x3))

by g*(x,)=b"3f,, g¥(x,)=f, and g*(x;)=—f;. This is impossible because
S¥3.3/G, is an elliptic curve. Q.E.D.

& For the following argument, the author owes Dr. A. Fujiki.
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3. Regular subrings in a polynomial ring

3.1. Let A be a finitely generated, two-dimensional, regular k-algebra con-
tained in a polynomial ring R:=k[u,, --+,,] of dimension r. Let X:=Spec(4)
and let A7:=Spec(R). Then the inclusion A< R gives rise to a dominant
morphism f: A;—X. By restricting f onto a linear plane L in A} which meets
general fibers of f in finitely many points, we have a dominant morphism
fi: L=A}—X. This implies that 4 is a k-subalgebra of the two-dimensional
polynomial ring. Thus we may assume without loss of generality that r=2.

Since f: Aj— X is generically finite, we have #(X)=— oo, which follows
from the inequality of logarithmic Kodaira dimensions,

B(X)<w(A}) = —oo.

This implies that X contains a cylinderlike open set U =< U, X A}, where Uj is an
affine curve (cf. Miyanishi-Sugie [8]; Fujita [2]). The projection p: U—U, is
induced from a dominant morphism p: X —Pj}, where U, is an open set of Pj.
Then p(X)=Aj} or p(X)=Pj. Indeed, if Pi—p(X) consists of more than one
point, we may write p(X)= Spec(k[t, A(t)"']), where t is an inhomogeneous
coordinate of P} and h(f)k[t]—k; then k[¢, h(¢)™"] is a k-subalgebra of A4 (and,
hence, of k[u,, 4,]); this contradicts the fact that A*=Fk*.
Summing up, we have the following:

Lemma. Let X:=Spec(A) be a nonsingular affine surface. Then A is
contained in a polynomial ring as a k-subalgebra if and only if there exists a domi-
nant morphism f: Ai—X. In this case, we have:

(1) A*=Fk*;

(2) There exists an A'-fibration p: X —Y, where Y = A} or Pj;

(3) Every fiber of p is supported by a disjoint union of irreducible curves, each
of which is isomorphic to Aj.

For the last assertion, see Miyanishi [7].
3.2. A fiber p*(P) of p is a singular fiber if either p~*(P) is reducible or p*(P)
is irreducible and non-reduced. Write p*(P) zf‘_, n,C;, where C;=A} and
i=1

n,>0. p*(P) is called a singular fiber of the first kind if s=2 and n,=1 for some
i; p*(P) is called a singular fiber of the second kind if n;>2 for every i. Let
p:=G.C.D. (n,, --+,n). If p>1, the fiber p*(P) is called a multiple fiber and
is called the multiplicity.

3.3. We shall prove:

Theorem. Let X:=Spec(A) be a nonsingular surface with an A'-fibration
p: X—Y, where Y =A;. Then Ais contained in a polynomial ring as a k-sub-
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algebra if and only if p has at most one singular fiber of the second kind.

Proof. (I) Let f: A7— X be a dominant morphism. Then note that
p*f(A7))=Y. Suppose that p has two singular fibers of the second kind p*(P)
and p*(Q). Then f*p*(P) and f*p*(Q) are defined by the equations

ggl ...g”“,m:() and hi’1 vee hf," =0

respectively, where gy, -+, g, and Ay, -+, h, are non-constant polynomials in
k[u,, u;] and where ¢;,22 (1=<i<m) and b,>2 (1<j=<n). We may choose an
inhomogeneous coordinate ¢ of Y:=Spec(k[]) in such a way that the points P
and Q are defined by t=0 and ¢=1, respectively. Then we have a relation

g?l ...g”’:m——hlbl “er hf," =1.

This is impossible by virtue of Theorem 1.2. Therefore p has at most one
singular fiber of the second kind provided 4 is contained in a polynomial ring
as a k-subalgebra.

(IT) We shall prove the “if” part of the theorem. Let p*(P):ES n,C; be a
i=1

singular fiber of the first kind. We shall show that after replacing X by a
suitable affine open set with an A'-fibration similar to that for X, p*(P) can be
assumed to be an irreducible and reduced fiber. For this purpose, embed X
into a nonsingular projective surface V as a dense open set. Then V —X
consists only of components of codimension 1. Since X is affine, there exists
an effective ample divisor D on V such that Supp(D)=V —X. For p*(P)=

2 n;C;, suppose that z;—=1. Then there exists an ample divisor D' on V such
that Supp(D")=(V —X)U DC_i, where C; is the closure of C; in V. Replace
i=2

X by X':=X —Supp(D’). Then X’ is an affine open set of X and p":=p|4:
X'—Y is an A'-fibration over Y for which the fiber p*'(P) is irreducible and
reduced.

Performing this operation to all singular fibers of the first kind of p, we
may assume that p has no singular fibers of the first kind. Let p*(P) denote
anew a singular fiber of the second kind if such a fiber exists at all. If p*(P) is
reducible, we may delete all irreducible components but one by replacing X by
a smallar affine open set with an A'-fibration over Y similar to that for X.
Hence we may assume that p*(P) is an irreducible multiple fiber, i.e., p*(P)=nC
with C = A} and n=2.

Write Y:=Spec(k[#]), and assume that the point P is defined by z=0.
Let Z:=Spec(k[r])—Y be the morphism defined by ¢=+", which is a finite
covering ramifying totally over P. Let W be the normalization of X X A

Then W is a nonsingular affine surface, and the canonical surjective morphism
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o: W—Z is an A'-fibration over Z. This can be seen as follows. Let x bea
point of X lying over the point P, and find a system of local coordinates (&, »)
around x such that the curve C is defined by £=0. Then we have a relation
£"=at, where a is a unit in O, y. Then £/7 is regular at every point X of W
lying over x. Analytically, W around % is defined as a hypersurface (£/7)"=a
in the (¢/, 7, n)-space. By the Jacobian criterion of smoothness, W is non-
singular at every point % lying over x. It is easy to see that W is nonsingular
at every point of W lying over X—p~(P). Hence W is nonsingular. By con-
struction, general fibers of o are isomorphic to A}. Let P be the point of Z
lying over P. Every fiber of o except the fiber o*P is irreducible and reduced,
while ¢*P is reduced and reducible with 7 irreducible components. Let W’ be
an affine open set of W obtained by deleting all components of ¢*P except one.
Then ¢":=0|y.: W'—Z is an A!-bundle over Z= A}, whence W’ is isomorphic
to A} (cf. Kambayashi-Miyanishi [5]). Let f be the composite of the natural
morphisms

fr Aj=W o W—>XxXZ->X.
Y

Since f is apparently a dominant morphism, A4 is contained in a polynomial ring
as a k-subalgebra. Q.E.D.

3.4. Corollary. Let X be a nonsingular affine surface which satisfies the con-
dition in Theorem 3.3. Then the torsion part Pic(X),., of the Picard group of X
is a cyclic group.

Proof. Let p: X—Y be the A'-fibration as in Theorem 3.3. Let p*P;
(0<i <m) exhaust all singular fibers of p; if there exists a singular fiber of the
second kind, we let p*P, denote it. Write p*P;= > n;;C;;, where C;;==A}

and n;;>0. Then, since Y=< A}, the Picard group lIé’:(S:‘('X) of X is an abelian
group with the following generators and relations:

{£;;/]10=:i<m, 1<j<s;} and 1§JE£3£11,~,-E,-,= 0 for0=i<m.
It is then clear that Pic (X)ziljo G,, where G; is an abelian group with generators
and relations given as above with 7 fixed and with 1<j<s;. Since (n;;, -**, 7;;)

=1 for i =1 by assumption, we have G;=Z®*. Let p=(ny,**,n,). Then
G,=Z|uZPZ®%V. Hence we have Pic(X),,, =Z/uZ. Q.E.D.

3.5. We shall prove:

Theorem. Let X:==Spec(A) be a nonsingular affine surface with an A'-
fibration p: X —Y, where Y =P}. Assume that A ‘s contained in a polynomial
ring as a k-subalgebra. Then the fibration p has at most three multiple fibers. If
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p has three multiple fibers, their multiplicities {u,, w,, us} are given, up to permuta-
tion, by ome of the following triplets: {2, 2, n} (n=2), {2, 3, 3}, {2, 3, 4} and
{2, 3, 5}. '

Proof. Suppose that p has three or more multiple fibers. Let p*P;:
= u;F; (1={<3) be a multiple fiber of multiplicity u;>1. Let f: Aj:=
Spec (k[u,, u,])—> X be a dominant morphism as in 3.1. Then p-f(A4})==A} or
p-f(AD)=Y. If p-f(A?)= A}, we may assume that P,, P,&p-f(A?}). However,
this assumption leads to a contradiction by the argument in the step (I) of the
proof of Theorem 3.3. Hence p-f(A})=Y. Then f*F; (1<:<3) is defined
by an equation f;=0, where f; is a non-constant polynomial in A[u,, #,]. Since
prf¥Fi~p, fXFy~u, f*F; (linear equivalence), we have

[ _ iy

T
where a, bk*. Without loss of generality, we may assume that a=b=—1.
Namely, we have a relation

flitfhetfis=0.

Note that f*(F;)N f*(F;)=¢ whenever i ). The assignment x;—f; defines
a non-constant morphism

Vi Af— SE 4, u,CSpec(Rx;, x5, x5)/(xf14-xb2+x42)) .
Hence {u,, ps ps} is, up to permutation, one of the following triplets: {2, 2, n}
(n=2), {2, 3, 3}, {2, 3, 4} and {2, 3, 5} (cf. 2.14).
Suppose that p has four multiple fibers p*P;= uF; with multiplicity u;

(1=i<4). Letf*F, be defined by f;=0, where f; is a non-constant polynomial
in k[u,, u,]. Then we obtain relations of the following form:

flatftatfis =0
affit-fie4fie =0,
where ack— {0, 1}. In view of the above observations on possible multiplici-
ties of three multiple fibers of p, we know that {u,, w,, pa, e} is, up to permuta-
tion, one of the following quadruplets: {2, 2, 2, n} (n=2), {2, 2, 3, 3}, {2,2, 3,
4} and {2, 2, 3, 5}. The induced relations provide a non-constant morphism
Y A — Eﬁ,,uz.#a.h .
This is impossible by 2.5 and 2.15. Q.E.D.
3.6. Corollary. Let X be the same surface as in 3.5. Then Pic(X),, has at

most two cyclic components. If Pic(X),, has two cyclic components, it is of the
form: '
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Pic(X),=Z2ZDZ|2sZ  (s=1).
Proof. An argument similar to that in Corollary 3.4.

3.7. We shall prove:

Theorem. Let X:= Spec(A) be a nonsingular affine surface with an A'-
fibration p: X —Y, where Y =~Pj. Assume that p satisfies the following conditions:

(1) p has no singular fibers of the second kind but at most three multiple fibers
with a single irreducible component;

(2) if p has three multiple fibers, the set of multiplicities {u,, py, ps} is one of
the following triplets: {2, 2, n} (n=2), {2, 3, 3}, {2, 3, 4} and {2, 3, 5}.

Then A is contained in a polynomial ring as a k-subalgebra.

Proof. (I) By performing the same operation as we did in the second
step of the proof of Theorem 3.3, we may assume that p has no singular fibers
of the first kind. Suppose that p has at most two multiple fibers. Let P be a
point of Y such that p*P is a multiple fiber (if such a fiber exists at all), and let
X':=X—p Y(P). Then the nonsingular affine surface X’ with an A'-fibration
p'i=p|y over Y':=Y— {P} has at most one singular fiber of the second kind.
By Theorem 3.3, there exist a dominant morphism A% — X', and hence a domi-
nant morphism Aj— X. Therefore 4 is contained in a polynomial ring as a
k-subalgebra.

(II) Suppose that p has three multiple fibers p*P;= p,F; (1=7<3) with
multiplicity u;. We consider first the case where {u;, us, ust = {2, 2, n} (n=2).
Let Y'—Y be a double covering of Y which ramifies over the points P, and P,;
then Y'=P;. Let X’ be the normalization of X 1>,< Y’ and let p’: X'—Y' be

the natural projection. Then X’ is a nonsingular affine surface and p’ is an
A'-fibration over Y’ (cf. the proof of Theorem 3.3). Moreover, p'*P} (i=1, 2)
is a reduced singular fiber with two irreducible components, P/ being the
unique point of Y’ lying over P;, and p'*Q; (=1, 2) is a multiple fiber of
multiplicity # with single irreducible component, O, and Q, being two points of
Y’ lying over P;. Replacing X’ by an affine open set, we may assume that p’
has no singular fibers of the first kind. Let Y”—Y’ be an n-ple covering
which ramifies totally over Q, and Q,, let X" be the normalization of X’ i(/Y” ,

and let p”: X””—Y” be the natural projection. Then X" is a nonsingular
affine surface and p” is an A!-fibration over Y”=Pj}. The fibration p” has two
reduced singular fibers p”"*Q/ (i =1, 2) with # irreducible components, where
Q! (1=1, 2) is the unique point of Y” lying over Q;. Then, by virtue of the
step (I), there exist a dominant morphism A}—X", and hence a dominant
morphism A} — X. Therefore, 4 is contained in a polynomial ring as a k-sub-
algebra.
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(IIT) The other cases except the last one can be treated in a similar fashion,
that is, by choosing suitable multiple coverings P;— P} and then taking the
normalizations of the fiber products with respect to such multiple coverings.
The following diagram will indicate roughly the necessary steps:

tripl
2,3 3 ——

——> {2, 2, 2} — the former case,
covering

{2, 3, 4} —d(igl—)—l.e—-> {2, 3, 3} — the former case.
covering
(IV) In the case where {u;, ps pst = {2, 3, 5}, we know by the theory of
Kleinian singularities that there exists a ramified covering 71 Y’'—Y of degree
60 with 30 points over P, with ramification index 2, 20 points over P, with
ramification index 3 and 12 points over P; with ramification index 5, where
Y'=Pj}. Let X' bethe normalization of X X Y’ and p’: X'—Y"’ be the natural

A'-fibration. Then p’ has no multiple fibers of the second kind. So, we are
done. Q.E.D.
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