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Introduction

This is a continuation of our first and second papers [5]. In this paper we
shall study on the spectra of the Jacobi differential operator S for minimally
immersed spheres into spheres.

Computing the matrix expressions of the linear mappings S^ defined in
subsection 5.2 of our first paper [5], we show that every eigenvalue of the Jacobi
differential operator S is an algebraic number (Theorem 10.4.4, 11.4.4 and
12.3.3), however not a rational number in general. This suggests us that S
will not be described only by Casimir operators. We give a lower bound for
the nullity of ^(Theorem 10.6.2 and 11.6.2). In particular, for the minimally
immersed 2-dimensional sphere S2> the nullity is explicitly computed (Theorem
12.4.1) and we show that the nullity is equal to twice the Killing nullity (Theorem
12.4.3).

We shall denote by [I] (resp. by [II]) our first paper [5] (resp. our second
paper [5]) for short. We retain the definitions and notation in [I] and [II].

The author would like to express his sincere gratitude to Professor M.
Takeuchi and Professor S. Murakami for their valuable suggestions and encour-
agements.

10. Minimal immersions of (2h— l)-dimensional sphere S2h~1(h'^2)

In this section we assume that G=SO(2h) and K=SO(2h—l)y h^2.
The assumptions and the notation are the same as in section 9 of [II]. And in
this paper, we will not distinguish G-modules and representations of G.
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10.1. In this subsection we consider the full equivariant minimal isome-
tric immersion F: (S2h~l

yc( , » - > £ induced from the second real spherical
representation p2 of (G,K). Then by the formula of Freudenthal (cf. Takeuchi
[6] p. 205) and Proposition 3.2.1 of [I], we have

Therefore it follows from Remark 8.3.1 of [II] that the Jacobi differential oper-
ator 5 on C~(G; (VN)C)K is given by

(10.1.2) S = - EtEt+th .

Therefore for each [<r]eZ>(G;i£, pN) the operator S acts on o^A^S2*"1)0) as
a scalar, which will be denoted by c(cr). We have by Proposition 9.2.1 of [II]

vc=v0+vl+vt,
where Vf is the irreducible i£-submodule of Vc with the highest weight i(j>h-i.
Hence

(10.1.3) (V°)c = Fo, {VT)C = Vu (VN)C = V2.

Theorem 10.1.1. Let F: (S2h~\ < , » - > 5 , F(xK)=p2(x)F(p), be the full
equivariant minimal isometric immersion induced from p=p2.

(1) We have

D(G; Ky pN) = {[(T]GD(G); A, = sfa-i+tfa with \s\^2)

and t^2\ ,

where Kg. is the highest weight of the complex irreducible representation <r of G.
The multiplicity of each [o-]^D(G; K, pN) is equal to 1.

(2) We have for [<r](=D(G; K, pN) with Av=s

, x 2h-l
\h

{s(s+2h-4')+t(t+2h-2)-8h} .

(3) The cases where c(cr)^0 are the fallowings:

h = 2

h>2

<o
= 0

<o
= 0

A.

2c/>2, i^>i+2c/)2, zb2c/)1H-2c/)2, 3c/>2

±</>i+3<^>2

2cj>h, c/)A_i+2c/)A, 2c/>A_i+2c/)/j, 3<ph
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Proof. (1) We have the assertion by Proposition 9.2.1 of [II], the Frobenius
reciprocity (cf. Takeuchi [6] p. 16) and (10.1.3).

(2) We have the equality by (10.1.2) and the formula of Freudenthal.
(3) We obtain the table from (2) by easy computations. Q.E.D.

REMARK 10.1.1. It follows from the above theorem and Proposition 3.4.2
of [I] that the nullity of F is equal to its Killing nullity.

REMARK 10.1.2. (a) The case h=2: Every eigenspace of S is decomposed
into at most two G-irreducible components. If c(<r)=c(cr') with cr=t=cr' and
A ^ ^ i + ^ 2 , then $4=0 and A(r/=— sfa+tfa.

(b) The case h>2: Every eigenspace of S is G-irreducible.

10.2. Let a: G-^GL(W) be an irreducible unitary representation with
the highest weight kcf>h(k>0), and cv the eigenvalue of the Casimir operator of
a. We have by Proposition 9.2.1 of [II]

where W{ is the irreducible i£-submodule of W with the highest weight i$h-i.
We shall compute c(o-)f'y, *", y=0, l , •••,&, in subsection 6.3 of [II]. It follows
from the degree formula of Weyl (cf. Takeuchi [6] p. 157) that

(10.2.1)

If the K-module pc®W{ contains the irreducible i^-module Wp> then we have
i=p—l, p or p+l by (9.4.1) of [II]. Therefore we have by (2) of Lemma
6.2.3 and (a) of Proposition 6.3.7 of [II]

(10.2.2) cicrYj = 0 for i, j = 0, 1, —, k with | i-j | > 1 .

We have

Proposition 10.2.1.

oY-'t-, = (k-i) (k+2h-i-3),

(10.2.3) h"~x 2k+2h-2i-3

_ («+l) (k+2h-i-4) (2k+2k-i-3)
W j *"' 2k+2h-2i-5

for i=0,l, —,k—\ .

Proof. We shall prove the proposition by the induction on i. We have
by (3) of Lemma 6.3.4 of [II]
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(10.2.4) c(a; I)', = i(i+2h-3) i = 0,1, -., k .

(a) The case h=2: Note that the space W{ is the irreducible jfiC-submodule
of W with the highest weight ifc. Put H^ = [X^l9X^ (see subsection 9.1 of
[II]). Then H^=y/^1 0lf and QX4>1

C= {X^, Y^, H^c is a Lie subalgebra of

Qc by Lemma 7.2.2 of [II]. Considering IF as a g ^ c-module, let W=J} V2i

1 , = 0

be the decomposition of (7.3.4) of [II]. Let w^Wi be an /^-weight vector

with | « J , - |=1 and let «0,-=]2 \/ai;qwnq with zoi;q^ V2q, \wi;q\ = 1 and «f-.ff^0.

Then we have 2 ^ ; «=1> *=0,1, •••,*. Since the vector ^ is contained in V2k

and 14>x I = 1 , we have by (7.3.6) of [II]

It follows from Lemma 6.2.2 and (9.4.1) of [II] (applied to K) that the vector
da{X_^wk is contained in the subspace Wk-\-Wk^i of W. Let/^resp./a.x) be a
i£-homomorphism of $c®Wk to W^(resp. to Wk^ with the property of f0 in
subsection 6.4 of [II]. It follows from (1) of Proposition 6.4.2 of [II] that
there exist complex numbers dk

k and dk~l
k such that

Then we have by Lemma 9.4.5 of [II] (applied to K)

(10.2.5)

It follows from (6.4.1) and (2) of Lemma 6.3.4 of [II] that

(10.2.6) \dk
k\

2 = c(a;p)k
k, \dk~\\2 = c(o-)h-\ .

Therefore we have the following equalities by the above arguments, Lemma
6.3.2, (6.3.10) of [II] and (10.2.2):

2&+1
(10.2.7)

dim Wh.x c(v)»-\ = dim Wh <<r)*»_1,

We have by (10.2.1) and (10.2.4)

Therefore the formulas (10.2.3) are valid for z=0. Suppose that the equalities
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(10.2.3) hold for i-\ with i<k. The vector d<r(X^wk_i belongs to the K-
weight (k—i+l)<j>ly and hence it follows from (9.4.1) of [II] that it is contained
in Wk..i+1. Then there exists a complex number d'k~i+1

k_i such that

(10.2.8)

By (2) of Lemma 6.3.4 and (6.4.1) of [II], we have

\d'*-i+1
k-i\

2 = c(a)*-i+1
k_i .

Comparing the ^-components of the both sides of (10.2.8), we have by (7.3.6)
of [II]

(10.2.9)

, k

We have by (7.3.6) of [II] and (10.2.9)

±

It follows from (9.4.1) of [II] that the vector d<r(X^wk_i is contained in Wk_i+l

+ Wk-.i+Wk-i-1. Let ^_,-+1(resp. vk_{ and ^_,_i) be the ffl^_,+1-component
(resp. the WP^_rcomponent and the W^.^x-component) of d<r(X^wk_i. Then
we have the followings by (2) of Lemma 6.3.4, (6.4.1) and Lemma 9.4.6 of [II]:

I »*-,+! I* = k-i

k—i+l

Therefore we have the following equalities by the above arguments, Lemma



246 T. NAGURA

6.3.2, (6.3.10) of [II] and (10.2.2)

-<^=7+T

dim W^cfrY-'-V, = dim W^c^y-'^
(10.2.10)

= k{k+2).

Applying the assumptions of the induction, (10.2.1) and (10.2.4), we obtain the
equalities (10.2.3) for i.

(b) The case h>2: It follows from (9.4.1) of [II] that the i£-module
pc®Wi does not contain the irreducible if-module W{. Therefore by (3) of
Lemma 6.2.3, Proposition 6.3.7 of [II] and (10.2.4), we have

(10.2.11) c{a)\ = c(<r; !)'",• = i(i+2A—3).

We have the following equalities by Lemma 6.3.2, (6.3.10) of [II] and (10.2.2):

(dim Wk_x c{a)k~lk — dim Wk c(a)k
k-i,

lc(<r)kk-\-c(<r)kk-i = -~c<r = k{k-\-2h—2) .

We have by (10.2.1) and (10.2.11)

K '" l ' K ' 2k+2h-5

Therefore the formulas (10.2.3) are valid for i=0. Suppose that the equalities
(10.2.3) hold for i—\ with i<k. We have the following equalities by Lemma
6.3.2, (6.3.10) of [II] and (10.2.2):

2 13) | d i m W M c ( < r )"1*-'- = d i m Wk-j c(°-)*"'*-'-i'
( ' ' } W ' ^ f - ' + ^ V i = k(k+2h-2).
We have the equalities (10.2.3) by the assumptions of the induction, (10.2.1)
and (10.2.11). Q.E.D.

10.3. In this subsection let cr: G^-GL(W) be an irreducible unitary re-
presentation with the highest weight •y<£A_1+£<£*, 5 + 0, and cr the eigenvalue of
the Casimir operator of <r.

We shall first consider the case h=2. Then we have by Proposition 9.2.1
of [II]

w= 2 wt,
ISISS
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where W{ is the irreducible i£-submodule of W with the highest weight ifa. We
shall compute c(a)ijyi>j=\s\9 | * | + 1 , •••,£. We have in the same way as for
(10.2.2) and (10.2.4)

f o r *'j= I*U |5|-hl, —,* with \i-j\>l,
for f = | * | , | * | + 1 , - , * .

(103 n

We have

Proposition 10.3.1. (a) If \ s \ =t, we have

(b) If \s\<t, we have for f=0,1, —^— |*| - 1

(10.3.2)

=

Proof, (a) Since W= Wt, we have by (6.3.10) of [II]

(b) We shall prove the above equalities (10.3.2) in the similar way to the
proof (a) of Proposition 10.2.1. Let w^Wi be an /(^-weight vector with
\Wi\=lyi=\s\y | * | + 1 , —,t. Considering W as a g^^-module, we obtain
the following equalities in the similar way to (10.2.7):

dim Wt_x cio-y-'t = dim Wt c^a)*^ ,

We have by (10.2.1) and (10.3.1)

y _ (*-*) (
T

, y-, _(2t+l)(t-s)(s+t)
K ' ' t(2t-l)

Therefore the equalities (10.3.2) are valid for i=0. Suppose that the equalities
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(10.3.2) hold for i—\ with i<t— \s\— 1. We obtain the following equalities
in the similar way to (10.2.10):

(*-*+!) (2*-2*+l)

dim PF,.,., e^)'"'"1,., = dim Wt_, W ^ ,

Applying the assumptions of the induction, (10.2.1) and (10.3.1), we have the
equalities (10.3.2). Q.E.D.

[II]

Next we shall consider the case h>2. We have by Proposition 9.2.1 of

w= wttt,
where Wpq is the irreducible i£-submodule of W with the highest weight p(j)h_2+
q4>h-i- We shall compute c(<r)°'ioj,ij=s,s+l, ~-,t. If the i^-module pc®WPtQ

contains the irreducible J^-module WOfi, then we have by Lemma 9.2.4 of [II]

p = 0 or 1 ,

and

jq = i— 1 or t+1 if p = 0 ,

[q = i iip=\.

Therefore by (2) of Lemma 6.2.3 and (a) of Proposition 6.3.7 of [II], we have

'c(a-)Oii
OJ = 0 for ij = s, s+l, •••, t with | i-j | > 1 ,

(10.3.3) • c(of'\tj = 0 for i,j = s, s+1, •••, t with f =j=j ,

>c(<T)°'ip j — 0 for i,j = ^ 5 + 1 , *••> ̂  and ̂ >>1 .

We have

Proposition 10.3.2. (a) If s=t, we have

a)°\t = t(t+2h-3),

<r)*\t = t(t+2h-3),

(b) If *<t, we have for i=0,l,---tt—s—
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(10.3.4)

»•'-'„ ,_,. = (t-i) (t+2h-i-3),

_ (t+1) (2t+2h-i-3) (t-s-i) (s+t+2h-i-4)
i-t-4) (2t+2h-2i-3)

0./-I-1

= fr'+l) (2t+2h-i-3) (t-s-i) (>

) 1

" (t-i)(2t+2h-2i-5)

_ s(s+2h-4)(t+l)(t+2h-3)

y,t-i = s(s+2h-4) (t+1) (t+2h-3)
ff> "•'-' (2ft-3)(<-i)(H-2ft-*-3) '

Proof. We have by the degree formula of Weyl

(10.3.5) dim Whi = (i+2h-5)\i(i+2h-3)(2i+2h-3)

We have the following in the similar way to (10.2.11):

(10.3.6) c{af\i = i(t+2h-3) i = s, s+1, •••, t.

(a) We have the following equalities by (6.3.10), Lemma 6.3.2 of [II]
and (10.3.3):

ciaf^ij+cio-f^oj = —Co- = 2t(t+2h—3),

dim WOttc(a)°\t - dim W1Jc{a)1\t.

Therefore we have by (10.3.6), (10.2.1) and (10.3.5)

c(af\t=t(t+2h-3)y

• __ ft+i)ft+2^-4)
°'f 2h—3

(b) We shall prove the equalities (10.3.4) in the similar way to the proof
(a) of Proposition 10.2.1. Put ^ . ^ [ ^ . p ^ J and 8^_1

c={-3r^_1,
X_<f>h_v H$h_1}c- L e t Wi€zWoi b e a n i<fih-rweight v e c t o r w i t h \Wi\=ly i=

s,s-+-l,"'yt. Considering IF as a g^A ̂ -module, we obtain the following
equalities in the similar way to (10.2.7):

c(<rf= t(2h-3) c,y,t ,__^_
(t+l)(t+2h—4) M (t+2h—4)(2t+2h—3)

dim Wlit c(a-Y\t = dim JT0>, c{af\t,

d im PF0 ,_! ^(o-)0''"1,,, = d im Wo, c(cr)°''o , _ i ,

= s(s+2h-4-)+t(t+2h-2).
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We have by (10.2.1), (10.3.5) and (10.3.6)

y>.» _(t-s)(s+t+2h-4)

_ (2t+2h-3) (t-s) (s+t+2h-4)
t(2t+2h-5)

s(s+2h-4)(t+2h-3)

) °
_s(s+2h-4)(t+\)

Therefore the equalities (10.3.4) are valid for i=0. Suppose that the equalities
(10.3.4) hold for i—\ with i<i—s— 1. We obtain the following equalities in
the similar way to (10.2.10):

2h-3
<°f''~i+\t-i

(t-i+1) (2t+2h-2i-3)
(t-i)(2h-3) A^ut.{

0,t-i

(t-i)(2t+2h-2i-5) -,-y.t-i-i
(t+2h-i-4)(2t+2h-2i-3) ' 0J~"

W1J.ic{ay-l-'Oj.i = dim W^cW-'-'^-t,

WV^^r'-'-V,-,- = dim W^ciof-'-'o,,-,-
dim

dim

= s(s+2h-4)+t(t+2h-2).

Applying the assumptions of the induction, (10.2.1), (10.3.5) and (10.3.6), we
obtain the equalities (10.3.4). Q.E.D.

10.4. In the rest of this section we consider the full equivariant minimal
isometric immersion F: (52*"1,c( , »-*-5 induced from the k-th real spherical
representation p—pk of (G,K), £=2,3, •••. Then by the formula of Freuden-
thal and Proposition 3.2.1 of [I], we have

(10.4.1) _ k(k+2h-2)
2 A - 1

We have by Proposition 9.2.1 of [II]

where V{ is the irreducible i£-submodule of Vc with the highest weight i<j>h-i.
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Hence

(10.4.2) (V°f = V09 (V
T)C = Vl9 (VN)C = 2 Vi.

»=2

It follows from Corollary for Proposition 9.2.1 and the argument in subsection
6.5 of [II] that there exist complex numbers ch i = 0 , 1 , •••,&, such that

(10.4.3) 2f idp{E,) (dpiEtWl v, = c, \Y,.
i = l

Then we have

Lemma 10.4.1.

0 i/

-k(k+2h-2) if i > 2 .

Proof. We obtain the above equalities by Proposition 6.5.1, Proposition
6.3.8 of [II], Proposition 10.2.1 and (10.2.2). Q.E.D.

It follows from Proposition 9.2.1 of [II] and the Frobenius reciprocity that

and that the multiplicity of the above [cr]&D(G;K,pN) is equal to Min{&— 1,
k-\s\+lyt-lyt-\s\+l}. We have

L e m m a 10.4.2. Let a: G->GL{W) be a complex irreducible representation
with [<r]^D(G;Kyp

N) and A ( r = ^ A . Then there exists a basis {co'0,oo'u • -•,co'd}
of (W*®VC\ such that {co'2,a>'3, -,*>'*} is a basis o / (PF*(g)(^) c) 0 and that

L(.*, pWi = (2h+i-4Hk+2h+i73Ht+2h+i-3) ^
—̂5

for i= 0, 1, •••, d}

where d=Min{k, t} and Cof.1=cof
d+1=0.

Proof. We may choose orthonormal bases {v,;;1, vi;2, •••, ̂ ,-;„(,•>} of F r ,
^'=0, 1, ••• , /J , with the following properties: Each of the vectors vi;a, cu=l , 2,
••-,^(z), is a weight vector of the i£-module Viy the vector ^ - ; l is an i(j)h-r
weight vector, and

1 = 0, 1, " . , * - ! .



252 T. NAGURA

In fact take an arbitrary unit vector in Voasvo;1. Then by (9.4.1), (2) of Lemma
6.3.4 and (6.4.1) of [II], dp(X<f}k_1)vo;1 is a </>/,_ rweight vector in Vx and \dp
{XH_^v0-1\

2=c{p)\. Then c(p)\^0 by Proposition 10.2.1. Put

»i; i = V ^ j f

and choose an orthonormal basis {vx. 1,v1; 2, "*yVi; na)} of Fx in such a way that
each v1;at is a weight vector of VY. Now we may choose inductively ortho-
normal bases {vt; l9v{; 2i -"9^i; nd)} of V{ with the above property. We have by
Proposition 9.2.1 of [II]

where Wj is the irreducible jR^-submodule of W with the highest weight J4>h-\*
Then we may choose orthonormal bases {WJ ;i,«Jy;2>

 m",Wj ;»(>)} of PFy, 7 = 0 , 1 ,
•••,^, and unitary if-isomorphisms a,: Vr+W^ i=0,ly-",d, such that

^ > y+1y Wy+1 ; ! for J = 0, 1, - , t - \ ,

\ai(vi;a) = wi;a for *"= 0, 1, •••,*/ and a = 1, 2, • - ,» ( / ) .

Put

i = 0, 1, •••,</,

Take an orthonormal basis {EuE2y~-,Ep} of f. Then the basis {E0>El9—>
Ep,X<j)jyX_<j)j;j=ly2y"')h—l} of g c satisfies the assumption of Proposition 6.3.9
of [II]. Considering the weights to which the vectors dp(E0)vi;a, dp(Xx)vi;a

belong, x=0,1, ••-,rf—1, a=l,2, •••,»(!), X = ± ^ i , ±<^2i""> ±<£*-i> w ^ have

/ f i ^ O for ./ = 0 , l , ...,^>,

xij+.i§1= 0 unless X = <̂>A_i and a = 1 ,

where Ct-,$> CK{Z> D.- '̂J, Z)X(j(g are those in subsection 6.3 of [II], but for the
representations p and or. Therefore by (a) of Proposition 6.3.9 of [II] and Pro-
position 10.2.1, we have
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We have by Lemma 6.3.2 of [II] and (10.2.1)

V , Pyl+1 = 2h+273^^ (k+2h+{-2) (*-0 (t+2k+i-2).

We have by (9.4.1) of [II] and the proof of Proposition 10.2.1

fCOi!S = O a,/3= 1,2,-,n(i),

\CKi& = 0 X = ±fc, ±<£2) .», i ^ . , , a, /3 = 1, 2, .-., n{i).

Therefore we have by (b) of Proposition 6.3.9 of [II]

<«r* Py, = <«•*, p; I)', .

Since a{\ V^Wi is a unitary ^-isomorphism, we have

CyJS = Z>yjfi i = 1,2, -..,^, a, /S=l,2,- . . , ! i ( f ) .

Therefore by (b) of Proposition 6.3.9 and (3) of Lemma 6.3.4 of [II], we have

<<r*, p)«, = c(p; l)\ = i(2h+t-3).

It follows from (9.4.1), (2) of Lemma 6.2.3 and (a) of Proposition 6.3.7 of [II]
that

^o-*, py. = 0 for ij = 0, 1, •-, d, with | i-j | > 1 .

Put

T h e n the basis {co'0, co'i, •••, co'd} of (W^*®FC)O has the required property.

Q.E.D.

L e m m a 10.4.3. Let cr: G-*GL(W) be a complex irreducible representation
with [cr]eZ)(G; K, pN) and A«r = ^ / i - i + % , ^4=0. Then there exists a basis
{co'ui, G>'|5|+I, —, co'd} of (W*® Vc)0 such that {co'my cof

m+1, •••, co'd} is a basis of
(W*®(VN)C)O and that

r , * x / _ (k+2h+i-3) (t+2h+i-3) (i-s) (
L{a , p)(0 , i(2h+2i-t)

for i = U| , | j | + l , . . . , J ,

d=Min{k, t}, m=Max{2> \s\} and Co' |4 | - . i=© /
r f + 1=0.

Proof. Choose the orthonormal bases {v{ ;i9vi;2, •••, vt; „(,->} of F,- in the

proof of Lemma 10.4.2. We have by Proposition 9.2.1 of [II]
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( 2 Wpq if A > 2,

2 Wp if * = 2,

where ffi^(resp. H^) is the irreducible i£-submodule of W with the highest
weight /><£*-2+?<£ft-i(resP- with the highest weight ^<£i). We may choose
orthonormal bases {wj;1, wj;2, —, wy ;M( ; )} of PF(o)>y,;= | s | , | s | + 1 . . . ,d and
unitary iT-isomorphisms a{: Ff—>PF(0)fl- *'= M M + l ; ••*,rf, such that

r ^ \ 0 ) J w j + 1 ; l j = 1*| , 1 * 1 + 1 , —,rf ,

W ^ i ; « ) == w « ; « Z:=z:: 1^1, k l + 1 , •••, ,̂ a = 1 , 2 , "',n(i).

Here PF(o)>y(resp. <a-)(O)'y+1
(o),i) means WOJ(resp. c(a-)°'i+1

0J) if A>2, and Wj
nCO

(resp. <o-y+1
y) if h=2. Put c o ^ S ^ ; / ® ^ ; ^ ^ 1*1, | * | + 1 , — , d. Applying

06 = 1

Proposition 10.2.1, 10.3.1 and 10.3.2, we have the following equalities in the
similar way to the proof of Lemma 10.4.2:

/Jj
~ V (2h+i-3)(2h+2i-lf

c(o*, p)'i+1

(i+l)(2h+2i-3f
*. P)'i = «(2A+*-3),

[c(a*, p)1, = 0 if |»-;I>1.

Put

Then the basis {G/|5 | ,G>' |S |+I, '",cof
d} of (W*®FC)O has the required property.

Q.E.D.

Theorem 10.4.4. Let F: (S2h-\c< , »->Sf F(xK)=Pk(x)F(o), be the full
equivariant minimal isometric immersion induced from p=Pky kyh^2. Then we have

(1) Every eigenvalue of the Jacobi differential operator S is an algebraic
number,

(2) For any [a]^D(G;K, pN) the multiplicity of every eigenspace of S in
0[a-](A^(5'2""1)C) w e(lual t0 1- (Recall that the operator S leaves o[(r](N(S2/i-1)c)
invariant.)

Proof. By virtue of Theorem 3 of [I], it is sufficient to show that for any
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[er]^D(G;K,pN) every eigenvalue of the operator S^ in subsection 5.2 of [I]
is an algebraic number and that every eigenspace of Sa is of dimension 1. Let
W be the representation space of a. Put

2A+1

(a) The case Ar=t<j>k; Let {co'0, <o'u — ,eo'd} be the basis of (W*®VC)O

in Lemma 10.4.2. Put for 2=0,1, ••-,<*

a1',- = t(i+2h-2)~2i(2h+i-3),

l+1 = _2(t+l)(fe-Q(f-i)
. ' 2h+2i-l

Let 4̂ be the matrix expression of the linear mapping S^ of (W*®(VN)C)O with
respect to the basis {m'z,co'z, •••,co'i}. Then by (10.4.1), Lemma 10.4.1, Lemma
10.4.2 and (5.2.3) of [I], we have

A = 2A-1
k(k+2h-2)

a2
2-\-a a2

3
\

a\

0
\

Therefore all eigenvalues of Sr are algebraic numbers. Since fl'+1,=)=0, i=2,
3, •••,d—l, each eigenspace of Sv is of dimension 1.

(b) The case Aa=sc}>h_l+t(j)h with 5+0: Let {«/w , co'|S|+1, •••, w'̂ } be the
basis of(W*®Vc)0 in Lemma 10.4.3. Put for *'= |*|, | j |+ l ,—,rf

-.,_! _ __2(k+2h+i-3) (l+2h+i-3) (is) (s+2h+i-4)
i(2h+2i-5)

bU = s(*+2A-4)+<(t+2A-2)-2i(2/+i-3) ,

,,+1 = __2(i+l)(fe-*)(f-0
. ' 2A+2i- l

Let 5 be the matrix expression of S^ with respect to the basis {co'm, o>'m+1, •••, co'd}.
Then we have the followings by (10.4.1), Lemma 10.4.1, Lemma 10.4.3 and
(5.2.3) of [I]:

[1] The case | * | = 1 , 2:
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B = 2h-l
k(k+2h-2)

[2] The case M>2:

' fi33 ] ' • .

o ' • . ; •

B = 2h-l
k(k+2h-2)

• bd
d i ' bd

d
u d-l u d I

Therefore we obtain the required assertion in the same way as (a). Q.E.D.

REMARK 10.4.1. The eigenvalues of S are not necessarily rational. For
example, if k=h=3 and A(r=403, the eigenvalues of S^ are not rational.

10.5. In the rest of this section, we shall compute eigenvalues of the
operator Sg. for [<r]^D(G;Ky p

N) with A<r = ^A_1 + ^ A , |s | 2^3, and give
some estimates for the nullity of F. For this purpose we prepare a proposition
on the decomposition of tensor products.

In this subsection we denote by Wh the Weyl group of G=SO(2h) with
respect to the Cartan subalgebra t, and by Sh=(j)2+2^3-\ \-(h— l)$h the half
sum of all positive roots of Qc = §o(2hy C)y h^.2. Let %h be the symmetric
group of degree h3 Ph the family of all subsets of the set N= {1,2, •••, h}y and
P\ the family of all subsets consisting of even elements of N. We consider
%h and Ph as subgroups ofGL(t) in the following manner:

= </>TG) / = 1,2, •••,h .

if / S E T ,

b{ if / G T .

Then we have

For an element

Wh = xP\ (semi-direct product).

e define a non-negative integer ah{r) as follows:

where SA—T(SA) = 2 J 6»(T)^>I- We claim that # A (T) is even. We shall first
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show this for T £ § S . Put

'No = {*eiV; r{i) = i) ,

N3 = {ieN; T-

Then N is a disjoint union of iV0, Nu •••, N4. Since « / , ( T ) = 2 I T{i)—i|, we have

a (T\— yi 2*4_ yi T ^ _ y

h

2.
i = i

)- 2 ' - .

If fGiVi U iV4(resp. feiV2UJV3), then T(/)GAT2U iV4(resp. r(z)eA^ UiV3). There-
fore we have

which is an even integer. Next let T=T1T2^. Wh with TjG^ and r2^Pf
h. Then

we have

(10.5.1) «A(T) - 2 I T^o-fi + 2 ( T I ( 0 + « - 2 ) .

If we put w,-=Min {i, r1(t)}9 then

Therefore
Put

is an even integer.

(W'h= tT

We may identify this subgroup W'h(resp. W"h) of P^ with the group Wh^
(resp. with the subgroup Wr

h^ of PF*_i). Under this identification we have

(10.5.2) aW) = a*(r).

Lemma 10.5.1. Suppose that h^3. We have for a non-negative integer i

= 1 .
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Proof. We shall prove the lemma by the induction on h. If h=3y strai-
ghtforward calculations show that the equality is valid. Suppose that the
equality holds for A— 1. Put for r e Wh

Kh{i,r)

= det(-r)

The subgroup Wh is decomposed to left cosets modulus its subgroup W"h in
the following way:

(10.5.3) W\ = W"hU{h-2,h-l)W"hU {k-2,h-l}W"h

h\j\uh\j\j,k-i){h-2yh-i}w''h,

where (ij) (resp. {i,j}) denotes the transposition of i andj(resp. the subset of
N consisting of i and/). Applying (10.5.1), we see easily that

(10.5.4) ah((h-2, h-\)r) = ah(r)+2 for r E ^ .

Therefore if 2i-ah(r)^0 for r<=E(h-2,h-l)W"h, then (h-2yh-l)r^W//
h

and 2i-ah((h-2yh-l)r)>0. Suppose that T^W"h, 2i-ah(r)^0 and
2i—ah((h—2,h—l)r)<0. Then since ah(r) is even, it follows from (10.5.4)
that 2i—ah(r)=0. Hence

Kh(iJ(h-2,h-l)r) = 0.

Therefore we have

2 Kk(i,r)+ 2 Kh(i,r)
2i-ahCT^0 2i-ah(r^0

= 2 {Kk(i, r)+Kh(i, (h-2, h- 1)T)} .

And we have by (10.5.4) and (10.5.2)

Kk(i, r)+Kh(i {h-2, h-\)r) = KUh T) for

Therefore we have by the assumption of the induction

(10.5.5) 2 Kh(i,r)+ 2 Kh(i,T)
reW'h T(=a-2,h-l)W"/i

2i-ah(.r~)^0 2i-ahCr-)^0

= 2 KUhr)=l.
r^W'hi
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Applying (10.5.1), we have

ah({h-2,h-\)T) = ah{r) for r£i{h-2,h-l}W"h.

Therefore

(10.5.6) re(t_2i)r/i^
 T)+Tett_2 , „§_ , h_l]W,,^i'T)

Suppose that j=\, 2, ••, h—3. Then since (h—2,h—l)(j)h—l) = (j\h—l)
(j,h—2), it follows that if r is contained in (j, h— V)W"h (resp. in (j\h—l)
{h-2yh-l}W"f

h),(h-2,h-l)T is also contained in (j, h-l)W"h (resp. in
0", A-l){A-2, h-\}W"h). Applying (10.5.1), we have

for Te(y,/i

Therefore we have

(10.5.7) 2 Kk(i,T)= 2 ^ ( ^ »

= 0.

We obtain the lemma by (10.5.3), (10.5.5), (10.5.6) and (10.5.7). Q.E.D.

Proposition 10.5.2. Let pji G->GL(W3) and a: G->GL(W) be complex
irreducible representations with the highest weights jcj>h and S(j)h_1-\-tcj)h respectively.
Then the tensor product cr*®pj contains a spherical representation of (G,K)f if
and only ifj^ \s\. The highest weights of the spherical representations contained in
<r*®pj are the followings:

(j+t-\s\-2i)cl>h i = 0, 1, ••

Proof. We have by Proposition 9.2.1 of [II]

lMin{/- |* |+U-1*1+1} if J ^ |*|.

Therefore the tensor product <r*®pj contains a spherical representation, if and
only if j >̂ I s \. In the representation space of a spherical representation of (G,K),
the subspace of infixed vectors is of dimension l(cf. Takeuchi [6] p. 104).
Therefore the sum of the multiplicities of the spherical representations contained
in <r*®pj is equal to Min{;— 1*1+1, t— | s | + l } . Let i/rA: G->GL(FA) be a
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complex irreducible representation with the highest weight A, and mA the multi-
plicity of i/rA in T*®pj. Then we have (cf. Chevalley [2] p. 188)

= I
JG

where dx is the normalized Haar measure of G and X^^p. (resp. % ,̂A) is the
character of <7*®p.;(resp. of i/rA). Suppose that tyA is a spherical representa-
tion. Since the characters XPj and X$A are real valued by Remark 3.2.2 of [I],
we have

== \ X^^ppL^^dx = I
JG <J

= \ XaXpX^jjlx — \
J G »GJG

Therefore mA is equal to the multiplicity of -^A in a®Pj. On the other hand
we have Lemma 9.1.1 of [II]

mK = 2 det (T)

W e consider the case of A = (j+t— \s\—t)4>h wi th 0^i^Min{2(j— \s\), (2(t—

|* | )} . Then

For rEiWh we define a non-negative integer £(T) by

where (j+t- \s\-i)^h+8h-r(s(j)h_1+tcl>h+Bh)=^ck(T)<j)i. Let T=T1T2^WII

with Ti^&h and T2eP' , . If r^^^^i, we have

^

If r(<})h)= — (j)k, we have

C(T)^ |C4(T)| = It- |«| _,-+y+2A-

Therefore unless r((j)k)=(j)h, we have by Proposition 9.3.2 of [II]

«((/+'-1*1 - O
Hence we have

(10.5.8) »»(,•+,_ i,i _,-)*»
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(a) The case h=2: It follows from (10.5.8) that

» ( i + f - l « l - i ) ^ = » » ( — # 1 + 0'— \S\ — Q

Applying Proposition 9.3.2 of [II], we have

0 if z is odd,1°
t-\s\-i)4>2 = 1 i

if i is even.

Therefore <r*®pj contains spherical representations -\/rA, A = ( y + £ — \s\ — 2&)<£2,

(b) The case h>2: Let T<=W'h. If j—s—*^0, we have

i~<T) = > - ( « + « * ( T ) + / - J - 0 = i—ak(r).

If/—s—*<0, we have

Recall that ak{r) is even. If i is odd, then we have by Proposition 9.3.2 of [II]
and (10.5.8)

If j—s—i*zO and i is even, we have by (10.5.8), Proposition 9.3.2 of [II] and
Lemma 10.5.1

fn(j+t-,-i)+h = 2 det(r) (kH[i-akiT))/2—kH[i-*kir)-2)/2)

If j—s—i<0 and i is even, we have in the same way as above

m(j+t-s-i)<l>h = 1 •

Therefore cr*®py contains spherical representations i/rA, A=(j-\-t~s—2i)<f)h9

f=0,l,—,Min{/—5, ̂ —j}.
Since the sum of the multiplicities of the spherical representations contained

in <r*®py is equal to Min{/— |s| + 1 , t— \s\ +1} , we obtain the proposition.
Q.E.D.

10.6. We consider again the full equivariant minimal isometric immersion
F: (S2h-\ K , » - > 5 , F(xK)=Pk(x)F(o), induced from p=pk> *=2,3 f - .

Let <r: G->GL(W) be a complex irreducible representation with [<r]e
Z)(G; jRT,p )̂, A < r = ^ - 1 + ^ * . We define a linear mapping T, of {W*®V% by

*, P)) •
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Since c(r*=c(ry we have by (5.2.1) of [I]

(10.6.1) TV = — (C^p—cplw*8Yc),

where Cv*^9 is the Casimir operator of the tensor product cr*®p. It follows
from Proposition 10.5.2 that there exists a basis {^o^i*'"i^K*} °f {W*®Vc)Qi

m=Min {k— \s\,t— \s\}9 such that every ^,- is a infixed vector in the irreducible
G-submodule of W*® Vc with the highest weight (k+t— | s \ —2i)<j>h. Therefore
it follows from (10.6.1) and the formula of Freudenthal that the eigenvalues of
TQ. are given by

(10.6.2) (*- \s\-2i) (2k+t+2h- \s\-2i-2) i = 0,1, -,m .

Suppose that [cr]^D(G;K,pN) and | s | ^ 3 . Then we have by Proposi-
tion 9.2.1 of [II] and (10.4.2)

And we have by Lemma 10.4.1

V*® 2 {dp(Ei) (dp(Et)*)Ny Kpr-

Therefore it follows from Lemma 5.2.2 of [I] that the operator Sv of (W*®

(VN)C)O coincides with —Tv. Hence we have the following theorem by (10.6.2).
c

Theorem 10.6.1. Let F:(S2h~\c< , »-+S,F(xK)=pk(x)F(o), be the full
equivariant minimal isometric immersion induced from p—pk> k=3,4, •••. Suppose
that [cr]<BD(G;K,pN) and Aa.=scj>h_1+t^h with \s\^3. Then the eigenvalues of
SQ. are given by

2h~l (t- \s I - 2 i ) (2k+t+2h- \s\ -2i-2)
k(k+2h-2)

i=0yl,-,Mm{k-\s\yt-\s\}.

Let Uo be the 0-eigenspace of the operator S in C°°(G;(VN)C)K. Put

IIo = (W ^D(G; K, p^iSa. has an eigenvalue 0} .
Then it follows from (2) of Theorem 10.4.4 that Uo is decomposed into a direct
sum of the irreducible G-submodules of Uo as follows:

where [/[^ is the irreducible G-submodule of UQ with the highest weight A^.
The following theorem gives a lower bound for the nullity of the minimal im-
mersion F.
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Theorem 10.6.2. Put

satisfies

( i ) | x | = l or | , | 2 > 3

and

(ii) t— \s\ is even) .

Then we have

i/" [o-] is contained in II0 awd satisfies the above condition (i), then [a] is contained in

nv
Proof. We have for {<T](=D{G;K, pN) with A(r = and for

(10.6.3) 2£+*+2/?- |i-1 _2f-2^*+ |«I +2A-2>0 .

If |j|+*>2&,wehavefort=0,l,-",Min{£—M,f—M}

(10.6.4) f- | i |-2»^-|*|-2(*-|*|)= |^|+f-2^>0.

Suppose that \s\-\-t^2k. Then we have

\s\+t^2k,2t,

and hence

(10.6.5) f _ | , | ^ 2 ( * - | * | ) , 2 ( * - | * | ) .

(a) The case where [<T]^D{G;K,pN) and M ^ 3 : Suppose that [o-]
satisfies the condition (ii). It follows from Theorem 10.6.1 and (10.6.5) that
[cr] is contained in II0. Conversely if [<r] is contained in II0, it follows from
Theorem 10.6.1, (10.6.3) and (10.6.4) that \s\+t^2k and that *—|*| is even.

(b) The case where [<r] eD(G; K, pN) and | s \ = 1: Take the basis {a>'ua>'2,
•••, a>'d} of (W*®VC)O in Lemma 10.4.3. Let B' be the matrix expression of Ta

with respect to this basis, and let 6'"1,-, b'iy b'+1
{ and B denote the same ones as in

the proof of Theorem 10.4.4. Then we have

B' =

>b\ b\
b\ b\

0

0

d-i b"d
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b\ = (t-

_ _ 4
1

-l), b\ = - -l) (t+2h-l),

we have
2 f t - 1

B'= (t-1) (t+2h-l)x
I i _(a_|_2ft_i)

2A+1
det

4s,

0

\

-l) det (cB).

On the other hand we have by (10.6.2)

det B' = n 0-2*-1) {2k+t+2h-2i-2).

Since t^2 and t+2h—1>0, we have

n\t-2i-l) (2k+t+2h-2i-3).
i

(10.6.6) det (cB) =
t-{-2h—

Applying (10.6.3), (10.6.4), (10.6.5) and (10.6.6), we obtain the assertion in the
same way as in (a). Q.E.D.

REMARK 10.6.1. Suppose that k=3. Computing the matrices A and B
for |s | = 2 in the proof of Theorem 10.4.4, we have by the above theorem

n0 = n'o.
REMARK 10.6.2. (1) Suppose that k=3. Applying Proposition 3.4.2 of

[I], we see by the above remark that the nullity of F coincides with its Killing
nullity.

(2) Suppose that &=4. Then the sum of dim C/M, [cr]elT0, is greater
than the Killing nullity of F. Therefore the nullity is greater than the Killing
nullity.

11. Minimal immersions of 2/t-dimensional sphere S2h(h^2)

In this section we assume that G=SO(2h+l) and K=SO(2h), h^2. The
assumptions and the notation are the same as in section 9 of [II].

11.1. In this subsection we consider the full equivariant minimal iso-
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metric immersion F:(S2h,c<( , »->*S induced from the second real spherical
representation p2 of (G,K). Then we have by the formula of Freudenthal
and Proposition 3.2.1 of [I]

(11.1.1) g = 2 f t + 1 .

Therefore it follows from Remark 8.3.1 of [II] that the operator S on C°°(G;
{VN)C)K is given by

S = -(11.1.2)

Hence for every \a]^D(G;K, pN) the operator S acts on O M ^ S 2 * ) 1 7 ) as a
scalar, which will be denoted by c(<r). We have by Proposition 9.2.1 of [II]

(11.1.3) = v0, = vu {v»)c = v2,

where V{ is the irreducible ^-submodule of Vc with the highest weight icj>h. We
have

Theorem 11.1.1. Let F:(S2\c< , »-*S, F(xK)=p2(x)F(o), be the full
equivariant minimal isometric immersion induced from p=p2-

(1) We have

D(G;K,pN)= with

and

where Ac is the highest weight of the complex irreducible representation a of G.
The multiplicity of each [<r] ^D(G; K, pN) is equal to 1.

(2) We have for [a] <=D(G; K, pN) with A < r = 5 ^ _ 1 + ^ *

(3) The cases where c(a)^0 are the fallowings:

<o
= 0

A ,

2̂>A) ^>A-I+2<^A, 20A_J+2^)A , 3<^

Proof. Applying Proposition 9.2.1 of [II], the Frobenius reciprocity and
the formula of Freudenthal, we obtain the theorem in the similar way to Theorem
10.1.1. Q.E.D.

REMARK 11.1.1. It follows from the above theorem and Proposition 3.4.2
of [I] that the nullity of F is euqal to its Killing nullity.
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REMARK 11.1.2. (a) The case h=2: Every eigenspace of S is G-irreducible.
(b) The case h>2: The eigenspace corresponding to the eigenvalue

-^ '- is decomposed into two G-irreducible components, which have

the highest weights h$h and 2<ph_1
Jr(h— l)cj)h. The other eigenspaces are G-

irreducible.

11.2. Let a: G->GL(W) be an irreducible unitary representation with
the highest weight kcf>h, k>0. We have by Proposition 9.2.1 of [II]

w=±wt,
1 - 0

where W{ is the irreducible i^-submodule of W with the highest weight i$h.
We shall compute c(o)'j, i,j=0,1, •••,k. It follows from (9.4.1), (2) of Lemma
6.2.3 and (a) of Proposition 6.3.7 of [II] that

(11.2.1) c(«r)',- = 0 for i,j = 0,1, -,k with \i-j\>l .

We have

Proposition 11.2.1

y-1^ = (k-i) (k+2h-i-2),

v*-,--! = (i+l)(k+2h-i-3)(2k+2h-i-2)
v ~ v ° " j k~l 2{k+h-i~2)

Proof. It follows from (9.4.1), (3) of Lemma 6.2.3, Proposition 6.3.7 and
(3) of Lemma 6.3.4 of [II] that

(11.2.2) c(a)\ = c(a; I)1', = i{i+2h-~2).

Applying Lemma 6.3.2, (6.3.10) of [II], (11.2.1) and (11.2.2), we obtain the
proposition in the similar way to the proof of (b) of Proposition 10.2.1. Q.E.D.

11.3. Let a: G-^GL(W) be an irreducible unitary representation with
the highest weight $<£A-I+2<£A> S>0. We have by Proposition 9.2.1 of [II]

2

,f if h = 2 ,

if h>2,

where WPiQ is the irreducible i^-submodule of W with the highest weight p^)^^
q4>h- We shall compute c{af'\jy i, j=s,s-\-l> •••, t. It follows from Lemma
9.2.4, (2) of Lemma 6.2.3 and (a) of Proposition 6.3.7 of [II] that
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Proof. We have in the same way as in (11.2.2)

(11.3.2) c(<r)°\i = i(i+2h-2).

(a) Applying Lemma 6.3.2, (6.3.10) of [II], (11.3.1) and (11.3.2), we
obtain the equalities in the similar way to the proof of (a) of Proposition 10.3.2.

(b) Put Hik=[X+k,X_i^ and Qx^^iX^X.^H^c. Considering W
as a g^A

c-module, we obtain the equalities in the similar way to the proof of
(b) of Proposition 10.3.2. Q.E.D.

1.4. In the rest of this section we consider the full equivariant minimal
isometric immersion F:(S2h,c( , » - > S induced from the k-th real spherical
representation p=pk of (G,K)y &=2,3, •••. Then we have by the formula of
Freudenthal and Proposition 3.2.1 of [I]

(11.4.1)
ZrAZ

We have by Proposition 9.2.1 of [II]

(11.4.2) (V°)c = Vo, (V
T)C = Vl9 (V

N)C = 2 Vi,

where V{ is the irreducible if-submodule of Vc with the highest weight i$h.
It follows from Corollary for Proposition 9.2.1 and the argument in subsection
6.5 of [II] that there exist complex numbers ch i=0,1, ••-,&, such that

\NIN r 1

Then we have the following lemma by Proposition 6.5.1, Proposition 6.3.8 of
[II], Proposition 11.2.1 and (11.2.1).

Lemma 11.4.1.

0 if i = 0, 1 ,

h+1 J -->-->

-k(k+2h-l) if i>2.

It follows from Proposition 9.2.1 of [II] and the Frobenius reciprocity that

D(G;K,p»)= {[a]'

and that the multiplicity of the above [cr] ^D(G;K, pN) is equal to Min
{£—1, &—s+1, t—1, t—s+l\. We have

L e m m a 11.4.2. Let cr: G->GL(W) be a complex irreducible representation
with [a\^D{G\K>pN) and A^tcfrh. Then there exists a basis {co'Q, co\y •••, co'd\ of
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(W*®VC)O such that {a>'2,G>'3, -,co'd} is a basis of (W*®(VN)C\ and that

Uo* oW - (2h+i-3)(k+2h+i-2)(t+2h+i-2) ,
V yH) ' 2(h+i-2)

i—2)co i+± ^ ; v '- co

where J = M i n { ^ ^ } and cof_1=(o'd+i=0.

Proof. We may choose orthonormal bases {v(; u v{; 2, •••, vt; „(,-)} of F,- and
{«>y;!,«>y;2, '••,^y ;«o)} ofWj, and unitary i^-isomorphisms a{\ Vi->Whi,j =
1, •••,£?, such that

(»i;«) = wf-;<» a = 1,2, —,n(t) .

Put 6 ) r = 2 w,-; a*®Vi; a i=0,1, •••, d. Then applying Proposition 6.3.9, Lemma
06 = 1

6.3.2, (3) of Lemma 6.3.4 of [II] and Proposition 11.2.1, we have the following
equations in the similar way to the proof of Lemma 10.4.2:

i-l)(t-i)(t+2h+i-

4<r*, pYj = 0 i,j = O,l,.~,d with I i-j I > 1 .
Put

Then the basis {co'0, co'i, •",(»'<;} of (PF*®^0^ has the required property.
Q.E.D.

Lemma 11.4.3. Let a: G->GL{W) be a complex irreducible representation
with [<T\^D(G;K, pN) and A^ = S(f>h_1-^-t<f)h, J > 0 . Then there exists a basis
Ws,co's+i,-~,w'd} of {W*®V% succh that {co'm,co'm+l,--,a>'d) is a bans of
(W*®(VN)C)O and that

1 ' - 2 ) (t+2h+i-2) (i-s) (s+2h+i-3) ^ ^
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for i = s,s+l, •••,</,

where d=Min{k> t}, m=Max{2, s} and cof
s.1=cof

d+i=0.

P r o o f . W e m a y c h o o s e o r t h o n o r m a l b a s e s {v{; ly vt ;2y"'y^i; nd)} o f V{ a n d

{WJ;IJWJ;29 "*>wj;n(j)} of Woj9 and unitary ./^-isomorphisms a{\ Vi-^WOfiy ij=
s,s-\-l, ~',d, such that

(^f;«) = w,-;a a = 1,2, •••,«(*•).

Put fi)j=2aij;a*®^;<i,/=v+l,t",i Applying Proposition 11.2.1 and
a s = i

Proposition 11.3.1, we have the following equalities in the similar way to the
proof of Lemma 10.4.2:

-1) (f-i) (t+2ft+t-1) (»-*+1) (s+2h+i-2)qh+if(2h+i-2)
c(<r*, p)'i+1

= l(
V

c(<r*, p)', = i(2ft+i-2),
(cr*,p)'y=o if i*-yi

Put

, /(k-i)\(k+2h+i-2)l(t-i)\(t+2h+i-2)\(i-s)l '

Then the basis Ws> <»'«+i, -".w'd} of (PF*(g)Fc)0 has the required property.
Q.E.D.

Theorem 11.4.4. Let F:(S2h,c<, , »-*S, F(xK)=Pk(x)F(o), be the full
equivariant minimal isometric immersion induced from p=Pk, h~^2, k=2, 3, •••.
Then we have

(1) Every eigenvalue of the Jacobi differential operator S is an algebraic
number.

(2) For any [a]eD(G;K,pN), the multiplicity of every eigenspace of § in
oM{N(S2h)c)isequalto\.

Proof. By virtue of Theorem 3 of [I], it is sufficient to show that for any
[<r]^D(G;K,pN) every eigenvalue of the operator S^ is an algebraic number
and that every eigenspace of S,, is of dimension 1. Let W be the representation
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space of a. Put

a_ 2(k-l)(k+2h)
h+1

(a) The case A<r=tcf>k: Let {«\,a>\, — ,<»',,} be the basis of (W*®VC)O in
Lemma 11.4.2. Put for i=0,1, •••,</

/ ,_, _ (2h+i-3) (k+2h+i-2) (t+2h-i-2)
. _ . _ _ _ ,

a', = t(t+2h-l)-2i(2h+i-2),
_ _(

a •

Let 4̂ be the matrix expression of the linear mapping Sv with respect to the
basis {&)'2) o>'3, •••, a>'d}. Then we have by (11.4.1), Lemma 11.4.1, Lemma
11.4.2 and (5.2.3) of [I]

A = 2h

k(k+2h-l)

la\+a a\

0

0

Therefore all eigenvalues of Sa are algebraic numbers. Since ai+1
{4= 0, i=2,3, • • •,

d— 1, each eigenspace of S^ is of dimension 1.
(b) The case A(T=S(j)h_1

Jrt^)hy s>0: Let {co'sy co's+1, •••,a/rf} be the basis
of (W*®VC)O in Lemma 11.4.3. Put for i=s,s+l9 •••,</

'bi-lm = _ (k+2h+i-2) (t+2h+t-2) (is) (s+2h+i-3)

b\ = s{s+2h-Z)+t(t+2h-\)-2i(2h+i-2),

' h+i

Let B be the matrix expression of S« with respect to the basis {a>'m, a>'m+u •••,
co'd}. Then we have the followings by (11.4.1), Lemma 11.4.1, Lemma 11.4.3
and (5.2.3) of [I]:

[1] The case i = l , 2:

Ib2
2+a b\ 0

B 2h
k(k+2h-l)

\
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[2] The case s>2:

2h

lb°s b\+l

+1s ^ S + 1 s + l

k(k+2h-l)

\

Therefore we obtain our assertion.

' &Vi b*

Q.E.D.

11.5. In this subsection the notation Wh, §h, Ph and ah{r) are the same as
in subsection 10.5. We have

Wh = SjXPj (semi-direct product).

Let r=r1r,^Wh with r1^.^h and T2ePj, Then we have

(11.5.1) ah{r) = 2 |Tl(i)-t I + 2 (r^+i-V) .
*£T2 * e T 2

Identifying the subgroup W'h of Wh with the group Wh_ly we have for r^W'h

(H.5.2) ah_l{r) = ah{T).

Lemma 11.5.1. Suppose that h*t2. We have for a non-negative integer i

det (T)

0

1

0

if i is even,

if i is odd.

Proof. We obtain the lemma by the induction on h in the similar way to
the proof of Lemma 10.5.1. Q.E.D.

Proposition 11.5.2. Let pji G^GL(Wj) and a: G->GL(W) be complex
irreducible representations with the highest weight j<fih and scf>h^i-\-t<ph respectively.
Then the tensor product <r*®pj contains a spherical representation of (G,K)y if and
only if s^j. The highest weights of the spherical representations contained in
<T*®pi are the fallowings:

(j+t-s-2i)<$>h i = 0, 1, - , Min{j-s, t-s} .

Proof. We have the followings in the similar way to the proof of Proposi-
tion 10.5.2.

(a) The tensor product a*®pj contains a spherical representation of
(G,K), if and only if s^j.
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(b) The sum of the multiplicities of the spherical representations con-
tained in <r*®Pj is equal to Minjy—£+1, t—s+1}.

(c) Let tyA be a spherical representation of (G,K) and mA the multiplicity
of -\]rA in a*®Pj. Then mA is equal to the multiplicity of i/rA in <r®Pj.

(d) If A=(j+t—s—i)(j>h and 0^*^Min{2(/—s), 2(f—*)}, we have

m(j+f_s_iHh =
T

Therefore we have by Proposition 9.3.2 of [II]

det(T)hHUi-ak(r))/2l if j—S — i^

det(T)^[{2j_2s_^flA(T)}/2] if J—S—KO .

Applying Lemma 11.5.1, we obtain the proposition. Q.E.D.

11.6. We consider again the full equivariant minimal isometric immersion
F:(S2h,c< , » - ^ 5 f , F(xK)=pk(x)F(o), induced from p=Pkf k=2, 3, •••. Let
Tay II0 and n'o denote the same ones as in subsection 10.6. Let [cr]eZ)(G; K,
pN) and A<r=S(f)h^i+t<j}h. Then we have in the similar way to (10.6.2) that the
eigenvalues of Ta are

(11.6.1) (t-s-2i) (2k+t+2h-s-2i—l) i = 0, 1, •••, Min{fc—*, t-s} .

Suppose that [<r]&D(G;K,P
N) and s^3. Then we have that {W*®V%

={W*®(VN)CX and £,=—2V Therefore we have
c

Theorem 11.6.1. Let F: (S2h,c<: , » - > 5 , F(xK)=Pk(x)F(o)9 be the full
equivariant minimal isometric immersion induced from P=Pk, k=3, 4, •••. Suppose
that [a]<=D{G\K,P

N) and A<r=^jk_1+^A with s^Z. Then eigenvalues of S* are
given by

2h (t-s-2i) (2k+t+2h-s-2i-l) i = 0, 1, . - , Min{^-^, t-s} .
k(k+2h-l)

Theorem 11.6.2. We have

n'ocnfl.
Suppose that [a]eII0, A < r = ^ _ 1 + ^ A . TÂ w if s=l or s^3, [<r] w contained in

n'o.
Proof. Let [cr]eZ)(G;!£,/>*) and Ac r=^A .1+^A . Then we have

2A-^-2z- l>0 for i = 0,1,
(11.6.2) for i = 0,l,—,Min{£—5,*—*} if

[t—s<2(k—s),2(t—s) if
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(a) The case where [o-]Gi)(G; K, pN) and s^3: Applying Theorem
11.6.1 and (11.6.2), we have that [o-]ell0, if and only if [o-]eiro.

(b) The case where [a\sED{G\Kyp
N) and s=l: Take the basis {co'u co'2y

•••>to'd) °f (W*®VC)O in Lemma 11.4.3. Let B' be the matrix expression of 7V
with respect to this basis, and let 6'"1,-, bl

iy b
i+1

{ and JB denote the same ones as in
the proof of Theorem 11.4.4. Then we have in the similar way to the proof
(b) of Theorem 10.6.2

det B' = (*-l) (t+2h) det(cB).

Therefore we have by (11.6.1)

(11.6.3) det(cB) = 2k+t+2h~2 g1 (t-2i-1) (2k+t+2h-2i~2).

Applying (11.6.2) and (11.6.3), we obtain the assertion. Q.E.D.

REMARK 11.6.1. If k=3, we have n o = n ' o .

REMARK 11.6.2. (1) If k=3, the nullity of F coincides with its Killing
nullity.

(2) If &=4, the sum of dim [/[„], [<x]elT0, is greater than the Killing
nullity of F. Therefore the nullity is greater than the Killing nullity.

12. Minimal immersions of 2-dimensional sphere S2

In this section we assume that G=SO(3) and K=SO(2). The assump-
tions and the notation are the same as in section 9 of [II].

12.1. In this subsection we consider the full equivariant minimal isome-
tric immersion F:(S2,c( , »—**S induced from the second real spherical re-
presentation p2 of (G,K). Then we have by the formula of Freudenthal and
Proposition 3.2.1 of [I]

(12.1.1) c=3.

It follows from Remark 8.3.1 of [II] that the operator S on C°°(G;(VN)C)K is
given by

(12.1.2) S = - — ( S £,-£,-+12 1C~(G. (vjr)C) J .

Therefore for each [<r]&D(G;K,pN) the operator S acts on o[<r](JV(S2)c) as a
scalar, which is denoted by c(a). We have by Proposition 9.2.1 of [II]

(12.1.3) (V°f = Fo, (V
Tf = V^+Vl9 (VNf = V_2+V2,

where Vi is the z'^-weight space of Vc relative to t = I .
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Theorem 12.1.1. Let F:(S\c( , » - > S , F(xK)=p2(x)F(o), be the full
equivariant minimal isometric immersion induced from p=p2-

(1) We have

D(G; K, pN) = ; A, =

where A^ is the highest weight of the complex irreducible representation a. The
multiplicity of each [<r]<=:D{G\K,pN) is equal to 2.

(2) We have for [a] e D(G; K, pN) with Ao = tfa

(3) The cases where c(cr)^0 are the fallowings:

< 0

= 0

A,

20i

30i

Proof. Applying Proposition 9.2.1 of [II], the Frobenius reciprocity and
the formula of Freudenthal, we obtain the theorem. Q.E.D.

REMARK 12.1.1. It follows from the above theorem and Proposition 3.4.2
of [I] that the nullity of F is equal to twice its Killing nullity.

12.2. Let a\G-+GL(W) be an irreducible unitary representation with
the highest weight kcjy^kX)), and ca the eigenvalue of the Casimir operator of
a. We have by Proposition 9.2.1 of [II]

W=W0+±(W_i+Wi),

where W{ is the /(^-weight space of W relative to t = I . We shall compute
c(a-)f'y,/,y=0,±l,—,±*. It follows from (9.4.1), (2) of Lemma 6.2.3 and (a)
of Proposition 6.3.7 of [II] that

(12.2.1) £:(o-)'y = 0

We have

Proposition 12.2.1.

for i,j = 0 , ± l , with \i-j\>\ .

fari =0,l,.
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(12.2.3) <*)*-•*-,-! = <cr)-<*-'U-<-tf for I = 0 , 1 , - , * - 1 .

Proof. It follows from (9.4.1), (3) of Lemma 6.2.3, Proposition 6.3.7 and
(3) of Lemma 6.3.4 of [II] that

(12.2.4) * r ) ' , = <*;!) ' , = I*.

Applying Lemma 6.3.2, (6.3.10) of [II], (12.2.1) and (12.2.4), we obtain the
equalities (12.2.2) by the induction on i in the similar way to the proof (b) of
Proposition 10.2.1. We have the equality (12.2.3) by (12.2.2). Q.E.D.

12.3. In the rest of this section we consider the full equivariant minimal
isometric immersion F:(S2,c( , » - > £ induced from the k-th real spherical
representation p=pk of (G,K), k=2,3, •••. Then we have by the formula of
Freudenthal and Proposition 3.2.1 of [I]

(12.3.1) c =

We have by Proposition 9.2.1 of [II]

(12.3.2) (Vy = V09 (V*)c = V

where V{ is the ^-weight space of Vc. Then dim V{=1. It follows from
Corollary for Proposition 9.2.1 and the argument in subsection 6.5 of [II] that
there exist complex numbers ch i=0, ± 1, •••, ±&, such that

± {dp{E.) {dp{E,)*y\N
Wi = a \Vi.

Then we have the following lemma by Proposition 6.5.1, Proposition 6.3.8 of
[II], Proposition 12.2.1 and (12.2.1).

Lemma 12.3.1.

0 i/* = 0,±l ,

Ci = -{fe(*+i)-(*-1H*+2)} ifi=±2,
2

It follows from Proposition 9.2.1 of [II] and the Frobenius reciprocity that

D(G;K,pN) = \[a]

and that the multiplicity of the above [a]&D(G;K,pN) is equal to 2 Min{&— 1,
t— 1}. We have

Lemma 12.3.2. Let a: G->GL{W) be a complex irreducible representation
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with [<r](=D(G;K9p
N) and A<r=t^1. Then there exists a basis {co'-d, ~-,co'-l9

o)'0, CD\9 •••, co'd} of (W*® Vc)0 such that {co'.d> •••, co'_2> ̂ '2, •••, co'd} is a basis
of(W*®(VN)%andthat

L(<r*y pW = \ (k+i) (*+zV,_1+*V,+-i (k-i) (t-i)co'i+1

for i=0,±l,-,±d,

where d=Min{k, t} and cof.d.1^co/
d+l=0.

Proof. We may choose /^-weight vector v{ of Vc and y^-weight vector
Wj of W with unit lengths, /=0,±l,"B>±*,i==(),±l,"-,±*, such that

Put a>i=zv*(i)vi9 i = 0 , ± l , - - - , ± r f . Then {o)_rf, •••,6)_1,co0,o)i, •••, cod} is a basis
of (W^*(8)FC)O and {co_,, -,co_2,6>2, - , a ) , } is a basis of (PF*®(7jV)€7)0. Then
applying Proposition 6.3.9, Lemma 6.3.2, (3) of Lemma 6.3.4 of [II] and Pro-
position 12.2.1, we have the following equalities in the similar way to the proof
of Lemma 10.4.2:

- t

Put

Then the basis {cof_dy •••,co/_i,o)/
0,w

/i, •••Jo>/
(/} of (IF*®FC)O has the required

property. Q.E.D.

Theorem 12.3.3. Let F: (S\c< , » - > 5 , F(xK)=Pk(x)F(o), be the full
equivariant minimal isometric immersion induced from p=pk, k=2, 3, •••. Then
we have

(1) Every eigenvalue of the Jacobi differential operator S is an algebraic
number.

(2) For any [<r]^D(G;K,pN)y the multiplicity of every eigenspace of S in
0^{N{S2)c) is equal to 2.

Proof. By virtue of Theorem 3 of [I], it is sufficient to show that for any
[<r]^D(G;K,pN) every eigenvalue of the operator S^ is an algebraic number
and that every eigenspace of S^ is of dimension 2. Let PFbe the representation
space of <r. Put

a=-(k-l)(k+2).
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Let {a)'-,/, •••,6)'_i,o)'0,cofu'"9cor
d} be the basis of (W*®VC)O in Lemma 12.3.2.

Put for * = 0 , l , ••-,*/

and

B = —
c

lb\+a b\
b\ b\

0 \

Ud-l

\
0

Let Bf be the matrix expression of the linear mapping S^ of (I;F*(g)(F^)c')0 with
respect to the basis {o/_2, •••, co'-d, co'2y

 m"y(o
f
d}. Then we have by (12.3.1),

Lemma 12.3.1, Lemma 12.3.2 and (5.2.3) of [I]

V> B ) .

Therefore all eigenvalues of S^ are algebraic numbers. Since 6i+\=t=0, / = 2 , 3 ,
'••fd— 1, each eigenspace of S^ is of dimension 2. Q.E.D.

12.4. We have

Theorem 12.4.1. Let F: ( 5 2 , < , » - * 5 , F(xK)=pk(x)F(o)9 be the full
equivariant minimal isometric immersion induced from p=pk, k=2,3,---. Put

n 0 = {[a] ZED(G; K, pN); S* has an eigenvalue 0} .

Then we have

Theorefore the nullity of F is equal to 2(k—

Proof. Let bi+1
iy bl

iy bi+1
( and B denote the same ones as in the proof of

Theorem 12.3.3. Put for £=2,3, — ,rf

a(h) = -

u-i (h\ = _ (k+2h+i-2) (t+Zh+i-2) (i-1) (2h+i-2)
A ] i(h+i-2)

UQi) = 2h-2-\-t{t+2h-\)-2i(2h+i-2),
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h+i

lb\{h)+a{h)
b\{h)

\
Then we have

We have by (11.6.3)

det(c(h)B(h)) =

Since this equality holds for infinitely many h ̂ 2 , the equality is valid for A=l.
Hence

(12.4.1) det(d3) = ?*±? n (f-2i-l) (2k+t-2i).
^f2 =l

If t>2k— 1, we have *—2/—1>0 for £=1,2, •••,</— 1. Since 2k+t—2i^t+2>0
for z=l,2, -"yd~ 1, we obtain the first assertion by (12.4.1). If IF is an irredu-
cible G-module with the highest weight ifa, then we have dim W=2i+l.
Therefore we obtain the second assertion by (2) of Theorem 12.3.3. Q.E.D.

Let U be the space of Killing vector fields on the unit sphere S. Then
the Lie group G acts on Uin the following manner:

(<r(*)J)(P) = d{p{x))f{p{x-')p) for xSEG, / e U and

where /̂(p(x)) denotes the differential of the isometry p(x) of S. Let L(V) be
the space of linear mappings of V. Put

So(F) = { i G t ( F ) ; ,4* = - i4} ,

where ^4* denotes the adjoint linear mapping of A. Then §o(V) is a G-module
with the following action:

: G -> GL(§o(F)), o>(̂ )X = P(x)Xp(x~1)

for

Then U is canonically G-isomorphic to §o(F). Put
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where /!S2 denotes the section of T(S)\Sz induced from / . Then £/,s2 is a G-
module. Since the immersion F:S2->S is full, C/)s

2 is G-isomorphic to U.
Put

An element of Jo is called a Killing-Jacobi field. Put

Then /0 is a G-module and T is a G-submodule of U\s* which is G-isomorphic
to the G-module g with the adjoint action. Therefore U\& is G-isomorphic
to the direct sum / 0 +9 °f /o a n d 9- We denote by / o

c the complexification of
Jo. Let Wi be a complex irreducible G-module with the highest weight i<f>x.
Then we have

Lemma 12.4.2. The G-module Jo
c is G-isomorphic to the direct sum 2 W2i-i

1 = 2

o/*/k? G-modules W2i_u i=2,3, •••,ft.

Proof. By the above argument the direct sum J0
CjrQc of Jo

c and gc is
is G-isomorphic to §o(F)c, the complexification of §o(V). Therefore it is

sufficient to show that §o(V)c is G-isomorphic to the direct sum 2 W2i-i of the
i = i

G-modules W2i_ly i=ly2> ~-yk. Since Cartan subalgebras of §o(V) are conjugate
(cf. Helgason [4] p. 211), we may choose an orthonormal basis of V with the
following property: For H=arf>lEz:i, the matrix expression of dp(H) with respect
to this orthonormal basis of V is given by

\o
0
a

0

—a
0

•

0
ka

-ka
0

Therefore we have by straightforward calculations
k

7V(co(exp H)) = k-\-2 2 cos 10+4 ^J cos ia cos ja

Hence the character X^ of co is given by

2
j

on t
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Therefore we have by straightforward calculations

%-&,= %.My * i ) -* ( -y
k

This proves the lemma. Q.E.D.

Now, recalling that dim /0=the Killing nullity of F, we have the following
theorem by the above lemma, (2) of Theorem 12.3.3 and Theorem 12.4.1.

Theorem 12.4.3. Let F be as in Theorem 12.4.1. Then the nullity of F is
equal to twice its Killing nullity.

REMARK 12.4.1. We may also compute the Killing nullity of F by applying
Proposition 3.4.2 of [I]. Note that Lemma 12.4.2 gives the G-module struc-
ture of the space Jo of Killing-Jacobi fields.

REMARK 12.4.2. A cross-section of f^T(N(S2)) is called a Jacobi field, if
it satisfies Sf=0. A full minimal isometric immersion of (S2,£< , » into a
unit sphere S is rigid, and induced from some pk in the way described in Re-
mark 3.2.1 of [I] (Calabi [1] p. 123, Do Carmo-Wallach [3] p. 103). Therefore
Theorem 12.4.3 shows the followings: Let F: (S2,c( , » - » S bea full minimal
isometric immersion. Then there exists a Jacobi field which does not arise
from any one-parameter families of minimal isometric immersions.
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