REGULAR SUBRINGS OF A POLYNOMIAL RING, II

Dedicated to Professor Yozô Matsushima on his sixtieth birthday

Masayoshi MIYANISHI

(Received December 26, 1980)

Introduction. This is a continuation of the previous work of the author's [7] on a finitely generated, two-dimensional, regular subring contained in a polynomial ring. Let k be an algebraically closed field of characteristic zero, which we fix as the ground field throughout this article. Let $X=\operatorname{Spec}(A)$ be a nonsingular affine surface defined over k. An \boldsymbol{A}^{1}-fibraton on X over a curve Y is a surjective morphism $\rho: X \rightarrow Y$ from X to a nonsingular curve Y whose general fibers are isomorphic to the affine line \boldsymbol{A}_{k}^{1}. It is known that every fiber of ρ is supported by a disjoint union of irreducible components, each of which is isomorphic to \boldsymbol{A}_{k}^{1} (cf. [7]). Let $F=\rho^{*}(P)$ be a fiber of ρ lying over a point P of Y, and write $F=\sum_{i=1}^{s} n_{i} C_{i}$, where C_{i} is isomorphic to \boldsymbol{A}_{k}^{1} and $n_{i}>0$ for every i. We say that F is a singular fiber of the first kind (resp. the second kind) if $s \geqq 2$ and $n_{i}=1$ for some i (resp. $n_{i} \geqq 2$ for every i). We also say that F is a multiple fiber of multiplicity μ if $\mu:=$ G.C.D. $\left(n_{1}, \cdots, n_{s}\right)>1$.

Let $R:=k\left[u_{1}, \cdots, u_{r}\right]$ be a polynomial ring of dimension r over k, and let A be a finitely generated, two-dimensional, regular k-subalgebra of R. Let $X:=\operatorname{Spec}(A)$, which is a nonsingular affine rational surface. We know that the group A^{*} of invertible elements of A coincides with $k^{*}:=k-(0)$, that X has logarithmic Kodaira dimension $\bar{\kappa}(X)=-\infty$, and that A is isomorphic to a polynomial ring of dimension 2 over k provided A is a unique factorization domain (cf. [7]). The condition that $\bar{\kappa}(X)=-\infty$ implies that there exists an \boldsymbol{A}^{1}-fibration $\rho: X \rightarrow Y$ over a nonsingular curve Y (cf. Miyanishi-Sugie [8], Fujita [2]). In the present case, since X is dominated by the affine r-space $\boldsymbol{A}_{k}^{r}=\operatorname{Spec}(R), Y$ is isomorphic to \boldsymbol{A}_{k}^{1} or the projective line \boldsymbol{P}_{k}^{1}.

The purpose of this paper is to study the converse: When is a nonsingular affine surface X with an \boldsymbol{A}^{1}-fibration ρ over \boldsymbol{A}_{k}^{1} or \boldsymbol{P}_{k}^{1} dominated by $\boldsymbol{A}_{k}^{r}(r \geqq 2)$? If $X=\operatorname{Spec}(A)$ has an \boldsymbol{A}^{1}-fibration over \boldsymbol{A}_{k}^{1}, we can give the following criterion (Theorem 3.3):
X is dominated by \boldsymbol{A}_{k}^{r}, that is, A is contained in R as a k-subalgebra, if and only if ρ has at most one singular fiber of the second kind.

This is done by solving a Diophantine equation in $k\left[u_{1}, \cdots, u_{r}\right]$ (Theorem 1.2). Meanwhile, if $X=\operatorname{Spec}(A)$ has an \boldsymbol{A}^{1}-fibration over \boldsymbol{P}_{k}^{1}, the situation becomes very much complicated. Namely, in order to discuss the embeddability of A into $k\left[u_{1}, \cdots, u_{r}\right]$ in full generality, we have to know what the solutions of the following Diophantine equation in $k\left[u_{1}, \cdots, u_{r}\right]$ look like:

$$
x_{1}^{a_{1}} \cdots x_{l}^{a_{l}}+y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}+z_{1}^{c_{1}} \cdots z_{n}^{c_{n}}=0
$$

where $a_{i} \geqq 2, b_{j} \geqq 2, c_{s} \geqq 2$ for every index $i(1 \leqq i \leqq l), j(1 \leqq j \leqq m), s(1 \leqq s \leqq n)$. We only give partial answers to the embeddability problem in terms of multiple fibers of ρ, which are stated as follows:
(1) Assume that A is contained in R as a k-subalgebra. Then the fibration ρ has at most three multiple fibers. If ρ has three multiple fibers, their multiplicities $\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$ are given, up to permutation, by one of the following triplets: $\{2,2, n\}(n \geqq 2),\{2,3,3\},\{2,3,4\}$ and $\{2,3,5\}$ (cf. Theorem 3.5).
(2) Assume, conversely, that ρ satisfies the following two conditions:
(i) ρ has no singular fibers of the second kind except at most three multiple fibers, each of which is supported by a single irreducible component;
(ii) if ρ has three multiple fibers, the set of multiplicities $\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$ is, up to permutation, one of the triplets given in the assertion (1).
Then A is contained in a polynomial ring as a k-subalgebra (cf. Theorem 3.7).
In order to obtain these results, we consider an affine hypersurface $S_{p_{1}, p_{2}, p_{3}}$ in $\boldsymbol{A}_{k}^{3}=\operatorname{Spec}\left(k\left[x_{1}, x_{2}, x_{3}\right]\right)$ defined by an equation

$$
x_{1}^{p_{1}^{p_{1}}+x_{2}^{p_{2}}+x_{3}^{p_{3}}=0 \quad \text { with } \quad p_{1}, p_{2}, p_{3} \geqq 2, ~}
$$

and also a complete intersection $\Sigma_{p_{1}, p_{2}, p_{3}, p_{4}}$ in $\boldsymbol{A}_{k}^{4}=\operatorname{Spec}\left(k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]\right)$ defined by equations

$$
x_{1}^{p_{1}}+x_{2}^{p_{2}}+x_{3}^{p_{3}}=0 \quad \text { and } \quad a x_{1}^{p_{1}}+x_{2}^{p_{2}}+x_{4}^{p_{4}}=0
$$

with $p_{1}, p_{2}, p_{3}, p_{4} \geqq 2$ and $a \in k-\{0,1\}$. Indeed, we have to compute $\bar{\kappa}\left(S_{p_{1}, p_{2}, p_{3}}^{*}\right)$, where $S_{p_{1}, p_{2}, p_{3}}^{*}=S_{p_{1}, p_{2}, p_{3}}-(0)$, and determine when there exists a dominant morphism from $\boldsymbol{A}_{k}^{\gamma}$ to $S_{p_{1}, p_{2}, p_{3}}^{*}$ or $\Sigma_{p_{1}, p_{2}, p_{3}, p_{4}}^{*}:=\Sigma_{p_{1}, p_{2}, p_{3}, p_{4}}-(0)$ (cf. Theorems 2.8 and 2.15).

The terminology and the notations in this article conform to the use in the previous paper [7] and the general current practice. We shall list up the notations in frequent use.
\boldsymbol{A}_{k}^{r} : the affine space of dimension r defined over k;
\boldsymbol{P}_{k}^{r} : the projective space of dimension r defined over k;
$\bar{\kappa}(X)$: the logarithmic Kodaira dimension of a nonsingular algebraic variety X;
A^{*} : the multiplicative group consisting of the invertible elements of A; $\left(a_{1}, \cdots, a_{n}\right)$ (or G.C.D. $\left(a_{1}, \cdots, a_{n}\right)$): the greatest common divisor of positive integers a_{1}, \cdots, a_{n};
L.C.M. $\left(a_{1}, \cdots, a_{n}\right)$: the least common multiple of positive integers a_{1}, \cdots, a_{n}; $\left\{a_{1}, \cdots, a_{n}\right\}$: an n-tuple of integers;
$D \sim D^{\prime}$: a divisor D is linearly equivalent to a divisor D^{\prime};
For a dominant morphism $\pi: X \rightarrow C$ and a point P of $C, \pi^{*} P$ denotes the (scheme-theoretic) complete inverse image, and $\pi^{-1}(P)$ denotes the set-theoretic inverse image.

1. A Diophantine equation, I

1.1. Let $R:=k\left[u_{1}, \cdots, u_{r}\right]$ be a polynomial ring of dimension r over k. Let us consider a Diophantine equation in $(m+n)$-variables,
where $m, n \geqq 1$ and a_{i} 's and b_{j} 's are integers larger than 1 , and look for its solutions in R. A solution $\left\{x_{i}=f_{i}, y_{j}=g_{j} ; 1 \leqq i \leqq m, 1 \leqq j \leqq n\right\}$ is called a constant solution if $f_{i} \in k$ and $g_{j} \in k$ for every i and every j. Otherwise, it is called a nonconstant solution.

1.2. We shall prove the following

Theorem. A non-constant solution of the equation (1) in R has one of the following forms:
(1) $\quad x_{i}=0$ for some $1 \leqq i \leqq m, y_{j}=c_{j} \in k$ for every $1 \leqq j \leqq n$, where $c_{1}^{b_{1}} \cdots c_{n}^{b_{n}}=$ -1 ;
(2) $y_{j}=0$ for some $1 \leqq j \leqq n$, and $x_{i}=c_{i} \in k$ for every $1 \leqq i \leqq m$, where $c_{1}^{a} \cdots c_{m}^{a}=1$.

The proof will be given in the paragraph 1.3.
1.3. Let $\left\{x_{i}=f_{i}, y_{j}=g_{j}\right\}$ be a non-constant solution such that $f_{i} \notin k$ and $g_{j} \notin k$ for some i and j. By reducing the number of variables in the equation (1) if necessary, we may assume that $f_{i} \notin k$ and $g_{j} \notin k$ for every $1 \leqq i \leqq m$ and every $1 \leqq j \leqq n$.

On the other hand, we may assume that R is a polynomial ring in one variable u. In effect, let $\gamma_{1}(u), \cdots, \gamma_{r}(u)$ be sufficiently general polynomials in $k[u]$, and let $\varphi_{i}:=f_{i}\left(\gamma_{1}(u), \cdots, \gamma_{r}(u)\right)$ and $\psi_{j}:=g_{j}\left(\gamma_{1}(u), \cdots, \gamma_{r}(u)\right)$. Then $\left\{x_{i}=\varphi_{i}, y_{j}=\psi_{j}\right\}$ is a non-constant solution of the equation (1) in $k[u]$ such that $\varphi_{i} \notin k$ and $\psi_{j} \notin k$ for every $1 \leqq i \leqq m$ and every $1 \leqq j \leqq n$. Such polynomials $\gamma_{1}(u), \cdots, \gamma_{r}(u)$ exist because k is an infinite field. If we can show the nonexistence of such a solution in $k[u]$, it implies the non-existence of a non-constant solution of (1) in R such that $f_{i} \notin k$ and $g_{j} \notin k$ for some i and j. Thus, we may assume that $R=k[u]$.

By replacing again the equation (1) by an equation of the same kind in more unknowns if necessary, we may assume that $f_{i}=c_{i}\left(u-\alpha_{i}\right)$ and $g_{j}=d_{j}\left(u_{j}-\beta_{j}\right)$,
where $c_{i}, \alpha_{i}, d_{j}, \beta_{j} \in k$, and $\alpha_{i} \neq \alpha_{i}^{\prime}, \beta_{j} \neq \beta_{j}^{\prime}$ whenever $i \neq i^{\prime}$ and $j \neq j^{\prime}$. Finally, we obtain a relation in a variable u,

$$
\begin{equation*}
c\left(u-\alpha_{1}\right)^{a_{1} \cdots\left(u-\alpha_{m}\right)^{a_{m}}-d\left(u-\beta_{1}\right)^{b_{1} \cdots\left(u-\beta_{n}\right)^{b_{n}}}=1,1, ~ . ~} \tag{2}
\end{equation*}
$$

where $c, d \in k^{*}$. We shall show that such identity in u is impossible.
Note that every α_{i} is distinct from $\beta_{1}, \cdots, \beta_{n}$ and every β_{j} is distinct from $\alpha_{1}, \cdots, \alpha_{m}$. By differentiating both hand sides of the equation (2) in u, we obtain a relation,

$$
\begin{equation*}
c \prod_{i=1}^{m}\left(u-\alpha_{i}\right)^{a} \cdot\left\{\sum_{i=1}^{m} \frac{a_{i}}{u-\alpha_{i}}\right\}=d \prod_{j=1}^{n}\left(u-\beta_{j}\right)^{b_{j}} \cdot\left\{\sum_{j=1}^{n} \frac{b_{j}}{u-\beta_{j}}\right\} . \tag{3}
\end{equation*}
$$

Note that we have

$$
\begin{aligned}
& \operatorname{deg}\left(\prod_{i=1}^{m}\left(u-\alpha_{i}\right) \cdot\left\{\sum_{i=1}^{m} \frac{a_{i}}{u-\alpha_{i}}\right\}\right) \leqq m-1, \text { and } \\
& \operatorname{deg}\left(\prod_{j=1}^{n}\left(u-\beta_{j}\right) \cdot\left\{\sum_{j=1}^{n} \frac{b_{j}}{u-\beta_{j}}\right\}\right) \leqq n-1
\end{aligned}
$$

Since $a_{i} \geqq 2$ and $b_{j} \geqq 2$ by assumption, the relation (3) implies that

$$
\prod_{j=1}^{n}\left(u-\beta_{j}\right) \cdot\left\{\sum_{j=1}^{n} \frac{b_{j}}{u-\beta_{j}}\right\}
$$

is divisible by $\prod_{i=1}^{m}\left(u-\alpha_{i}\right)$. Hence we obtain $m \leqq n-1$. Similarly, we have $n \leqq m-1$. This is a contradiction. Therefore, we have shown that if $\left\{x_{i}=f_{i}\right.$, $\left.y_{j}=g_{j}\right\}$ is a non-constant solution of the equation (1), then either $f_{i} \in k$ for every $1 \leqq i \leqq m$ or $g_{j} \in k$ for every $1 \leqq j \leqq n$.

Suppose that the first case takes place, i.e., $f_{i}=c_{i} \in k$ for every $1 \leqq i \leqq m$. Then $g_{j} \notin k$ for some j. If $\prod_{i=1}^{m} c_{i}^{a} \neq 1$, then g_{j} would be a unit in R; this is a contradiction. Hence $\prod_{i=1}^{m} c_{i}^{a_{i}}=1$, and $g_{j}=0$ for some j. The other case can be treated in a similar way.
Q.E.D.

2. A Diophantine equation, II

2.1. In this section, we shall consider a Diophantine equation

$$
\begin{equation*}
x_{1}^{p_{1}}+x_{2}^{p_{2}}+x_{3}^{p_{3}}=0, \tag{4}
\end{equation*}
$$

where p_{1}, p_{2} and p_{3} are integers larger than 1 , and look for non-constant solutions in $R:=k\left[u_{1}, \cdots, u_{r}\right]$. Let $S_{p_{1}, p_{2}, p_{3}}$ be the affine hypersurface in $\boldsymbol{A}_{k}^{3}:=$ $\operatorname{Spec}\left(k\left[x_{1}, x_{2}, x_{3}\right]\right)$ defined by the equation (4), and let $S_{p_{1}, p_{2}, p_{3}}^{*}:=S_{p_{1}, p_{2}, p_{3}}-(0)$, where (0) is the point $(0,0,0)$. When there is no fear of confusion, we denote $S_{p_{1}, p_{2}, p_{3}}$ and $S_{p_{1}, p_{2}, p_{3}}^{*}$ simply by S and S^{*}, respectively. It is easy to see that S
is a normal surface with the unique singular point (0). The resolution of singularity of S at the point (0) is completely understood (cf. Orlik-Wagreich [10]). We recall some of the results which we need in our subsequent arguments.
2.2. Let G_{m} be the multiplicative group scheme defined over k. We need the following:

Lemma. Let X be a nonsingular quasi-projective surface with an effective separated G_{m}-action. Assume that X has no fixed points. Let $Y:=X / G_{m}$ be the quotient variety and let $\pi: X \rightarrow Y$ be the canonical projection. Then we have:
(1) Y is a nonsingular curve;
(2) $\pi^{-1}(y) \cong \boldsymbol{A}_{*}^{1}$ for every point $y \in Y$, where \boldsymbol{A}_{*}^{1} is the affine line \boldsymbol{A}_{k}^{1} with one point deleted off;
(3) $\pi^{*} y$ is a multiple fiber with multiplicity μ if and only if the stabilizer group σ_{x} is a cyclic group of order μ for a point x in $\pi^{-1}(y)$.

Proof. Let x be a point of X. By virtue of Sumihiro [11; Cor. 2], there exists a G_{m}-stable affine open neighborhood $U:=\operatorname{Spec}(A)$ of x. Let B be the subalgebra of G_{m}-invariants in A. Then $\bar{U}:=\operatorname{Spec}(B)$ is an affine open neiphborhood of $y:=\pi(x)$. Since A is regular, B is normal. Hence Y is a nonsingular curve. It is known by the theory of quotient varieties with respect to reductive group actions (e.g., Mumford [9; Chap. 1]) that $\pi^{-1}(y)$ consists of a single orbit under the stated assumption. Hence the assertion (2) holds.

Consider a G_{m}-equivariant completion $X \rightarrow Z$, where we may assume that Z is a nonsingular projective surface (cf. Sumihiro [11]). Let $O(x)$ be the orbit through x, and let C be the closure of $O(x)$ in Z. Then C contains a fixed point z. We can find a system of local coordinates (u, v) at z such that $u=0$ defines a branch of C through z and the induced G_{m}-action on the tangent space $T_{z, Z}$ is normalized as $t(\xi, \eta)=\left(t^{\alpha} \xi, t^{\beta} \eta\right)$, where $t \in k^{*}, \alpha$ and β are integers and $\xi=\partial / \partial u$ and $\eta=\partial / \partial v$. Replacing the G_{m}-action $(t, z) \mapsto^{t} z$ on Z by a G_{m}-action $(t, z) \mapsto{ }^{t^{-1}} z$ and interchanging the roles of u and v if necessary, we may assume that $\beta>0$. Since $\hat{\mathcal{O}}_{z, z} \cong k[[u, v]], \alpha$ and β are prime to each other; if $\alpha=0$ then $\beta=1$. Let $y:=\pi(x)$. Then $\hat{\mathcal{O}}_{y, Y} \cong k\left[\left[u^{\beta} v^{-\alpha}\right]\right]$, and the orbit $O(x)$ is defined by $u=0$ in a neighborhood of z. Hence the multiplicity of $\pi^{*} y$ is β, and the stabilizer group of a point (hence of the point x) of the orbit $O(x)$ is $\boldsymbol{Z} \mid \beta \boldsymbol{Z}$. Hence the assertion (3) holds true.
Q.E.D.
2.3. Let p_{1}, p_{2} and p_{3} be the same as for the equation (4). Let $d:=$ L.C.M. $\left(p_{1}\right.$, $\left.p_{2}, p_{3}\right)$ and define the integers $q_{i}(1 \leqq i \leqq 3)$ by $d=p_{i} q_{i}$. The group scheme G_{m} acts effectively on $S_{p_{1}, p_{2}, p_{3}}^{*}$ by

$$
t\left(x_{1}, x_{2}, x_{3}\right)=\left(t^{q_{1}} x_{1}, t^{q_{2}} x_{2}, t^{q_{3}} x_{3}\right)
$$

Then $S_{p_{1}, p_{2}, p_{3}}^{*}$ has no fixed points. Let $C:=S^{*} / G_{m}$ and let $\pi: S^{*} \rightarrow C$ be the
canonical projection. Then we have:
Lemma. (1) The genus g of C is given by

$$
g=\frac{d^{2}}{2 q_{1} q_{2} q_{3}}-\frac{d}{2}\left\{\frac{\left(q_{1}, q_{2}\right)}{q_{1} q_{2}}+\frac{\left(q_{2}, q_{3}\right)}{q_{2} q_{3}}+\frac{\left(q_{3}, q_{1}\right)}{q_{3} q_{1}}\right\}+1
$$

(2) π has no multiple fibers but possibly $\frac{d\left(q_{1}, q_{2}\right)}{q_{1} q_{2}}$ fibers with multiplicity $\left(q_{1}, q_{2}\right)$, $\frac{d\left(q_{2}, q_{3}\right)}{q_{2} q_{3}}$ fibers with multiplicity $\left(q_{2}, q_{3}\right)$ and $\frac{d\left(q_{3}, q_{1}\right)}{q_{3} q_{1}}$ fibers with multiplicity $\left(q_{3}, q_{1}\right)$.

Proof. (1) Let T be the hypersurface in $\boldsymbol{A}_{k}^{3}:=\operatorname{Spec}\left(k\left[y_{1}, y_{2}, y_{3}\right]\right)$ defined by $y_{1}^{d}+y_{2}^{d}+y_{3}^{d}=0$, and let $T^{*}:=T-(0)$. Let $\Phi: T^{*} \rightarrow S^{*}$ be the morphism defined by $\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(y_{1}^{q_{1}}, y_{2}^{q}, y_{3}^{q_{3}}\right)$. Let G_{m} act on T^{*} via $t\left(y_{1}, y_{2}, y_{3}\right)=\left(t y_{1}\right.$, $t y_{2}, t y_{3}$). Then Φ is a G_{m}-equivariant morphism. Let $D:=T^{*} / G_{m}$. Then Φ induces a surjective morphism $\varphi: D \rightarrow C$ such that $\pi \cdot \Phi=\varphi \cdot \pi^{\prime}$, where π^{\prime} : $T^{*} \rightarrow D$ is the canonical quotient morphism. Then it is easy to show that $\operatorname{deg} \varphi=q_{1} q_{2} q_{3}$ and the morphism φ ramifies at d points (on D) with ramification index $q_{3}\left(q_{1}, q_{2}\right)$, at d points with ramification index $q_{2}\left(q_{3}, q_{1}\right)$ and at d points with ramification index $q_{1}\left(q_{2}, q_{3}\right)$. Since D has genus $\frac{1}{2}(d-1)(d-2)$, the genus g of C is obtained by the Riemann-Hurwitz formula applied to $\varphi: D \rightarrow C$. The assertion (2) can be verified by means of Lemma 2.2.
Q.E.D.
2.4. Let $p_{i}(1 \leqq i \leqq 4)$ be integers larger than 1 . Let $\Sigma_{p_{1}, p_{2}, p_{3}, p_{4}}$ be the surface in $A_{k}^{4}:=\operatorname{Spec}\left(k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]\right)$ defined by equations,

$$
x_{1}^{p_{1}}+x_{2}^{\phi_{2}}+x_{3}^{\phi_{3}}=0 \quad \text { and } \quad a x_{1}^{p_{1}}+x_{2}^{p_{2}}+x_{4}^{p_{4}}=0,
$$

where $a \in k-\{0,1\}$. Let $\Sigma_{p_{1}, p_{2}, p_{3}, p_{4}}^{*}:=\Sigma_{p_{1}, p_{2}, p_{3}, p_{4}}-(0)$; we denote these objects by Σ and Σ^{*} if there is no fear of confusion. Then Σ^{*} is a nonsingular surface with an effective action of the group scheme G_{m} defined by

$$
t\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(t^{q_{1}} x_{1}, t^{q_{2}} x_{2}, t^{q_{3}} x_{3}, t^{q_{4}} x_{4}\right),
$$

where the integers $q_{i}(1 \leqq i \leqq 4)$ are defined by

$$
d=p_{i} q_{i}(1 \leqq i \leqq 4) \quad \text { and } \quad d=L . C . M .\left(p_{1}, p_{2}, p_{3}, p_{4}\right) .
$$

The G_{m}-action on Σ^{*} given above has no fixed points. Let $C:=\Sigma^{*} / G_{m}$ and let $\pi: \Sigma^{*} \rightarrow C$ be the canonical quotient morphism. We have the following:

Lemma. (1) The genus g of C is given by the formula:

$$
g=\frac{d^{3}}{q_{1} q_{2} q_{3} q_{4}}-\frac{d^{2}}{2}\left\{\frac{\left(q_{1}, q_{2}, q_{3}\right)}{q_{1} q_{2} q_{3}}+\frac{\left(q_{1}, q_{2}, q_{4}\right)}{q_{1} q_{2} q_{4}}+\frac{\left(q_{1}, q_{3}, q_{4}\right)}{q_{1} q_{3} q_{4}}+\frac{\left(q_{2}, q_{3}, q_{4}\right)}{q_{2} q_{3} q_{4}}\right\}+1
$$

(2) π has no multiple fibers but possibly $\frac{d^{2}\left(q_{1}, q_{2}, q_{3}\right)}{q_{1} q_{2} q_{3}}$ fibers with multiplicity $\left(q_{1}, q_{2}, q_{3}\right), \frac{d^{2}\left(q_{1}, q_{2}, q_{4}\right)}{q_{1} q_{2} q_{4}}$ fibers with multiplicity $\left(q_{1}, q_{2}, q_{4}\right), \frac{d^{2}\left(q_{1}, q_{3}, q_{4}\right)}{q_{1} q_{3} q_{4}}$ fibers with multiplicity $\left(q_{1}, q_{3}, q_{4}\right)$ and $\frac{d^{2}\left(q_{2}, q_{3}, q_{4}\right)}{q_{2} q_{3} q_{4}}$ fibers with multiplicity $\left(q_{2}, q_{3}, q_{4}\right)$.

Proof. Similar to the proof of Lemma 2.3.
2.5. As an application of Lemma 2.4, we have the following examples:

$\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$	$g\left(\Sigma^{*} / G_{m}\right)$	multiple fibers of $\pi: \Sigma^{*} \rightarrow C:=\Sigma^{*} / G_{m}$
$\{2,2,2,2 s\}$	1	4 fibers with multiplicity s
$\{2,2,2,2 s+1\}$	0	4 fibers with multiplicity $2 s+1$
$\{2,2,3,3\}$	2	no multiple fibers
$\{2,2,3,4\}$	0	2 fibers with multiplicity 2 4 fibers with multiplicity 3
$\{2,2,3,5\}$	0	2 fibers with multiplicity 5 2 fibers with multiplicity 3

2.6. From this paragraph on up to 2.14 , we shall retain the notations of 2.1 . Let $p_{1}^{\prime}:=p_{1} /\left(q_{2}, q_{3}\right), p_{2}^{\prime}:=p_{2} /\left(q_{1}, q_{3}\right)$ and $p_{3}^{\prime}:=p_{3} /\left(q_{1}, q_{2}\right) ; p_{i}^{\prime}(1 \leqq i \leqq 3)$ are integers because, for example, $d=p_{1} q_{1}$ and $\left(q_{1},\left(q_{2}, q_{3}\right)\right)=1$ imply that p_{1} is divisible by $\left(q_{2}, q_{3}\right)$. As an easy application of Lemma 2.3, we know that $g=0$ (resp. $g=1$, resp. $g>1$) if and only if $\frac{1}{p_{1}^{\prime}}+\frac{1}{p_{2}^{\prime}}+\frac{1}{p_{3}^{\prime}}>1$ (resp. $=1$, resp. <1).
2.7. We have the following:

Lemma. Assume that $p_{1} \leqq p_{2} \leqq p_{3}$ and $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}=1$. Then we have:
(1) $\left\{p_{1}, p_{2}, p_{3}\right\}=\{2,3,6\},\{2,4,4\}$ or $\{3,3,3\}$.
(2) $C:=S^{*} / G_{m}$ is a nonsingular elliptic curve, and $\pi: S^{*} \rightarrow C$ has no multiple fibers, i.e., S^{*} is an \boldsymbol{A}_{*}^{1}-bundle over C.
(3) Let $b:=d / q_{1} q_{2} q_{3} . \quad$ Then $b=1,2,3$ for $\left\{p_{1}, p_{2}, p_{3}\right\}=\{2,3,6\},\{2,4,4\}$ and $\{3,3,3\}$, respectively. There exists an invertible sheaf \mathcal{L} of degree b over C such that the ruled surface $V:=\operatorname{Proj}\left(\mathcal{O}_{c} \oplus \mathcal{L}\right)$ over C with the zero section M_{0} and the infinity section M_{∞} deleted off is isomorphic to S^{*}.
(4) $\bar{\kappa}\left(S^{*}\right)=0$.

Proof. (1) follows from a well-known straightforward computation. (2) follows from Lemma 2.3. Since S^{*} is an \boldsymbol{A}_{*}^{1}-bundle over C, S^{*} is obtained from a ruled surface in the way as specified in the assertion (3). Then $\left(M_{0}^{2}\right)=$ $-b,\left(M_{\infty}^{2}\right)=b$ and $\left(M_{0} \cdot M_{\infty}\right)=0$. The number $b:=\operatorname{deg} \mathcal{L}$ is equal to $d / q_{1} q_{2} q_{3}$,
because M_{0} is the unique exceptional curve which arises from the minimal resolution of singularity of the point $(0,0,0)$ of S (cf. Orlik-Wagreich [10]). Note that the canonical divisor K_{V} of V is linearly equivalent to $-M_{0}-M_{\infty}$. The boundary divisor of S^{*} in V is $D:=M_{0}+M_{\infty}$. Hence $D+K_{V} \sim 0$. Therefore, we have $\bar{\kappa}\left(S^{*}\right)=0$.
Q.E.D.
2.8. We shall prove

Theorem (cf. Iitaka [4]). $\quad S_{p_{1}, p_{2}, p_{3}}^{*}$ has the logarithmic Kodaira dimension $\bar{\kappa}\left(S_{p_{1}, p_{2}, p_{3}}^{*}\right)=-\infty, 0,1$ according as $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}>1,=1,<1$, respectively.

The proof will be given in the paragraphs $2.9 \sim 2.11$.
2.9. Let V be a nonsingular projective surface with a surjective morphism $\varphi: V \rightarrow C:=S^{*} / G_{m}$ satisfying the following conditions:
(i) V contains $S_{p_{1}, p_{2}, p_{3}}^{*}$ as a dense open set, and $\left.\varphi\right|_{s^{*}}=\pi: S^{*} \rightarrow C$;
(ii) $V-S^{*}$ contains no exceptional curves of the first kind which are contained in fibers of φ.

It is clear that general fibers of φ are isomorphic to \boldsymbol{P}_{k}^{1}. The resolution of singularity of $S_{p_{1}, p_{2}, p_{3}}$ at the unique singular point $(0)=(0,0,0)$ is described in detail in Orlik-Wagreich [10]. We recall some of the necessary results. The morphism $\pi: S^{*} \rightarrow C$ has multiple fibers if one of $\left(q_{1}, q_{2}\right),\left(q_{2}, q_{3}\right)$ and $\left(q_{3}, q_{1}\right)$ is larger than 1. If (q_{1}, q_{2}) >1, there are $d\left(q_{1}, q_{2}\right) / q_{1} q_{2}$ fibers of multiplicity $\left(q_{1}, q_{2}\right)$ (cf. Lemma 2.3). For a multiple fiber F of multiplicity (q_{1}, q_{2}), set $\alpha:=\left(q_{1}, q_{2}\right)$ and determine an integer β uniquely by the condition that $q_{3} \beta \equiv 1(\bmod \alpha)$ and $0<\beta<\alpha$. Define positive integers $b_{1}, \cdots, b_{s} \geqq 2$ by writing $\alpha /(\alpha-\beta)$ in the form of a continued fraction

$$
\frac{\alpha}{\alpha-\beta}=b_{1}-\frac{1}{b_{2}-\frac{1}{\ddots-\frac{1}{b_{s}}}}
$$

which we write in the form $\alpha /(\alpha-\beta)=\left[b_{1}, \cdots, b_{s}\right]$. For multiple fibers of multiplicity $\left(q_{2}, q_{3}\right)$ or (q_{1}, q_{3}), we determine the corresponding integers α, β, b_{1}, \cdots, b_{s} etc. Let N be the number of the multiple fibers of π. Let

$$
b:=\frac{d}{q_{1} q_{2} q_{3}}-\sum_{i=1}^{N} \frac{\beta_{i}}{\alpha_{i}},
$$

where $\left\{\alpha_{i}, \beta_{i}\right\}$ ranges over all pairs of integers which are determined for all multiple fibers of π in the above-mentioned fashion. Let g be the genus of C. Then the dual graph of the exceptional curves which arise from the resolution
of singularity of the point (0) of $S_{p_{1}, p_{2}, p_{3}}$ has a vertex with weight $-b-N$ (corresponding to a nonsingular curve of genus g) and has N branches, each of which is a linear chain of nonsingular rational curves as exhibited in the following figure:

2.10. The fibration $\varphi: V \rightarrow C$ has two cross-sections M_{0}^{\prime} and M_{∞}^{\prime} and N singular fibers $\Phi_{1}, \cdots, \Phi_{N}$ such that:
(i) M_{0}^{\prime} and M_{∞}^{\prime} are nonsingular curves of genus $g ;\left(M_{0}^{\prime 2}\right)=-b-N$ and $\left(M_{\infty}^{\prime 2}\right)=b$;
(ii) Let Φ be a singular fiber of φ; then $\Phi \cap S^{*}=\alpha F$ with $F \cong \boldsymbol{A}_{*}^{1}$, i.e., a multiple fiber of multiplicity $\alpha>1$; the component \bar{F} of $\Phi(=$ the closure of F in V) is connected to the cross-section M_{0}^{\prime} by s components as exhibited in

$$
\bar{\circ}-b_{s}^{\circ}-b_{s-1} \quad \cdots-b_{1} \quad M_{0}^{\prime} .
$$

By assumption, $\Phi-F$ contains no exceptional curves of the first kind. Hence \bar{F} is the unique exceptional curve of the first kind contained in the singular fiber Φ. Then it is easily ascertained that the dual graph of the fiber Φ is a linear chain. It looks like the one given in Miyanishi [6; p. 95]. To fix the notations, we represent it in the next page. The upper half of the chain between E_{0} and $E\left(a, m_{a}\right)$ (with $E\left(a, m_{a}\right)$ excluded) corresponds to the chain

$$
-b_{s}-b_{s-1} \quad \cdots-\quad-\quad-b_{1} .
$$

Hence we have $\frac{\alpha}{\alpha-\beta}=\left[b_{1}, \cdots, b_{s}\right]$

$$
=\left\{\begin{array}{l}
{[m_{1}+1, \underbrace{2, \cdots, 2}_{m_{2}-1}, m_{3}+2,2, \cdots, 2, m_{a-1}+2, \underbrace{2, \cdots, 2}_{m_{a}-1}] \quad \text { if a is even }} \\
{[m_{1}+1, \underbrace{2, \cdots, 2}_{m_{2}-1}, m_{3}+2,2, \cdots, 2, m_{a-2}+2, \underbrace{2, \cdots, 2}_{m_{a-1}-1}, m_{a}+1] \quad \text { if a is odd } .}
\end{array}\right.
$$

Note that α is the multiplicity of \bar{F} in the fiber Φ. This is clear because $\Phi \cap S^{*}=\alpha F$. We can check this fact as follows. The multiplicity $\mu(i, j)$ $\left(1 \leqq i \leqq a ; 1 \leqq j \leqq m_{i}\right)$ of the component $E(i, j)$ in Φ is given by the function
$\mu(i, j)$ defined inductively by:

$$
\begin{aligned}
& \mu\left(0, m_{0}\right):=1, \mu(1, j)=j \quad \text { for } 1 \leqq j \leqq m_{1} \\
& \mu(i, 1)=\mu\left(i-1, m_{i-1}\right)+\mu\left(i-2, m_{i-2}\right) \quad \text { for } 1<i \leqq a \\
& \mu(i, j)=\mu(i, j-1)+\mu\left(i-1, m_{i-1}\right) \quad \text { for } 1<j \leqq m_{i}
\end{aligned}
$$

On the other hand, the integer α is regained by the method as indicated in the appendix of $[10 ;$ p. 76] from the above development of $\alpha /(\alpha-\beta)$ into a continued fraction.
2.11. Note that $V-S^{*}$ consists of nonsingular components crossing normally. It is also easy to see that there exists a unique contraction $\sigma: V \rightarrow V_{0}$, where
(i) $\varphi_{0}: V_{0} \rightarrow C$ is a relatively minimal ruled surface;
(ii) Let $M_{0}:=\sigma_{*} M_{0}^{\prime}$ and $M_{\infty}:=\sigma_{*} M_{\infty}^{\prime} ; \quad$ Then $\left(M_{0}^{2}\right)=-(b+N)$ and $\left(M_{\infty}^{2}\right)=b+N$.

The canonical divisor $K_{V_{0}}$ is given by

$$
K_{V_{0}} \sim-M_{0}-M_{\infty}+\varphi_{0}^{*}\left(K_{c}\right) \quad \text { and } \quad M_{\infty} \sim M_{0}+\varphi_{0}^{*}(\delta)
$$

where K_{c} is the canonical divisor of C and δ is a divisor on C with $\operatorname{deg}(\delta)=$ $b+N$. In effect, $V_{0} \cong \operatorname{Proj}\left(\Theta_{c} \oplus \mathcal{O}_{c}(\delta)\right)$, and M_{0} and M_{∞} correspond to the zero section and the infinite section of V_{0}, respectively.

Each irreducible component $E(i, j)$ of the singular fiber has the contribution $k(i, j)$ in the canonical divisor K_{V} determined inductively as follows:

$$
\begin{aligned}
& k\left(0, m_{0}\right):=0, k(1, j)=j \quad \text { for } 1 \leqq j \leqq m_{1}, \\
& k(i, 1)=k\left(i-1, m_{i-1}\right)+k\left(i-2, m_{i-2}\right)+1 \quad \text { for } 1<i \leqq a, \\
& k(i, j)=k(i, j-1)+k\left(i-1, m_{i-1}\right)+1 \quad \text { for } 1<j \leqq m_{i} .
\end{aligned}
$$

On the other hand, $E(i, j)$ has multiplicity $n(i, j)$ in $\sigma^{*}\left(M_{\infty}\right)$, which is determined by

$$
\begin{aligned}
& n\left(0, m_{0}\right):=0, n(1, j)=1 \quad \text { for } 1 \leqq j \leqq m_{1} \\
& n(i, 1)=n\left(i-1, m_{i-1}\right)+n\left(i-2, m_{i-2}\right) \quad \text { for } 1<i \leqq a \\
& n(i, j)=n(i, j-1)+n\left(i-1, m_{i-1}\right) \quad \text { for } 1<j \leqq m_{i}
\end{aligned}
$$

Let D be the reduced effective divisor such that $\operatorname{Supp}(D)=V-S^{*}$. Then it is straightforward to show that the coefficient $\nu(i, j)$ of $E(i, j)$ in $D+K_{V}-\Phi$ is given by,

$$
\nu(i, j)=\left\{\begin{aligned}
0 & \text { if }(i, j) \neq\left(a, m_{a}\right) \\
-1 & \text { if }(i, j)=\left(a, m_{a}\right)
\end{aligned}\right.
$$

Therefore we have:

$$
\begin{aligned}
& D+K_{V} \sim \sum_{i=1}^{N} \Phi_{i}-\sum_{i=1}^{N} \bar{F}_{i}+\varphi^{*}\left(K_{c}\right) \\
& \geqq \sum_{i=1}^{N}\left(1-\frac{1}{\alpha_{i}}\right) \Phi_{i}+\varphi^{*}\left(K_{c}\right),
\end{aligned}
$$

where α_{i} is the multiplicity of \bar{F}_{i} in Φ_{i}. Let

$$
A:=\left(\sum_{i=1}^{N}\left(1-\frac{1}{\alpha_{i}}\right) \Phi_{i}+\varphi^{*}\left(K_{c}\right) \cdot M_{0}^{\prime}\right) .
$$

Note that α_{i} has one of the values $\left(q_{1}, q_{2}\right),\left(q_{2}, q_{3}\right)$ and $\left(q_{3}, q_{1}\right)(\mathrm{cf} 2.9$.$) and that$ A is, in effect, equal to

$$
\left(\sum_{P \in O}\left(1-\frac{1}{\alpha_{P}}\right) \varphi^{*}(P)+\varphi^{*}\left(K_{C}\right) \cdot M_{0}^{\prime}\right),
$$

where $\pi^{*}(P)=\alpha_{P} F_{P}$ with $F_{P} \cong \boldsymbol{A}_{*}^{1}$. Then we can calculate A as follows:

$$
\begin{aligned}
A= & \frac{d\left(q_{1}, q_{2}\right)}{q_{1} q_{2}}+\frac{d\left(q_{2}, q_{3}\right)}{q_{2} q_{3}}+\frac{d\left(q_{3}, q_{1}\right)}{q_{3} q_{1}}-\frac{d\left(q_{1}, q_{2}\right)}{q_{1} q_{2}} \cdot \frac{1}{\left(q_{1}, q_{2}\right)} \\
& -\frac{d\left(q_{2}, q_{3}\right)}{q_{2} q_{3}} \cdot \frac{1}{\left(q_{2}, q_{3}\right)}-\frac{d\left(q_{3}, q_{1}\right)}{q_{3} q_{1}} \cdot \frac{1}{\left(q_{3}, q_{1}\right)}+2 g-2 \\
= & \frac{d^{2}}{q_{1} q_{2} q_{3}}\left(1-\frac{1}{p_{1}}-\frac{1}{p_{2}}-\frac{1}{p_{3}}\right) .
\end{aligned}
$$

We have clearly $\bar{\kappa}\left(S^{*}\right)=1$ if $A>0$, because $D+K_{V}$ is linearly equivalent to a divisor supported by fibers and the components contained in fibers of φ. If $A=0$ we have $\bar{\kappa}\left(S^{*}\right)=0$ (cf. 2.7). If $A<0$, i.e., $1<\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}$, we have the following under an additional assumption $2 \leqq p_{1} \leqq p_{2} \leqq p_{3}:\left\{p_{1}, p_{2}, p_{3}\right\}=\{2,2, n\}$ $(n \geqq 2),\{2,3,3\},\{2,3,4\}$ or $\{2,3,5\}$. In each of the above four cases for $A<0$, the foregoing arguments of evaluating $D+K_{V}$ shows that $\bar{\kappa}\left(S^{*}\right)=-\infty$; note that if $A<0$ then $g=0$. This completes the proof of Theorem 2.8.
2.12. If $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}>1$, the surface $S_{p_{1}, p_{2}, p_{3}}$ is the quotient variety of \boldsymbol{A}_{k}^{2} with respect to a linear action of a Kleinian subgroup G of $G L(2, k)$ (cf. Brieskorn [1]). In effect, G acts freely on $\boldsymbol{A}_{k}^{2}-(0)$. Hence there exists an étale finite morphism $\rho: \boldsymbol{A}_{k}^{2}-(0) \rightarrow S^{*}$, and $\boldsymbol{A}_{k}^{2}-(0)$ is algebraically simply connected.

Suppose that the ground field k is the field \boldsymbol{C} of complex numbers. Let U be the universal covering space of $S_{p_{1}, p_{2}, p_{3}}^{*}$. Then it is known ${ }^{*}$) that:

[^0]\[

$$
\begin{aligned}
& U \cong \boldsymbol{C}^{2}-(0) \Leftrightarrow 1<\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}} \\
& U \cong C^{2} \quad \Leftrightarrow 1=\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}} \\
& U \cong \boldsymbol{C} \times D
\end{aligned}
$$ \quad \Leftrightarrow 1>\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}, ~ l
\]

where D is a unit disc.

2.13. For later use, we shall prove:

Lemma. Suppose that $\bar{\kappa}\left(S_{p_{1}, p_{2}, p_{3}}^{*}\right)>0$ and $C \cong \boldsymbol{P}_{k}^{1}$. Then $\pi: S^{*} \rightarrow C$ has three or more multiple fibers.

Proof. We have the inequalities,

$$
\frac{\left(q_{2}, q_{3}\right)}{p_{1}}+\frac{\left(q_{3}, q_{1}\right)}{p_{2}}+\frac{\left(q_{1}, q_{2}\right)}{p_{3}}>1>\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}},
$$

(cf. 2.6 and 2.8). Hence it is impossible that $\left(q_{2}, q_{3}\right)=\left(q_{3}, q_{1}\right)=\left(q_{1}, q_{2}\right)=1$. If $\left(q_{2}, q_{3}\right)>1,\left(q_{3}, q_{1}\right)>1$ and $\left(q_{1}, q_{2}\right)>1, \pi$ has three or more multiple fibers. We shall consider the cases where one or two of $\left(q_{2}, q_{3}\right),\left(q_{3}, q_{1}\right)$ and $\left(q_{1}, q_{2}\right)$ equal 1 . Assume first that $\left(q_{2}, q_{3}\right)=1,\left(q_{3}, q_{1}\right)>1$ and $\left(q_{1}, q_{2}\right)>1$. Suppose that $d\left(q_{3}, q_{1}\right) / q_{3} q_{1}$ $=d\left(q_{1}, q_{2}\right) / q_{1} q_{2}=1$. Then $q_{3}=p_{1}\left(q_{1}, q_{3}\right)$ and $q_{2}=p_{1}\left(q_{1}, q_{2}\right)$. Hence $\left(q_{2}, q_{3}\right)$ is divisible by p_{1}. Since $p_{1}>1$, this contradicts the assumption that $\left(q_{2}, q_{3}\right)=1$. Hence $\frac{d\left(q_{3}, q_{1}\right)}{q_{3} q_{1}}>1$ or $\frac{d\left(q_{1}, q_{2}\right)}{q_{1} q_{2}}>1$. Thus π has three or more multiple fibers. Consider next the case where $\left(q_{2}, q_{3}\right)=\left(q_{3}, q_{1}\right)=1$ and $\left(q_{1}, q_{2}\right)>1$. Then the above inequalities imply that $\left(q_{1}, q_{2}\right)>p_{3}$. Hence $q_{3}\left(q_{1}, q_{2}\right)>d$, and

$$
1 \geqq \frac{\left(q_{1}, q_{2}\right)}{q_{2}}>\frac{d}{q_{2} q_{3}} .
$$

However, since $\left(q_{2}, q_{3}\right)=1, d$ is divisible by $q_{2} q_{3}$. This is a contradiction. Thus this case does not occur. The other cases can be treated in a similar fashion.
Q.E.D.
2.14. We shall prove the following:

Theorem. (1) If $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}} \leqq 1$, then there are no non-constant morphisms from \boldsymbol{A}_{k}^{r} to $S_{p_{1}, p_{2}, p_{3}}^{*}$.
(2) If $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}>1$, then there are dominant morphisms from \boldsymbol{A}_{k}^{2} to $S_{p_{1}, p_{2}, p_{3}}^{*}$.

Proof. (1) If $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}=1, S^{*}$ is an \boldsymbol{A}_{*}^{1}-bundle over a nonsingular
elliptic curve C. Thus, if $f: \boldsymbol{A}_{k}^{r} \rightarrow S^{*}$ is a non-constant morphism, $f\left(\boldsymbol{A}_{k}^{r}\right)$ is contained in a fiber of π, which is isomorphic to \boldsymbol{A}_{*}^{1}. This is impossible. So, we may assume that $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}<1$, i.e., $\bar{\kappa}\left(S^{*}\right)>0$. Let $f: \boldsymbol{A}_{k}^{r} \rightarrow S^{*}$ be a nonconstant morphism if such a morphism exists at all. If f is dominant, we may assume without loss of generality that $r=2$. Then we have

$$
-\infty=\bar{\kappa}\left(A_{k}^{2}\right) \geqq \bar{\kappa}\left(S^{*}\right)=1,
$$

which is impossible. Hence $f\left(\boldsymbol{A}_{k}^{r}\right)$ is a rational curve with at most one place at infinity, and $f\left(\boldsymbol{A}_{k}^{r}\right)$ is not contained in any fiber of π. Thus we have a dominant morphism

$$
\psi:=\pi \cdot f: \boldsymbol{A}_{k}^{r} \rightarrow S^{*} \rightarrow C .
$$

Hence C is isomorphic to \boldsymbol{P}_{k}^{1}, and $\psi\left(\boldsymbol{A}_{k}^{r}\right)$ is isomorphic to \boldsymbol{A}_{k}^{1} or \boldsymbol{P}_{k}^{1}. Consider first the case where $\psi\left(\boldsymbol{A}_{k}^{r}\right) \cong \boldsymbol{A}_{k}^{1}$. By 2.13 , there exist points P, Q of C such that $P, Q \in \psi\left(\boldsymbol{A}_{k}^{r}\right)$ and that $\pi^{*} P$ and $\pi^{*} Q$ are multiple fibers of multiplicity μ and ν, respectively. Choose an inhomogeneous coordinate t of \boldsymbol{A}_{k}^{1} such that P and Q are defined by $t=0$ and $t=1$, respectively. Then there exist non-constant polynomials g and h in $R:=k\left[u_{1}, \cdots, u_{r}\right]$ such that $\psi^{*}(t)=g^{\mu}$ and $\psi^{*}(t-1)$ $=h^{\nu}$. This implies that $\{x=g, y=h\}$ is a solution of the Diophantine equation

$$
x^{\mu}-y^{\nu}=1 .
$$

This contradicts Theorem 1.2. Consider next the case where $\psi\left(\boldsymbol{A}_{k}^{r}\right) \cong \boldsymbol{P}_{k}^{1}$. In order to prove, by reductio ad absurdum, the non-existence of such a non-constant morphism as ψ, we may assume, by embedding the ground field k into the field \boldsymbol{C} of complex numbers in a suitable way, that $k=\boldsymbol{C}$. Restricting ψ onto a suitable line $\boldsymbol{A}_{\boldsymbol{C}}^{1}$ in $\boldsymbol{A}_{\boldsymbol{C}}^{r}$, we may assume that $r=1$. Then the Nevanlinna theory (cf. Hayman [3]) implies that

$$
\sum_{i=1}^{N}\left(1-\frac{1}{\alpha_{i}}\right)-2 \leqq 0
$$

where N is the number of multiple fibers of π and $\alpha_{i}^{\prime} s$ are multiplicities. The left-hand side of the above inequality is, in effect, equal to A in 2.11 . Hence we have $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}} \geqq 1$. This is a contradiction. Thus there are no nonconstant morphisms $f: \boldsymbol{A}_{k}^{r} \rightarrow S^{*}$ provided $\bar{\kappa}\left(S^{*}\right) \geqq 0$.
(2) We may assume that $p_{1} \leqq p_{2} \leqq p_{3}$. Then $\left\{p_{1}, p_{2}, p_{3}\right\}$ is one of the following triplets: $\{2,2, n\}(n \geqq 2),\{2,3,3\},\{2,3,4\},\{2,3,5\}$. Except in the case where $\left\{p_{1}, p_{2}, p_{3}\right\}=\{2,3,5\}$, one can easily find a solution $\left\{x_{1}=f_{1}, x_{2}=f_{2}, x_{3}=f_{3}\right\}$ of the equation

$$
x_{1}^{p_{1}}+x_{2}^{p_{2}}+x_{3}^{p_{3}}=0
$$

in a polynomial ring $R:=k\left[u_{1}, \cdots, u_{r}\right]$ such that the subvarieties $\left\{f_{i}=0\right\}(1 \leqq i \leqq 3)$ have no common points in \boldsymbol{A}_{k}^{r} and that trans. $\operatorname{deg}_{k} k\left(f_{1}, f_{2}, f_{3}\right)=2$. Then the assignment $x_{i} \mapsto f_{i}(1 \leqq i \leqq 3)$ gives rise to a dominant morphism $f: \boldsymbol{A}_{k}^{r} \rightarrow S^{*}$. For example, if $\left\{p_{1}, p_{2}, p_{3}\right\}=\{2,2,2\}$, such a solution is given by

$$
x_{1}=\frac{\xi^{2}+\eta^{2}}{2}, x_{2}=\frac{\xi^{2}-\eta^{2}}{2 \sqrt{-1}}, x_{3}=\sqrt{-1} \cdot \xi \eta
$$

where ξ, η are polynomials in R such that $\{\xi=0\}$ and $\{\eta=0\}$ have no common points in \boldsymbol{A}_{k}^{r} and that trans. $\operatorname{deg}_{k} k(\xi, \eta)=2$. The case where $\left\{p_{1}, p_{2}, p_{3}\right\}=\{2$, 3, 5\} seems more subtle. ${ }^{(*)}$ We look for a dominant morphism $f: \boldsymbol{A}_{k}^{2} \rightarrow S^{*}$. Since \boldsymbol{A}_{k}^{2} is algebraically simply connected, such a morphism f (if it exists at all) is factored by a dominant morphism $\tilde{f}: \boldsymbol{A}_{k}^{2} \rightarrow \boldsymbol{A}_{k}^{2}-(0)$ such that $f=\rho \cdot \tilde{f}$ (cf. 2.12). Conversely, if a dominant morphism \tilde{f} is given, $f:=\rho \cdot \tilde{f}$ is a required dominant morphism. Hence we have only to find a dominant morphism $\tilde{f}: \boldsymbol{A}_{k}^{2} \rightarrow \boldsymbol{A}_{k}^{2}-(0)$. Such a morphism \tilde{f} exists because a dominant morphism $f: \boldsymbol{A}_{k}^{2} \rightarrow S_{2,2,2}^{*}$ provides one. Note that this argument works also for the other cases. Q.E.D.
2.15. We shall prove:

Theorem. Let $\Sigma_{p_{1}, p_{2}, p_{3}, p_{4}}^{*}$ be the nonsingular surface defined in 2.4. Assume that $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ is one of the following quadruplets: $\{2,2,2,2 s+1\}(s \geqq 1)$, $\{2,2,3,4\},\{2,2,3,5\}$, i.e., those in the examples in 2.5 with $g\left(\Sigma^{*} / G_{m}\right)=0$. Then there are no non-constant morphisms from \boldsymbol{A}_{k}^{r} to $\Sigma_{p_{1}, p_{2}, p_{3}, p_{4}}^{*}$.

Proof. We only consider the case where $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}=\{2,2,2,3\}$. The other cases can be treated in a similar fashion. Suppose that $f: \boldsymbol{A}_{k}^{r} \rightarrow \Sigma^{*}$ is a non-constant morphism. With the notations of $2.4, C$ is then isomorphic to \boldsymbol{P}_{k}^{1}. Let $\psi:=\pi \cdot f$. Then $\psi\left(\boldsymbol{A}_{k}^{r}\right)$ is isomorphic to \boldsymbol{A}_{k}^{1} or \boldsymbol{P}_{k}^{1}. The case where $\boldsymbol{\psi}\left(\boldsymbol{A}_{k}^{r}\right) \cong \boldsymbol{A}_{k}^{1}$ is impossible because π has four multiple fibers of multiplicity 3 (cf. 2.5 and the proof of Theorem 2.14). Hence $\psi\left(\boldsymbol{A}_{k}^{r}\right) \cong \boldsymbol{P}_{k}^{1}$. Let $3 F_{i}(1 \leqq i$ $\leqq 4$) be the multiple fibers of π. Then $f^{*}\left(F_{i}\right)$ is defined by $f_{i}=0$ with $f_{i} \in R:=$ $k\left[u_{1}, \cdots, u_{r}\right]$. Since $3 F_{1} \sim 3 F_{2} \sim 3 F_{3}$, for example, we have a relation

$$
f_{3}^{3}=f_{2}^{3}+b f_{1}^{3}, \text { where } b \in k^{*} .
$$

Since $f^{*}\left(F_{1}\right) \cap f^{*}\left(F_{2}\right) \cap f^{*}\left(F_{3}\right)=\phi$, we can define a non-constant morphism

$$
g: \boldsymbol{A}_{k}^{r} \rightarrow S_{3,3,3}^{*} \subset \operatorname{Spec}\left(k\left[x_{1}, x_{2}, x_{3}\right] /\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right)\right)
$$

by $g^{*}\left(x_{1}\right)=b^{1 / 3} f_{1}, g^{*}\left(x_{2}\right)=f_{2}$ and $g^{*}\left(x_{3}\right)=-f_{3}$. This is impossible because $S_{3,3,3}^{*} / G_{m}$ is an elliptic curve.
Q.E.D.

[^1]
3. Regular subrings in a polynomial ring

3.1. Let A be a finitely generated, two-dimensional, regular k-algebra contained in a polynomial ring $R:=k\left[u_{1}, \cdots, u_{r}\right]$ of dimension r. Let $X:=\operatorname{Spec}(A)$ and let $\boldsymbol{A}_{k}^{r}:=\operatorname{Spec}(R)$. Then the inclusion $A \hookrightarrow R$ gives rise to a dominant morphism $f: \boldsymbol{A}_{k}^{r} \rightarrow X$. By restricting f onto a linear plane L in \boldsymbol{A}_{k}^{r} which meets general fibers of f in finitely many points, we have a dominant morphism $f_{L}: L \cong \boldsymbol{A}_{k}^{2} \rightarrow X$. This implies that A is a k-subalgebra of the two-dimensional polynomial ring. Thus we may assume without loss of generality that $r=2$.

Since $f: \boldsymbol{A}_{k}^{2} \rightarrow X$ is generically finite, we have $\bar{\kappa}(X)=-\infty$, which follows from the inequality of logarithmic Kodaira dimensions,

$$
\bar{\kappa}(X) \leqq \bar{\kappa}\left(\boldsymbol{A}_{k}^{2}\right)=-\infty
$$

This implies that X contains a cylinderlike open set $U \cong U_{0} \times \boldsymbol{A}_{k}^{1}$, where U_{0} is an affine curve (cf. Miyanishi-Sugie [8]; Fujita [2]). The projection $p: U \rightarrow U_{0}$ is induced from a dominant morphism $\rho: X \rightarrow \boldsymbol{P}_{k}^{1}$, where U_{0} is an open set of \boldsymbol{P}_{k}^{1}. Then $\rho(X) \cong \boldsymbol{A}_{k}^{1}$ or $\rho(X)=\boldsymbol{P}_{k}^{1}$. Indeed, if $\boldsymbol{P}_{k}^{1}-\rho(X)$ consists of more than one point, we may write $\rho(X)=\operatorname{Spec}\left(k\left[t, h(t)^{-1}\right]\right)$, where t is an inhomogeneous coordinate of \boldsymbol{P}_{k}^{1} and $h(t) \in k[t]-k$; then $k\left[t, h(t)^{-1}\right]$ is a k-subalgebra of A (and, hence, of $k\left[u_{1}, u_{2}\right]$); this contradicts the fact that $A^{*}=k^{*}$.

Summing up, we have the following:
Lemma. Let $X:=\operatorname{Spec}(A)$ be a nonsingular affine surface. Then A is contained in a polynomial ring as a k-subalgebra if and only if there exists a dominant morphism $f: \boldsymbol{A}_{k}^{2} \rightarrow X$. In this case, we have:
(1) $A^{*}=k^{*}$;
(2) There exists an \boldsymbol{A}^{1}-fibration $\rho: X \rightarrow Y$, where $Y \cong \boldsymbol{A}_{k}^{1}$ or \boldsymbol{P}_{k}^{1};
(3) Every fiber of ρ is supported by a disjoint union of irreducible curves, each of which is isomorphic to \boldsymbol{A}_{k}^{1}.

For the last assertion, see Miyanishi [7].
3.2. A fiber $\rho^{*}(P)$ of ρ is a singular fiber if either $\rho^{-1}(P)$ is reducible or $\rho^{*}(P)$ is irreducible and non-reduced. Write $\rho^{*}(P)=\sum_{i=1}^{s} n_{i} C_{i}$, where $C_{i} \cong \boldsymbol{A}_{k}^{1}$ and $n_{i}>0 . \quad \rho^{*}(P)$ is called a singular fiber of the first kind if $s \geqq 2$ and $n_{i}=1$ for some i; $\rho^{*}(P)$ is called a singular fiber of the second kind if $n_{i} \geqq 2$ for every i. Let $\mu:=$ G.C.D. $\left(n_{1}, \cdots, n_{s}\right)$. If $\mu>1$, the fiber $\rho^{*}(P)$ is called a multiple fiber and μ is called the multiplicity.

3.3. We shall prove:

Theorem. Let $X:=S p e c(A)$ be a nonsingular surface with an \boldsymbol{A}^{1}-fibration $\rho: X \rightarrow Y$, where $Y \cong \boldsymbol{A}_{k}^{1}$. Then A is contained in a polynomial ring as a k-sub-
algebra if and only if ρ has at most one singular fiber of the second kind.
Proof. (I) Let $f: \boldsymbol{A}_{k}^{2} \rightarrow X$ be a dominant morphism. Then note that $\rho \cdot f\left(\boldsymbol{A}_{k}^{2}\right)=Y$. Suppose that ρ has two singular fibers of the second kind $\rho^{*}(P)$ and $\rho^{*}(Q)$. Then $f^{*} \rho^{*}(P)$ and $f^{*} \rho^{*}(Q)$ are defined by the equations

$$
g_{1}^{a_{1}} \cdots g_{m}^{a_{m}}=0 \quad \text { and } \quad h_{1}^{b_{1}} \cdots h_{n}^{b_{n}}=0
$$

respectively, where g_{1}, \cdots, g_{m} and h_{1}, \cdots, h_{n} are non-constant polynomials in $k\left[u_{1}, u_{2}\right]$ and where $a_{i} \geqq 2(1 \leqq i \leqq m)$ and $b_{j} \geqq 2(1 \leqq j \leqq n)$. We may choose an inhomogeneous coordinate t of $Y:=\operatorname{Spec}(k[t])$ in such a way that the points P and Q are defined by $t=0$ and $t=1$, respectively. Then we have a relation

$$
g_{1}^{a_{1}} \cdots g_{m_{m}}^{a_{m}}-h_{1}^{b_{1}} \cdots h_{n}^{b_{n}}=1
$$

This is impossible by virtue of Theorem 1.2. Therefore ρ has at most one singular fiber of the second kind provided A is contained in a polynomial ring as a k-subalgebra.
(II) We shall prove the "if" part of the theorem. Let $\rho^{*}(P)=\sum_{i=1}^{s} n_{i} C_{i}$ be a singular fiber of the first kind. We shall show that after replacing X by a suitable affine open set with an \boldsymbol{A}^{1}-fibration similar to that for $X, \rho^{*}(P)$ can be assumed to be an irreducible and reduced fiber. For this purpose, embed X into a nonsingular projective surface V as a dense open set. Then $V-X$ consists only of components of codimension 1. Since X is affine, there exists an effective ample divisor D on V such that $\operatorname{Supp}(D)=V-X$. For $\rho^{*}(P)=$ $\sum_{i=1}^{s} n_{i} C_{i}$, suppose that $n_{1}=1$. Then there exists an ample divisor D^{\prime} on V such that $\operatorname{Supp}\left(D^{\prime}\right)=(V-X) \cup \bigcup_{i=2}^{b} \bar{C}_{i}$, where \bar{C}_{i} is the closure of C_{i} in V. Replace X by $X^{\prime}:=X-\operatorname{Supp}\left(D^{\prime}\right)$. Then X^{\prime} is an affine open set of X and $\rho^{\prime}:=\left.\rho\right|_{X^{\prime}}$: $X^{\prime} \rightarrow Y$ is an \boldsymbol{A}^{1}-fibration over Y for which the fiber $\rho^{* \prime}(P)$ is irreducible and reduced.

Performing this operation to all singular fibers of the first kind of ρ, we may assume that ρ has no singular fibers of the first kind. Let $\rho^{*}(P)$ denote anew a singular fiber of the second kind if such a fiber exists at all. If $\rho^{*}(P)$ is reducible, we may delete all irreducible components but one by replacing X by a smallar affine open set with an \boldsymbol{A}^{1}-fibration over Y similar to that for X. Hence we may assume that $\rho^{*}(P)$ is an irreducible multiple fiber, i.e., $\rho^{*}(P)=n C$ with $C \cong \boldsymbol{A}_{k}^{1}$ and $n \geqq 2$.

Write $Y:=\operatorname{Spec}(k[t])$, and assume that the point P is defined by $t=0$. Let $Z:=\operatorname{Spec}(k[\tau]) \rightarrow Y$ be the morphism defined by $t=\tau^{n}$, which is a finite covering ramifying totally over P. Let W be the normalization of $\underset{Y}{X} Z$. Then W is a nonsingular affine surface, and the canonical surjective morphism
$\sigma: W \rightarrow Z$ is an \boldsymbol{A}^{1}-fibration over Z. This can be seen as follows. Let x be a point of X lying over the point P, and find a system of local coordinates (ξ, η) around x such that the curve C is defined by $\xi=0$. Then we have a relation $\xi^{n}=$ at, where a is a unit in $O_{x, x}$. Then ξ / τ is regular at every point \tilde{x} of W lying over x. Analytically, W around \tilde{x} is defined as a hypersurface $(\xi / \tau)^{n}=a$ in the $(\xi / \tau, \tau, \eta)$-space. By the Jacobian criterion of smoothness, W is nonsingular at every point \tilde{x} lying over x. It is easy to see that W is nonsingular at every point of W lying over $X-\rho^{-1}(P)$. Hence W is nonsingular. By construction, general fibers of σ are isomorphic to \boldsymbol{A}_{k}^{1}. Let \widetilde{P} be the point of Z lying over P. Every fiber of σ except the fiber $\sigma^{*} \widetilde{P}$ is irreducible and reduced, while $\sigma^{*} \widetilde{P}$ is reduced and reducible with n irreducible components. Let W^{\prime} be an affine open set of W obtained by deleting all components of $\sigma^{*} \tilde{P}$ except one. Then $\sigma^{\prime}:=\left.\sigma\right|_{W^{\prime}}: W^{\prime} \rightarrow Z$ is an \boldsymbol{A}^{1}-bundle over $Z \cong \boldsymbol{A}_{k}^{1}$, whence W^{\prime} is isomorphic to \boldsymbol{A}_{k}^{2} (cf. Kambayashi-Miyanishi [5]). Let f be the composite of the natural morphisms

$$
f: \boldsymbol{A}_{k}^{2} \simeq W^{\prime} \hookrightarrow W \rightarrow X \underset{Y}{ } Z \rightarrow X .
$$

Since f is apparently a dominant morphism, A is contained in a polynomial ring as a k-subalgebra.
Q.E.D.
3.4. Corollary. Let X be a nonsingular affine surface which satisfies the condition in Theorem 3.3. Then the torsion part Pic $(X)_{\text {tor }}$ of the Picard group of X is a cyclic group.

Proof. Let $\rho: X \rightarrow Y$ be the \boldsymbol{A}^{1}-fibration as in Theorem 3.3. Let $\rho^{*} P_{i}$ ($0 \leqq i \leqq m$) exhaust all singular fibers of ρ; if there exists a singular fiber of the second kind, we let $\rho^{*} P_{0}$ denote it. Write $\rho^{*} P_{i}=\sum_{1 \leq k \leq s_{i}} n_{i j} C_{i j}$, where $C_{i j} \cong \boldsymbol{A}_{k}^{1}$ and $n_{i j}>0$. Then, since $Y \cong \boldsymbol{A}_{k}^{1}$, the Picard group $\operatorname{Pic}(X)$ of X is an abelian group with the following generators and relations:

$$
\left\{\xi_{i j} \mid 0 \leqq i \leqq m, 1 \leqq j \leqq s_{i}\right\} \quad \text { and } \quad \sum_{1 \leqq j \leqq s i c} n_{i j} \xi_{i j}=0 \quad \text { for } 0 \leqq i \leqq m .
$$

It is then clear that $\operatorname{Pic}(X) \cong \prod_{i=0}^{m} G_{i}$, where G_{i} is an abelian group with generators and relations given as above with i fixed and with $1 \leqq j \leqq s_{i}$. Since ($n_{i 1}, \cdots, n_{i s_{i}}$) $=1$ for $i \geqq 1$ by assumption, we have $G_{i} \cong \boldsymbol{Z}^{\oplus\left(s_{i}-1\right)}$. Let $\mu=\left(n_{01}, \cdots, n_{0 s_{0}}\right)$. Then $G_{0} \cong \boldsymbol{Z} / \mu \boldsymbol{Z} \oplus \boldsymbol{Z}^{\oplus\left(s_{0}-1\right)}$. Hence we have $\operatorname{Pic}(X)_{\text {tor }} \cong \boldsymbol{Z} / \mu \boldsymbol{Z}$. Q.E.D.

3.5. We shall prove:

Theorem. Let $X:=\operatorname{Spec}(A)$ be a nonsingular affine surface with an \boldsymbol{A}^{1-} fibration $\rho: X \rightarrow Y$, where $Y \cong \boldsymbol{P}_{k}^{1}$. Assume that A is contained in a polynomial ring as a k-subalgebra. Then the fibration ρ has at most three multiple fibers. If
ρ has three multiple fibers, their multiplicities $\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$ are given, up to permutation, by one of the following triplets: $\{2,2, n\}(n \geqq 2),\{2,3,3\},\{2,3,4\}$ and $\{2,3,5\}$.

Proof. Suppose that ρ has three or more multiple fibers. Let $\rho^{*} P_{i}$: $=\mu_{i} F_{i}(1 \leqq i \leqq 3)$ be a multiple fiber of multiplicity $\mu_{i}>1$. Let $f: \boldsymbol{A}_{k}^{2}:=$ $\operatorname{Spec}\left(k\left[u_{1}, u_{2}\right]\right) \rightarrow X$ be a dominant morphism as in 3.1. Then $\rho \cdot f\left(\boldsymbol{A}_{k}^{2}\right) \cong \boldsymbol{A}_{k}^{1}$ or $\rho \cdot f\left(\boldsymbol{A}_{k}^{2}\right)=Y$. If $\rho \cdot f\left(\boldsymbol{A}_{k}^{2}\right) \cong \boldsymbol{A}_{k}^{1}$, we may assume that $P_{1}, P_{2} \in \rho \cdot f\left(\boldsymbol{A}_{k}^{2}\right)$. However, this assumption leads to a contradiction by the argument in the step (I) of the proof of Theorem 3.3. Hence $\rho \cdot f\left(\boldsymbol{A}_{k}^{2}\right)=Y$. Then $f^{*} F_{i}(1 \leqq i \leqq 3)$ is defined by an equation $f_{i}=0$, where f_{i} is a non-constant polynomial in $k\left[u_{1}, u_{2}\right]$. Since $\mu_{1} f^{*} F_{1} \sim \mu_{2} f^{*} F_{2} \sim \mu_{3} f^{*} F_{3}$ (linear equivalence), we have

$$
\frac{f_{3_{3}}^{\mu_{1}}}{f_{1}^{\mu_{1}}}=a \frac{f_{2}^{\mu_{2}}}{f_{1}^{\mu_{1}}}+b
$$

where $a, b \in k^{*}$. Without loss of generality, we may assume that $a=b=-1$. Namely, we have a relation

$$
f_{1}^{\mu_{1}}+f_{2}^{\mu_{2}}+f_{3}^{\mu_{3}}=0
$$

Note that $f^{*}\left(F_{i}\right) \cap f^{*}\left(F_{j}\right)=\phi$ whenever $i \neq j$. The assignment $x_{i} \mapsto f_{i}$ defines a non-constant morphism

$$
\psi: \boldsymbol{A}_{k}^{2} \rightarrow S_{\mu_{1}, \mu_{2}, \mu_{3}}^{*} \subset \operatorname{Spec}\left(k\left[x_{1}, x_{2}, x_{3}\right] /\left(x_{1}^{\mu_{1}}+x_{2}^{\mu_{2}}+x_{3}^{\mu_{3}}\right)\right) .
$$

Hence $\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$ is, up to permutation, one of the following triplets: $\{2,2, n\}$ $(n \geqq 2),\{2,3,3\},\{2,3,4\}$ and $\{2,3,5\}$ (cf. 2.14).

Suppose that ρ has four multiple fibers $\rho^{*} P_{i}=\mu_{i} F_{i}$ with multiplicity μ_{i} $(1 \leqq i \leqq 4)$. Let $f^{*} F_{i}$ be defined by $f_{i}=0$, where f_{i} is a non-constant polynomial in $k\left[u_{1}, u_{2}\right]$. Then we obtain relations of the following form:

$$
\begin{aligned}
& f_{1}^{\mu_{1}}+f_{2}^{\mu_{2}}+f_{3}^{\mu_{3}}=0 \\
& a f_{1}^{\mu_{1}}+f_{2}^{\mu_{2}}+f_{4}^{\mu_{4}}=0,
\end{aligned}
$$

where $a \in k-\{0,1\}$. In view of the above observations on possible multiplicities of three multiple fibers of ρ, we know that $\left\{\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}\right\}$ is, up to permutation, one of the following quadruplets: $\{2,2,2, n\}(n \geqq 2),\{2,2,3,3\},\{2,2,3$, $4\}$ and $\{2,2,3,5\}$. The induced relations provide a non-constant morphism

$$
\psi: \boldsymbol{A}_{k}^{2} \rightarrow \sum_{\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}}^{*} .
$$

This is impossible by 2.5 and 2.15 .
Q.E.D.
3.6. Corollary. Let X be the same surface as in 3.5. Then Pic $(X)_{\text {tor }}$ has at most two cyclic components. If Pic $(X)_{\text {tor }}$ has two cyclic components, it is of the form:

$$
\operatorname{Pic}(X)_{\mathrm{tor}} \cong \boldsymbol{Z} / 2 \boldsymbol{Z} \oplus \boldsymbol{Z} / 2 s \boldsymbol{Z} \quad(s \geqq 1)
$$

Proof. An argument similar to that in Corollary 3.4.

3.7. We shall prove:

Theorem. Let $X:=\operatorname{Spec}(A)$ be a nonsingular affine surface with an A^{1-} fibration $\rho: X \rightarrow Y$, where $Y \cong \boldsymbol{P}_{k}^{1}$. Assume that ρ satisfies the following conditions:
(1) ρ has no singular fibers of the second kind but at most three multiple fibers with a single irreducible component;
(2) if ρ has three multiple fibers, the set of multiplicities $\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$ is one of the following triplets: $\{2,2, n\}(n \geqq 2),\{2,3,3\},\{2,3,4\}$ and $\{2,3,5\}$.

Then A is contained in a polynomial ring as a k-subalgebra.
Proof. (I) By performing the same operation as we did in the second step of the proof of Theorem 3.3, we may assume that ρ has no singular fibers of the first kind. Suppose that ρ has at most two multiple fibers. Let P be a point of Y such that $\rho^{*} P$ is a multiple fiber (if such a fiber exists at all), and let $X^{\prime}:=X-\rho^{-1}(P)$. Then the nonsingular affine surface X^{\prime} with an \boldsymbol{A}^{1}-fibration $\rho^{\prime}:=\left.\rho\right|_{X^{\prime}}$ over $Y^{\prime}:=Y-\{P\}$ has at most one singular fiber of the second kind. By Theorem 3.3, there exist a dominant morphism $\boldsymbol{A}_{k}^{2} \rightarrow X^{\prime}$, and hence a dominant morphism $\boldsymbol{A}_{k}^{2} \rightarrow X$. Therefore A is contained in a polynomial ring as a k-subalgebra.
(II) Suppose that ρ has three multiple fibers $\rho^{*} P_{i}=\mu_{i} F_{i}(1 \leqq i \leqq 3)$ with multiplicity μ_{i}. We consider first the case where $\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}=\{2,2, n\}(n \geqq 2)$. Let $Y^{\prime} \rightarrow Y$ be a double covering of Y which ramifies over the points P_{1} and P_{2}; then $Y^{\prime} \cong \boldsymbol{P}_{k}^{1}$. Let X^{\prime} be the normalization of $X \times Y^{\prime}$ and let $\rho^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ be the natural projection. Then X^{\prime} is a nonsingular affine surface and ρ^{\prime} is an \boldsymbol{A}^{1}-fibration over Y^{\prime} (cf. the proof of Theorem 3.3). Moreover, $\rho^{\prime *} P_{i}^{\prime}(i=1,2)$ is a reduced singular fiber with two irreducible components, P_{i}^{\prime} being the unique point of Y^{\prime} lying over P_{i}, and $\rho^{\prime *} Q_{i}(i=1,2)$ is a multiple fiber of multiplicity n with single irreducible component, Q_{1} and Q_{2} being two points of Y^{\prime} lying over P_{3}. Replacing X^{\prime} by an affine open set, we may assume that ρ^{\prime} has no singular fibers of the first kind. Let $Y^{\prime \prime} \rightarrow Y^{\prime}$ be an n-ple covering which ramifies totally over Q_{1} and Q_{2}, let $X^{\prime \prime}$ be the normalization of $X^{\prime} \underset{Y^{\prime}}{\times} Y^{\prime \prime}$, and let $\rho^{\prime \prime}: X^{\prime \prime} \rightarrow Y^{\prime \prime}$ be the natural projection. Then $X^{\prime \prime}$ is a nonsingular affine surface and $\rho^{\prime \prime}$ is an \boldsymbol{A}^{1}-fibration over $Y^{\prime \prime} \cong \boldsymbol{P}_{k}^{1}$. The fibration $\rho^{\prime \prime}$ has two reduced singular fibers $\rho^{\prime \prime *} Q_{i}^{\prime}(i=1,2)$ with n irreducible components, where $Q_{i}^{\prime}(i=1,2)$ is the unique point of $Y^{\prime \prime}$ lying over Q_{i}. Then, by virtue of the step (I), there exist a dominant morphism $\boldsymbol{A}_{k}^{2} \rightarrow X^{\prime \prime}$, and hence a dominant morphism $\boldsymbol{A}_{k}^{2} \rightarrow X$. Therefore, A is contained in a polynomial ring as a k-subalgebra.
(III) The other cases except the last one can be treated in a similar fashion, that is, by choosing suitable multiple coverings $\boldsymbol{P}_{k}^{1} \rightarrow \boldsymbol{P}_{k}^{1}$ and then taking the normalizations of the fiber products with respect to such multiple coverings. The following diagram will indicate roughly the necessary steps:

$$
\begin{aligned}
& \{2,3,3\} \xrightarrow[\text { covering }]{\text { triple }}\{2,2,2\} \rightarrow \text { the former case, } \\
& \{2,3,4\} \xrightarrow[\text { covering }]{\text { double }}\{2,3,3\} \rightarrow \text { the former case. }
\end{aligned}
$$

(IV) In the case where $\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}=\{2,3,5\}$, we know by the theory of Kleinian singularities that there exists a ramified covering $\tau: Y^{\prime} \rightarrow Y$ of degree 60 with 30 points over P_{1} with ramification index 2,20 points over P_{2} with ramification index 3 and 12 points over P_{3} with ramification index 5, where $Y^{\prime} \cong \boldsymbol{P}_{k}^{1} . \quad$ Let X^{\prime} be the normalization of $X \underset{Y}{\times} Y^{\prime}$ and $\rho^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ be the natural \boldsymbol{A}^{1}-fibration. Then ρ^{\prime} has no multiple fibers of the second kind. So, we are done.
Q.E.D.

References

[1] E. Brieskorn: Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1968), 336-358.
[2] T. Fujita: On Zariski problem, Proc. Japan Acad. 55 (1979), 106-110.
[3] W.H. Hayman: Meromorphic functions, Oxford, Clarendon Press, 1964.
[4] S. Iitaka: Homogeneous Lüroth theorem, and logarithmic classification of algebraic surfaces, Proc. of Kinosaki Symposium on Algebraic Geometry, 1977 (in Japanese).
[5] T. Kambayashi and M. Miyanishi: On flat fibrations by the affine line, Illinois J. Math. 22 (1978), 662-671.
[6] M. Miyanishi: Lectures on curves on rational and unirational surfaces, Tata Institute of Fundamental Research, Vol. 60, Berlin-Heidelberg-New York, Springer Verlag, 1978.
[7] M. Miyanishi: Regular subrings of a polynomial ring, Osaka J. Math. 17 (1980), 329-338.
[8] M. Miyanishi and T. Sugie: Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ. 20 (1980), 11-42.
[9] D. Mumford: Geometric invariant theory, Berlin-Heidelberg-New York, Springer Verlag, 1965.
[10] P. Orlik and P. Wagreich: Algebraic surfaces with k^{*}-action, Acta Math. 138 (1977), 43-81.
[11] H. Sumihiro: Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1-28.

Department of Mathematics Osaka University Toyonaka, Osaka 560
Japan

[^0]: (*) This was communicated by Dr. A. Fujiki.

[^1]: (*) For the following argument, the author owes Dr. A. Fujiki.

