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THE GROUP OF UNITS OF THE INTEGRAL GROUP
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We denote by U(A) the group of units of a ring Λ. Let G 'be a finite group
and let ZG be its integral group ring. Define V(ZG)= {we U(ZG)\6(u)=1}
where £ denotes the augmentation map of ZG. In this paper we will study
the following

Problem. Is there a torsion-free normal subgroup F of V(ZG) such that
V(ZG)=F-G1

Denote by Sn the symmetric group on n symbols, by Dn the dihedral group
of order 2n and by Cn the cyclic group of order n. The problem has been solved
affirmatively in each of the following cases:

(1) G an abelian group (Higman [4]),
(2) G=S3 (Dennis [2]):

(3) G=Dny n odd (Miyata [5]) or
(4) G a metabelian group such that the exponent of GjG' is 1, 2, 3, 4 or

6 where G' is the commutator subgroup of G ([7]).
The purpose of this paper is to solve the problem for a class of metacyclic

groups. Our main result is the following

Theorem. Let G=Cn Cq be the semidίrect product of Cn by Cq such that
(n,q)=l, q odd, and Cq acts faithfully on each Sylow subgroup of Cn. Then there
exists a torsion-free normal subgroup F of V(ZG) such that V(ZG)=F G.

1. Lemmas

We begin with

Lemma 1.1. Let r, k} n be non negative integers and h be a positive integer.
Then

(1) ΣJH-1) - (r+k) = (n+l) - (n+k+l)l(k+l), and

(2) Σr»(r+1) - (r+k) =



756 K. SKEIGUCHI

where f(n,k,h) is a polynomial with respect to n, k and h whose coefficients are in

Z, and its degree with respect to n is h-1. (Notation: degnf(n}k3h)=h-\)

Proof. (1) is well known. (2) is also known for A = l . In fact, we have

±r(r+l).- (r+k) = n(n+\) - (n+k+1)j(k+2).
r 0

For h^2 (2), can be shown by induction on h.

For integers a, b such that a>0y όΞ>0 and a^b, we denote by \j\ the

binomial coefficient. We extend this notation formally to the case where 0 ^

a<b as (^Oandset (jjW- L e t N={x*=Z\x>0} and N=N U {0}.

For (ί, kt+1, uly . - , uty ΪDU - , wt)^NxN2t+\ define

For simplicity we write Bt—Bt>kt+UUlt...wt.

L e m m a 1.2. Lei s be a positive integer, and let uh wjf l^i, jtίs, be non

negative integers,

(1) Suppose that there exists sOy l^sQ^s, such that wl +«; l = 0 for any iy

l<:i^sOy anduSo+1+wso+1^l. Then

Bt=\ kt+1(kt+1+1)-"(kt+1+t)ft+1(kt+1) ifso+l

k & ^t^

where ft+i(kt+ι) is a polynomial with respect to kt+1 whose coefficients are in Zy and
t

deg * / + 1 / ί + i(Λ / + i)=Σ(w f + w ί ) — 1 .
i = l

(2) Suppose that u^w^λ. Then

ί kt+1(kt+1+ί) . - (kt+1+ήft+1(ki+1)
Bt=\~~t ϊ / for \<t<s

where ft+1(kt+1) is a polynomial with respect to kt+1 whose coefficients are in Zy and

i = l

Proof. (1) We use the induction on t. First, assume that t^so> If t=ly
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the assertion is clearly valid. Suppose that the following equality holds:

Bt = (kt+1+ί)-(kt+1+t)lt\.

Since 5 ( + 1=*ffβ,,5 t + 1=(A,+ 2+l)...(Λ ( + 2+ί+l)/(/+l)! by (1.1), as desired.

In particular, Bso=(kso+1+l)-(kSQ+1+s0)ls0\.

Next, we will consider the case where t>s0.

Since BSo+1= j l „ L o + 1 δ»o» w e h a v e

•̂ 50 + 1 = ~~j j , 2-1 ^S0+l(^5 0+l~i"V " * (^So+i + ^O^SO+lV^O+l)
So\ USQ+1\ Wso+1\ ho+1=o

for some gS0+1(kSQ+1) wi th degkso+1gso+1(kSQ+1)=uSQ+1+wso+1-l. H e n c e , by (1.1),

Jo' uso+i! ws0+ι! (so+2)'" K )

for some fS0+2(kS0+2) with deg^ o + 2/ S o + 2(^ o + 2)=z/ S o + 1+eί; 5 o + 1— 1. Suppose that the

following equality holds:

j2 _ __ ^ + l ( ^ + l ~t~l) *" (^+l~f"^)/f+l(^/+l)

\\i- ^ t ^ i ' j ^ O ' r o T ^ ) " * V ^ 5 0 + i 1 ^ s o + i ' ^ o ~ τ ~ •*•/ * * * \ ^ 1 •*•/ * * " V ^ *
» = 1 » = 1

for some/ ί+1(A/+1) with deg j k / + J / ί + 1 (Λ ί + 1 )=Σ(«. + ^ . ) —!• T h e n

1 = 1

B = T Ί ( )ί t+1]B =

1 Vf Λ (k +h...(

ί + 1

for some gt+1(kt+1) with d e g J k ί + 1 ^ + i ( * ί + 1 ) = Σ («,-+«;,•)—1. Hence
ί = l

„ ^ + i ( f e t + 2 + l ) - (kl+2+t+l)ft+2(kt+2)

• (ί+2) ••
1=1 t=ι

for some / ί + 2 ( ^ + 2 ) with deg Λ / + 2 / ί + 2 (Λ / + 2 )=Σ(«. +«»,•) — 1 , as desired.

(2) The proof can be done in the same way as in (1), hence we omit it.

Let q be an odd positive integer and let Γ be a commutative ring. Set

(q+l)j2—s. For a non negative integer ι> we define the subset L t of ZxZ as

follows:
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•(1,1+,),...,(,-;,,),(,-;,,+!), ...,(,,,+,•+!),) .f 1<i<f_2

{(1, s), (1, . + 1), , (5-1, q)} if i = j - l

{(1, ;+2), (2, f+3), , ( ί - i - 1 , ?)} if s^i^q-2,

φ if ?—l = i

{W if i = 0 .
t = l

For each L,, define Wfa T)={(xk h)<=Mq(Γ)\xc d=0 if (c,έ/)φL, } and set

Lemma 1.3. L ί̂ /, y be positive integers. Suppose that Xi^W^q.Y) and

ΞWfaΓ). Then XiYj^Wi+jfaΓ).

Proof. When ί^(q—1)/2 or j^(q—1)/2, the assertion can easily be veri-

fied. Hence we have only to consider the following cases:

Case 1. ί,j<{q-\)β and i+j<{q-\)β.

Case 2. i,j<(q-\)β and i+/=( ? - l )/2 .

Case 3. i, j<(q-1)/2 and i+j>(q-1)/2.

Case 1. Denote by jBΛfA a matrix unit (i.e. 2?Λ>A has an entry 1 at position

(k,h) and zero elsewhere). Set (<?+l)/2=5 and write

, 2 - C ' s + l , s + i + l \ " ' ~ Γ X q - i + l ^ q - i , q )

and

Yj = yiEltl+J+y2E2ι2+j-\ \-ys-jEs-Jt8+ys-j+iEt-JtS+1+ —

-+ys+1ES)S+H1+ys+2Es+1>s+j+1-\ [-yq.j+1Eq_Jtqy where xrsyt<EΞT .

Then

' -\-Xs+1ys+i+2I^StS+i+j+iJrXs+2ys+i+2^s+l,s+i+j+l~T' '

Therefore X> Y^Wi+j(q9Y).

The assertion in Case 2 and Case 3 can be proved in the same way as in

Case 1, and therefore we omit them.

Let X be an arbitrary element in Mq(T). Since ^(},Γ)

for i^Fjy X can be expressed uniquely as follows:

X = X0+χ1+...+Xt_2, where I , e % Γ).
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We call X{ the z-th component of X.

2. Proof of Theorem

759

Write G=Cn-Cq=<σ,τ\σ

n=τq=ly Tστ-1=σry. Consider the pullback dia-

gram

ZG Z[r]

I
where Σ=Σσ' ' and Fn=ZjnZ.

(=0

Write 5 = ^ and A=ZG/(Σ). Define the Λ-homomorphisms

fk: S(l-h^)Y-> A, O^k^q-1,

by , ( 1 -

and set/=/0H hfq-i- Sφ ®S(ί—h1(σ))q~1->-A. Then/is aΛ-isomorphism
([3, Lemma 3.3]).

For a module Mover a group H, we define Mff={;x;€E.M\hx=x for any Ae
i ϊ } . Set R=S<T>, P 0 =(l-λ 1 ( σ ) )SandP=P 0 ΓΊ J R. Then

Λ

as i?-algebras ([3, Proposition 3.4]). This isomorphism is the composite or
the following two isomorphisms:

and

φ: A -*• EndΛ(Λ)°, where <p(u)(\) = λw, u, λ e Λ ,

ψ:EndΔ(Λ)o«EndΔ(SΘ5(l-A1(σ))θ Θ5(l-A1(σ))ί-1)°

- { Θ
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Here, EndΔ(Λ)° denotes the opposite ring of EndΛ(Λ).

Write

(R - R)
p . . .

Δ =

For xGΛ, we set ψo<^(#) :==(£. ̂ .

We now determine bt:fl-(λi(τ)),

under the map i? -> R/P. Set

PR)

^i^q, where 6,:ff (λi(τ)) is the image of i, f, (Ai(τ))

Since g1 is surjective and Λ=S# 0 H )rSxq-u Fn[τ]=Fngλ(x^

Hence gi(Xi), O^i^q— 1, are linearly independent over ί1 .̂ Denote by πky

0^k^q—ly the projection from Λ to Sxk. Then φ(hι(r))oπk is a Λ-homomor-

phism from Λ to Sxk. If we put φ(h1(r))(xk)=aoxo-] \-aq-iXq-u ty^S, {φ{hx

(r))oπk)(xk)=πk(φ(h1(τ))(xk))=akxk. Hence ak<=ΞR and so ft(αik)=δik+ltΛ+1(A1(τ)),

by the definition of i/r. We have gi(φ{h1(τ))(xk))=g1(xkh1(τ))=g1(a0)g1(x0)+

Write this equality explicitly as follows:

r" ( β " 1 ) *+τ+r"*τ 2 + +r
-(q-2)k-q-l

+gi(ak)(l+r-kτ+r-2kτ>-

Since ^i(At ), O ^ i ^ g — 1 , are linearly independent over -FΛ,

uniquely determined. If we set gι(ak)=rk and ̂ 1(α<; ) = 0 for every j 9 j Φ^, then

this satisfies the equality. Thus we have 6^_hl^+1(/ϊ1(τ)) =^ x(α^)=r*.

By a similar argument, we see that 5 l t l (A1(cr)) = l, l ^ ί ^ g .

Define a ring isomorphism Φ : ί1

w[τ]->ί1^ by τ - > ( l , r , •• ,r?~1), Further

define Ψ : Δ-»F£ by (ί, f, )-*(δi f i , " ,δ ί t f f ). Then the following diagram is com-

mutative:
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ZG 2-> Z[τ]

H s \g2

(2.1) Λ -^F[τ]

ϊ ψ i

Let c be the involution of Z[τ] defined by ^ T ' ^ T " * , O^i^q— 1. Since q is
odd, by virture of [6, Remark 2.7], ί/(^[τ])=±<τ>χF([Z[τ]]^) where
F([Z[τ]]<ι>)= U([Z[τψ>) n V(Z[τ]). Let we F([Z[τ]]<ι>). If we write Φoft(ιι)
=(wi,• #,Mί), then, by the definition of Φ, U(q+1)/2—U(q+3)/2. The theorem of
Higman ([4]) shows that F([Z[τ]]<ι>) is torsion-free. It is easy to see that
g1(U(A))^g2(U(Z[r])) and£ 2 (tf(zή)) = ±<τ>X£2(F([Z[τ]]<<>)). Define

F, = {( i i > y )e U(Δ)\b(q+1)/2M+3)/2 = 0} ΠΨ- 1 (

Then F1 is contained in the subgroup {(ditJ) G Z7(Δ) | <?(ί+i)/2,(9+3)/2 = 0

^(?+l)/2, ( f f+l)/2= d(q+3)/2, (ff+3V2}

We now show that i^ is a normal subgroup of £/(Δ). Let y=(α, y)e
C/(Δ). If we write y ^ ^ ^ ), then a(q+l)/2M+1)/2-c(q+l)/2M+l)/2=l (mod P),

^+3)/2,(ί+3)/2=0(modP). Let X=(biJ)^Fι and write y j Γ y ^ ^ y ) . Then,
by a direct calculation, ziti = biti (mod P), l5^*ίg#, and ^(ρ+i)/2,(?+3)/2=0 (mod P).
Hence Pj is a normal subgroup of C/(Δ). Define F2={(bi yJePjδ,- , = 1 , l ^ ί

Proposition 2.2. P 2 w torsion-free.

Proof. Step 1. Reduction to the case where n is a prime. By the same
way as in [5, Proposition 1.3], we can show that FZ={X^F2\X=E (mod P)}
is torsion-free. Hence it suffices to show that every element in F2\F3 is of in-
finite order.

Let n=pιi' pe

tt be the prime decomposition of n. Denote by Φm the
m-th cyclotomic polynomial. Further, we denote by ηiy l^i^t, (resp. ηitj,

ei

i^t,l^j^ei) the natural maps Z[σ]-»Z[σ]/(Π ΦΛ>(σ)) (resp. Z[σ]->(

Z\σΛ l(ΦP!(<τ))). Write Z\σ\ /(Π Φpi(a))=S(Pi) and' Z[σ]/(Φpi(σ))=S(Pi,j).

Set S(pi)<τ>=R(pi), R(P<) Π (l-tt(<r))S(fr)=PίP. ). S(phj)<^=R(phj) and *(/>,-,/)
Π (l—Vij(<r))S(Pij)=P(P ,j) Note that RjP^Fn. Consider the natural maps:

If we take (α, j)eF2\F3, then there exists />Ae {^, •••>pt} such that TPk((ai
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(mod P(ph)) For each a i h l^ίi<j^=q, we can take nti ; G {0, « ,w—1} such that

a{j = fΠij (modP). Write mij=pc

h

i^m/

ij,phXm'ih and set c=Min{qj\ l^i<j

^q}. Further, let

ΨPh: Mq{R(ph)) -> Mq{R(ph> 1))Θ - ®Mq{R{phy eh))

be the natural injection, and let

πd: Mq{R{ph> l ) ) θ . - ΦMq(R(phί eh)) -> Mq{R{ph} </)

be the projections.

Suppose that l ^ c . Then (πdoψPhoTPh)((aitJ)) = E (mod P(ph,d)), l^d^eh, and

hence (aitj) is of infinite order.

Next, suppose that ^-=0. Then (τr1oψ/,ΛoΓ/>Λ)((αί j))^E (modP(phy 1)), and
hence, if we can show the assertion in the case where n is a prime, the proof is
completed.

Step 2. The case where n=p a prime.

Take an element B of F2. Then B=X (mod P) for some X whose entries

are in {0, •• ,^—1}. By the definition of F2, X<^GL(q,Z). Write B=X+PeA

where A(=Mq(R) and e^l. Further, set X=E+X^ \-Xq-2 (resp. X~ι=

E+ Yλ-\ \- Yq_2) where X{ (resp. Γ, ) is the ί-th component of X (resp. F). It

is easy to see that Y1= —Xx. We write A^=X~kAXk. Then

Bp = (X+PeA)p = X ^ + Σ (^e( Σ -

Σ
t=i

(Σ
kl=0

Set -yί=£lH-^iH h^i-2 where Jζ is the i-th component of ^ . Then, by

(1.3), J ζ = Σ ( ( f ) Σ -Xί--Xi-V and hence ^ = £ (mod j>). Therefore
t=ι\\ι/i1+...+it=i 1 v

J B ^ = £ (mod P). Thus, if 5 is of finite order, Bp must be equal to E. Suppose that

there exists B=X+P*A&F2 such that BP=E and £ φ £ . Set 5 f = Σ

Yhi-YhnT~ Σ -YAl..-^ and S0=T0=E. Since Xk=(E+X1+- +
I S V ΛSΪ-2

+(J)71* and χ-*=ίE+y1+. +y€.2)*=£+(J)51+..

( * = Σ Q C ) 5 ^ Γ r Since S^T^W^Z) by (1.3),

i=Ti=0 for t ^ ? - l . Therefore we may write A<*>= Σ (k)(k)suATw.
Ό^u,w^q-2\U/\W/
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Hence, if we write (*) Σ A<kt>—AW= Σ au.Wr..u w SUΛTW.—SU

Set (X+PΆ)P=X*+H.
We now show that the 1-st component of H is divisible by pP\ If we

write (p—l)lq=t0, Pto=p. Suppose that t>tOy then Peto=pe\Pte

y and so for such
t,pPe\pt<χp-'( 2 A<k*>-AW). On the other hand, by (1.2), aUiUi...u w is

divisible by p if Σ ( w i + ^ t ) + ^ < ί Hence we have only to consider the case
» = 1

t

where t^t0 and 2 ( w ί + w i ) + ^ ί
ί = l

We show that the O-th and 1-st components of SUtATWt—SUlATWι are 0,

if t^t0 and
Case 1. Uf+w^q+l. Suppose that ut^(q+\)β. Write Su=(x{μt)ij)

and ^^(^(Wi);^-). Then x(ut)itJ=0 for i^q—ut and Λ?(W1), > ; = 0 for j^w1

because SUt^WUt(q,R) and Γ ^ G ^ ί j , ! ? ) . Hence, if we write 5β|i4ΓW/.
SMl-4ΓWl=(ΛrίfJ ), Λ?f fi, = 0 whenever i^q—ut or j^wλ. Since ί/^+w^g+l, the
0-th and 1-st components of (Λ?, ; ) are 0. The proof in the case wι^{q-\-\)j2 is
similar to that in the case ut^(q+l)/2, so, we omit it.

Case 2. Ut+w^q. Suppose that there exists z'^{l, •••,/—!} such that
q—wi+1^Ui. Then Tui+1Sui = 0, and hence SUtATWt — SUlATWl = 0. There-

fore we have only to consider the case where q—wi+1>Ui for each t, l^i^t—1.
Further it is easy to see that Twi+1Su.=0 if wi+1+Ui=q—l. Hence, we may
assume that q—2^wi+ι+ui9 ί^i^t— 1, But in this case

Σ ( i i ) ^ i Σ
ί = l f = l

On the other hand,

Therefore

This is impossible because t^tQ and fo=t=l

Hence the 0-th and 1-st components of SutATWt -SUiATWi are 0, and so

the 1-st component of Xp-'SUiATWt—SUιATWl is 0.

Thus we conclude that the 1-st component of H is divisible by pPe.

On the other hand, the 1-st component of Xp is pXλ. Since every entry
in Xλ is in {0, —,/>—!}, Xx must be equal to 0. Hence Y1=—X1=0. There-
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fore, if ί^(g-l)/2, Sf =Γ f .=0 because Sh T^WfaR). Thus, if SUiATWg-
SUιATWιΦθ9 then we must have u{ «^(j—3)/2 for all uh toj l^ί,j^i. Sup-
pose that tfS:t0, then

Hence, for every SutATm~-S^Γ^φO, its coefficient in (*) is divisible by p.

Therefore H is divisible by/>P*. As BP=XP+H=E, XPΞΞE (modpPe). How-

ever X2 is pX2+(z\Xi==pX29 and so X2 must be equal to 0. Continuing this

procedure, we get X{=Q for any i, l^i^q—2. Therefore X+PeA = E (mod
P). This contradicts the fact that B is of finite order. Thus the proof is com-
pleted.

Proof of Theorem. Considering the property of the pullback diagram
(2.1), we get [(τfr°φ°lh)(V{ZG)): F{\=nq. Therefore, if we set F^ψoφoh,)'1

(Vj), then V(ZG)ΐ>F and [V(ZG): F]=nq. Take an element u of F.

Suppose that (ψoφoh1)(u)=l. The restriction of h2 to i'ψ>oφoh1)~1(l) Π
U(ZG) yields a group monomorphism {ψoφoh^-\\) Π C/(ZG) -> J7(Z[τ]).
However, since Φ°^2O^2(^)=1> h2\u) is of infinite order by [1, Theorem 3.1],
hence so is u.

Suppose next that l^(ψoφofι1)(u)^F2. Then it is of infinite order by
(2.2), hence so is u.

Finally, suppose that (ψoφoh^(u)^Fλ\F2. Then, by the definition of
Fly there exists an element v of ^([Z[τ]]<ι>) such that Φog2(v)=(ψoψoφoh1)(u).
However v is of infinite order, hence so is u. This shows that F is torsion-
free. Therefore we get Ff]G={l}. Thus F is a torsion-free normal sub-
group of V(ZG) such that V(ZG)=F G. This completes the proof.
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