THE GROUP OF UNITS OF THE INTEGRAL GROUP RING OF A METACYCLIC GROUP

Katsusuke SEKIGUCHI

(Received February 6, 1980)

We denote by $U(\Lambda)$ the group of units of a ring Λ. Let G be a finite group and let $\boldsymbol{Z} G$ be its integral group ring. Define $V(\boldsymbol{Z} G)=\{u \in U(\boldsymbol{Z} G) \mid \varepsilon(u)=1\}$ where ε denotes the augmentation map of $\boldsymbol{Z} G$. In this paper we will study the following

Problem. Is there a torsion-free normal subgroup F of $V(\boldsymbol{Z} G)$ such that $V(Z G)=F \cdot G$?

Denote by S_{n} the symmetric group on n symbols, by D_{n} the dihedral group of order $2 n$ and by C_{n} the cyclic group of order n. The problem has been solved affirmatively in each of the following cases:
(1) G an abelian group (Higman [4]),
(2) $G=S_{3}$ (Dennis [2]):
(3) $G=D_{n}, n$ odd (Miyata [5]) or
(4) G a metabelian group such that the exponent of G / G^{\prime} is $1,2,3,4$ or 6 where G^{\prime} is the commutator subgroup of G ([7]).

The purpose of this paper is to solve the problem for a class of metacyclic groups. Our main result is the following

Theorem. Let $G=C_{n} \cdot C_{q}$ be the semidirect product of C_{n} by C_{q} such that $(n, q)=1, q$ odd, and C_{q} acts faithfully on each Sylow subgroup of C_{n}. Then there exists a torsion-free normal subgroup F of $V(\boldsymbol{Z} G)$ such that $V(\boldsymbol{Z} G)=F \cdot G$.

1. Lemmas

We begin with
Lemma 1.1. Let r, k, n be non negative integers and h be a positive integer. Then
(1) $\sum_{r=0}^{n}(r+1) \cdots(r+k)=(n+1) \cdots(n+k+1) /(k+1)$, and
(2) $\sum_{r=0}^{n} r^{h}(r+1) \cdots(r+k)=\frac{n(n+1) \cdots(n+k+1) f(n, k, h)}{(k+2) \cdots(k+h+1)}$,
where $f(n, k, h)$ is a polynomial with respect to n, k and h whose coefficients are in Z, and its degree with respect to n is $h-1$. (Notation: $\left.\operatorname{deg}_{n} f(n, k, h)=h-1\right)$

Proof. (1) is well known. (2) is also known for $h=1$. In fact, we have

$$
\sum_{r=0}^{n} r(r+1) \cdots(r+k)=n(n+1) \cdots(n+k+1) /(k+2)
$$

For $h \geqq 2$ (2), can be shown by induction on h.
For integers a, b such that $a>0, b \geqq 0$ and $a \geqq b$, we denote by $\binom{a}{b}$ the binomial coefficient. We extend this notation formally to the case where $0 \leqq$ $a<b$ as $\binom{a}{b}=0$ and set $\binom{0}{0}=1$. Let $\boldsymbol{N}=\{x \in \boldsymbol{Z} \mid x>0\}$ and $\overline{\boldsymbol{N}}=\boldsymbol{N} \cup\{0\}$.

For $\left(t, k_{t+1}, u_{1}, \cdots, u_{t}, w_{1}, \cdots, w_{t}\right) \in \boldsymbol{N} \times \overline{\boldsymbol{N}}^{2 t+1}$, define

$$
\begin{aligned}
& B_{t, k_{t+1}, u_{1}, \cdots, w_{t}} \\
= & \sum_{k_{t}=0}^{k_{t+1}}\binom{k_{t}}{u_{t}}\binom{k_{t}}{w_{t}}\left(\sum_{k_{t-1}=0}^{k_{t}}\binom{k_{t-1}}{u_{t-1}}\binom{k_{t-1}}{w_{t-1}}\left(\cdots\left(\sum_{k_{2}=0}^{k_{3}}\binom{k_{2}}{u_{2}}\binom{k_{2}}{w_{2}}\left(\sum_{k_{1}=0}^{k_{2}}\binom{k_{1}}{u_{1}}\binom{k_{1}}{w_{1}}\right)\right) \cdots\right) .\right.
\end{aligned}
$$

For simplicity we write $B_{t}=B_{t, k_{t+1}, u_{1}, \cdots, w_{t}}$.
Lemma 1.2. Let s be a positive integer, and let $u_{i}, w_{j}, 1 \leqq i, j \leqq s$, be non negative integers.
(1) Suppose that there exists $s_{0}, 1 \leqq s_{0} \leqq s$, such that $u_{i}+w_{i}=0$ for any i, $1 \leqq i \leqq s_{0}$, and $u_{s_{0}+1}+w_{s_{0}+1} \geqq 1$. Then
$B_{t}=\left\{\begin{array}{cc}\left(k_{t+1}+1\right) \cdots\left(k_{t+1}+t\right) / t! & \text { if } t \leqq s_{0} \\ \frac{k_{t+1}\left(k_{t+1}+1\right) \cdots\left(k_{t+1}+t\right) f_{t+1}\left(k_{t+1}\right)}{s_{0}+1}\left(\prod_{i=1}^{t} u_{i}!w_{i}!\right) s_{0}!\left(s_{0}+2\right) \cdots\left(\sum_{i=1}^{t}\left(u_{i}+w_{i}\right)+s_{0}+1\right) \cdots(t+1) \cdots\left(\sum_{i=1}^{t}\left(u_{i}+w_{i}\right)+t\right) & \text { if } s_{0}+1 \\ \leqq t \leqq s\end{array}\right.$
where $f_{t+1}\left(k_{t+1}\right)$ is a polynomial with respect to k_{t+1} whose coefficients are in \boldsymbol{Z}, and $\operatorname{deg}{ }_{k_{t+1}} f_{t+1}\left(k_{t+1}\right)=\sum_{i=1}^{t}\left(u_{i}+w_{i}\right)-1$.
(2) Suppose that $u_{1}+w_{1} \geqq 1$. Then

$$
B_{t}=\left\{\frac{k_{t+1}\left(k_{t+1}+1\right) \cdots\left(k_{t+1}+t\right) f_{t+1}\left(k_{t+1}\right)}{\left(\prod_{i=1}^{t} u_{i}!w_{i}!\right) 2 \cdots\left(\sum_{i=1}^{1}\left(u_{i}+w_{i}\right)+1\right) \cdots(t+1) \cdots\left(\sum_{i=1}^{t}\left(u_{i}+w_{i}\right)+t\right)} \quad \text { for } 1 \leqq t \leqq s\right.
$$

where $f_{t+1}\left(k_{t+1}\right)$ is a polynomial with respect to k_{t+1} whose coefficients are in \boldsymbol{Z}, and $d e g_{k_{t+1}} f_{t+1}\left(k_{t+1}\right)=\sum_{i=1}^{t}\left(u_{i}+w_{i}\right)-1$.

Proof. (1) We use the induction on t. First, assume that $t \leqq s_{0}$. If $t=1$,
the assertion is clearly valid. Suppose that the following equality holds:

$$
B_{t}=\left(k_{t+1}+1\right) \cdots\left(k_{t+1}+t\right) / t!.
$$

Since $B_{t+1}=\sum_{k_{t+1}=0}^{k_{t+2}} B_{t}, B_{t+1}=\left(k_{t+2}+1\right) \cdots\left(k_{t+2}+t+1\right) /(t+1)$! by (1.1), as desired. In particular, $B_{s_{0}}=\left(k_{s_{0}+1}+1\right) \cdots\left(k_{s_{0}+1}+s_{0}\right) / s_{0}$!.

Next, we will consider the case where $t>s_{0}$.
Since $B_{s_{0}+1}=\sum_{k_{s_{0}+1}=0}^{k_{s_{0}+2}}\binom{k_{s_{0}+1}}{u_{s_{0}+1}}\binom{k_{s_{0}+1}}{w_{s_{0}+1}} B_{s_{0}}$, we have

$$
B_{s_{0}+1}=\frac{1}{s_{0}!u_{s_{0}+1}!w_{s_{0}+1}!} \sum_{s_{s_{0}+1}=0}^{k_{s_{0}+2}} k_{s_{0}+1}\left(k_{s_{0}+1}+1\right) \cdots\left(k_{s_{0}+1}+s_{0}\right) g_{s_{0}+1}\left(k_{s_{0}+1}\right)
$$

for some $g_{s_{0}+1}\left(k_{s_{0}+1}\right)$ with $\operatorname{deg}_{k_{s_{0}+1}} g_{s_{0}+1}\left(k_{s_{0}+1}\right)=u_{s_{0}+1}+w_{s_{0}+1}-1$. Hence, by (1.1),

$$
B_{s_{0}+1}=\frac{1}{s_{0}!u_{s_{0}+1}!w_{s_{0}+1}!} \cdot \frac{k_{s_{0}+2}\left(k_{s_{0}+2}+1\right) \cdots\left(k_{s_{0}+2}+s_{0}+1\right) f_{s_{0}+2}\left(k_{s_{0}+2}\right)}{\left(s_{0}+2\right) \cdots\left(u_{s_{0}+1}+w_{s_{0}+1}+s_{0}+1\right)}
$$

for some $f_{s_{0}+2}\left(k_{s_{0}+2}\right)$ with $\operatorname{deg}_{k_{s_{0}+2}} f_{s_{0}+2}\left(k_{s_{0}+2}\right)=u_{s_{0}+1}+w_{s_{0}+1}-1$. Suppose that the following equality holds:
$B_{t}=\frac{k_{t+1}\left(k_{t+1}+1\right) \cdots\left(k_{t+1}+t\right) f_{t+1}\left(k_{t+1}\right)}{\left(\prod_{i=1}^{t} u_{i}!w_{i}!\right) s_{0}!\left(s_{0}+2\right) \cdots\left(u_{s_{0}+1}+w_{s_{0}+1}+s_{0}+1\right) \cdots(t+1) \cdots\left(\sum_{i=1}^{t}\left(u_{i}+w_{i}\right)+t\right)}$
for some $f_{t+1}\left(k_{t+1}\right)$ with $\operatorname{deg}_{k_{t+1}} f_{t+1}\left(k_{t+1}\right)=\sum_{i=1}^{t}\left(u_{i}+w_{i}\right)-1$. Then

$$
B_{t+1}=\sum_{k_{t+1}=0}^{k_{t+2}}\binom{k_{t+1}}{u_{t+1}}\binom{k_{t+1}}{w_{t+1}} B_{t}=
$$

$$
\frac{1}{\left(\prod_{i=1}^{t+1} u_{i}!w_{i}!\right) s_{0}!\left(s_{0}+2\right) \cdots\left(\sum_{i=1}^{t}\left(u_{i}+w_{i}\right)+t\right)} \sum_{k_{t+1}=0}^{k_{t+2}} k_{t+1}\left(k_{t+1}+1\right) \cdots\left(k_{t+1}+t\right) g_{t+1}\left(k_{t+1}\right)
$$

for some $g_{t+1}\left(k_{t+1}\right)$ with $\operatorname{deg}_{k_{t+1}} g_{t+1}\left(k_{t+1}\right)=\sum_{i=1}^{t+1}\left(u_{i}+w_{i}\right)-1$. Hence

$$
B_{t+1}=\frac{k_{t+2}\left(k_{t+2}+1\right) \cdots\left(k_{t+2}+t+1\right) f_{t+2}\left(k_{t+2}\right)}{\left(\prod_{i=1}^{t+1} u_{i}!w_{i}!\right) s_{0}!\left({ }_{0}+2\right) \cdots(t+2) \cdots\left(\sum_{i=1}^{t+1}\left(u_{i}+w_{i}\right)+t+1\right)}
$$

for some $f_{t+2}\left(k_{t+2}\right)$ with $\operatorname{deg}_{k_{t+2}} f_{t+2}\left(k_{t+2}\right)=\sum_{i=1}^{t+1}\left(u_{i}+w_{i}\right)-1$, as desired.
(2) The proof can be done in the same way as in (1), hence we omit it.

Let q be an odd positive integer and let Γ be a commutative ring. Set $(q+1) / 2=s$. For a non negative integer i, we define the subset L_{i} of $\boldsymbol{Z} \times \boldsymbol{Z}$ as follows:

$$
L_{i}= \begin{cases} \begin{cases}(1,1+i), \cdots,(s-i, s),(s-i, s+1), \cdots,(s, s+i+1), \\ (s+1, s+i+1), \cdots \cdots \cdots,(q-i, q) & \text { if } 1 \leqq i \leqq s-2 \\ \{(1, s),(1, s+1), \cdots \cdots \cdots,(s-1, q)\} & \text { if } i=s-1 \\ \{(1, i+2),(2, i+3), \cdots \cdots \cdots,(q-i-1, q)\} & \text { if } s \leqq i \leqq q-2 \\ \phi & \text { if } q-1 \leqq i \\ \{(k, h)\}_{1 \leqq k, h \leqq q} \backslash \bigcup_{i=1}^{q-2} L_{i} & \text { if } i=0\end{cases} \end{cases}
$$

For each L_{i}, define $W_{i}(q, \Gamma)=\left\{\left(x_{k, k}\right) \in M_{q}(\Gamma) \mid x_{c, d}=0\right.$ if $\left.(c, d) \notin L_{i}\right\}$ and set $\bar{W}_{k}(q, \Gamma)=\bigcup_{i \geqq k} W_{i}(q, \Gamma)$.

Lemma 1.3. Let i, j be positive integers. Suppose that $X_{i} \in W_{i}(q, \Gamma)$ and $Y_{j} \in W_{j}(q, \Gamma)$. Then $X_{i} Y_{j} \in W_{i+j}(q, \Gamma)$.

Proof. When $\geqq \geqq(q-1) / 2$ or $j \geqq(q-1) / 2$, the assertion can easily be verified. Hence we have only to consider the following cases:

Case 1. $i, j<(q-1) / 2$ and $i+j<(q-1) / 2$.
Case 2. $i, j<(q-1) / 2$ and $i+j=(q-1) / 2$.
Case 3. $i, j<(q-1) / 2$ and $i+j>(q-1) / 2$.
Case 1. Denote by $E_{k, h}$ a matrix unit (i.e. $E_{k, h}$ has an entry 1 at position (k, h) and zero elsewhere). Set $(q+1) / 2=s$ and write

$$
\begin{aligned}
X_{i}= & x_{1} E_{1,1+i}+x_{2} E_{2,2+i}+\cdots+x_{s-i} E_{s-i, s}+x_{s-i+1} E_{s-i, s+1}+\cdots \\
& \cdots+x_{s+1} E_{s, s+i+1}+x_{s+2} E_{s+1, s+i+1}+\cdots+x_{q-i+1} E_{q-i, q},
\end{aligned}
$$

and

$$
\begin{aligned}
Y_{j}= & y_{1} E_{1,1+j}+y_{2} E_{2,2+j}+\cdots+y_{s-j} E_{s-j, s}+y_{s-j+1} E_{s-j, s+1}+\cdots \\
& \cdots+y_{s+1} E_{s, s+j+1}+y_{s+2} E_{s+1, s+j+1}+\cdots+y_{q-j+1} E_{q-j, q}, \text { where } x_{r}, y_{t} \in \Gamma .
\end{aligned}
$$

Then

$$
\begin{aligned}
X_{i} Y_{j}= & x_{1} y_{1+i} E_{1,1+i+j}+\cdots+x_{s-i-j} y_{s-j} E_{s-i-j, s}+x_{s-i-j} y_{s-j+1} E_{s-i-j, s+1} \\
+ & \cdots+x_{s-i} y_{s+1} E_{s-i, s+j+1}+x_{s-i+1} y_{s+2} E_{s-i, s+j+1}+\cdots \\
& \cdots+x_{s+1} y_{s+i+2} E_{s, s+i+j+1}+x_{s+2} y_{s+i+2} E_{s+1, s+i+j+1}+\cdots \\
& \cdots+x_{q-i-j+1} y_{q-j+1} E_{q-i-j, q} .
\end{aligned}
$$

Therefore $X_{i} Y_{j} \in W_{i+j}(q, \Gamma)$.
The assertion in Case 2 and Case 3 can be proved in the same way as in Case 1, and therefore we omit them.

Let X be an arbitrary element in $M_{q}(\Gamma)$. Since $W_{i}(q, \Gamma) \cap W_{j}(q, \Gamma)=\{0\}$ for $i \neq j, X$ can be expressed uniquely as follows:

$$
X=X_{0}+X_{1}+\cdots+X_{q-2}, \text { where } X_{i} \in W_{i}(q, \Gamma) .
$$

We call X_{i} the i-th component of X.

2. Proof of Theorem

Write $G=C_{n} \cdot C_{q}=\left\langle\sigma, \tau \mid \sigma^{n}=\tau^{q}=1, \tau \sigma \tau^{-1}=\sigma^{r}\right\rangle$. Consider the pullback diagram

where $\Sigma=\sum_{i=0}^{n-1} \sigma^{i}$ and $F_{n}=\boldsymbol{Z} / n \boldsymbol{Z}$.
Write $S=\boldsymbol{Z}[\sigma] /(\Sigma)$ and $\Lambda=\boldsymbol{Z} G /(\Sigma)$. Define the Λ-homomorphisms

$$
f_{k}: S\left(1-h_{1}(\sigma)\right)^{k} \rightarrow \Lambda, \quad 0 \leqq k \leqq q-1,
$$

by $s\left(1-h_{1}(\sigma)\right)^{k} \rightarrow s\left\{1+\left(\frac{1-h_{1}(\sigma)}{1-h_{1}(\sigma)^{r}}\right)^{k} h_{1}(\tau)+\cdots+\left(\frac{1-h_{1}(\sigma)}{1-h_{1}(\sigma)^{q-1}}\right)^{k} h_{1}(\tau)^{q-1}\right\}, \quad s \in S$, and set $f=f_{0}+\cdots+f_{q-1}: S \oplus \cdots \oplus S\left(1-h_{1}(\sigma)\right)^{q-1} \rightarrow \Lambda$. Then f is a Λ-isomorphism ([3, Lemma 3.3]).

For a module M over a group H, we define $M^{H}=\{x \in M \mid h x=x$ for any $h \in$ $H\}$. Set $R=S^{\langle\tau\rangle}, P_{0}=\left(1-h_{1}(\sigma)\right) S$ and $P=P_{0} \cap R$. Then

$$
\Lambda \cong\left(\begin{array}{ccc}
R \cdot & \cdot & R \\
P \cdot & & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
P \cdot & \cdot & \cdot
\end{array}\right)\left(\cong M_{q}(R)\right)
$$

as R-algebras ([3, Proposition 3.4]). This isomorphism is the composite or the following two isomorphisms:

$$
\varphi: \Lambda \rightarrow \operatorname{End}_{\Lambda}(\Lambda)^{\circ}, \text { where } \varphi(u)(\lambda)=\lambda u, u, \lambda \in \Lambda
$$

and

$$
\begin{aligned}
\psi: \operatorname{End}_{\Lambda}(\Lambda)^{\circ} & \cong \operatorname{End}_{\Lambda}\left(S \oplus S\left(1-h_{1}(\sigma)\right) \oplus \cdots \oplus S\left(1-h_{1}(\sigma)\right)^{q-1}\right)^{\circ} \\
& \cong\left\{\underset{0 \leq i, j \leq q-1}{\oplus} \operatorname{Hom}_{\Lambda}\left(S\left(1-h_{1}(\sigma)\right)^{i}, S\left(1-h_{1}(\sigma)\right)^{j}\right)\right\}^{\circ} \\
& \cong\left(\begin{array}{lll}
R & \cdots & \cdot \\
P & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
P & \cdot & P
\end{array}\right)
\end{aligned}
$$

Here, $\operatorname{End}_{\Lambda}(\Lambda)^{\circ}$ denotes the opposite ring of $\operatorname{End}_{\Lambda}(\Lambda)$.
Write

$$
\Delta=\left(\begin{array}{cccc}
R & \cdot & \cdot & \cdot \\
P \cdot & R & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
P \cdot & \cdot & P & R
\end{array}\right)
$$

For $x \in \Lambda$, we set $\psi \circ \varphi(x)=\left(b_{i, j}(x)\right) \in \Delta$.
We now determine $\bar{b}_{i, i}\left(h_{1}(\tau)\right), 1 \leqq i \leqq q$, where $\bar{b}_{i, i}\left(h_{1}(\tau)\right)$ is the image of $b_{i, i}\left(h_{1}(\tau)\right)$ under the map $R \rightarrow R / P$. Set

$$
x_{k}=1+\left(\frac{1-h_{1}(\sigma)}{1-h_{1}(\sigma)^{r}}\right)^{k} h_{1}(\tau)+\cdots+\left(\frac{1-h_{1}(\sigma)}{1-h_{1}(\sigma)^{r^{q-1}}}\right)^{k} h_{1}(\tau)^{q-1} .
$$

Since g_{1} is surjective and $\Lambda=S x_{0}+\cdots+S x_{q-1}, F_{n}[\tau]=F_{n} g_{1}\left(x_{0}\right)+\cdots+F_{n} g_{1}\left(x_{q-1}\right)$. Hence $g_{1}\left(x_{i}\right), 0 \leqq i \leqq q-1$, are linearly independent over F_{n}. Denote by π_{k}, $0 \leqq k \leqq q-1$, the projection from Λ to $S x_{k}$. Then $\varphi\left(h_{1}(\tau)\right) \circ \pi_{k}$ is a Λ-homomorphism from Λ to $S x_{k}$. If we put $\varphi\left(h_{1}(\tau)\right)\left(x_{k}\right)=a_{0} x_{0}+\cdots+a_{q-1} x_{q-1}, a_{i} \in S$, $\left(\varphi\left(h_{1}\right.\right.$ $\left.(\tau)) \circ \pi_{k}\right)\left(x_{k}\right)=\pi_{k}\left(\varphi\left(h_{1}(\tau)\right)\left(x_{k}\right)\right)=a_{k} x_{k}$. Hence $a_{k} \in R$ and so $g_{1}\left(a_{k}\right)=\bar{b}_{k+1, k+1}\left(h_{1}(\tau)\right)$, by the definition of ψ. We have $g_{1}\left(\varphi\left(h_{1}(\tau)\right)\left(x_{k}\right)\right)=g_{1}\left(x_{k} h_{1}(\tau)\right)=g_{1}\left(a_{0}\right) g_{1}\left(x_{0}\right)+\cdots \cdots$ $\cdots \cdots \cdots+g_{1}\left(a_{q-1}\right) g_{1}\left(x_{q-1}\right)$ in $F_{n}[\tau]$.
Write this equality explicitly as follows:

$$
\begin{aligned}
& r^{-(q-1) k}+\tau+\boldsymbol{r}^{-k} \tau^{2}+\quad \cdots \cdots \cdots \cdots \cdots \cdots+r^{-(q-2) k} \tau^{q-1} \\
& =g_{1}\left(a_{0}\right)\left(1+\tau+\tau^{2}+\quad \cdots \cdots \cdots . \quad+\tau^{q-1}\right) \\
& + \\
& +g_{1}\left(a_{k}\right)\left(1+r^{-k} \tau+r^{-2 k} \tau^{2}+\quad \cdots \cdots \cdots \cdots \cdots \cdots+r^{-(q-1) k} \tau^{q-1}\right) \\
& +g_{1}\left(a_{q-1}\right)\left(1+\boldsymbol{r}^{-(q-1)} \boldsymbol{\tau}+\boldsymbol{r}^{-2(q-1)} \boldsymbol{\tau}^{2}+\quad \cdots \cdots \cdots \quad+\boldsymbol{r}^{-(q-1)^{2}} \boldsymbol{\tau}^{q-1}\right) .
\end{aligned}
$$

Since $g_{1}\left(x_{i}\right), 0 \leqq i \leqq q-1$, are linearly independent over $F_{n},\left(g_{1}\left(a_{0}\right), \cdots, g_{1}\left(a_{q-1}\right)\right)$ is uniquely determined. If we set $g_{1}\left(a_{k}\right)=r^{k}$ and $g_{1}\left(a_{j}\right)=0$ for every $j, j \neq k$, then this satisfies the equality. Thus we have $\bar{b}_{k+1, k+1}\left(h_{1}(\tau)\right)=g_{1}\left(a_{k}\right)=r^{k}$.

By a similar argument, we see that $\bar{b}_{i, i}\left(h_{1}(\sigma)\right)=1,1 \leqq i \leqq q$.
Define a ring isomorphism $\Phi: F_{n}[\tau] \rightarrow F_{n}^{q}$ by $\tau \rightarrow\left(1, r, \cdots, r^{q-1}\right)$, Further define $\Psi: \Delta \rightarrow F_{n}^{q}$ by $\left(b_{i, j}\right) \rightarrow\left(\bar{b}_{1,1}, \cdots, \bar{b}_{q, q}\right)$. Then the following diagram is commutative:

Let ι be the involution of $\boldsymbol{Z}[\tau]$ defined by $\iota\left(\tau^{i}\right)=\tau^{-i}, 0 \leqq i \leqq q-1$. Since q is odd, by virture of [6, Remark 2.7], $U(\boldsymbol{Z}[\tau])= \pm\langle\tau\rangle \times V\left([\boldsymbol{Z}[\tau]]^{\langle\iota\rangle}\right)$ where $V\left([\boldsymbol{Z}[\tau]]^{\langle\iota\rangle}\right)=U\left([\boldsymbol{Z}[\tau]]^{\langle\iota\rangle}\right) \cap V(\boldsymbol{Z}[\tau])$. Let $u \in V\left([\boldsymbol{Z}[\tau]]^{\langle\iota\rangle}\right)$. If we write $\Phi \circ g_{2}(u)$ $=\left(u_{1}, \cdots, u_{q}\right)$, then, by the definition of $\Phi, u_{(q+1) / 2}=u_{(q+3) / 2}$. The theorem of Higman ([4]) shows that $V\left([\boldsymbol{Z}[\tau]]^{\langle\iota\rangle}\right)$ is torsion-free. It is easy to see that $g_{1}(U(\Lambda)) \supseteqq g_{2}(U(\boldsymbol{Z}[\tau]))$ and $g_{2}(U(\boldsymbol{Z}[\tau]))= \pm\langle\tau\rangle \times g_{2}\left(V\left([\boldsymbol{Z}[\tau]]^{\langle\langle \rangle}\right)\right)$. Define

$$
F_{1}=\left\{\left(b_{i, j}\right) \in U(\Delta) \mid \bar{b}_{(q+1) / 2,(q+3) / 2}=0\right\} \cap \Psi^{-1}\left(\Phi \circ g_{2}\left(V\left([\boldsymbol{Z}[\tau]]^{\langle\iota\rangle}\right)\right)\right) .
$$

Then F_{1} is contained in the subgroup $\left\{\left(d_{i, j}\right) \in U(\Delta) \mid \bar{d}_{(q+1) / 2,(q+3) / 2}=0\right.$ and $\bar{d}_{(q+1) / 2,(q+1) / 2}=\bar{d}_{(q+3) / 2,(q+3) / 2\}}$.

We now show that F_{1} is a normal subgroup of $U(\Delta)$. Let $Y=\left(a_{i, j}\right) \in$ $U(\Delta)$. If we write $Y^{-1}=\left(c_{i, j}\right)$, then $a_{(q+1) / 2,(q+1) / 2} \cdot c_{(q+1) / 2,(q+1) / 2} \equiv 1(\bmod P)$, $a_{(q+3) / 2,(q+3) / 2} \cdot c_{(q+3) / 2,(q+3) / 2} \equiv 1(\bmod P)$ and $a_{(q+1) / 2,(q+1) / 2} \cdot c_{(q+1) / 2,(q+3) / 2}+a_{(q+1) / 2,(q+3) / 2}$. $c_{(q+3) / 2,(q+3) / 2} \equiv 0(\bmod P)$. Let $X=\left(b_{i, j}\right) \in F_{1}$ and write $Y X Y^{-1}=\left(z_{i, j}\right)$. Then, by a direct calculation, $z_{i, i} \equiv b_{i, i}(\bmod P), 1 \leqq i \leqq q$, and $z_{(q+1) / 2,(q+3) / 2} \equiv 0(\bmod P)$. Hence F_{1} is a normal subgroup of $U(\Delta)$. Define $F_{2}=\left\{\left(b_{i, j}\right) \in F_{1} \mid \bar{b}_{i, i}=1,1 \leqq i\right.$ $\leqq q\}$.

Proposition 2.2. $\quad F_{2}$ is torsion-free.

Proof. Step 1. Reduction to the case where n is a prime. By the same way as in [5, Proposition 1.3], we can show that $F_{3}=\left\{X \in F_{2} \mid X \equiv E(\bmod P)\right\}$ is torsion-free. Hence it suffices to show that every element in $F_{2} \backslash F_{3}$ is of infinite order.

Let $n=p_{1}^{e_{1} \cdots} p_{t}^{e_{t}}$ be the prime decomposition of n. Denote by Φ_{m} the m-th cyclotomic polynomial. Further, we denote by $\eta_{i}, 1 \leqq i \leqq t$, (resp. $\eta_{i, j}$, $\left.1 \leqq i \leqq t, 1 \leqq j \leqq e_{i}\right)$ the natural maps $\boldsymbol{Z}[\sigma] \rightarrow \boldsymbol{Z}[\sigma] /\left(\prod_{j=1}^{e_{i}} \Phi_{p_{i}}^{j}(\sigma)\right)$ (resp. $\boldsymbol{Z}[\sigma] \rightarrow$ $\left.\boldsymbol{Z}[\sigma] /\left(\Phi_{p_{i}^{j}}(\sigma)\right)\right)$. Write $\boldsymbol{Z}[\sigma] /\left(\prod_{j=1}^{e_{i}} \Phi_{p_{i}^{j}}(\sigma)\right)=S\left(p_{i}\right)$ and $\boldsymbol{Z}[\sigma] /\left(\Phi_{p_{i}^{j}}(\sigma)\right)=S\left(p_{i}, j\right)$. Set $S\left(p_{i}\right)^{\langle\tau\rangle}=R\left(p_{i}\right), R\left(p_{i}\right) \cap\left(1-\eta_{i}(\sigma)\right) S\left(p_{i}\right)=P\left(p_{i}\right), S\left(p_{i}, j\right)^{\langle\tau\rangle}=R\left(p_{i}, j\right)$ and $R\left(p_{i}, j\right)$ $\cap\left(1-\eta_{i, j}(\sigma)\right) S\left(p_{i}, j\right)=P\left(p_{i}, j\right)$. Note that $R / P \cong F_{n}$. Consider the natural maps:

$$
T_{p_{k}}: M_{q}(R) \rightarrow M_{q}\left(R\left(p_{k}\right)\right), 1 \leqq k \leqq t .
$$

If we take $\left(a_{i, j}\right) \in F_{2} \backslash F_{3}$, then there exists $p_{h} \in\left\{p_{1}, \cdots, p_{t}\right\}$ such that $T_{p_{h}}\left(\left(a_{i, j}\right)\right) \equiv E$
$\left(\bmod P\left(p_{h}\right)\right)$. For each $a_{i, j}, 1 \leqq i<j \leqq q$, we can take $m_{i, j} \in\{0, \cdots, n-1\}$ such that $a_{i, j} \equiv m_{i, j}(\bmod P)$. Write $m_{i, j}=p_{h^{i}, j m_{i, j}^{\prime}}^{c_{i}}, p_{h} X m_{i, j}^{\prime}$, and set $c=\operatorname{Min}\left\{c_{i, j} \mid 1 \leqq i<j\right.$ $\leqq q\}$. Further, let

$$
\Psi_{p_{h}}: M_{q}\left(R\left(p_{h}\right)\right) \rightarrow M_{q}\left(R\left(p_{h}, 1\right)\right) \oplus \cdots \oplus M_{q}\left(R\left(p_{h}, e_{h}\right)\right)
$$

be the natural injection, and let

$$
\pi_{d}: M_{q}\left(R\left(p_{h}, 1\right)\right) \oplus \cdots \oplus M_{q}\left(R\left(p_{h}, e_{h}\right)\right) \rightarrow M_{q}\left(R\left(p_{h}, d\right)\right), 1 \leqq d \leqq e_{h}
$$

be the projections.
Suppose that $1 \leqq c$. Then $\left(\pi_{d} \circ \Psi_{p_{h}} \circ T_{p_{h}}\right)\left(\left(a_{i, j}\right)\right) \equiv E\left(\bmod P\left(p_{h}, d\right)\right), 1 \leqq d \leqq e_{h}$, and hence $\left(a_{i, j}\right)$ is of infinite order.

Next, suppose that $c=0$. Then $\left(\pi_{1} \circ \Psi_{p_{h}} \circ T_{p_{h}}\right)\left(\left(a_{i j}\right)\right) \equiv E\left(\bmod P\left(p_{h}, 1\right)\right)$, and hence, if we can show the assertion in the case where n is a prime, the proof is completed.

Step 2. The case where $n=p$ a prime.
Take an element B of F_{2}. Then $B \equiv X(\bmod P)$ for some X whose entries are in $\{0, \cdots, p-1\}$. By the definition of $F_{2}, X \in G L(q, Z)$. Write $B=X+P^{e} A$ where $A \in M_{q}(R)$ and $e \geqq 1$. Further, set $X=E+X_{1}+\cdots+X_{q-2}$ (resp. $X^{-1}=$ $E+Y_{1}+\cdots+Y_{q-2}$) where X_{i} (resp. Y_{i}) is the i-th component of X (resp. Y). It is easy to see that $Y_{1}=-X_{1}$. We write $A^{(k)}=X^{-k} A X^{k}$. Then

$$
\begin{aligned}
B^{p} & =\left(X+P^{e} A\right)^{p}=X^{p}+\sum_{t=1}^{p}\left(P^{t e}\left(\sum_{i_{1}+\cdots+i_{t+1}=p-t, i_{1}, \cdot, i_{t+1} \geq 0} X^{i_{1}} A X^{i_{2}} \ldots X^{i_{t}} A X^{i_{t+1}}\right)\right) \\
& =X^{p}+\sum_{t=1}^{p}\left(P^{t e} X^{p-t}\left(\sum_{p-t \geq k_{t} \geq \cdots \geq k_{1} \geq 0} A^{\left(k_{t}\right) \cdots} \cdots A^{\left(k_{1}\right)}\right)\right) \\
& =X^{p}+\sum_{t=1}^{p}\left(P ^ { t e } X ^ { p - t } \left(\sum _ { k _ { t } = 0 } ^ { p - t } A ^ { (k _ { t }) } \left(\sum_{k_{t-1}=0}^{k_{t} t} A^{\left(k_{t-1}\right)}\left(\cdots\left(\sum_{k_{2}=0}^{k_{3}} A^{\left(k_{2}\right)}\left(\sum_{k_{1}=0}^{k_{2}} A^{\left(k_{1}\right)}\right)\right) \cdots\right) .\right.\right.\right.
\end{aligned}
$$

Set $X^{p}=E+\tilde{X}_{1}+\cdots+\tilde{X}_{q-2}$ where \tilde{X}_{i} is the i-th component of X^{p}. Then, by (1.3), $\tilde{X}_{i}=\sum_{t=1}^{i}\left(\binom{p}{t}_{i_{1}+\cdots+i_{t}=i} X_{i_{1}} \cdots X_{i_{t}}\right)$, and hence $X^{p} \equiv E(\bmod p)$. Therefore $B^{p} \equiv E(\bmod P)$. Thus, if B is of finite order, B^{p} must be equal to E. Suppose that there exists $B=X+P^{e} A \in F_{2}$ such that $B^{p}=E$ and $B \neq E$. Set $S_{i}=\sum_{1 \leqq h_{1}, \cdots, h_{i} \leq q-2}$ $Y_{h_{1}} \cdots Y_{h_{i}}, T_{i}=\sum_{1 \leq h_{1}, \cdots, h_{i} \leq q-2} X_{h_{1}} \cdots X_{h_{i}}$ and $S_{0}=T_{0}=E$. Since $X^{k}=\left(E+X_{1}+\cdots+\right.$ $\left.X_{q-2}\right)^{k}=E+\binom{k}{1} T_{1}+\cdots+\binom{k}{k} T_{k}$ and $X^{-k}=\left(E+Y_{1}+\cdots+Y_{q-2}\right)^{k}=E+\binom{k}{1} S_{1}+\cdots$ $+\binom{k}{k} S_{k}, A^{(k)}=X^{-k} A X^{k}=\sum_{0 \leq u, w \leq k}\binom{k}{u}\binom{k}{w} S_{u} A T_{w} . \quad$ Since $S_{i}, T_{i} \in \bar{W}_{i}(q, Z)$ by (1.3), $S_{i}=T_{i}=0$ for $i \geqq q-1$. Therefore we may write $A^{(k)}=\sum_{0 \leqq u, w \geqq q-2}\binom{k}{u}\binom{k}{w} S_{u} A T_{w}$.

Hence, if we write $\quad(*) \sum_{p-t \geq k_{t} \geq \cdots \geq k_{1} \geq 0} A^{\left(k_{t}\right) \cdots} A^{\left(k_{1}\right)}=\sum_{0 \leqq u_{i} ; w_{j} \leq q-2} a_{u_{t} w_{t} \cdots u_{1} w_{1}} S_{u_{t}} A T_{w_{t}} \cdots S_{u_{1}}$ $A T_{w_{1}}$, then $a_{u_{t} w_{t} \cdots u_{1} w_{1}}=\sum_{k_{t}=0}^{p-t}\binom{k_{t}}{u_{t}}\binom{k_{t}}{w_{t}}\left(\sum_{k_{t-1}=0}^{k_{t}}\binom{k_{t-1}}{u_{t-1}}\binom{k_{t-1}}{w_{t-1}}\left(\cdots\left(\sum_{k_{1}=0}^{k_{2}}\binom{k_{1}}{u_{1}}\binom{k_{1}}{w_{1}}\right) \cdots\right)\right.$.

Set $\left(X+P^{e} A\right)^{p}=X^{p}+H$.
We now show that the 1 -st component of H is divisible by $p P^{e}$. If we write $(p-1) / q=t_{0}, P^{t_{0}}=p$. Suppose that $t>t_{0}$, then $P^{e t_{0}}=p^{e} \mid P^{t e}$, and so for such $t, p P^{e} \mid P^{t e} X^{p-t}\left(\sum_{p-t \geq} \sum_{\geqq \geq k_{1} \geq 0} A^{\left(k_{t}\right)} \ldots A^{\left(k_{1}\right)}\right)$. On the other hand, by (1.2), $a_{u_{t} w_{t} \cdots u_{1} w_{1}}$ is divisible by p if $\sum_{i=1}^{t}\left(u_{i}+w_{i}\right)+t<p$. Hence we have only to consider the case where $t \leqq t_{0}$ and $\sum_{i=1}^{t}\left(u_{i}+w_{i}\right)+t \geqq p$.

We show that the 0 -th and 1 -st components of $S_{u_{t}} A T_{w_{t}} \cdots S_{u_{1}} A T_{w_{1}}$ are 0 , if $t \leqq t_{0}$ and $\sum_{i=1}^{t}\left(u_{i}+w_{i}\right)+t \geqq p$.

Case 1. $u_{t}+w_{1} \geqq q+1$. Suppose that $u_{t} \geqq(q+1) / 2$. Write $S_{u_{t}}=\left(x\left(u_{t}\right)_{i, j}\right)$ and $T_{w_{1}}=\left(x\left(w_{1}\right)_{i, j}\right)$. Then $x\left(u_{t}\right)_{i, j}=0$ for $i \geqq q-u_{t}$ and $x\left(w_{1}\right)_{i, j}=0$ for $j \leqq w_{1}$ because $S_{u_{t}} \in \bar{W}_{u_{t}}(q, R)$ and $T_{w_{1}} \in \bar{W}_{w_{1}}(q, R)$. Hence, if we write $S_{u_{t}} A T_{w_{t}} \cdots$ $S_{u_{1}} A T_{w_{1}}=\left(x_{i, j}\right), x_{i, j}=0$ whenever $i \geqq q-u_{t}$ or $i \leqq w_{1}$. Since $u_{t}+w_{1} \geqq q+1$, the 0 -th and 1 -st components of ($x_{i, j}$) are 0 . The proof in the case $w_{1} \geqq(q+1) / 2$ is similar to that in the case $u_{t} \geqq(q+1) / 2$, so, we omit it.

Case 2. $u_{t}+w_{1} \leqq q$. Suppose that there exists $i \in\{1, \cdots, t-1\}$ such that $q-w_{i+1} \leqq u_{i}$. Then $T_{w_{i+1}} S_{u_{i}}=0$, and hence $S_{u_{t}} A T_{w_{t}} \cdots S_{u_{1}} A T_{w_{1}}=0$. Therefore we have only to consider the case where $q-w_{i+1}>u_{i}$ for each $i, 1 \leqq i \leqq t-1$. Further it is easy to see that $T_{w_{i+1}} S_{u_{i}}=0$ if $w_{i+1}+u_{i}=q-1$. Hence, we may assume that $q-2 \geqq w_{i+1}+u_{i}, 1 \leqq i \leqq t-1$, But in this case

$$
\sum_{i=1}^{t}\left(u_{i}+w_{i}\right)=u_{t}+w_{1}+\sum_{i=1}^{t-1}\left(w_{i+1}+u_{i}\right) \leqq q+(q-2)(t-1) \leqq t_{0}(q-2)+2 .
$$

On the other hand,

$$
\sum_{i=1}^{t}\left(u_{i}+w_{i}\right) \geqq p-t=q t_{0}+1-t
$$

Therefore

$$
q t_{0}+1-t \leqq \sum_{i=1}^{t}\left(u_{i}+w_{i}\right) \leqq t_{0}(q-2)+2 .
$$

This is impossible because $t \leqq t_{0}$ and $t_{0} \neq 1$.
Hence the 0 -th and 1 -st components of $S_{u_{t}} A T_{w_{t}} \cdots S_{u_{1}} A T_{w_{1}}$ are 0 , and so the 1 -st component of $X^{p-t} S_{u_{t}} A T_{w_{t}} \cdots S_{u_{1}} A T_{w_{1}}$ is 0 .

Thus we conclude that the 1 -st component of H is divisible by $p P^{e}$.
On the other hand, the 1 -st component of X^{p} is $p X_{1}$. Since every entry in X_{1} is in $\{0, \cdots, p-1\}, X_{1}$ must be equal to 0 . Hence $Y_{1}=-X_{1}=0$. There-
fore, if $i \geqq(q-1) / 2, S_{i}=T_{i}=0$ because $S_{i}, T_{i} \in \bar{W}_{i}(q, R)$. Thus, if $S_{u_{t}} A T_{w_{t}} \cdots$ $S_{u_{1}} A T_{w_{1}} \neq 0$, then we must have $u_{i} w_{j} \leqq(q-3) / 2$ for all $u_{i}, w_{j} 1 \leqq i, j \leqq t$. Suppose that $t \leqq t_{0}$, then

$$
\sum_{i=1}^{t}\left(u_{i}+w_{i}\right)+t \leqq t(q-2) \leqq t_{0}(q-2) \leftrightarrows p .
$$

Hence, for every $S_{u_{t}} A T_{w_{t}} \cdots S_{u_{1}} A T_{w_{1}} \neq 0$, its coefficient in (*) is divisible by p. Therefore H is divisible by $p P^{e}$. As $B^{p}=X^{p}+H=E, X^{p} \equiv E\left(\bmod p P^{e}\right)$. However \tilde{X}_{2} is $p X_{2}+\binom{p}{2} X_{1}^{2}=p X_{2}$, and so X_{2} must be equal to 0 . Continuing this procedure, we get $X_{i}=0$ for any $i, 1 \leqq i \leqq q-2$. Therefore $X+P^{e} A \equiv E(\bmod$ P). This contradicts the fact that B is of finite order. Thus the proof is completed.

Proof of Theorem. Considering the property of the pullback diagram (2.1), we get $\left[\left(\psi \circ \rho \circ h_{1}\right)(V(\boldsymbol{Z} G)): F_{1}\right]=n q$. Therefore, if we set $F=\left(\psi \circ \rho \circ h_{1}\right)^{-1}$ $\left(F_{1}\right)$, then $V(\boldsymbol{Z} G) \triangleright F$ and $[V(\boldsymbol{Z} G): F]=n q$. Take an element u of F.

Suppose that $\left(\psi \circ \rho \circ h_{1}\right)(u)=1$. The restriction of h_{2} to $\left(\psi \circ \varphi \circ h_{1}\right)^{-1}(1) \cap$ $U(\boldsymbol{Z} G)$ yields a group monomorphism $\left(\psi \circ \varphi \circ h_{1}\right)^{-1}(1) \cap U(\boldsymbol{Z} G) \rightarrow U(\boldsymbol{Z}[\tau])$. However, since $\left.\Phi \circ g_{2} \circ h_{2}(u)=1, h_{2 i} u\right)$ is of infinite order by [1, Theorem 3.1], hence so is u.

Suppose next that $1 \neq\left(\psi \circ \rho \circ h_{1}\right)(u) \in F_{2}$. Then it is of infinite order by (2.2), hence so is u.

Finally, suppose that $\left(\psi \circ \rho \circ h_{1}\right)(u) \in F_{1} \backslash F_{2}$. Then, by the definition of F_{1}, there exists an element v of $V\left([Z[\tau]]^{\langle\iota\rangle}\right)$ such that $\Phi \circ g_{2}(v)=\left(\Psi \circ \psi \circ \varphi \circ h_{1}\right)(u)$. However v is of infinite order, hence so is u. This shows that F is torsionfree. Therefore we get $F \cap G=\{1\}$. Thus F is a torsion-free normal subgroup of $V(\boldsymbol{Z} G)$ such that $V(\boldsymbol{Z} G)=F \cdot G$. This completes the proof.

References

[1] J.A. Cohn and D. Livingstone: On the structure of group algebras, I, Canad. J. Math. 17 (1965), 583-593.
[2] R.K. Dennis: The structure of the unit group of group rings, Ring theory II, Marcel Dekker, 1977, 103-130.
[3] S. Endo, T. Miyata and K. Sekiguchi: Picard groups and automorphism groups of integral group rings of metacyclic groups, to appear.
[4] G. Higman: The units of group rings, Proc. London Math. Soc. 46 (1940), 231248.
[5] T. Miyata: On the units of the integral group ring of a dihedral group, to appear in J. Math. Soc. Japan.
[6] : A normal integral basis theorem for dihedral groups, to appear in Tôhoku Math. J..
[7] K. Sekiguchi: On the units of integral group rings, to appear in Tokyo J. Math.

Department of Mathematics Tokyo Metropolitan University Fukazawa, Setagaya-ku
Tokyo 158, Japan

