EQUIVARIANT KO-RINGS AND J-GROUPS OF SPHERES WHICH HAVE LINEAR PSEUDOFREE S'-ACTIONS

Shin-ichiro KAKUTANI

(Received January 30, 1980)

1. Introduction

In this paper, we consider the equivariant $K O$-rings and J-groups of spheres which have linear pseudofree circle actions.

Let S^{1} be the circle group consisting of complex numbers of absolute value one. For a sequence $p=\left(p_{1}, p_{2}, \cdots, p_{m}\right)$ of positive integers, we define the S^{1}-action φ_{p} on the complex m-dimensional vector space \boldsymbol{C}^{m} by

$$
\varphi_{p}\left(s,\left(z_{1}, z_{2}, \cdots, z_{m}\right)\right)=\left(s^{p_{1} z_{1}}, s^{p_{2} z_{2}}, \cdots, s^{p_{m}} z_{m}\right)
$$

and denote by

$$
S^{2 m-1}\left(p_{1}, p_{2}, \cdots, p_{m}\right)
$$

the unit sphere $S^{2 m-1}$ in C^{m} with this action φ_{p}. Then the S^{1}-action on $S^{2 m-1}\left(p_{1}, p_{2}, \cdots, p_{m}\right)$ is said to be p seudofree (resp. free) if $\left(p_{i}, p_{j}\right)=1$ for $i \neq j$ and $p_{i}>1$ for some $1 \leqq i \leqq m$ (resp. $p_{1}=p_{2}=\cdots=p_{m}=1$) (see Montgomery-Yang [19], [20]).

The main results of our paper are as follows:
Theorem 4.7. Let $p_{i}(1 \leqq i \leqq m)$ be positive odd integers such that $\left(p_{i}, p_{j}\right)=1$ for $i \neq j$. Then there is a monomorphism of rings:

$$
\Phi: K O_{s^{1}}\left(S^{2 m-1}\left(p_{1}, p_{2}, \cdots, p_{m}\right)\right) \rightarrow K O\left(C P^{m-1}\right) \oplus{\underset{i=1}{m}}_{\oplus} R O\left(Z_{p_{i}}\right)
$$

(For details see §4.)
Let $G_{i}(i \geqq 1)$ denote the stable homotopy group $\pi_{n+i}\left(S^{n}\right)(n \geqq i+2)$. We define $s(k)=\prod_{i=1}^{k}\left|G_{i}\right|$ for $k>0$, where $\left|G_{i}\right|$ denotes the order of the group G_{i} and put $s(-1)=1$.

Theorem 5.4. Let $p_{i}(1 \leqq i \leqq m)$ be positive odd integers such that $\left(p_{i}, p_{j}\right)=1$ for $i \neq j$ and $\left(p_{i}, s(2 m-3)\right)=1$ for $1 \leqq i \leqq m$. Then there is a monomorphism of groups:

$$
\tilde{\Phi}: J_{s^{1}}\left(S^{2 m-1}\left(p_{1}, p_{2}, \cdots, p_{m}\right)\right) \rightarrow J\left(C P^{m-1}\right) \oplus{\underset{i=1}{m}}_{\oplus}^{z_{p_{i}}}(*)
$$

(For details see §5.)
The paper is organized as follows:
In §§2 and 3, we consider a generalization of the results due to Folkman [9] and Rubinsztein [23] and prove some preliminary results. In §§4 and 5, we study an isomorphism and an S^{1}-fiber homotopy equivalence of real S^{1}-vector bundles over the pseudofree S^{1}-manifold $S^{2 m-1}\left(p_{1}, p_{2}, \cdots, p_{m}\right)$ respectively. In §6, we consider the problem on quasi-equivalence posed by Meyerhoff and Petrie ([18], [21]).

2. Equivariant homotopy

Let n be a positive integer. Denote by \boldsymbol{Z}_{n} the cyclic group $\boldsymbol{Z} / n \boldsymbol{Z}$ of order n. If V is a real representation space of \boldsymbol{Z}_{n}, we denote by $S(V)$ its unit sphere with respect to some \boldsymbol{Z}_{n}-invariant inner product. Denote by $[X, Y$] the set of homotopy classes of maps from X to Y. In this section, we shall prove the following theorem (cf. Folkman [9; Proposition 2.3] and Rubinsztein [23; Corollary 5.3]).

Theorem 2.1. Let V be a complex \boldsymbol{Z}_{n}-representation space such that \boldsymbol{Z}_{n} acts freely on $S(V)$ and $\operatorname{dim}_{R} V=2 m$. Let X be a Z_{n}-space which satisfies the following conditions:
(i) X is path-connected and q-simple for $1 \leqq q \leqq 2 m-1$,
(ii) the map of X into itself given by the action of a generator of \boldsymbol{Z}_{n} is homotopic to the identity,
(iii) $\left\{\begin{array}{lr}\operatorname{Hom}\left(\boldsymbol{Z}_{n}, \pi_{2 i-1}(X)\right)=0 & \text { for } 1 \leqq i \leqq m, \\ \operatorname{Ext}\left(\boldsymbol{Z}_{n}, \pi_{2 i}(X)\right)=0 & \text { for } 1 \leqq i \leqq m-1 .\end{array}\right.$

If there exist Z_{n}-maps $f_{0}, f_{1}: S(V) \rightarrow X$ such that $\left[f_{0}\right]=\left[f_{1}\right] \in\left[S^{2 m-1}, X\right]$, then f_{0} and f_{1} are \boldsymbol{Z}_{n}-homotopic.

Before beginning the proof of Theorem 2.1, we require some notations and lemmas.

Let M be a \boldsymbol{Z}_{n}-space $S(V) \times[0,1]$, where [0,1] is the unit interval with the trivial \boldsymbol{Z}_{n}-action. Then M is a compact smooth \boldsymbol{Z}_{n}-manifold with a free \boldsymbol{Z}_{n} action. Let x_{0} be a point of $S(V)$. We put $N=S(V) \times\{0,1\} \cup\left\{x_{0}\right\} \times[0,1]$ and $M^{\prime}=M / \boldsymbol{Z}_{n}$. Let $\pi: M \rightarrow M^{\prime}$ be the natural projection. We put $N^{\prime}=\pi(N)$.

Let R be an arbitrary abelian group. By the universal-coefficient theorem, we have the following lemmas.

Lemma 2.2. There are isomorphisms:

$$
\begin{aligned}
& H^{q}(M, N ; R)=0 \quad \text { for } 0 \leqq q \leqq 2 m-1, \\
& H^{2 m}(M, N ; R) \cong R
\end{aligned}
$$

Lemma 2.3. There are isomorphisms:

$$
\begin{aligned}
& H^{0}\left(M^{\prime}, N^{\prime} ; R\right)=H^{1}\left(M^{\prime}, N^{\prime}: R\right)=0, \\
& H^{2 q-1}\left(M^{\prime}, N^{\prime} ; R\right) \cong \operatorname{Ext}\left(Z_{n}, R\right) \quad \text { for } 2 \leqq q \leqq m \\
& H^{2 q}\left(M^{\prime}, N^{\prime} ; R\right) \cong \operatorname{Hom}\left(\boldsymbol{Z}_{n}, R\right) \quad \text { for } 1 \leqq q \leqq m-1, \\
& H^{2 m}\left(M^{\prime}, N^{\prime} ; R\right) \cong R
\end{aligned}
$$

Since the \boldsymbol{Z}_{n}-action on M is free and orientation-preserving, we have
Lemma 2.4. Assume that $\operatorname{Hom}\left(\boldsymbol{Z}_{n}, R\right)=0$. Then the homomorphism

$$
\pi^{*}: H^{2 m}\left(M^{\prime}, N^{\prime} ; R\right) \rightarrow H^{2 m}(M, N ; R)
$$

is injective.
Proof of Theorem 2.1. In order to prove Theorem 2.1, it suffices to show that there exists a \boldsymbol{Z}_{n}-map $F: M \rightarrow X$ such that $F \mid S(V) \times\{0\}=f_{0}$ and $F \mid S(V) \times\{1\}=f_{1}$.

Since $\left[f_{0}\right]=\left[f_{1}\right] \in\left[S^{2 m-1}, X\right]$, there exists a continuous map $F^{\prime}: M \rightarrow X$ such that $F^{\prime} \mid S(V) \times\{0\}=f_{0}$ and $F^{\prime} \mid S(V) \times\{1\}=f_{1}$. Since M is a compact smooth \boldsymbol{Z}_{n}-manifold and \boldsymbol{Z}_{n} acts freely on M, we can consider the fiber bundle \mathscr{B} :

$$
X \rightarrow \underset{Z_{n}}{M \times} X \rightarrow M^{\prime}
$$

A cross-section s_{0} of the part of \mathscr{B} over $N^{\prime}(=\pi(N))$ is defined by

$$
s_{0}(\pi(z))=\left[z, F^{\prime}(z)\right] \in \underset{z_{n}}{M \times X} \quad \text { for } z \in N
$$

To prove Theorem 2.1, it suffices to show that the cross-section s_{0} defined on N^{\prime} is extendable to a full cross-section of \mathscr{B}. Because there is a one-to-one correspondence between \boldsymbol{Z}_{n}-maps from M to X and cross-sections of \mathscr{B}.

Let K be a simplicial complex. Denote by K^{q} the q-skelton. Denote by $|K|$ the geometric realization of K in the weak topology. It is easy to see that there exist finite simplicial complexes K_{1} and K_{2} which satisfy the following: (2.5) $\quad\left|K_{1}\right|=M$ and $\left|K_{2}\right|=M^{\prime}$,
(2.6) there exist subcomplexes $L_{1} \subset K_{1}$ and $L_{2} \subset K_{2}$ such that $\left|L_{1}\right|=N$ and $\left|L_{2}\right|=N^{\prime}$,
(2.7) there exists a simplicial map $\tau:\left(K_{1}, L_{1}\right) \rightarrow\left(K_{2}, L_{2}\right)$ such that $|\tau|=$ $\pi:\left(\left|K_{1}\right|,\left|L_{1}\right|\right) \rightarrow\left(\left|K_{2}\right|,\left|L_{2}\right|\right)$.

Let $\mathscr{B}\left(\pi_{q-1}\right)(1 \leqq q \leqq 2 m)$ be the bundles of coefficients associated with $\pi_{q-1}(X)$ (see Steenrod [27; §30]). By the assumption (ii), $\mathcal{B}\left(\pi_{q-1}\right)(1 \leqq q \leqq 2 m)$ are product bundles. Therefore the cohomology groups $H^{q}\left(M^{\prime}, N^{\prime} ; \mathscr{B}\left(\pi_{q-1}\right)\right)$ are isomorphic to the ordinary cohomology groups $H^{q}\left(M^{\prime}, N^{\prime} ; \pi_{q-1}(X)\right)$ for $1 \leqq q \leqq 2 m$. By the assumption (iii) and Lemma 2.3, we have

$$
H^{q}\left(M^{\prime}, N^{\prime} ; \pi_{q-1}(X)\right)=0 \quad \text { for } 1 \leqq q \leqq 2 m-1
$$

It follows from Steenrod [27;34.2] that there exists a cross-section of \mathscr{B} defined on $\left|K_{2}^{2 m-1}\right|\left(\supset\left|L_{2}\right|\right)$:

$$
s_{1}:\left|K_{2}^{2 m-1}\right| \rightarrow \underset{Z_{n}}{M \times} X
$$

such that $s_{1}| | L_{2} \mid=s_{0}$. There exists an obstruction cohomology class

$$
\bar{c}\left(s_{1}\right) \in H^{2 m}\left(M^{\prime}, N^{\prime} ; \pi_{2 m-1}(X)\right)
$$

such that its vanishing is a necessary and sufficient condition for $s_{1}| | K_{2}^{2 m-2} \cup L_{2} \mid$ to be extendable over M^{\prime}. Thus we shall show that $\bar{c}\left(s_{1}\right)=0$. Consider the product bundle \mathscr{B}^{\prime} :

$$
X \rightarrow M \times X \rightarrow M
$$

Let $\mathcal{B}^{\prime}\left(\pi_{q-1}\right)(1 \leqq q \leqq 2 m)$ be the bundles of coefficients associated with $\pi_{q-1}(X)$. Since \mathscr{B}^{\prime} is a product bundle, $\mathscr{B}^{\prime}\left(\pi_{q-1}\right)(1 \leqq q \leqq 2 m)$ are also product bundles. The natural projection $M \times X \rightarrow \underset{Z_{n}}{M \times X}$ induces the bundle maps $\bar{\pi}: \mathcal{B}^{\prime} \rightarrow \mathscr{B}$ and $\bar{\pi}_{q-1}: \mathscr{B}^{\prime}\left(\pi_{q-1}\right) \rightarrow \mathscr{B}\left(\pi_{q-1}\right)(1 \leqq q \leqq 2 m)$ covering $\pi:(M, N) \rightarrow\left(M^{\prime}, N^{\prime}\right)$. Let $s_{2}:\left|K_{1}^{2 m-1}\right| \rightarrow M \times X$ be the cross-section of \mathscr{B}^{\prime} induced by s_{1} and π. It follows from (2.7) that we have

$$
\pi^{*}\left(\bar{c}\left(s_{1}\right)\right)=\bar{c}\left(s_{2}\right) \in H^{2 m}\left(M, N ; \pi_{2 m-1}(X)\right) .
$$

By the assumption (iii) and Lemma 2.4, π^{*} is a monomorphism. Hence $\bar{c}\left(s_{1}\right)=0$ if and only if $\bar{c}\left(s_{2}\right)=0$. Let $s_{3}: M=\left|K_{1}\right| \rightarrow M \times X$ be a cross-section of \mathscr{B}^{\prime} defined by

$$
s_{3}(z)=\left(z, F^{\prime}(z)\right) \in M \times X \quad \text { for } z \in M
$$

We put

$$
s_{4}=s_{3}| | K_{1}^{2 m-1}\left|:\left|K_{1}^{2 m-1}\right| \rightarrow M \times X\right.
$$

Then s_{2} and s_{4} are cross-sections of \mathscr{B}^{\prime} defined on $\left|K_{1}^{2 m-1}\right|\left(\supset\left|L_{1}\right|\right)$ such that $s_{2}| | L_{1}\left|=s_{4}\right|\left|L_{1}\right| . \quad$ By Lemma 2.2, we have

$$
H^{q}\left(M, N ; \pi_{q}(X)\right)=0 \quad \text { for } 0 \leqq q \leqq 2 m-2
$$

It follows from Steenrod [27; 35.9] that

$$
\bar{c}\left(s_{2}\right)=\bar{c}\left(s_{4}\right) \in H^{2 m}\left(M, N ; \pi_{2 m-1}(X)\right)
$$

It is obvious that $\bar{c}\left(s_{2}\right)=\bar{c}\left(s_{4}\right)=0$. Hence we have $\bar{c}\left(s_{1}\right)=0$. q.e.d.
Corollary 2.8. Let X and V be as in Theorem 2.1. Suppose that
(i) $X^{Z_{n}} \neq \phi$,
(ii) there exists a Z_{n}-map $f: S(V) \rightarrow X$ such that $[f]=0 \in\left[S^{2 m-1}, X\right]$ $\left(\cong \pi_{2 m-1}(X)\right.$.
Let y_{0} be an arbitrary point of $X^{Z_{n}}$. Then there exists a \boldsymbol{Z}_{n}-map

$$
F: D(V) \rightarrow X
$$

such that $F \mid S(V)=f$ and $F(0)=y_{0}$. Here $D(V)$ denotes the unit disk.

3. Equivariant maps which are equivariantly homotopic to zero

Let n be a positive integer. Let V and W be real \boldsymbol{Z}_{n}-representation spaces with $\operatorname{dim}_{\boldsymbol{R}} V=\operatorname{dim}_{\boldsymbol{R}} W=k>0$. Let

$$
\rho_{V}, \rho_{W}: \boldsymbol{Z}_{n} \rightarrow G L(k, \boldsymbol{R})
$$

be the \boldsymbol{Z}_{n}-representations afforded by V, W respectively. Then a \boldsymbol{Z}_{n}-action on $G L(k, \boldsymbol{R})$ is given by

$$
s \circ A=\rho_{W}(s) A \rho_{V}(s)^{-1} \quad \text { for } s \in Z_{n}, A \in G L(k, \boldsymbol{R})
$$

and denote by $G L(V, W)$ this \boldsymbol{Z}_{n}-space. Remark that $G L(k, \boldsymbol{R})$ has two connected components $G L^{+}(k, \boldsymbol{R})$ and $G L^{-}(k, \boldsymbol{R})$. If n is an odd integer, then we have

$$
\rho_{V}\left(\boldsymbol{Z}_{n}\right), \rho_{W}\left(\boldsymbol{Z}_{n}\right) \subset G L^{+}(k, \boldsymbol{R})
$$

Hence $G L^{+}(k, \boldsymbol{R})$ and $G L^{-}(k, \boldsymbol{R})$ are \boldsymbol{Z}_{n}-subspaces of $G L(V, W)$ and are denoted by $G L^{+}(V, W)$ and $G L^{-}(V, W)$ respectively.

Let $F(S(V), S(W))$ denote the space of homotopy equivalent maps from $S(V)$ to $S(W)$ with the compact-open topology. A Z_{n}-action on $F(S(V), S(W))$ is given by

$$
(s \circ f)(v)=s f\left(s^{-1} v\right) \quad \text { for } s \in Z_{n}, f \in F(S(V), S(W)), v \in S(V)
$$

It is well-known that $F(S(V), S(W))$ has two connected components $F^{+}(S(V)$, $S(W)$) and $F^{-}(S(V), S(W))$ representing maps of degree +1 and -1 respectively. If n is an odd integer, then $F^{+}(S(V), S(W))$ and $F^{-}(S(V), S(W))$ are Z_{n}-subspaces of $F(S(V), S(W))$.

It is well-known that
(3.1) $G L^{\varepsilon}(V, W)$ and $F^{\varepsilon}(S(V), S(W))(\varepsilon= \pm)$ are path-connected and q-simple for $q>0$.

Moreover it is easy to see that
(3.2) If n is an odd integer, then the maps of $G L^{\imath}(V, W)$ and $F^{\varepsilon}(S(V), S(W))$ $(\varepsilon= \pm)$ into themselves given by the action of a generator of Z_{n} are homotopic to to the identity.

Proposition 3.3. Let n be a positive odd integer. Let V and W be real \boldsymbol{Z}_{n}-representation spaces with $\operatorname{dim}_{R} V=\operatorname{dim}_{R} W=k$. Let U be a complex \boldsymbol{Z}_{n}-representation space such that Z_{n} acts freely on $S(U)$ and $\operatorname{dim}_{\boldsymbol{R}} U=2 m$. Assume that
(i) $k \geqq 2 m+1$,
(ii) there exists a $Z_{n}-m a p f: S(U) \rightarrow G L^{\imath}(V, W)$ such that $[f]=0 \in\left[S^{2 m-1}\right.$, $\left.G L^{\text {e }}(V, W)\right]$,
(iii) $G L^{q}(V, W)^{Z_{n}} \neq \phi$,
where $\varepsilon=+$ or - . Then there exists a Z_{n}-map $F: D(U) \rightarrow G L^{\varepsilon}(V, W)$ such that $F \mid S(U)=f$.

Proof. It is well-known that

$$
\pi_{i}\left(G L^{\imath}(V, W)\right) \cong \begin{cases}\boldsymbol{Z}_{2} & \text { if } i \equiv 0,1 \bmod 8 \\ 0 & \text { if } i \equiv 2,4,5,6 \bmod 8 \\ \boldsymbol{Z} & \text { if } i \equiv 3,7 \bmod 8\end{cases}
$$

for $1 \leqq i \leqq k-2$. Since n is odd, we have

$$
\begin{cases}\operatorname{Hom}\left(Z_{n}, \pi_{2 i-1}\left(G L^{\ell}(V, W)\right)\right)=0 & \text { for } 1 \leqq i \leqq m \\ \operatorname{Ext}\left(\boldsymbol{Z}_{n}, \pi_{2 i}\left(G L^{\mathrm{g}}(V, W)\right)\right)=0 & \text { for } 1 \leqq i \leqq m-1\end{cases}
$$

Therefore the result follows from Corollary 2.8.
q.e.d.

Proposition 3.4. Let n be a positive odd integer. Let V and W be real \boldsymbol{Z}_{n} representation spaces with $\operatorname{dim}_{\boldsymbol{R}} V=\operatorname{dim}_{\boldsymbol{R}} W=k$. Let U be a complex \boldsymbol{Z}_{n}-representation space such that \boldsymbol{Z}_{n} acts freely on $S(U)$ and $\operatorname{dim}_{\boldsymbol{R}} U=2 m$. Assume that
(i) $(n, s(2 m-1))=1$,
(ii) $k \geqq 2 m+2$,
(iii) there exists a Z_{n}-map $f: S(U) \rightarrow F^{\imath}(S(V), S(W))$ such that $[f]=0 \in$ [$\left.S^{2 m-1}, F^{\ell}(S(V), S(W))\right]$,
(iv) $F^{\mathrm{e}}(S(V), S(W))^{z_{n}} \neq \phi$,
where $\varepsilon=+$ or - . Let φ be an arbitrary element of $F^{\imath}(S(V), S(W))^{Z_{n}}$. Then there exists a Z_{n}-map $F: D(U) \rightarrow F^{\vartheta}(S(V), S(W))$ such that $F \mid S(U)=f$ and $F(0)=\varphi$.

Proof. It follows from Atiyah [4; p. 294] that there exist isomorphisms

$$
\pi_{i}\left(F^{\bullet}(S(V), S(W))\right) \cong G_{i} \quad \text { for } 1 \leqq i \leqq k-3 .
$$

By the assumptions (i) and (ii), we have

$$
\begin{cases}\operatorname{Hom}\left(\boldsymbol{Z}_{n}, \pi_{2 i-1}\left(F^{\imath}(S(V), S(W))\right)\right)=0 & \text { for } 1 \leqq i \leqq m \\ \operatorname{Ext}\left(\boldsymbol{Z}_{n}, \pi_{2 i}\left(F^{\imath}(S(V), S(W))\right)\right)=0 & \text { for } 1 \leqq i \leqq m-1\end{cases}
$$

Therefore the result follows from Corollary 2.8.
q.e.d.

4. Equivariant KO-rings

In this section, we consider an isomorphism of S^{1}-vector bundles over $S^{2 m-1}\left(p_{1}, p_{2}, \cdots, p_{m}\right)$ when the S^{1}-action is free or pseudofree.

Let V be a real S^{1}-representation space. Let X be a compact S^{1}-space. Denote by $\underline{\underline{V}}$ the trivial S^{1}-vector bundle

$$
V \rightarrow X \times V \rightarrow X
$$

Let ξ and η be real S^{1}-vector bundles over X with $\operatorname{dim}_{\boldsymbol{R}} \xi=\operatorname{dim}_{\boldsymbol{R}} \eta$. Let

$$
p: \operatorname{Hom}(\xi, \eta) \rightarrow X
$$

be the S^{1}-vector bundle defined by Atiyah [3; §1.2] and Segal [25; §1]. Let Iso $(\xi, \eta) \subset \operatorname{Hom}(\xi, \eta)$ be the subspace of all isomorphisms from ξ_{x} to η_{x} for $x \in X$, where ξ_{x} (resp. η_{x}) denotes the fiber of ξ (resp. η) over x. Clearly, Iso (ξ, η) is an S^{1}-subspace of $\operatorname{Hom}(\xi, \eta)$ and

$$
\begin{equation*}
q=p \mid \operatorname{Iso}(\xi, \eta): \text { Iso }(\xi, \eta) \rightarrow X \tag{4.1}
\end{equation*}
$$

is a surjective S^{1}-map. We remark that ξ and η are equivalent as S^{1}-vector bundles over X if and only if there exists an S^{1}-cross-section of q defined on X.

Let $p=\left(p_{1}, p_{2}, \cdots, p_{m}\right)$ be a sequence of positive integers. Denote by $D^{2 m}\left(p_{1}, p_{2}, \cdots, p_{m}\right)$ the unit disk in C^{m} with the S^{1}-action φ_{p} (see §1).

Let $m>1$ be an integer. We put

$$
\begin{array}{ll}
M_{k}=S^{2 m-1}\left(p_{1}, p_{2}, \cdots, p_{k}, 1, \cdots, 1\right) & \text { for } 1 \leqq k \leqq m, \\
S_{k}=S^{2 m-3}\left(p_{1}, p_{2}, \cdots, p_{k-1}, 1, \cdots, 1\right) & \text { for } 2 \leqq k \leqq m \\
D_{k}=D^{2 m-2}\left(p_{1}, p_{2}, \cdots, p_{k-1}, 1, \cdots, 1\right) & \text { for } 2 \leqq k \leqq m, \\
M_{0}=S^{2 m-1}(1,1, \cdots, 1), & \\
S_{1}=S^{2 m-3}(1,1, \cdots, 1), & \\
D_{1}=D^{2 m-2}(1,1, \cdots, 1) . &
\end{array}
$$

Here we remark that $\partial D_{k}=S_{k}$ for $1 \leqq k \leqq m$.
In the following, for every positive integer n, we always regard the cyclic group \boldsymbol{Z}_{n} as the subgroup of S^{1} and regard an S^{1}-space as a \boldsymbol{Z}_{n}-space in respective context.

We define a $\boldsymbol{Z}_{p_{k}}$-map $j_{k}: D_{k} \rightarrow M_{k}$ by
$j_{k}\left(z_{1}, \cdots, z_{k-1}, z_{k}, \cdots, z_{m-1}\right)=\left(z_{1}, \cdots, z_{k-1}, \sqrt{1-\left|z_{1}\right|^{2}-\cdots-\left|z_{m-1}\right|^{2}}, z_{k}, \cdots, z_{m-1}\right)$.
It is easy to see that j_{k} is a $\boldsymbol{Z}_{p_{k}}$-embedding and $j_{k} \mid S_{k}: S_{k} \rightarrow M_{k}$ is an S^{1}-embedding. In the following, D_{k} and S_{k} are regarded as a $\boldsymbol{Z}_{p_{k}}$-invariant subspace of M_{k} and an S^{1}-invariant subspace of M_{k} by j_{k} respectively. Let $e_{j}(1 \leqq j \leqq m)$ be
the j-th unit vector of \boldsymbol{C}^{m}. Then we see that $e_{1}, e_{2}, \cdots, e_{k-1} \in S_{k}$ and $e_{k} \in D_{k}$ as the center of the disk.

We define a continuous map $\alpha: S^{1} \times D_{k} \rightarrow M_{k}$ by

$$
\alpha(s, z)=s z \quad \text { for } s \in S^{1}, z \in D_{k} .
$$

Then we have
Lemma 4.2. α is an identification map.
The proof is easy.
Lemma 4.3. Let X be an S^{1}-space and let $p: X \rightarrow M_{k}$ be a surjective S^{1}-map. If there exists a $Z_{p_{k}}$ cross-section $t_{1}: D_{k} \rightarrow X$ of $p \mid p^{-1}\left(D_{k}\right)$ such that $t_{1} \mid S_{k}: S_{k} \rightarrow X$ is an S^{1}-cross-section of $p \mid p^{-1}\left(S_{k}\right)$, then there exists an S^{1}-cross-section $t: M_{k} \rightarrow X$ of p such that $t \mid D_{k}=t_{1}$.

Proof. By Lemma 4.2, $\alpha: S^{1} \times D \rightarrow M_{k}$ is surjective. Thus, given $z \in M_{k}$, there exists $s \in S^{1}$ such that $s^{-1} z \in D_{k}$. Define $t: M_{k} \rightarrow X$ by

$$
t(z)=s t\left(s^{-1} z\right)
$$

where $s \in S^{1}$ is chosen as $s^{-1} z \in D_{k}$. Then it is easy to see that t is a well-defined S^{1}-cross-section of p such that $t \mid D_{k}=t_{1}$.

Define S^{1}-maps

$$
h_{k}: M_{k} \rightarrow M_{k+1} \quad \text { for } 0 \leqq k \leqq m-1
$$

by

$$
h_{k}\left(z_{1}, \cdots, z_{k}, z_{k+1}, z_{k+2}, \cdots, z_{m}\right)=\frac{\left(z_{1}, \cdots, z_{k}, z_{k+1}^{p_{k+1}}, z_{k+2}, \cdots, z_{m}\right)}{\left\|\left(z_{1}, \cdots, z_{k}, z_{k+1}^{p_{k+1}}, z_{k+2}, \cdots, z_{m}\right)\right\|}
$$

and we put $h_{m}=i d: M_{m} \rightarrow M_{m}$. Moreover we define

$$
\tilde{h}_{k}=h_{m} \circ h_{m-1} \circ \cdots \circ h_{k}: M_{k} \rightarrow M_{m} \quad \text { for } 0 \leqq k \leqq m .
$$

Then it follows that

$$
\tilde{h}_{k}\left(e_{j}\right)=e_{j} \quad \text { for } 0 \leqq k \leqq m, 1 \leqq j \leqq m
$$

Let ξ and η be S^{1}-vector bundles over M_{m} with $\operatorname{dim}_{R} \xi=\operatorname{dim}_{R} \eta=n$. We put

$$
V_{k}=\left(\tilde{h}_{k}^{*} \xi\right)_{e_{k}}=\xi_{e_{k}}, W_{k}=\left(\tilde{h}_{k}^{*} \eta\right)_{e_{k}}=\eta_{e_{k}} \quad \text { for } 1 \leqq k \leqq m .
$$

Here $V_{k}, W_{k}(1 \leqq k \leqq m)$ are regarded as $\boldsymbol{Z}_{p_{k}}$-representation spaces. Let $q_{k}: \operatorname{Iso}\left(\widetilde{h}_{k}^{*} \xi, \widetilde{h}_{k}^{*} \eta\right) \rightarrow M_{k}(0 \leqq k \leqq m)$ be S^{1}-maps defined by (4.1). Then we have

Lemma 4.4. There are $\boldsymbol{Z}_{p_{k}}$-homeomorphisms

$$
\varphi_{k}: q_{k}^{-1}\left(D_{k}\right) \rightarrow D_{k} \times G L\left(V_{k}, W_{k}\right) \quad \text { for } 1 \leqq k \leqq m
$$

such that the following diagram commutes:

where π_{1} denotes the projection on the first factor.
Proof. Since D_{k} is $\boldsymbol{Z}_{p_{k}}$-contractible, there exist isomorphisms of $\boldsymbol{Z}_{p_{k}{ }^{-}}$ vector bundles:

$$
\left\{\begin{array}{l}
\alpha:\left(\tilde{h}_{k}^{*} \xi\right) \mid D_{k} \rightarrow D_{k} \times V_{k}, \\
\beta:\left(\tilde{h}_{k}^{*} \eta\right) \mid D_{k} \rightarrow D_{k} \times W_{k} .
\end{array}\right.
$$

Let $\tilde{\boldsymbol{q}}_{k}$: Iso $\left(D_{k} \times V_{k}, D_{k} \times W_{k}\right) \rightarrow D_{k}$ be an S^{1}-map defined by (4.1). Then we can define $\boldsymbol{Z}_{p_{k}}$-homeomorphisms

$$
\left\{\begin{array}{l}
\psi_{1}: \operatorname{Iso}\left(\left(\tilde{h}_{k}^{*} \xi\right)\left|D_{k},\left(\tilde{h}_{k}^{*} \eta\right)\right| D_{k}\right) \rightarrow \operatorname{Iso}\left(D_{k} \times V_{k}, D_{k} \times W_{k}\right), \\
\psi_{2}: \operatorname{Iso}\left(D_{k} \times V_{k}, D_{k} \times W_{k}\right) \rightarrow D_{k} \times G L\left(V_{k}, W_{k}\right),
\end{array}\right.
$$

by

$$
\left\{\begin{array}{l}
\psi_{1}\left(f_{x}\right)=\beta_{x} \circ f_{x} \circ \alpha_{x}^{-1} \quad \text { for } x \in D_{k}, f_{x} \in q_{k}^{-1}(x), \\
\psi_{2}\left(g_{x}\right)=\left(x, g_{x}\right) \quad \text { for } x \in D_{k}, g_{x} \in \tilde{q}_{k}^{-1}(x)
\end{array}\right.
$$

respectively. It is obvious that a $\boldsymbol{Z}_{p_{k}}$-homeomorphism

$$
\varphi_{k}=\psi_{2} \circ \psi_{1}: q_{k}^{-1}\left(D_{k}\right)=\operatorname{Iso}\left(\left(\tilde{h}_{k}^{*} \xi\right)\left|D_{k},\left(\tilde{h}_{k}^{*} \eta\right)\right| D_{k}\right) \rightarrow D_{k} \times G L\left(V_{k}, W_{k}\right)
$$

satisfies our condition. q.e.d.

Define an S^{1}-map $h: M_{0} \rightarrow M_{m}$ by

$$
h\left(z_{1}, z_{2}, \cdots, z_{m}\right)=\frac{\left(z_{1}^{p_{1}}, z_{2}^{p_{2}}, \cdots, z_{m}^{p_{m}}\right)}{\left\|\left(z_{1}^{p_{1}}, z_{2}^{p_{2}}, \cdots, z_{m}^{p_{m}}\right)\right\|} .
$$

Lemma 4.5. Let $m>1$ be an integer and let $p_{i}(1 \leqq i \leqq m)$ be positive odd integers with $\left(p_{i}, p_{j}\right)=1$ for $i \neq j$. Let ξ and η be real S^{1}-vector bundles over M_{m} such that $\operatorname{dim}_{\boldsymbol{R}} \xi=\operatorname{dim}_{\boldsymbol{R}} \eta=n \geqq 2 m-1$ and $\xi \supset \underline{\underline{R}}^{1}$ as an S^{1}-vector subbundle. Assume that
(i) $h^{*} \xi$ and $h^{*} \eta$ are equivalent as S^{1}-vector bundles over M_{0},
(ii) $\xi_{e_{k}}$ and $\eta_{e_{k}}$ are equivalent as $\boldsymbol{Z}_{p_{k}}$-representation spaces for $1 \leqq k \leqq m$. Then ξ and η are equivalent as S^{1}-vector bundles over M_{m}.

Proof. Let q_{k} : Iso $\left(\tilde{h}_{k}^{*} \xi, \tilde{h}_{k}^{*} \eta\right) \rightarrow M_{k}(0 \leqq k \leqq m)$ be S^{1}-maps defined by (4.1). We shall show that there exist S^{1}-cross-sections of $q_{k}(0 \leqq k \leqq m)$:

$$
t_{k}: M_{k} \rightarrow \operatorname{Iso}\left(\tilde{h}_{k}^{*} \xi, \tilde{h}_{k}^{*} \eta\right),
$$

by induction. Then the existence of the last S^{1}-cross-section t_{m} shows the result.

It follows from Iberkleid [11; Theorem 3.4] that the S^{1}-maps $\tilde{h}_{0}, h: M_{0} \rightarrow M_{m}$ are S^{1}-homotopic. Hence, by the assumption (i), we have

$$
\tilde{h}_{0}^{*} \xi \cong h^{*} \xi \cong h^{*} \eta \cong \widetilde{h}_{0}^{*} \eta,
$$

where \cong stands for is equivalent to. Therefore there exists an S^{1}-cross-section of q_{0} :

$$
t_{0}: M_{0} \rightarrow \operatorname{Iso}\left(\widetilde{h}_{0}^{*} \xi, \widetilde{h}_{0}^{*} \eta\right) .
$$

Let k be an integer greater than zero. We now assume that there exists an S^{1}-cross-section of q_{k-1} :

$$
t_{k-1}: M_{k-1} \rightarrow \operatorname{Iso}\left(\widetilde{h}_{k-1}^{*} \xi, \widetilde{h}_{k-1}^{*} \eta\right)
$$

Remark that

$$
\tilde{h}_{k-1}=\widetilde{h}_{k} \circ h_{k-1}: M_{k-1} \rightarrow M_{m}
$$

It follows that there exist S^{1}-vector bundle maps

$$
\left\{\begin{array}{l}
\bar{h}_{k-1}: \tilde{h}_{k-1}^{*} \xi \rightarrow \tilde{h}_{k}^{*} \xi, \\
\bar{h}_{k-1}^{\prime}: \widetilde{h}_{k-1}^{*} \eta \rightarrow \widetilde{h}_{k}^{*} \eta,
\end{array}\right.
$$

covering $h_{k-1}: M_{k-1} \rightarrow M_{k}$. We define an embedding $j_{k}^{\prime}: D_{k} \rightarrow M_{k-1}$ by
$j_{k}^{\prime}\left(z_{1}, \cdots, z_{k-1}, z_{k}, \cdots, z_{m-1}\right)=\left(z_{1}, \cdots, z_{k-1}, \sqrt{1-\left|z_{1}\right|^{2}-\cdots-\left|z_{m-1}\right|^{2}}, z_{k}, \cdots, z_{m-1}\right)$.
Then the restriction $j_{k}^{\prime} \mid S_{k}: S_{k} \rightarrow M_{k-1}$ is an S^{1}-embedding. Thus D_{k} and S_{k} are also regarded as a subspace of M_{k-1} and an S^{1}-invariant subspace of M_{k-1} by j_{k}^{\prime} respectively. We put $D_{k}^{\prime}=j_{k}^{\prime}\left(D_{k}\right)$ and $S_{k}^{\prime}=j_{k}^{\prime}\left(S_{k}\right)$. It is easy to see that

$$
\left\{\begin{array}{l}
h_{k-1} \mid D_{k}^{\prime}: D_{k}^{\prime} \rightarrow D_{k} \subset M_{k}, \\
h_{k-1} \mid S_{k}^{\prime}: S_{k}^{\prime} \rightarrow S_{k} \subset M_{k},
\end{array}\right.
$$

are a homeomorphism and an S^{1}-homeomorphism respectively. It follows that the restrictions

$$
\left\{\begin{array}{l}
\bar{h}_{k-1}\left|\left\{\left(\widetilde{h}_{k-1}^{*} \xi\right) \mid D_{k}^{\prime}\right\}:\left(\widetilde{h}_{k-1}^{*} \xi\right)\right| D_{k}^{\prime} \rightarrow\left(\widetilde{h}_{k}^{*} \xi\right) \mid D_{k}, \\
\bar{h}_{k-1}^{\prime}\left|\left\{\left(\widetilde{h}_{k-1}^{*} \eta\right) \mid D_{k}^{\prime}\right\}:\left(\tilde{h}_{k-1}^{*} \eta\right)\right| D_{k}^{\prime} \rightarrow\left(\widetilde{h}_{k}^{*} \eta\right) \mid D_{k},
\end{array}\right.
$$

are isomorphisms of vector bundles. Moreover the restrictions

$$
\left\{\begin{array}{l}
\bar{h}_{k-1}\left|\left\{\left(\tilde{h}_{k-1}^{*} \xi\right) \mid S_{k}^{\prime}\right\}:\left(\widetilde{h}_{k-1}^{*} \xi\right)\right| S_{k}^{\prime} \rightarrow\left(\tilde{h}_{k}^{*} \xi\right) \mid S_{k}, \\
\bar{h}_{k-1}^{\prime}\left|\left\{\left(\tilde{h}_{k-1}^{*} \eta\right) \mid S_{k}^{\prime}\right\}:\left(\widetilde{h}_{k-1}^{*} \eta\right)\right| S_{k}^{\prime} \rightarrow\left(\tilde{h}_{k}^{*} \eta\right) \mid S_{k},
\end{array}\right.
$$

are isomorphisms of S^{1}-vector bundles. Using the S^{1}-cross-section $t_{k-1}: M_{k-1} \rightarrow$ Iso ($\widetilde{h}_{k-1}^{*} \xi, \widetilde{h}_{k-1}^{*} \eta$), we can define a continuous cross-section of $q_{k} \mid q_{k}^{-1}\left(D_{k}\right)$:

$$
u_{k}: D_{k} \rightarrow q_{k}^{-1}\left(D_{k}\right) \subset \operatorname{Iso}\left(\tilde{h}_{k}^{*} \xi, \tilde{h}_{k}^{*} \eta\right)
$$

by putting $u_{k}(x)=\left\{\bar{h}_{k-1}^{\prime} \mid\left(\widetilde{h}_{k-1}^{*} \xi\right)_{x}\right\} \circ t_{k-1}\left(\left(h_{k-1} \mid D_{k}^{\prime}\right)^{-1}(x)\right) \circ\left\{h_{k-1} \mid\left(\widetilde{h}_{k-1}^{*} \xi\right)_{x}\right\}$ for $x \in$ $D_{k} \subset M$. Then the restriction

$$
v_{k}=u_{k} \mid S_{k}: S_{k} \rightarrow q_{k}^{-1}\left(S_{k}\right) \subset \operatorname{Iso}\left(\widetilde{h}_{k}^{*} \xi, \tilde{h}_{k}^{*} \eta\right)
$$

is an S^{1}-cross-section of $q_{k} \mid q_{k}^{-1}\left(S_{k}\right)$. Let $\pi_{2}: D_{k} \times G L^{\varepsilon}\left(V_{k}, W_{k}\right) \rightarrow G L^{\boldsymbol{\varepsilon}}\left(V_{k}, W_{k}\right)$ be the projection on the second factor. It follows from Lemma 4.4 that v_{k} yields a $\boldsymbol{Z}_{p_{k}}$-map

$$
\bar{v}_{k}: S_{k} \rightarrow G L^{\varepsilon}\left(V_{k}, W_{k}\right)
$$

by $\nabla_{k}(x)=\pi_{2}\left(\varphi_{k}\left(v_{k}(x)\right)\right)$ for $x \in S_{k}$, where $\varepsilon=+$ or - . Since $v_{k}=u_{k} \mid S_{k}$, we have

$$
\left[\tilde{v}_{k}\right]=0 \in\left[S^{2 m-3}, G L^{\ell}\left(V_{k}, W_{k}\right)\right] .
$$

By the assumption (ii), $V_{k}\left(=\left(\tilde{h}_{k}^{*} \xi\right)_{e_{k}}=\xi_{e_{k}}\right)$ and $W_{k}\left(=\left(\tilde{h}_{k}^{*} \eta\right)_{e_{k}}=\eta_{e_{k}}\right)$ are equivalent as $\boldsymbol{Z}_{p_{k}}$-representation spaces and $V_{k} \supset \boldsymbol{R}^{1}$. This shows that

$$
G L^{\varepsilon}\left(V_{k}, W_{k}\right)^{Z_{p_{k}} \neq \phi}
$$

Moreover we remark that p_{k} is an odd integer and $\boldsymbol{Z}_{p_{k}}$ acts freely on S_{k}. Therefore it follows from Proposition 3.3 that there exists a $\boldsymbol{Z}_{p_{k}}$-map

$$
\bar{w}_{k}: D_{k} \rightarrow G L^{\imath}\left(V_{k}, W_{k}\right)
$$

such that $\bar{w}_{k} \mid S_{k}=\bar{v}_{k}$. By Lemma 4.4, we can define a $\boldsymbol{Z}_{p_{k}}$-cross-section of $q_{k} \mid q_{k}^{-1}\left(D_{k}\right):$

$$
w_{k}: D_{k} \rightarrow q_{k}^{-1}\left(D_{k}\right) \subset \operatorname{Iso}\left(\tilde{h}_{k}^{*} \xi, \tilde{h}_{k}^{*} \eta\right)
$$

by $w_{k}(x)=\varphi_{k}^{-1}\left(x, \bar{w}_{k}(x)\right)$ for $x \in D_{k}$. Since $w_{k} \mid S_{k}=v_{k}$, it follows from Lemma 4.3 that there exists an S^{1}-cross-section of q_{k} :

$$
t_{k}: M_{k} \rightarrow \operatorname{Iso}\left(\tilde{h}_{k}^{*} \xi, \tilde{h}_{k}^{*} \eta\right)
$$

In this way, we obtain S^{1}-cross-sections $t_{0}, t_{1}, \cdots, t_{m}$. q.e.d.

The following lemma is due to Segal (see [25; Proposition 2.1]).
Lemma 4.6. Let G be a compact Lie group and let X be a compact Hausdorff G-space such that G acts freely on X. Then the projection $p r: X \rightarrow X / G$ induces
an isomorphism of rings

$$
p r^{*}: K O(X / G) \rightarrow K O_{G}(X)
$$

We put

$$
\mu=\left(p r^{*}\right)^{-1}: K O_{s^{1}}\left(M_{0}\right) \xrightarrow{\cong} K O\left(C P^{m-1}\right)
$$

Denote by $R O(G)$ the real representation ring of G. We define a homomorphism of rings

$$
\Phi: K O_{s^{1}}\left(S^{2 m-1}\left(p_{1}, p_{2}, \cdots, p_{m}\right)\right) \rightarrow K O\left(C P^{m-1}\right) \oplus \bigoplus_{i=1}^{m} R O\left(Z_{p_{i}}\right)
$$

by putting

$$
\Phi(\xi-\eta)=\mu\left(h^{*} \xi-h^{*} \eta\right) \oplus \oplus_{i=1}^{m}\left(\xi_{e_{i}}-\eta_{e_{i}}\right)
$$

Then we have
Theorem 4.7. Let $p_{i}(1 \leqq i \leqq m)$ be positive odd integers such that $\left(p_{i}, p_{j}\right)=1$ for $i \neq j$. Then the homomorphism Φ is injective.

Proof. If $m=1$, then $K O_{s^{1}}\left(S^{1}\left(p_{1}\right)\right)=K O_{s^{1}}\left(S^{1} \mid Z_{p_{1}}\right) \cong R O\left(\boldsymbol{Z}_{p_{1}}\right)$. Therefore we assume that $m>1$. If $\Phi(\xi-\eta)=0$, then $h^{*} \xi-h^{*} \eta=0$ in $K O_{s^{1}}\left(M_{0}\right)$ and $\xi_{e_{i}}-\eta_{e_{i}}=0$ in $R O\left(Z_{p_{i}}\right)$ for $1 \leqq i \leqq m$. Thus there exists an S^{1}-representation space U such that $h^{*}(\xi \oplus \underline{\underline{U}})$ is equivalent to $h^{*}(\eta \oplus \underline{\underline{U}})$. Then we put

$$
\xi^{\prime}=\xi \oplus \underline{\underline{\boldsymbol{R}}}^{2 m} \oplus \underline{\underline{U}} \quad \text { and } \quad \eta^{\prime}=\eta \oplus \underline{\underline{\boldsymbol{R}}}^{2 m} \oplus \underline{\underline{U}}
$$

Since ξ^{\prime} and η^{\prime} satisfy the assumption of Lemma $4.5, \xi^{\prime}$ is equivalent to η^{\prime}. It follows that

$$
\xi-\eta=\xi^{\prime}-\eta^{\prime}=0 \quad \text { in } K O_{s^{1}}\left(M_{m}\right)
$$

Hence Φ is injective.
q.e.d.

Next we consider the condition (i) of Lemma 4.5. Let $E S^{1}$ (resp. $B S^{1}$) be a universal S^{1}-space (resp. a classifying space for S^{1}). Let $\pi_{k}: E S^{1} \times{ }_{S 1} M_{k} \rightarrow B S^{1}$ ($0 \leqq k \leqq m$) be the natural projection.

Lemma 4.8. The homomorphism

$$
\pi_{k}^{*}: H^{q}\left(B S^{1} ; \boldsymbol{Z}\right) \rightarrow H^{q}\left(E S^{1} \times{ }_{S^{1}} M_{k} ; \boldsymbol{Z}\right)
$$

is an isomorphism for $0 \leqq q \leqq 2 m-2$. Moreover the integral cohomology ring of $E S_{S^{1}} \times M_{k}$ is

$$
H^{*}\left(E S_{S^{1}}^{1} M_{k} ; \boldsymbol{Z}\right)=\boldsymbol{Z}[c] /\left(q c^{m}\right),
$$

where $\operatorname{deg} c=2$ and $q=\prod_{i=1}^{k} p_{i}$.

Proof. The map π_{k} is a projection of a sphere bundle associated with the complex m-plane bundle $\eta^{p_{1}} \oplus \cdots \oplus \eta^{p_{k}} \oplus \eta \oplus \cdots \oplus \eta$, where η is the canonical complex line bundle over $B S^{1}$. Then the result follows from the Thom-Gysin exact sequence.

Lemma 4.9. Let $\tau: E S_{S^{1}}^{1} \times M_{0} \rightarrow M_{0} / S^{1}=C P^{m-1}$ be the natural projection. Then

$$
\tau^{*}: H^{*}\left(C P^{m-1} ; \boldsymbol{Z}\right) \rightarrow H^{*}\left(E S^{1} \times{ }_{S 1} M_{0} ; \boldsymbol{Z}\right)
$$

is an isomorphism.
Proof. The result follows from the Vietoris-Begle Mapping Theorem (see Bredon [6; p. 371], Spanier [26; p. 344]).

Lemma 4.10. The homomorphism

$$
\left(\underset{s^{1}}{1 \times h}\right)^{*}: H^{q}\left(E S^{1} \times{ }_{S 1} \times M_{m} ; \boldsymbol{Z}\right) \rightarrow H^{q}\left(E S^{1} \times{ }_{S 1}^{1} M_{0} ; \boldsymbol{Z}\right)
$$

is an isomorphism for $0 \leqq q \leqq 2 m-2$.
Proof. Consider the following commutative diagram:

Since π_{m}^{*} and π_{0}^{*} are isomorphisms for $0 \leqq q \leqq 2 m-2,(1 \times h)^{*}$ is an isomorphism for $0 \leqq q \leqq 2 m-2$.
q.e.d.

Lemma 4.11. Let ξ and η be real S^{1}-vector bundles over M_{m} with $\operatorname{dim}_{R} \xi==$ $\operatorname{dim}_{R} \eta=k$. Assume that $m \equiv 2 \bmod 4$. Then the following two conditions are equivalent:
(i) $\mu\left(h^{*} \xi\right)=\mu\left(h^{*} \eta\right)$ in $K O\left(C P^{m-1}\right)$,
(ii) $p_{i}\left(E S^{1} \times \xi\right)=p_{i}\left(E S^{1}{ }_{S^{1}} \eta\right)$ in $H^{4 i}\left(E S_{S^{1}} \times M_{m} ; \boldsymbol{Z}\right)$ for $1 \leqq i \leqq \min ([k / 2]$, $[(m-1) / 2])$.
Here $p_{i}\left(E S^{1} \times \xi\right)\left(\right.$ resp. $\left.p_{i}\left(E S^{1} \times \eta\right)\right)$ denotes the i-th Pontrjagin class of the bundle

Proof. Remark that $\tau^{*}\left(\mu\left(h^{*} \xi\right)\right)=E S^{1} \times h^{1} h^{*} \xi$, where $\tau: E S_{S^{1}} \times M_{0} \rightarrow M_{0} / S^{1}=$ $C P^{m-1}$ is the natural projection. Then we have

$$
\tau^{*}\left(p_{i}\left(\mu\left(h^{*} \xi\right)\right)\right)=p_{i}\left(E S_{s 1^{1}} \times h^{*} \xi\right)
$$

and

$$
\left(\underset{s^{1}}{ }()^{*}\left(p_{i}\left(E S_{S^{1}}^{1} \times \xi\right)\right)=p_{i}\left(E S_{S^{1}}^{1} h^{*} \xi\right)\right.
$$

Hence it follows from Lemmas 4.9 and 4.10 that the condition (ii) is equivalent to the following:

$$
p_{i}\left(\mu\left(h^{*} \xi\right)\right)=p_{i}\left(\mu\left(h^{*} \eta\right)\right) \text { in } H^{4 i}\left(C P^{m-1} ; \boldsymbol{Z}\right)
$$

for $1 \leqq i \leqq \min ([k / 2],[(m-1) / 2])$. Since $m \neq 2 \bmod 4, K O\left(C P^{m-1}\right)$ is a free abelian group (see Sanderson [24; Theorem 3.9]). It follows from Hsiang [10; §3] that

$$
p_{i}\left(\mu\left(h^{*} \xi\right)\right)=p_{i}\left(\mu\left(h^{*} \eta\right)\right) \quad \text { for } 1 \leqq i \leqq \min ([k / 2],[(m-1) / 2])
$$

if and only if

$$
\mu\left(h^{*} \xi\right)=\mu\left(h^{*} \eta\right) \quad \text { in } K O\left(C P^{m-1}\right)
$$

By Theorem 4.7 and Lemma 4.11, we have
Theorem 4.12. Let m be a positive integer such that $m \equiv 2 \bmod 4$. Let $p_{i}(1 \leqq i \leqq m)$ be positive odd integers with $\left(p_{i}, p_{j}\right)=1$ for $i \neq j$. Let ξ and η be real S^{1}-vector bundles over $S^{2 m-1}\left(p_{1}, p_{2}, \cdots, p_{m}\right)$ with $\operatorname{dim}_{R} \xi=\operatorname{dim}_{R} \eta=k$. Then $\xi=\eta$ in $K O_{s^{1}}\left(S^{2 m-1}\left(p_{1}, p_{2}, \cdots, p_{m}\right)\right)$ if and only if the following two conditions are satisfied:
(i) $\xi_{e_{i}}=\eta_{e_{i}}$ in $R O\left(Z_{p_{i}}\right)$ for $1 \leqq i \leqq m$,
(ii) $p_{i}\left(E S_{s^{1}}^{1} \times \xi\right)=p_{i}\left(E S_{s^{1}}^{1} \eta\right)$ for $1 \leqq i \leqq \min ([k / 2],[(m-1) / 2])$.

Remark 4.13. Let G be a compact Lie group and let X be a finite $G-C W$ complex in the sense of Matumoto [17]. Let ξ and η be G-vector bundles over X such that they are stably equivalent. But, in general, ξ and η are not equivalent even if $\operatorname{dim} \xi=\operatorname{dim} \eta>\operatorname{dim} X$ (cf. Sanderson [24; Lemma 1.2]). For example, for an arbitrary integer $n \geqq 0$, we put

$$
\left\{\begin{array}{l}
\xi=S^{3}(7,11) \times t^{2} \oplus t \oplus n t \\
\eta=S^{3}(7,11) \times t^{9} \oplus t^{78} \oplus n t
\end{array}\right.
$$

where $t^{d}(d \in Z)$ denotes the complex one-dimensional S^{1}-representation space defined by $t^{d}(s) z=s^{d} z$ for $s \in S^{1}, z \in \boldsymbol{C}^{1}$. It follows from Lemma 4.5 that

$$
\xi \oplus \underline{\underline{\boldsymbol{R}}}^{1} \cong \eta \oplus \underline{\underline{\boldsymbol{R}}}^{1}
$$

Now we assume that there exists an isomorphism of S^{1}-vector bundles:

$$
\omega: \xi \rightarrow \eta .
$$

Since ξ (resp. η) is a complex vector bundle, ξ (resp. η) has a canonical orientation. Then the isomorphism of \boldsymbol{Z}_{7}-representation spaces $\omega_{e_{1}}: \xi_{e_{1}} \rightarrow \eta_{e_{1}}$
is orientation-preserving, but the isomorphism of \boldsymbol{Z}_{11}-representation spaces $\omega_{e_{2}}: \xi_{e_{2}} \rightarrow \eta_{e_{2}}$ is orientation-reversing. Since $S^{3}(7,11)$ is connected, this is a contradiction. Therefore ξ and η are not equivalent.

5. Equivariant J-groups

In [12] and [14], Kawakubo has defined the notion of the equivariant J group as follows:

Let G be a compact Lie group and let X be a compact G-space. Let ξ and η be real G-vector bundles over X. Denote by $S(\xi)$ (resp. $S(\eta)$) the unit sphere bundle associated with ξ (resp. η) with respect to some S^{1}-invariant metric. $S(\xi)$ and $S(\eta)$ are said to be G-fiber homotopy equivalent if $S(\xi)$ and $S(\eta)$ are homotopy equivalent by fiber-preserving G-maps and G-homotopies. Let $T_{G}(X)$ be the additive subgroup of $K O_{G}(X)$ generated by elements of the form $\xi-\eta$, where ξ and η are G-vector bundles over X whose associated sphere bundles are G-fiber homotopy equivalent. We define the equivariant J-group $J_{G}(X)$ by

$$
J_{G}(X)=K O_{G}(X) / T_{G}(X)
$$

and define the equivariant J-homomorphism J_{G} by the natural epimorphism

$$
J_{G}: K O_{G}(X) \rightarrow J_{G}(X)
$$

When X is a point, $J_{G}(X)$ is denoted by $J_{G}(*)$.
In this section, we shall consider the equivariant J-group of $S^{2 m-1}\left(p_{1}, p_{2}, \cdots\right.$, p_{m}) when the S^{1}-action is free or pseudofree. We shall use freely the notations in $\S \S 3$ and 4.

Let X be a compact S^{1}-space. Let ξ and η be real S^{1}-vector bundles over X with $\operatorname{dim}_{\boldsymbol{R}} \xi=\operatorname{dim}_{\boldsymbol{R}} \eta$. Let $E(S(\xi), S(\eta))$ denote the disjoint union of the function spaces $F\left(S\left(\xi_{x}\right), S\left(\eta_{x}\right)\right.$) (see $\S 3$) and define

$$
\begin{equation*}
q^{\prime}: E(S(\xi), S(\eta)) \rightarrow X \tag{5.1}
\end{equation*}
$$

by

$$
\left.q^{\prime}\left(F\left(S\left(\xi_{x}\right)\right), S\left(\eta_{x}\right)\right)\right)=x
$$

Then there exists a canonical topology for $E(S(\xi), S(\eta))$ so that $E(S(\xi), S(\eta))$ is the total space of a fiber bundle with projection q^{\prime} and with fibers $F\left(S\left(\xi_{x}\right)\right.$, $S\left(\eta_{x}\right)$). An S^{1}-action

$$
\rho: S^{1} \times E(S(\xi), S(\eta)) \rightarrow E(S(\xi), S(\eta))
$$

is given by $\rho(s, f)(v)=s f\left(s^{-1} v\right)$ for $s \in S^{1}, f \in F\left(S\left(\xi_{x}\right), S\left(\eta_{x}\right)\right), v \in S\left(\xi_{s x}\right)$. Then $q^{\prime}: E(S(\xi), S(\eta)) \rightarrow X$ is an S^{1}-map.

Let $p_{i}(1 \leqq i \leqq m)$ be positive integers. Let ξ and η be real S^{1}-vector bundles over $M_{m}\left(=S^{2 m-1}\left(p_{1}, p_{2}, \cdots, p_{m}\right)\right)$ with $\operatorname{dim}_{R} \xi=\operatorname{dim}_{R} \eta$. We choose and fix some S^{1}-invariant metrics on ξ and η. Then the S^{1}-vector bundles $h^{*} \xi$, $h^{*} \eta, \tilde{h}_{k}^{*} \xi$ and $\widetilde{h}_{k}^{*} \eta(0 \leqq k \leqq m)$ have canonical S^{1}-invariant metrics induced by the S^{1}-invariant metrics on ξ and η. We put

$$
V_{k}=\left(\tilde{h}_{k}^{*} \xi\right)_{e_{k}}=\xi_{e_{k}}, W_{k}=\left(\tilde{h}_{k}^{*} \eta\right)_{e_{k}}=\eta_{e_{k}} \quad \text { for } 1 \leqq k \leqq m .
$$

Here V_{k} and $W_{k}(1 \leqq k \leqq m)$ are regarded as orthogonal $\boldsymbol{Z}_{p_{k}}$-representation spaces. Let $q_{k}^{\prime}: E\left(S\left(\widetilde{h}_{k}^{*} \xi\right), S\left(\widetilde{h}_{k}^{*} \eta\right)\right) \rightarrow M_{k}(0 \leqq k \leqq m)$ be S^{1}-maps defined by (5.1). Then we have

Lemma 5.2. There are $\boldsymbol{Z}_{p_{k}}$-homeomorphisms

$$
\varphi_{k}^{\prime}: q_{k}^{\prime-1}\left(D_{k}\right) \rightarrow D_{k} \times F\left(S\left(V_{k}\right), S\left(W_{k}\right)\right) \quad \text { for } 1 \leqq k \leqq m
$$

such that the following diagram commutes :

where π_{1} denotes the projection on the first factor and the restriction

$$
\begin{aligned}
\varphi_{k}^{\prime} \mid q_{k}^{\prime-1}\left(e_{k}\right): q_{k}^{\prime-1}\left(e_{k}\right)=F & \left(S\left(V_{k}\right), S\left(W_{k}\right)\right) \rightarrow \\
& \left\{e_{k}\right\} \times F\left(S\left(V_{k}\right), S\left(W_{k}\right)\right) \subset D_{k} \times F\left(S\left(V_{k}\right), S\left(W_{k}\right)\right)
\end{aligned}
$$

is the identity.
The proof is parallel to that of Lemma 4.4, so we omit it.
Lemma 5.3. Let $m>1$ be an integer and let $p_{i}(1 \leqq i \leqq m)$ be positive odd integers such that $\left(p_{i}, p_{j}\right)=1$ for $i \neq j$ and $\left(p_{i}, s(2 m-3)\right)=1$ for $1 \leqq i \leqq m$. Let ξ and η be real S^{1}-vector bundles over M_{m} such tnht $\operatorname{dim}_{R} \xi=\operatorname{dim}_{R} \eta=n \geqq 2 m$ and $\xi \supset \underline{\underline{\boldsymbol{R}}}^{1}$ as an S^{1}-vector subbundle. Assume that
(i) $S\left(h^{*} \xi\right)$ and $S\left(h^{*} \eta\right)$ are S^{1}-fiber homotopy equivalent,
(ii) $S\left(\xi_{e_{i}}\right)$ and $S\left(\eta_{e_{i}}\right)$ are $Z_{p_{i}}$-homotopy equivalent for $1 \leqq i \leqq m$.

Then $S(\xi)$ and $S(\eta)$ are S^{1}-fiber homotopy equivalent.
Proof. We put

$$
V_{i}=\left(\widetilde{h}_{i}^{*} \xi\right)_{e_{i}}=\xi_{e i} \quad \text { and } \quad W_{i}=\left(\widetilde{h}_{i}^{*} \eta\right)_{e_{i}}=\eta_{e i} \quad \text { for } 1 \leqq i \leqq m .
$$

By the assumption (ii), there exist $\boldsymbol{Z}_{p_{i}}$-homotopy equivalences

$$
f_{i}: S\left(V_{i}\right) \rightarrow S\left(W_{i}\right) \quad \text { for } 1 \leqq i \leqq m .
$$

Since $\xi \supset \underline{\underline{\boldsymbol{R}}}^{1}$, there exist $\boldsymbol{Z}_{p_{i}}$-homeomorphisms

$$
\tau_{i}: S\left(V_{i}\right) \rightarrow S\left(V_{i}\right) \quad \text { for } 1 \leqq i \leqq m
$$

such that $\operatorname{deg} \boldsymbol{\tau}_{i}=-1$. Remark that $f_{i} \circ \boldsymbol{\tau}_{i}: S\left(V_{i}\right) \rightarrow S\left(W_{i}\right)$ is also a $\boldsymbol{Z}_{p_{i}}$-homotopy equivalence.

First we shall show that, for each $0 \leqq k \leqq m$, there exists an S^{1}-cross-section of q_{k}^{\prime} :

$$
t_{k}^{\prime}: M_{k} \rightarrow E\left(S\left(\widetilde{h}_{k}^{*} \xi\right), S\left(\widetilde{h}_{k}^{*} \eta\right)\right)
$$

such that $t_{k}^{\prime}\left(e_{j}\right)=f_{j}$ or $f_{j} \circ \tau_{j}$ for $1 \leqq j \leqq k$.
Since $\widetilde{h}_{0}, h: M_{0} \rightarrow M_{m}$ are S^{1}-homotopic, it follows from the assumption (i) that

$$
S\left(\tilde{h}_{0}^{*} \xi\right) \sim S\left(h^{*} \xi\right) \sim S\left(h^{*} \eta\right) \sim S\left(\tilde{h}_{0}^{*} \eta\right)
$$

where \sim stands for is S^{1}-fiber homotopy equivalent to. Thus there exists an S^{1}-cross-section of q_{0}^{\prime} :

$$
t_{0}^{\prime}: M_{0} \rightarrow E\left(S\left(\widetilde{h}_{0}^{*} \xi\right), S\left(\widetilde{h}_{0}^{*} \eta\right)\right)
$$

Let k be an integer greater than zero. Suppose that we are given an S^{1} -cross-section of q_{k-1}^{\prime} :

$$
t_{k-1}^{\prime}: M_{k-1} \rightarrow E\left(S\left(\widetilde{h}_{k-1}^{*} \xi\right), S\left(\widetilde{h}_{k-1}^{*} \eta\right)\right)
$$

such that $t_{k-1}^{\prime}\left(e_{j}\right)=f_{j}$ or $f_{j} \circ \tau_{j}$ for $1 \leqq j \leqq k-1$. Then there exist a continuous cross-section of $q_{k}^{\prime} \mid q_{k}^{\prime-1}\left(D_{k}\right)$:

$$
u_{k}^{\prime}: D_{k} \rightarrow q_{k}^{\prime-1}\left(D_{k}\right) \subset E\left(S\left(\widetilde{h}_{k}^{*} \xi\right), S\left(\tilde{h}_{k}^{*} \eta\right)\right)
$$

and an S^{1}-cross-section of $q_{k}^{\prime} \mid q_{k}^{\prime-1}\left(S_{k}\right)$:

$$
v_{k}^{\prime}: S_{k} \rightarrow q_{k}^{\prime-1}\left(S_{k}\right) \subset E\left(S\left(\widetilde{h}_{k}^{*} \xi\right), S\left(\widetilde{h}_{k}^{*} \eta\right)\right)
$$

such that $v_{k}^{\prime}=u_{k}^{\prime} \mid S_{k}$ and $u_{k}^{\prime}\left(e_{j}\right)=f_{j}$ or $f_{j} \circ \boldsymbol{\tau}_{j}$ for $1 \leqq l \leqq k-1$. This is proved similarly as Lemma 4.6, but we need give care to the condition $v_{k}^{\prime}\left(e_{j}\right)=f_{j}$ or $f_{j} \circ \tau_{j}$ for $1 \leqq j \leqq k-1$. Let $\pi_{2}: D_{k} \times F^{\ell}\left(S\left(V_{k}\right), S\left(W_{k}\right)\right) \rightarrow F^{\ell}\left(S\left(V_{k}\right), S\left(W_{k}\right)\right)$ denote the projection on the second factor. By Lemma 5.2, v_{k}^{\prime} yields a $\boldsymbol{Z}_{p_{k}}$-map

$$
\vartheta_{k}^{\prime}: S_{k} \rightarrow F^{\imath}\left(S\left(V_{k}\right), S\left(W_{k}\right)\right)
$$

by putting $\mathscr{\partial}_{k}^{\prime}(x)=\pi_{2}\left(\varphi_{k}^{\prime}\left(v_{k}^{\prime}(x)\right)\right)$ for $x \in S_{k}$, where $\varepsilon=+$ or - . Since $v_{k}^{\prime}=u_{k}^{\prime} \mid S_{k}$, we have

$$
\left[\bar{च}_{k}^{\prime}\right]=0 \in\left[S^{2 m-3}, F^{\natural}\left(S\left(V_{k}\right), S\left(W_{k}\right)\right)\right] .
$$

Moreover $f_{k} \in F^{\imath}\left(S\left(V_{k}\right), S\left(W_{k}\right)\right)^{Z_{p_{k}}}$ or $f_{k} \circ \tau_{k} \in F^{\imath}\left(S\left(V_{k}\right), S\left(W_{k}\right)\right)^{Z_{p_{k}}}$. It follows
from Proposition 3.4 that there exists a $\boldsymbol{Z}_{p_{k}}$-map

$$
\bar{w}_{k}^{\prime}: D_{k} \rightarrow F^{\mathfrak{\imath}}\left(S\left(V_{k}\right), S\left(W_{k}\right)\right)
$$

such that $\bar{w}_{k}^{\prime} \mid S_{k}=\bar{v}_{k}^{\prime}$ and $\bar{w}_{k}^{\prime}\left(e_{k}\right)=f_{k}$ or $f_{k}{ }^{\circ} \tau_{k}$. Using Lemma 5.2, we define a $\boldsymbol{Z}_{p_{k}}$-cross-section of $q_{k}^{\prime} \mid q_{k}^{\prime-1}\left(D_{k}\right)$:

$$
w_{k}^{\prime}: D_{k} \rightarrow q_{k}^{\prime-1}\left(D_{k}\right) \subset E\left(S\left(\tilde{h}_{k}^{*} \xi\right), S\left(\tilde{h}_{k}^{*} \eta\right)\right)
$$

by putting $w_{k}^{\prime}(x)={\varphi_{k}^{\prime}}^{-1}\left(x, \bar{w}_{k}^{\prime}(x)\right)$ for $x \in D_{k}$. Since $w_{k}^{\prime} \mid S_{k}=v_{k}^{\prime}$ and $w_{k}^{\prime}\left(e_{k}\right)=f_{k}$ or $f_{k} \circ \tau_{k}$, it follows from Lemma 4.3 that there exists an S^{1}-cross-section of q_{k}^{\prime} :

$$
t_{k}^{\prime}: M_{k} \rightarrow E\left(S\left(\tilde{h}_{k}^{*} \xi\right), S\left(\tilde{h}_{k}^{*} \eta\right)\right)
$$

such that $t_{k}^{\prime}\left(e_{j}\right)=w_{k}^{\prime}\left(e_{j}\right)=f_{j}$ or $f_{j} \circ \tau_{j}$ for $1 \leqq j \leqq k$.
By induction, we obtain S^{1}-cross-sections $t_{0}^{\prime}, t_{1}^{\prime}, \cdots, t_{m}^{\prime}$. The last S^{1}-crosssection t_{m}^{\prime} gives a fiber-preserving S^{1}-map

$$
\omega: S(\xi) \rightarrow S(\eta)
$$

such that $\omega_{e_{j}}=f_{j}$ or $f_{j} \circ \tau_{j}$ for $1 \leqq j \leqq m$. It is easy to see that, for every $x \in M_{m}$, $\omega_{x}: S\left(\xi_{x}\right) \rightarrow S\left(\eta_{x}\right)$ is an S_{x}^{1}-homotopy equivalence, where S_{x}^{1} denotes the isotropy group at $x \in M_{m}$. Therefore it follows from the equivariant Dold theorem that ω gives an S^{1}-fiber homotopy equivalence (cf. Kawakubo [12; Theorem 2.1] and [24; Theorem 2.1]).
q.e.d.

By the same argument as in §2 of Segal [25], we obtain an isomorphism of groups:

$$
p r^{*}: J\left(C P^{m-1}\right) \rightarrow J_{s^{1}}\left(M_{0}\right)
$$

and the following diagram commutes:

$$
\begin{aligned}
& K O\left(C P^{m-1}\right) \xrightarrow{p r^{*}} K O_{s^{1}}\left(M_{0}\right) \\
& J \\
& J\left(C P^{m-1}\right) \xrightarrow{p r^{*}} J_{s^{1}} \downarrow \\
& J_{s^{1}}\left(M_{0}\right)
\end{aligned}
$$

(cf. Lemma 4.6). We define

$$
\widetilde{\mu}=\left(p r^{*}\right)^{-1}: J_{s^{1}}\left(M_{0}\right) \xrightarrow{\cong} J\left(C P^{m-1}\right) .
$$

Now we define a homomorphism of groups

$$
\tilde{\Phi}: J_{s^{1}}\left(S^{2 m-1}\left(p_{1}, p_{2}, \cdots, p_{m}\right)\right) \rightarrow J\left(C P^{m-1}\right) \oplus \bigoplus_{i=1}^{m} J_{z_{p_{i}}}(*)
$$

by putting

$$
\tilde{\Phi}\left(J_{s^{1}}(\xi-\eta)\right)=\widetilde{\mu}\left(J_{s^{1}}\left(h^{*} \xi-h^{*} \eta\right)\right) \oplus \bigoplus_{i=1}^{m} J_{z_{p_{i}}}\left(\xi_{e_{i}}-\eta_{e_{i}}\right) .
$$

Then we have
Theorem 5.4. Let $p_{i}(1 \leqq i \leqq m)$ be positive odd integers such that $\left(p_{i}, p_{j}\right)=1$ for $i \neq j$ and $\left(p_{i}, s(2 m-3)\right)=1$ for $1 \leqq i \leqq m$. Then the homomorphism $\tilde{\Phi}$ is injective.

Proof. We see easily that $J_{s^{1}}\left(S^{1} \mid Z_{p_{1}}\right) \cong J_{Z_{p_{1}}}(*)$. Hence Theorem 5.4 will follow from Lemma 5.3 by the same argument as in the proof of Theorem 4.7.

Let ψ^{k} denote the Adams operation on equivariant $K O$-theory.
Corollary 5.5. (cf. [18; Theorem 6.8].) Let a and b be integers wiht $(a, b)=$ $\left(a b, p_{i}\right)=1$ for $1 \leqq i \leqq m$. For an arbitrary element α of $K O_{s^{1}}\left(S^{2 m-1}\left(p_{1}, p_{2}, \cdots, p_{m}\right)\right)$, we have

$$
J_{s^{1}}\left(\left(\psi^{a}-1\right)\left(\psi^{b}-1\right)(\alpha)\right)=0 \text { in } J_{s^{1}}\left(S^{2 m-1}\left(p_{1}, p_{2}, \cdots, p_{m}\right)\right) .
$$

Proof. By tom Dieck [7; Theorem 1] and tom Dieck-Petrie [8; Theorem 5], we have

$$
J_{z_{p_{i}}}\left(\left(\psi^{a}-1\right)\left(\psi^{b}-1\right)(\alpha)_{e_{i}}\right)=0 \text { in } J_{z_{p_{i}}}(*) \quad \text { for } 1 \leqq i \leqq m
$$

On the other hand, by the solution of the Adams conjecture ([1], [22]), we see that

$$
\widetilde{\mu}\left(J_{s^{1}}\left(h^{*}\left(\psi^{a}-1\right)\left(\psi^{b}-1\right)(\alpha)\right)\right)=J\left(\left(\psi^{a}-1\right)\left(\psi^{b}-1\right)\left(\mu\left(h^{*}(\alpha)\right)\right)=0 \text { in } J\left(C P^{m-1}\right) .\right.
$$

Therefore the result follows from Theorem 5.4. q.e.d.

Remark 5.7. i) The ring structure of $K O\left(C P^{m-1}\right)$ and the group structure of $J\left(C P^{m-1}\right)$ have been determined by Sanderson [24; Theorem 3.9] and AdamsWalker [2] (see also Suter [28]). ii) The group structure of $J_{Z_{n}}(*)$ has been determined by Kawakubo [13] and [15].

6. Quasi-equivalence

Let G be a compact Lie group and let X be a compact G-space. Let ξ and η be real G-vector bundles of the same dimension over X. In [18] and [21], a G-map $\omega: \xi \rightarrow \eta$ which is proper, fiber-preserving and degree one on fibers is called a quasi-equivalence. Let $\alpha=\eta-\xi \in K O_{G}(X)$ and define $\alpha \geqq 0$ to mean there exist a G-vector bundle θ over X and a quasi-equivalence $\omega: \xi \oplus \theta \rightarrow \eta \oplus \theta$.

Problem 6.1. ([18], [21].) Given $\alpha \in K O_{G}(X)$, given necessary and sufficient conditions for $\alpha \geqq 0$.

In this section, we consider the above problem when $G=S^{1}$ and $X=S^{2 m-1}$ ($p_{1}, p_{2}, \cdots, p_{m}$) with a free or pseudofree S^{1}-action.

We have

Theorem 6.2. Let $p_{i}(1 \leqq i \leqq m)$ be positive odd integers such that $\left(p_{i}, p_{j}\right)=1$ for $i \neq j$ and $\left(p_{i}, s(2 m-3)\right)=1$ for $1 \leqq i \leqq m$. Let ξ and η be real S^{1}-vector bundles of the same dimension over $S^{2 m-1}\left(p_{1}, p_{2}, \cdots, p_{m}\right)$. Then $\alpha=\eta-\xi \geqq 0$ if and only if ξ and η satisfy the following two conditions:
(i) $J\left(\mu\left(h^{*} \xi\right)\right)=J\left(\mu\left(h^{*} \eta\right)\right)$ in $J\left(C P^{m-1}\right)$,
(ii) $\alpha_{e_{i}}=\eta_{e_{i}}-\xi_{e_{i}} \geqq 0$ for $1 \leqq i \leqq m$,
where we regard $\alpha_{e_{i}}$ as an element of $K O_{z_{p_{i}}}(*) \cong R O\left(\boldsymbol{Z}_{p_{i}}\right)$ for $1 \leqq i \leqq m$.
Proof. It is obvious that $\alpha \geqq 0$ if and only if there exist an S^{1}-vector bundle θ over $S^{2 m-1}\left(p_{1}, p_{2}, \cdots, p_{m}\right)$ and a fiber-preserving $S^{1}-$ map $\zeta: S(\xi \oplus \theta) \rightarrow S(\eta \oplus \theta)$ such that $\operatorname{deg} \zeta_{x}=1$ for $x \in S^{2 m-1}\left(p_{1}, p_{2}, \cdots, p_{m}\right)$. Then the proof is parallel to that of Lemma 5.3. q.e.d.

Corollary 6.3. (cf. [21; Corollary 1.13].) Let α be an arbitrary element of $K O_{s^{1}}\left(S^{2 m-1}\left(p_{1}, p_{2}, \cdots, p_{m}\right)\right)$ such that $\alpha_{e_{i}} \geqq 0$ for $1 \leqq i \leqq m$. Then there exists a non-negative integer n so that

$$
n \alpha \geqq 0
$$

Proof. Remark that $\mu\left(h^{*} \alpha\right) \in \widetilde{K O}\left(C P^{m-1}\right)$. It is well-known that $\widetilde{J}\left(C P^{m-1}\right)$ is a finite abelian group. Hence there exists an integer n such that

$$
J\left(\mu\left(h^{*}(n \alpha)\right)\right)=n J\left(\mu\left(h^{*} \alpha\right)\right)=0 \quad \text { in } J\left(C P^{m-1}\right)
$$

Thus the result follows from Theorem 6.2.
q.e.d.

Corollary 6.4. Let k be an integer with $\left(k, p_{i}\right)=1$ for $1 \leqq i \leqq m$. Let α be an arbitrary element of $K O_{s^{1}}\left(S^{2 m-1}\left(p_{1}, \cdots, p_{m}\right)\right)$. Then there exists a non-negative integer $e=e(k, \alpha)$ such that

$$
k^{e}\left(\psi^{k}-1\right)(\alpha) \geqq 0
$$

Proof. By the solution of the Adams conjecture (see [1], [22]), there exists a non-negative integer e such that

$$
J\left(\mu\left(h^{*}\left(k^{e}\left(\psi^{k}-1\right)(\alpha)\right)\right)\right)=J\left(k^{e}\left(\psi^{k}-1\right)\left(\mu\left(h^{*} \alpha\right)\right)\right)=0 \quad \text { in } J\left(C P^{m-1}\right)
$$

On the other hand, by Lee-Wasserman [16; Corollaries 3.3 and 4.8] and Atiyah-Tall [5; V. Theorem 2.8], we have

$$
k^{e}\left(\psi^{k}-1\right)\left(\alpha_{e_{i}}\right) \geqq 0 \quad \text { for } 1 \leqq i \leqq m .
$$

Therefore the result follows from Theorem 6.2. q.e.d.

Remark 6.5. When X is a point and $\alpha \in K_{G}(X) \cong R(G)$, Problem 6.1 is solved by the main theorem of [18; Theorem 5.1] (see also Atiyah-Tall [5] and Lee-Wasserman [16]).

References

[1] J.F. Adams: On the groups $J(X)-I$, Topology 2 (1963), 181-195.
[2] J.F. Adams and G. Walker: On complex Stiefel manifolds, Proc. Cambridge Philos. Soc. 61 (1965), 81-103.
[3] M.F. Atiyah: K-theory, Benjamin, 1967.
[4] M.F. Atiyah: Thom complexes, Proc. London Math. Soc. 11 (1961), 291-310.
[5] M.F. Atiyah and D.O. Tall: Group representations, λ-rings and the J-homomorphism, Topology 8 (1969), 253-297.
[6] G.E. Bredon: Introduction to compact transformation groups, Academic Press, 1972.
[7] T. tom Dieck: Homotopy-equivalent group representations, J. Reine Angew. Math. 298 (1978), 182-195.
[8] T. tom Dieck and T. Petrie: Geometric modules over the Burnside ring, Invent. Math. 47 (1978), 273-287.
[9] J. Folkman: Equivariant maps of spheres into the classical groups, Mem. Amer. Math. Soc. 95, 1971.
[10] W.C. Hsiang: A note on free differentiable actions of S^{1} and S^{3} on homotopy spheres, Ann. of Math. 83 (1966), 266-272.
[11] W. Iberkleid: Pseudo-linear spheres, Michigan Math. J. 25 (1978), 359-370.
[12] K. Kawakubo: Compact Lie group actions and fiber homotopy type, J. Math. Soc. Japan 33 (1981), 295-321.
[13] K. Kawakubo: Equivariant homotopy equivalence of group representations, J. Math. Soc. Japan 32 (1980), 105-118.
[14] K. Kawakubo: G-homotopy equivalent manifolds and J_{G}-homomorphism, Proc. Japan Acad. 54 (1978), 104-106.
[15] K. Kawakubo: The groups $J_{G}(*)$ for compact abelian topological groups G, Proc. Japan Acad. 54 (1978), 76-78.
[16] C.N. Lee and A.G. Wasserman: On the groups $J O(G)$, Mem. Amer. Math. Soc. 159, 1976.
[17] T. Matumoto: On G-CW complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 363-374.
[18] A. Meyerhoff and T. Petrie: Quasi-equivalence of G modules, Topology 15 (1976), 69-75.
[19] D. Montgomery and C.T. Yang: Differentiable pseudo-free circle actions on homotopy seven spheres, Proc. of the Second Conf. on Compact Transformation Groups, Amherst, Springer Lecture Note 298 (1971), 41-101.
[20] D. Montgomery and C.T. Yang: Differentiable pseudo-free circle actions, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 894-896.
[21] T. Petrie: Pseudoequivalences of G-manifolds, Proc. Sympos. Pure Math. 32 (1978), 169-210.
[22] D. Quillen: The Adams conjecture, Topology 10 (1971), 67-80.
[23] R.L. Rubinsztein: On the equivariant homotopy of spheres, Dissertations Math., Warszawa (1976).
[24] B.J. Sanderson: Immersions and embeddings of projective spaces, Proc. London Math. Soc. 14 (1964), 137-153.
[25] G. Segal: Equivariant K-theory, Inst. Hautes Etudes Sci. Publ. Math. Paris 34 (1968), 129-151.
[26] E.H. Spanier: Algebraic topology, McGraw-Hill Book Company, 1966.
[27] N. Steenrod: The topology of fibre bundles, Princeton University Press, 1951.
[28] U. Suter: On the groups $J\left(C P^{m}\right)$ and $J\left(H P^{n}\right)$, Bol. Soc. Brasil. Mat. 5 (1974), 221-231.

Department of Mathematics Osaka University
Toyonaka, Osaka 560
Japan

