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1. Introduction

Let G be a finite group. In this paper a G-space means a complex G-
representation space of finite dimension. For a G-space V we denote by S(V)
its unit sphere with respect to some G-invariant inner product. After tom
Dieck [1] and [2] we call two G-spaces V and W oriented homotopy equivalent
if there exists a G-map f: S(V)—S(W) such that for each subgroup H of G
the induced map fZ:S(V)?—S(W)? on the H-fixed point sets has degree one
with respect to the coherent orientations which are inherited from the complex
structures on V# and W#. Let R(G) be the complex G-representation ring,
R,(G) the additive subgroup of R(G) consisting of x=F—W such that V' and
W are oriented homotopy equivalent, and R,(G) the additive subgroup of R(G)
consisting of x=V—W such that dim V#=dim W¥ for all the subgroups H of
G. We denote by j(G) the quotient group Ry(G)/R,(G).

If G has a normal cyclic subgroup 4 and a Sylow p-subgroup H such that
G is the semidirect product of H by 4, we call G a hyperelementary group. Es-
pecially if G is the direct product of 4 and H, we call G an elementary group.
tom Dieck showed that for an arbitrary finite group G the restriction homomor-
hpism from j(G) to the direct sum of j(K) is injective, where K runs over the
hyperelementary subgroups of G ([1; Proposition 5.1]). Our purpose of this
paper is to consider oriented homotopy equivalence for hyperelementary groups
and to give a sufficient condition for a hyperelementary group to have a splitting
property defined below.

Choose an integer m which is a multiple of the orders of the elements of G,
and let Q(m) be the field obtained by adjoining the m-th roots of unity to Q,
where O is the field of rational numbers. The Galois group I'=T'(m) of
QO(m) over Q acts on R(G) via its action on character value. Actually T' acts
on the set Irr(G) of isomorphism classes of irreducible G-spaces. Let Z[I']
be the integral group ring of T, and I(T") its augmentation ideal. Then we
have R(G)=I(T)R(G). We put R(G)=I(T')Ry(G). According to [3] we have
R(G)CR,(G). Letussaythat G has Property 1 if R,(G) coincides with R,(G).
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For example the abelian groups and the p-groups have Property 1, and some
hyperelementary groups do not have Property 1 (see [1] and [6]). In section 3
we obtain other groups which have Property 1.

For each orbit C€X(G)=1Irr(G)|T', we let F(C) be the free abelian group
on elements of C. Then we have R(G)=®ccxF(C). Let f; be the canonical
projection from R(G) to F(C). Let us say that G has Property 2 (we called
this a splitting property) if for each element x of R,(G) and each element C of
X(G) fc(x) belongs to R,(G). This property is of our interest. If G has Pro-
perty 1, then G has Property 2; the converse is not true. It is remarkable
that R,(G) is determined by oriented homotopy equivalence between the ir-
reducible G-spaces if G has Property 2.

Our main results are Theorems 6.11 and 6.12, and the latter indicates the
importance of Property 2. Additionally we give a counter example to [I;
Proposition 5.2] in section 7.

The author wishes to express his hearty thanks to Professor M. Nakaoka and
Professor K. Kawakubo for their kind advice.

2. Preparation

Let S(G) the set of normal subgroups of G. If a G-space V is given we
write V=0 yesV(H), where V(H) collects the faithful irreducible G/H-sub-
spaces (see [2; p. 252]).

Lemma 2.1 ([2]). If x=V—W&R,(G), then for all H=S(G) we have
*(H)=V(H)— W(H)ERy(G).

Let V and W be G-spaces. If fis an Ny(H)-map from S(V)? to S(W)?
and g is an element of G, then there uniquely exists an N(gHg ')-map & from
S(V)e#e™ to S(W)##4™" such that the following diagram is commutative:

sy L sy
8x A lg*

Syt — Sy
where g, are the maps canonically given by the actions of g.

Proposition 2.2. Let Vand W be G-spaces. We have VE—WHe
Ry(Ng(H)) if and only if we have V&is™ —WeHs 'R, (N, (gHg™)).

Proof. This proposition follows from the fact that each g, of the above
diagram preserves the orientation of the sphere.

Let V and Wbe G-spaces such that dim V#=dim W# for all subgroups H
of G (i.e. V—W €ER|(G)). We put n=dim V(=dim W). If g is an element of
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G, g has n eigenvalues a,(g), -+, a,(g) (resp. bi(g), -, b,(g)) with respect to its
action on V (resp. W). We reorder (a;(g)) and (b;(g)) as follows: there is an
integer k such that for each j<<k we have a,(g)=b,(g)=1 and for each j =% we
have a;(g)=+1 and b;(g)+1. We get an algebraic integer 2(g) defined by

#(g) = [T (1-b,(e)/(1—a,(9)),

where we put (1—b;(g))/(1—a;(g))=1 for j<<k. Summing up these algebraic
integers 2(g) over the elements g of G we have an integer P=P(G; W—V), that
is,

P(G; W=V) = 2 2(g) -

Lemma 2.3 (due to T. Petrie). Let V and W be G-spaces as above. V and
W are oriented homotopy equivalent if and only if the following two conditions (i)
and (ii) are satisfied.

(i) For each non-trivial subgroups H of G (i.e. H = {1}), we have VE—WH" e
Ry(No(H)).

(ii) It holds that P(G; W—V)=0 mod |G|.

Provided (i), then (ii) is equivalent to the condition: P(G;V—W)=
O0mod|G|.

Let s be a positive integer, and V' a G-space of dimension n. We are going
to define an element O(s; V) of R(G). Let x(1), -*+, x(n) be indeterminates,
and y(7) the elementary symmetric polynomial of degree ¢ for each 1=<i<mn.
We define a polynomial Q of y(1), -++, y(n) by

Q(), =+, 5@, s y(m) = jI:Il(1+x(j)+---+x(j)“‘) -
We define Q(s; V) by
Q(s; V) = Q(V’ ) AJV’ ) A"V) ’

where AV is the j-fold exterior power of V. By the usual identification we
let O(s; V) (g) stands for trace (g; Q(s; V)). Then it holds that

(2:4) O(s; V(&) = [T (1-+a()+-+a g™,

where a,(g), -**, a,(g) are all the eigenvalues of g on V. Since Q(s; V)ER(G),
we have

(2.5) 20(s; V)W) =0 mod |H |

for each subgroup H of G.
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3. A few remasks about Property 1

Let L be a finite abelian group. We denote the integral group ring of L
by Z[L], the augmentation ideal of Z[L] by I(L), i.e.

I(L) = {ELz(x)x 2(x)EZ, and Zl:z(x) =0},
where Z is the ring of integers.

Proposition 3.1. We have the following.

(i) For x, x' €L, it holds that xx'—x=x"—1 mod I(L).

(i) For x&L and 2EZ, it holds that zx—z1=x"—1 mod I(L)’.
(iii) I(L)/I(L)? is isomorphic to L.

Since the proof is straightforward, we omit it.
Let G be a direct product HXx K as finite group. We denote by ¢ the
Euler function, that is, for a positive integer n ¢(n) is the number of the units

of Z,=Z|(n).
Proposition 3.2. Let V be an irreducible H-space, and W an irreducible K-
space. Assume ($(|H |), dim W)=(¢(|K|), dim V)=1. Then for an element
x =31 2()¥(V @ W)ER(G),

yED

x belongs to R\(G) if and only if ResfxER\(H) and Resgxc Ry(K), where 2(7)
are integers.

Proof. The only if part is clear. We are going to prove the if part. T
acts on the orbits (V@ W), T'V and T'W which are subsets of Irr(G), Irr(H)
and Irr(K) respectively. Let I'yew, I'y and Ty be the isotropy subgroups of
VQW, V and W respectively. We have I'ygp=IyNIy. Put M=T/T
and N=TT'y. The order of M (resp. N) divides ¢(|H |) (resp. (| K |)).
Since xE Ry(G), there exists p €T such that

x=(p—1)(VRW)mod R\(G) .

We put y=(p—1) (VQW). Resfx=R,(H) and Resfx=R,(K) are equivalent
to Res§ yeR,(H) and Res§ y=R,(K) respectively. We have Res§ y=(dim W)
(r—1)V. By Proposition 3.1 (ii) it holds that

Res% y=(p*™%—1)V mod Ry(H) .
Res§ yER\(H) implies p*™" Ty, Since (|M |, dim W)=1, we have u €T
In the same way we obtain w&T';,. Therefore we have uET' gy ; this means
y=0in R(G). Consequently x belongs to R,(G).

For a group G we denote by C(G) its center. Since the dimensions of the
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irreducible G-spaces divide |G/C(G)|, we have the following proposition.

Proposition 3.3. If both H and K have Property 1 and if it holds that
(IHICH)|, (1K )=(I1K/C(K)|, ¢(|H |))=1, then G=H X K has Property 1.

As the abelian groups and the p-groups have Property 1, we have the
following.

Corollary 3.4. Let H be an abelian group, and K a p-group. Provided
(¢(1H ), p)=1, then G=H X K has Property 1.

Corollary 3.5. Let H be a p-group and K a q-group. Provided (p, q)=
(p, —1)=(q, p—1)=1, then G=H X K has Property 1.

4. The irreducible spaces of the hyperelementary group

Let G have a normal cyclic subgroup 4 and a Sylow p-subgroup H such that
G is the semidirect product of H by 4, that is, G is a hyperelementary group.
The irreducible representations of G can be constructed by the method of little
group of Wigner and Mackey (see [7; 8.2]).

Since 4 is cyclic, its irreducible representations form a group Y. The
group G acts on Y by

(&X)(a) = X(g™"ag)

for g€G, X€Y, ac€A. This action induces the action of G on the set Irr(A4)
of irreducible A-spaces. For Velrr(4) and gEG, we have an irreducible 4-
space g4V by this action. Let {V({): i€Y/H} be a system of representatives
for the orbits of H. For each i€ Y/[H, let H(i) be the subgroup of H con-
sisting of those elements & such that &,V ()=V(7), and let G()=AH(:) be the
corresponding subgroup of G. We can canonically extend V(7) to the G(z)-
space, that is, s € H(z) acts trivially on V(z). Let W be an irreducible H(7)-space;
W can be extended to G(z)-space, too. By taking the tensor product of V(s)
and W we obtain an irreducible G(z)-space V(7))@ W. Then Indé,\V(@)QW
is irreducible, moreover each irreducible G-space is obtained in this way ([7;
Proposition 25]).
We denote by Cy(A4) the centralizer of 4 in H, i.e.

Cy(A)= {geH: g'ag =a forallacA4}.

Proposition 4.1.  If the kernel of Ind§,,\V(i)QW is {1}, then the kernel of
the A-space V(i) is {1}, and H(5)=Cy(A).

Proof. This comes from the fact that ker V(i)Cker Ind¢;, {V())QW}.
Since Cy(4) is normal in H, H acts on Irr(Cy(A4)) by
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(xgtW)(h) = Xw(g7'hg),
where geH, h€H, and Xy is the corresponding character to W € Irr(Cy(A4)).

Proposition 4.2. Put K=Cy(A), and let V be an irreducible A-space with
the trivial kernel, W an irreducible K-space and h an element of H. Then we have

IndS$x V @(h W) = IndSx(h4 V)W

Proof. If we identify the representation spaces with the corresponding
characters, by direct calculation we have

{Ind5x VQhW)}(g) = Ind§x {(AxV)QW}(g)  for each g€G.

Proposition 4.3. We have the following.

(i) v Indéi, VE)QW = Indé ) (YV (i) Q(YW) for yET.
(i) Res§ IndS ) V(i) @ W=IndZ;, W.

(iii) Res§ Indé ) VE)QW=dim W @ h,V(i)

[hler /HG)

(iv) If ker Ind€ ;) V()@ W=ker Ind€;, V()@ W", then we have H(z)=H(j).

Proof. (i): This holds clearly.
(ii): Since H\G/G(z) consists of the only one coset, (ii) follows from the

Mackey decomposition.

(iii): Since A\G/G(z) can be identified with H/H(z), we have (iii) by the
Mackey decomposition.

(iv): Put U=Indé) V(E)QW and U'=Ind§;,V(j)QW'. From ker U=
ker U’ we have ker Res§ U=ker Res§ U’. By (iii) we have ker V(i)=ker V(j).
This implies H(z)=H(j).

Proposition 4.4. Put K=Cy(A), and let V be an irreducible A-space with
the trivial kernel, U and W irreducible K-spaces. Set M=Ind5xVQU and
N=Ind$xVQW. Provided TM=+TN as subset of Irr(G), then we have

<{T"Res§ M, T'Resg N>y = {0} .
Proof. For y&T we have

yResSM= @ vhU

Ner/K

by Proposition 4.3 (ii). Proposition 4.2 implies Ind§x V@ (k,U)eTM. Since
T'M=+TN, we have

YhsU, Y'B' s W)k =0

for each y€T, v’'€Tl, [k]€H|K and [h'JeH/K. This relation yields the
consequence of Propoitions 4.4.



SPLIT1ING PROPERTY OF ORIENTED HOMOTOPY EQUIVALENCE 751

Proposition 4.5. Let L be a subgroup of H, then we have Ny(L)=C 4(L)N y(L).

Proof. Let a and & are elements of 4 and H respectively. If aheNg(L),
we have (ah)™'Lah=L, consequently a 'La=hLk™'. For each g€ L, there exists
h'eH such that a”'ga=h’. Then we have a™'(gag™)=h'g'€ ANH. This
means that a7'gag™'=1 and h'g"'=1. Therefore we have ga=ag, that is, we
have aC,(L). This yields L=hLh™'. We obtain h&Ny(L). The above
argument shows Ny(L)C Cy(L)Nyx(L). On the other hand Ng(L)DC 4(L)Ny(L)
holds obviously. Hence we have Ng(L)=C 4(L)Ny(L).

Let & be an element of H, then & acts on the generators a of A by
h-a = hah™ .
Let L be the subset of H consisting of elements 4 such that

T(h) =bE<1;[>.a b
is not equal to the unit element 1 of G, where a is a fixed generator of 4, and
<h>-a is the orbit of a with respect to the above action of the group <i>
generated by A. L is defined independently of the choice of a.

Proposition 4.6. The above L is a subgroup of H.

Proof. If h& K=Cy(4), we have <h>-a={a}. This implies T'(h)=1.
We get LD K, moreover we see that L is the union of several cosets of H/K. We
remark that H/K isa cyclic p-group. If we can show that A€ L implies A" €L
for 1=m= p, we see that L is a subgroup of H.

Suppose 1=m<p. Since <h)-a=<h")-a, h&L implies A" L.

Let & be an element of H—K, then we have the disjoint sum such that

Hy-a=TL WY,
If T(W*)=1, we have
T(h) = ”n BT = 1.
Therefore h*eéL implies he:L; this means that AL implies A#L. This
completes the proof of Proposition 4.6.

Proposition 4.7. Put K=Cy(A), and let V be an irreducible A space with
the trivial kernel, W a K-space, a a generator of A and h an element of H. We
have the following.

(i) Provided heH—L, the all eigenvalues of ah on Ind5x VQW are deter-
mined independently of the choice of the generator a of A.



752 M. MoriMoTo

(i) Provided he L, ah does not have 1 as its eigenvalue on Ind§x VQW.
Here L is the group defined above.

As we can prove this by direct calculation, we omit the proof.

5. On the case: G is generated by two elements

In this section G=AH will be a hyperelementary group such that H is
cyclic.

RemARk 5.1. Let K be a subgroup of H, then K is normal in H. If Wis
a K-space, then for any A€ H we have b, W=W.

Proposition 5.2. We have the following.

(i) Let U=Indé,V(E)QW be an irreducible G-space. Then ker U=
(ker V(7)) (ker W) holds, where ker V(i)C A and ker W C H(z).

(i1) If drreducible G-spaces U and U’ have the same kernel, TU=TU’ holds.

(iii) G has Property 2.

Proof. (i): By the definition of the induced representation and Remark
5.1 we obtain ker U=(ker V(7))(ker W). '

(ii): Suppose U=Ind¢.) VEH)Q@W and U’'=Ind¢,V(j)QW’, then by
(i) we have ker V(¢)=ker V(j) and ker W=ker W’ (see Proposition 4.3 (iv)).
Since both A and H(?)=H(j) are cyclic, we have I'V(z)=TV(j) and TW=TW".
From Proposition 4.3 (i) we obtain TU=T'U".

(iii): Lemma 2.1 and above (ii) imply (iii).

Proposition 5.3. Let V() be an irreducible A-space as before, W an H(i)-
space and v an element of T. Put x=Ind§u{(vV(i)QW—V(E)QW}. Then
x belongs to R,(G) if and only if Resé ) x belongs to R,(G(z)).

Proof. The only if part is clear. We will prove the if part by induction
on |G|. If |A|=1 or |H|=1 then Proposition 5.3 is trivial. Make the
inductive hypothesis: for each hyperelementary group of the same type as G
has and of smaller order than |G| Proposition 5.3 is valid.

We assume that Res., x belongs to R,(G({)). By Lemma 2.1 and the
inductive hypothesis it is sufficient to prove the proposition in the case:
V(@)({1})=V() and W({1})=W. In this case we have ¥:=0 in R(N4(L)) for
each non-trivial subgroup L of G. By Lemma 2.3 we complete the proof if we
show P=P(G; x)=0 mod |G |. Choose a positive integer s such that

v(exp(2n/ =1/ A41)) = exp(2zs\/—1/|4]) and s=1mod |H|.

By (2.4) and (2.5) we have
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P=3 {x(g)—Ols; Tndr VO@W)(&)} mod |G |
=1—5",

where n=dim Indg, V(1)@ W. Since s=1mod |H|, we have P=0mod |H |.
On the other hand Resf.,x € R,(G({)) implies Res§x € R,(4); we have
P(A4; Res§ )= 0 mod |4|.From (2.5) we obtain

3 12(8)—0(s3 Indéen V))® W)()} =0 mod | 4.

The left hand side of the above relation is equal to 1—s". 'This means that P=0
mod |A4|. Consequently we have P=0 mod |G|. This completes the proof.

Proposition 5.4. Let V(i) be an irreducible A-space as before, and U and
W H(i)-spaces. Put x=Ind¢.) (VEQU—V(@)QW). Then x belongs to R,(G)
if and only if Res§ x belongs to R,(H).

Proof. The only if part is clear. We will prove the if part by induction on
|G|. If |A|=1 or | H|=1 then Proposition 5.4 is trivial. Make the induc-
tive hypothesis: for each hyperelementary group of the same type as G and of
smaller order than |G| Proposition 5.4 is valid.

We assume that Res§ x belongs to R,(H). By Lemma 2.1 and the inductive
hypothesis it is sufficient to prove the proposition in the case: V(7)) ({1})=V7(s),
U({1})=U and W({1})=W. Since K=Cy(4) is cyclic, those conditions imply

U—W=5W,—W,mod R(K),

where W, is some irreducible K-space with the trivial kernel and ¢ is some
element of T'. Without loss of generality we may assume that W=W, and
U=vW,. By this assumption we have x*=0 for each non-trivial subgroup L
of G. If we show that P=P(G; x)=0mod |G |, by Lemma 2.4 we obtain
Proposition 5.4. Choose a positive integer s such that

v (exp(2z/—1/|H |)) = exp(2ns\/—1/|H|) and s=1mod |4].
By (2.4) and (2.5) we have

P=21 {=(8)—0(s Indé,) V()@ W)(g)} mod |G |
= 1—s",

where n=dim Ind§., V(7))@ W. Since s=1 mod |4|, we have P=0 mod|4|.
On the other hand, Res$ x&R,(H) implies P(H; Res§ x)=0mod|H|. From
(2.5) we obtain

E}{z(g)—Q(s; Indé;, VE)QW)(g)} =0 mod |H |.
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The left hand side of the above relation is equal to 1—s". 'This means that
P=0mod |H|. Consequently we have P=0 mod |G |.

Proposition 5.5. Let V(i) be an irreducible A-space as before, W an
irreducible H(i)-space, and v and v’ elements of T'. Put x=Ind&., {y(V)Q(Y'W)
—VQW}. Then x belongs to R,(G) if and only if Resé)xER,(G(7)) and
Res x=R,(H).

Proof. The only if part is clear. We prove the if part. Put

y = Ind€u {(vV(@)®(v'W)—(YV(i)) W} and
z = IndS, {(YV () QW—V (i) QWS .

We have x=y+=2; we have Resj x=Resfy. ResixER,(H) means that
Res§ yeR,(H). By Proposition 5.4 we have yeR,(G). This and Resf;)xe
R,(G(i)) imply Resf) 2R, (G(i)). By Proposition 5.3 we have z €R,(G).
Consequently we have x=y-+2ER,(G).

6. Hyperelementary groups and Property 2

In this section G=AH will be a hyperelementary group such that all
the elementary subgroups of the quotient groups of the subgroups of G have
Property 2.

ReMARK. If an elementary group K=A X H satisfies one of the conditions:
1) (¢(141), p)=1, (ii) |H | = p* and (iii) H is metacyclic, then K has Property 2.

Let R(G, f) be the subgroup of R(G) built from the irreducible G-spaces
which yield faithful A-spaces when they are restricted to A. Put R,(G, f)=
R(G, f)NR(G), and R(G, f)=R(G, f) N Ry(G).

Proposition 6.1. Let x be an element of R,(G, f), B a subgroup of A and K
a subgroup of Cy(B). Then for each C € X(G)=1Irr(G)|T" we have Res§x fo(x)E
R,(BK).

Proof. It is sufficient to prove the proposition in the case that K=Cy(B).
In this case we have KCCy(A4). Put L=Cy(4). Let V be an irreducible 4-
space with the trivial kernel, and U and W irreducible L-spaces. If
T IndS, VQU =T Ind§; VQW, we have

(T Res§x Ind§, VQU, T Res§x IndS, V @W e = {0}

by Proposition 4.4. Since BK has Property 2 by the assumption, we have
Res§x fo(x) € Ry(BK) for each C € X(G).

Proposition 6.2. Put K=Cy(A), and let V be an irreducible A-space with
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the trivial kernel, W a K-space and <y an element of T'. Put x=Ind§x {(vV)QW—
V@W}. Then x belongs to R,(G) if and only if for each subgroup B of A and
L=Cy(B) we have Res§, x=R,(BL).

Proof. The only if part is clear. We will prove the if part by induction on
|G|. If |A|=1 or |H|=1, then Proposition 6.2 is trivial. Make the induc-
tive hypothesis: for each hyperelementary group which satisfies the same con-
dition as G satisfies and whose order is smaller than |G| Proposition 6.2 is valid.

Assume that for each BC 4 and L=Cg(B) we have Res§ . xR,(BL).
Firstly we get x& R(G). By Propositions 3.1, 4.3, 4.4 and 6.1 it is sufficient to
prove the proposition in the case that there exist a positive integer 7, an irreducible
K-space U and elements k(m) of H, 1=m=r, such that

W= ialh(m)*U.
By Propositions 3.1 and 4.2 we have
Ind§x {(vV)Qh(m)  U—V Q@h(m), U} =Ind{(vV)QU—V Q U} mod R|(G).
This enables us to assume that W itself is irreducible.
Assertion 6.3. Let M = {1} be a subgroup of G We have x™ € R,(Ny(M)).

Proof. If ANM = {1}, then we have =0 in R(Ny(M)). We assume
ANM={1}. In this case M is conjugate to a subgroup of H. By Proposition
2.2 we may assume M CH. By Proposition 4.5 we have No(M)=C ,(M)N y(M).
The proof is divided into the following three cases.

Casel. C,(M)*4
Put B=C4(M), L=Cy(B) and y=Res§z x. We have

y = Ind3% {(v Res# V)QW—(Rest V)QW} .
By Proposition 25 of [7; 8.2] we have y in another form as follows:
y = Ind37 {(v Res3 V)QU—(Res3 V)QU} ,

where U is an L-space. For a subgroup C of B, we put N=Cy(C); we have
ReséX y=Resiy x€R,(CN) by the assumption. By the inductive hypothesis
y belongs to R,(BH). This implies #¥=y" & R,(Ny(M)).

Case 2. C,(M)=A and Ny(M)+H
Put N=Ny(M), D=H NN, E=K NN and y=Res§ x, then we have

y= 2V Indiz {(vhV)Q(Resk b W)—(hyV)Q(Resk ki W)} .

[hl€eH /DK

By Proposition 3.1 we have
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y=, 2, Indiz {(V)@ResE b W)~ V @(Reskh, W) mod Ry(N)
= Indliz {vV)QU—-VQU},

where
U= & Reskh,W.

(hled /DK

For a subgroup B of A and L=C),(B) we have Res}; y=Res§, xER,(BL). We
have y € R,(Ng(M)) by the inductive hypothesis. This implies ¥ =3y &
Ry(Ny(M)).

Case 3. N,(M)=G

We have reduced the problem to the case that W is irreducible. In this
case Ind§x(YV)QW and Ind$x VQW are irreducible. If (Ind5x VQW)"=+
{0}, then we have (Ind5x V@ W)”=Ind5x VQW. We get ker Ind5x VQW
DM. By the inductive hypothesis we have *&R,(G). This completes the
proof of Assertion 6.3.

If we show P=P(G; x)=0 mod |G|, we complete the proof of Proposition
6.2. Choose a positive integer s such that

v(exp(2z/—1[|A|)) = exp(2zsv/—1/|A|) and s=1 mod |H|.
By (2.4) and (2.5) we have
PE§; {2(£)—O(s; Ind§x VQW)(g)} mod |G |.

Since s=1 mod |H |, we have F=0 mod |H|. On the other hand there exist
integers n¢ for the cyclic subgroups C of H such that

P= 3 nP(G;Resicx).

C<H : cyclic

If we can show P(G; Res§¢c x)=0 mod | 4|, we see that P=0 mod |4]; con-
sequently we obtain P=0mod |G|. P(G; Resic x)=0mod |A4], follows from
the following assertion.

Assertion 6.4. For each cyclic subgroup C of H, we have Resic xR, (AC).
Proof. Put y=Res§cx and M=C NK. We have
y= 20 Ind45 {(vhs V) Q(Reskh e W) — (ks V)Q(Resi; by W)}
K

hed/
= o NG A(YV) @ (Resfy 7y W) —V @ (Resii W)} mod Ry(AC)
= Ind47 {(vV)Q@U—-V U},

where

U= & ReskhW.

hler /0K
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Since we have Res4f; y=Res§y xE R, (AM) by the assumption, we have Res§¢ x
=y&R,(AC) by Proposition 5.3. This completes the proof of Assertion 6.4.

Proposition 6.5. Put K=Cy(A), and let V be an irreducible A-space with
the trivial kernel, W a K-space and v an element of T'. Put x=1Ind5x {VQ((YW)—
V@W}Y. Then x belongs to Ry(G) if and only if Res§ x belongs to R,(H).

Proof. The only if part is clear. We will prove the if part by induction on
|G|. If |A]=1 or |H|=1, then the proposition is trivial. Make the in-
ductive hypothesis: for each hyperelementary group which satisfies the condition
stated at the beginning of this section and whose order is smaller than |G |
Proposition 6.5 is valid.

We assume Res§ x€R,(H) and |4|+1. Firstly we have x&R(G). By
Propositions 3.1, 4.3, 4.4 and 6.1 it is sufficient to *prove the proposition in the
case that there exist a positive integer 7, an irreducible K-space U and elements
h(m) of H, 1=<m=r, such that

W= & him),U .
By Propositions 3.1 and 4.2 we have
Ind§x {V Q(vh(m) U)—V @ (h(m)5 U)} = Ind§x {V Q(vU)—V @ U} mod R(G).
 This enables us to assume that W itself is irreducible.

Assertion 6.6. Let L be a non-trivial subgroup of G. We have x'€
Ry(Ng(L)).

Proof. Since 4 acts freely on Ind§x V @yW and on Ind§x V QW except
the origins, it is sufficient to prove the assertion in the case that LN A={1}. In
this case L is conjugate to a subgroup of H. By Proposition 2.2 we may assume
LcH. Then we have Ng(L)=C4(L)Ny(L) by Proposition 4.5. We divide the
proof into the following three cases.

Case 1. Cy(L)*4
We put B=C4(L) and y=Res§z x. We have

y = Ind3% {(Rest V)Q(vW)—(Rest V)QW} .
Put M=Cy(B), then we have
y = Ind2% {(Res# V)®(v Ind¥ W)—(Res# V)Q(Ind¥ W)} .

On the other hand we have Resj?y=Res% xR,(H). By the inductive hypo-
thesis we have yeR,(BH). This implies x*=y*&R,(N¢(L)).
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Case 2. Cy(L)=A and Ny(L)+H

Put M=Ny(L), N=N4(L), D=K N M and y=Res§ x. We have N=AM
and

y= 21 Indi {(hV)Q(7 Resk o W)—(hy V)R (Res) ke W)}

[hl€eH /KM

= 31 IndY, {V @y Resk W) —V Q(Resk h W)} mod R(N)

Kleg /KM

= Ind}, {V Q(vU)—-V QU},
where
U= & Resjh,W.

€A /KM

Since we have Res}y=Res§xER,(M), by the inductive hypothesis we get
YERY(N). This implies x*=y*< R,(N4(L)).

Case 3. Ny (L)=G

When W is irreducible, Ind§x V QW and IndSz VQyW are irreducible.
This implies that x2=x or 0 in R(G). If «*=0, Assertion 6.6 is clearly valid.
If x*=ux, then L is included in the kernel of x. By the inductive hypothesis
we obtain & R,(G). This completes the proof of Assertion 6.6.

If we show P=P(G; x)=0mod |G |, we complete the Proof of Proposition
6.5. As usual choose a positive integer s such that

v(exp(2n/—1/|H|)) = exp(2ns\/—1/|H|) and s=1mod |4].
By (2.5) we have
PEJEZG {2(2)—0O(s; Ind§x VQW)(g)} mod |G|.

By the inductive hypothesis, for each proper subgroup B of A we have
Resfz x=R,(BH). This implies P(BH; Res§yx)=0mod |BH|. Therefore

we have

P= 3 {x(ah)—O(s; IndSx V @W)(ah)} mod |H |.

- ahEAH : {ay=4

By Propositions 4.6 and 4.7 we have
2 {2(ah)—OQ(s; IndGx VW )(ah)} mod |H |

eE4 : (a)=A
h€Em-L

=4(141), 31 {2())—Q(s; Indix VQW)()} mod |H|,

P

il

where L is the group given in Proposition 4.6, ¢ is the Euler function.
Res x€R,(L) and (2.5) imply

>3 {2(h)—Q(s; Indfx V@W)(R)} =0mod | L|.
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Since ¢(|A4|) is a multiple of [H/K | and |L| a multiple of [K |, we have
P=g¢(141) X {2(h)—Q(s; Indfx VRW)(1)} mod |H|.

From ResfxeR,(H), we have P=0mod |H|. On the other hand for the
cyclic subgroups C of H there exist integers n, such that

P= 3> n 2 2g).

O<H : cyclic I{=Y.0}

We obtain P=0mod |4]| from the following assertion; consequently we get
P=0mod |G].

Assertion 6.7. For each cyclic subgroup C of H, we have Res§c xER,(AC).
Proof. Put y=Res§¢ x and D=C N K, then we have
y=_ 21 Indi5 {(:V)®(Y Resh hyW)—(hsV)D(Resp by W)}

€ /CK

= > Indi§ {VQ(Y Res§ b W)—V Q(Res}h by W)} mod R,(4AC)

(WEH/CK

= Indi5(V QvU—V QU),
where

(hlEH /CK
Moreover we have Rest®y=Resé xR, (C). By Proposition 5.4 we have
yER,(AC). This completes the proof of Assertion 6.9 consequently completes
the proof of Proposition 6.5.

Proposition 6.10. Put K=Cy(A), and let V be an irreducible A-space with
the trivial kernel, W a K-space and v an element of T'. Put x=1Ind5x {y(VQW)—
VQWY. Then x belongs to R,(G) if and only if for each subgroup B of A and
L=Cy(B) we have Res§; xR,(BL).

Proof. The only if part is clear. We prove the if part. Put y=
Ind$x {Y(VRW)—(vIQ@W} and z=Ind5« {(vV)QW—V QW}, then we
have x=y+=z. Since Resf 2=0, we have ResiyeR,(H) by the assumption.
From Proposition 6.5 we obtain yER,(G). This yields that

Res§, 2 = Res§, x—Res§, yeR,(BL).
Proposition 6.2 implies z=R,(G). Hence we conclude that x& R,(G).

Theorem 6.11. Let G be a hyperelementary group such that all the ele-
mentary subgroups of the quotient groups of the subgroups of G have Property 2.
Then G has Property 2.
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Proof. We prove it by induction on |G|. If |4|=1 or |H|Zp, we
are aware that G has Property 2. Make the inductive hypothesis: each hyper-
elementary group which satisfies the same condition as G satisfies and whose order
is smaller than |G| has Property 2.

Let x be an elemant of R,(G). By Lemma 2.1 and the inductive hypothesis
we may assume x({1})=x. This implies xER,(G, f). Put K=Cy(4). For
a fixed element C of X(G), there exist YET, an irreducible A-space V' and
an irreducible K-space W such that

fe@)=Indx {(v(VQW)—V W} mod R\(G) .
By Propositions 6.1 and 6.10 we get fo(x) ER,(G).

For a subgroup B of 4, we get an elementary subgroup BCy(B) of G. Varying
B, we obtain several elementary groups. Let E(G) be the set of all those ele-
mentary groups. Lemma 2.1 and Propositions 6.1 and 6.10 yield the following
theorem.

Theorem 6.12. In the same situation as in Theorem 6.11
Res: R(G, /)IR(G, ) = _&_j(K)
is injective.  Therefore we obtain a naturally defined injection

G -@ & jK)

B KEH(€/B)

where B runs over the subgroups of A.

7. A closing example

Let A (resp. H) be the cyclic group of order 7 (resp. 5) which consists of the
7-th (resp. 5-th) roots of unity, and G the direct product of A4 and H. For
each integer 7 (resp. j) with 0=<i<6 (resp. 0=j=<4) define the A-(resp. H-)
representation v; (resp. w;) by

v(2) = 2 for €4
(resp. wj(2) = 2’ for z€H).

We denote by V; (resp. W;) the corresponding representation space to
v; (resp. w;). Define an element x of R(G) by

X = V2®W1+ Vz® Wo+ V,.Q I/Vo— V1® l7V1—‘ V1® Wo— V1® Wo .

Then we have x€R(G)NR(G, f); moreover we have Res§ xER,(4) and
Resf x=R,(H). The x does not, however, belong to R,(G). This is a counter
example to [1; Proposition 5.2].
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