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Introduction. S. Chase and M. Sweedler [1] defined commutative
Hopf Galois extensions as a generalization of separable Galois extensions,
and then established a Galois theory to such extensions. On the other hand,
T. Kanzaki [3], Y. Takeuchi [7] and others studied non-commutative separable
Galois extensions and a Galois theory.

In this paper we consider the case where the rings are not necessarily com-
mutative. In §1, we shall give the definitions of Hopf Galois extensions,
which 1s divided into three definitions—Hopf Galois extensions, strong Hopf
Galois extensions and very strong Hopf Galois extensions— since in non-com-
mutative case, finitely generated faithful projective modules are not necessarily
pro-generators. Besides non-commutative separable Galois extensions, we
can view certain types of p-algebras as Hopf Galois extensions. Also we
shall prove some elementary properties of Hopf Galois extensions in §1. In
§2 we examine the integral. Finally in §3, we shall establish a usual Galois
theory of very strong Hopf Galois extensions.

In a subsequent paper [8], we shall deal with Hopf Galois extensions over
a commutative ring and shall show that the above definition is natural from
cohomological view-points.

Throughout this paper, R denotes a commutative ring with identity, H
denotes a finite co-commutative Hopf algebra over R. A denotes an R-algebra
which is a finitely generated faithful projective R-module. H measures 4 to
A and makes 4 an H-module algebra, that is there exists an R-homomorphism

p: HRQrA—A with the properties p(h®xy)=(%} p(hy@x)p(h Ry), p(h@1)=

&), € is an augumentation, p(gh®x)=p(g@p(hQx)), g, hEH, x, yE A.
p(h®x) is denoted by k-x. B denotes the fixed subalgebra A7={xc4|h-x=
&MR)x for any heH}. An unspecified @ is taken over R. For a left (resp.
right) B-module M, End} (M) (resp. End3(M)) denotes the left (resp. right) B-
endomorphism ring of M. This is also denoted as Endy (3M) (resp. Endp
(M3)). For other notations and terminologies we shall refer to [1].
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1. Hopf Galois extensions

As the commutative case, we make a smash product algebra A#H as
follows;

A$H=AQ® H as R-modules, we write a#h rather than a®#h. Then
multiplication is given by the formula;

(a%g) (b#h) = 3 ag-blgwh, a,bE4, g, hEH .

This is a well-defined R-algebra, since 4 and H are R-algebras. Well, we have
a homomorphism «: A$H—End; (4) defined by (a(afh))(x)=ah-x, xEA.
a is an R-algebra homomorphism and 4 is a left A H-module. Also we have
a left A-homomorphism B: 4(4A® zA)—Homg(H, 4A4) and a right A-homomor-
phism B": (AQ® 3 A),~Homg(H, A4,) defined by

(B(a@b))(h) = ah-b, (B'(a®D)) = (h-a)b.

Theorem 1.1 The following conditions are equivalent (the assumption of
R-projectivity of A is unnecessary).

(1) A is a finitely generated projective right B-module and o is an iscmorphism.

(ii) A is a left Ay H-generator.

(iii) A is a finitely generated projective right B-module and 3 is an isomorphism.

(iv) A is a finitely generated projective right B-module and B’ is an isomorphism.

Proof. (i)=(ii). From Morita theory, that 4 is a finitely generated pro-
jective right B-module means that 4 is a left Endj(A4)-generator. Hence 4
is a left A 4# H-generator.

(if)=(i). Since 4 is a left A#H-generator, 4 is a finitely generated projec-
tive left End}yx(4)-module. Endj;x(4) is lanti-isomorphic to A% =B by
f—f(1), fEEnds;#(A). Hence A is a finitely generated projective right B-
module. As easily checked, this right B-module structure of A coincides with
the original one. Again from Morita theory, Endj (A):End;’;ndf” ca(A)=
A#H, and this isomorphism coincides with a.

(i) (@iv). Let v be the composite of the isomorphisms;

A$H = AQH=Hom, (H*, A)=~Hom} (AQH?*, A)=Hom/ (Hom (H, 4), 4),
where H* = Hom, (H, R) .

The explicit form of ¥ is given by
(v(agh))(f) = af(h), ac A, h€H, feH*.
Next let & be the composite of the isomorphisms;

End} (4)=Homj (45, Hom} (34, A))=Hom,(A®y A4, A,), where the
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latter isomorphism is the adjoint isomorphism.

The explicit form of § is given by

3(f)(a®b) = f(a)b, fEEnd; (4), a,b=A.
Now, we have the following commutative diagram;

A$H “ — Endj (4)

U - Us
Hom (Homg (H, 4), A) — Hom} (AQ 5 A4, A)

Thus if o is an isomorphism, then B’* is an isomorphism. Taking the dual
again, we get that @’ is an isomorphism since Homg(H, 4) and AQzA are
finitely generated projective right A-modules.

If B’ is an isomorphism, then B'* is an isomorphism. So « is an isomor-
phism.
To prove (iii)=(iv), we use the antipode S of H. Let ®: Homg (H, 4)—
Homy, (H, A) be the homomorphism defined by

(@) = 2 S(hw)-fhw), fEHomy (H, 4), heH .

® is an isomorphism, the inverse ®! of ® is given by
SHNB) = 2 b fhew) -

Now, we have the following diagram, which is commutative as easily checked.

AR A _ﬂ__) Homy (H, A)
lﬁ s* )H‘I’

Hom, (H, A) ===  Homg (H, 4)

Thus that B is an isomorphism is equivalent to that 8’ is an isomorphism.
This completes the proof.

Proposition 1.2. Let B be merely a subalgebra of A such that o: AgH==
Endj (A4), and A be not only a finitely generated projective right B-module, but
also a right B-generator. Then the coherent condition B=A* follows automatically.

Proof. Since 4 is a right B-generator, BzEnd-’End;,( ay(A)=End} y zA= A"
CA. As easily checked, this isomorphism is given by B2b—be& A¥ C A.
Hence B=A4*,
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DrerFiNiTION. We call an extension A/B an H-Hopf Galois extension if an
R-algebra A is a finitely generated faithful projective R-module and satisfies
the equivalent conditions of Theorem 1.1.

We call an H-Hopf Galois extension A/B a strong H-Hopf Galois extension
if A is a right B-generator, or equivalently if A is a left A #H-pro-generator.

We call a strong H-Hopf Galois extension A/B is a very strong H-Hopf
Galois extension if A is a left B-pro-generator, or equivalently (as the following
Proposition asserts) if 4 is a left B# H-pro-generator.

Remark. If A/B is a strong H-Hopf Galois extension, then B is a finitely
generated faithful projective R-module as is easily proved.

Proposition 1.3. Let A/B be a strong H-Hopf Galois extension, then the
following conditions are equivalent.
(3) A is a left B-pro-generator, i.e. A|B is a very strong H-Hopf Galois
extension.
(i1) A is a left B H-pro-generator.
(iii) A4 H is a left B# H-pro-generator.

Proof. (i)=>(ii). We consider the following isomorphism induced from g3;

p3a(A®sA), £HomR(H, A) = pyp(Homp(B#H, A)),. This isomorphism is
a (B#H, A)-isomorphism. The right side is isomorphic to z; ;Homj(B#H, B)
 QpA=gyy(Homy(Hy, R)Q z;B)Q A since A is a finitely generated projective
left B-module by hypothesis. We know that Homg(Hy, R) is a left H-pro-
generator (c.f. [4] Proposition 1). Thus the right side is a finitely generated
projective left BfH-module. B is a left B-direct summand of 4 by hypo-
thesis, hence 4 is a left B H-direct summand of a finitely generated projective
left B#H-module AQz;A. Thus A is a finitely generated projective left B H-
module. Also p3(Homg(H, R)YQB) is a left B#H-generator, so zy4(AQ 5A)
is a left B§H-generator. Since A is a finitely generated projective left B-
module, a left B# H-generator AQ A4 is a direct summand of a direct sum of
a finite number of copies of 4 as a left B H-module. Thus 4 is a left B$H-

generator.

(ii)=>(iii). Since 4 is a B# H-generator, B$H is a left B#H-direct summand
of a direct sum of a finite number of copies of 4. And A/B is a strong H-
Hopf Galois extension, so 4 is a finitely generated projective left 4#H-module.
4 is a direct summand of a direct sum of finite copies of A$H as a left A$H-
module, hence as a left BfH-module. Thus B#H is a direct summand of
a direct sum of finite copies of A#H as a left B H-module, so A#$H is a left
B#H-generator. Similarly using the fact that A is a left A#H-generator
and that 4 is a finitely generated projective left B#H-module, we get that



Non-coMMmUTATIVE HOPF GALO1s EXTENSIONS 67

A#H is a finitely generated projective left B#H-module.

(iif)=>(1). First we shall show that A is a finitely generated projective left
B-module. Since A4 is a finitely generated projective left A#H-module, A
is a direct summand of a direct sum of finite copies of A#H as a left A}H-
module. Since A#H is a finitely generated projective left B#H-module,
A#H is a direct summand of a direct sum of finite copies of B#H which is a
finitely generated projective left B-module. Thus 4 is a finitely generated
projective left B-module. That A4 is a left B-generator follows easily from
that B#H is a left B-generator, that A$H is a left B#H-generator and that 4
is a left A4 H-generator. This completes the proof.

Remark. In (iii)=(i), in order to prove the finitely generated projectivity
of a left B-module A, we used only the projectivity of a left B#H-module
AgH. In Corollary 2.4, we shall show that a strong H-Hopf Galois exten-
sion A/B is a very strong Hopf Galois extension if A#H is a finitely generated
projective left B#H-module.

Here we shall list up some properties in a case B=R, which are neces-
sary in a subsequent paper [8].

Corollary 1.4. If A|R is an H-Hopf Galois extension, then A is an H-pro-
generator.

~ Proof. The assertion follows immediately from Proposition 1.3.
Also we have the following well-known

Proposition 1.5 ([1] Prop. 9.1). The extension H*|R is an H-Hopf Galois
extension.

Next we shall consider the fixed subalgebra 4%" of A by an admissible
(definition below) Hopf subalgebra H' of H.

DrriNiTION. We call a Hopf subalgebra H' of H admissible if H' is a
direct summand of H as R-modules.

We shall list up some properties of an admissible Hopf subalgebra H’ of
H, which will be found in [1].
(*) H' is a direct summand of H as a left H'-module ([1] Theorem 9.9).
(**) H is a finitely generated projective left (resp. right) H'-module ([1]
Corollary 10.2).
From now on, H' denotes an admissible Hopf subalgebra of H.

Proposition 1.6. If A/B is an H-Hopf Galois extension (resp. a stromg
H-Hopf Galois extension), then AJA¥ is an H'-Hopf Galois extension (resp. a
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strong H'-Hopf Galois extension).

Proof. First we shall show that 4 is a left A#H’ -generator. But this
follows easily since A4 is a left A% H-generator and H'’ satisfies the condition
(*). If A is a finitely generated projective left A#H-module then 4 is a fini-
tely generated projective left A#H’-module by (**). This verifies the as-
sertion.

Proposition 1.7. Let A|B be an H-Hopf Galois extension and H' and
H"' be admissible Hopf subalgebras of H. Then A% C A" if and only if H' D H".
Especially, A% = A%" if and only if H'=H".

Proof. “if part” is trivial, we shall prove “only if part”. We have the
isomorphism «: 4 #H=End}(4) and by the restrictions of o, we have A#$H =
End}#’ (4) and A$H”=~End}#”(A). Thus A¥ C A" means A$H DA’ $H".
Since A is a finitely generated faithful projective R-module, we get H' DH”.
This completes the proof.

Exampres. (i) Commutative Hopf Galois extensions ([1]) are Hopf Galois
extensions in our sense.

(i) Commutative or non-commutative separable Galois extensions can be
regarded as Hopf Galois extensions in our sense. A typical model is the follow-
ing; Let R be the field of real numbers and Q be a quaternion algebra over R
with basis 1, 7,7, 4, i*=j*=—1, {j=—ji. o, T be the R-automorphism of Q defined
by o(x)=jxj 7}, 7(x)=ixi"}, x€Q. G, and G, be the group generated by ¢ and =
respectively. Then Q/R is an RG,® RG,-Hopf Galois extension with the
obvious measuring. If we put C;=0QFf=R(j) then C/C, is an RG,/-Hopf
Galois extension by Proposition 1.6.

(iii) Let K be a field of characteristic p==0 and 4 be a cyclic algebra (with a
cyclic subfield C) of dimension p’over K. Then C=K(f), 6?—6+1=0, € A4.
The generating automorphism o of C is given by o(0)=60+1, and o is ex-
tended innerly (say by &) to the automorphism of 4. Next we consider the K-
derivation d of K(§) given by d(£)=£. Then we can extend d to the inner
derivation (given by ) of 4. We put D=K[X]/(X?—X) and we shall denote
the canonical image of X by the same letter d. D is a Hopf algebra with the
diagonalization A(d)=1Qd+d®1, the augumentation £(d)=0, and the antipode
S(d)=—d. Let G be the group generated by o, and H be KG®gD. Then
H measures 4 to A naturally and 4/K is an H-Hopf Galois extension. So 4/K()
is a KG-Hopf Galois extension and A/K(f) is a D-Hopf Galois extension.

2. The integral H”
We shall call H?={h€H |gh=_¢&(g)h for any gEH} the integral. As is
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well-known, if H is a group ring RG then RG* is generated by the trace map

=

Proposition 2.1. Let A/B be an H-Hopf Galois extension and A$H be a
finitely generated projective left B# H-module, then we have

Homj(A4, B)y=(14H")-(AgH)=H"-(A$H)=H"-(A$#1) where we identify
A#H with End3(4) by a.

Proof. f=3)a,4h;€ A} H=End3(4) is contained in Hom} (4, B), if and
only if, fla)s B=A¥ for any acA. This means

(14X a:#h))(@) = 2} (gw-a)(gwhi-a)=g- fla)=E(g)- fla)= 2] &(g)aihi-a
=((1 #E(g))(z'] a;8h;))(a), for any a4, g G. Thus (1 #g)(Z a;gh)=
E(8)(X2 a;#h;). Hence we have

Homj3 (4, B) = (A#H)? = {x€ AgH|(14g)x = &(g)x for any g H} .

The inclusion (A$H)* D H”-(A# H) is clear, and to show the converse we may
assume that R is a local ring. Further since A§H is a finitely generated pro-
jective left B#H-module and (A#H)? depends only on the left H-module
structure of A#H, we first assume that AgH=B#H as a left B#H-module.
Let {b;}, {h;} be an R-basis of B, H respectively. Then for x=21b,#rh;E
B#H, r,=R,

xE(BJH)", if and only if, hx = 23 b; §r:hh; = E(h)x =

23 b;#r&(h)h;, for any he H.
Thus 7;hh;=r;6(h)h;. Hence x=33 (147:h;)(b;#1)e(14H")-(A4H). By usual
direct sum arguments, we get Homj (4, B)=(14H")-(A4H)=H"-(A4 H).
Since (14g)(a#h)=2 (1#ghw)(S(hw) 0 #1), we get (14H")-(AGH)=(14H")-
(A#1). This completes the proof.

Corollary 2.2. Further if we assume that A|B is a strong H-Hopf Galois
extension, then

H*(4) = A%(= B)
where H? is regarded as a subalgebra of End}(A4) via «a.

Proof. We shall consider the homomorphism 7: Homj (4, B)®gnag,ay4—>
B defined by 7(f®a)=f(a), feHom}; (4, B), ac4. By the isomorphism
Homj (4, B)==(14H")-(A#$ 1), 7 is converted to 7": (14 H")-(A#1))QEnaza)4
—B, defined by 7'((1#4A)(a#1)Qb)=h-(ab), heH", a,beA. (A#1)(A4A)=A4,
hence the image of 7’ equals to H#(4)=H"-A, which is B=A" since 4 is a
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right B-generator.

ReMARK. The assumption of Corollary 2.2 is equivalent to the A/B is a
very strong H-Hopf Galois extension as Corollary 2.4 asserts.

Proposition 2.3. Under the same assumption as Corollary 2.2, B is a direct
summand of A as a B-B-bimodule. Especially A is a left B-generator.

Proof. Since H?-A =B, there exists a,€ 4, h;€H" such that 1;=31%;-a;.

Let ¢; be the homomorphism A—B defined by ¢;(a)=h;+a, acA. Then ¢,
is not only a right B-homomorphism but also a left B-homomorphism. Thus
B is a direct summund of 4 as a B-B-bimodule. This verifies the assertion.
Corollary 2.4. A strong H-Hopf Galois extension A|B is a very strong H-
Hopf Galois extension if A$H is a finitely generated projective left B4 H-module’

Proof. From the Remark following Proposition 1.3, we may only prove
that A4 is a left B-generator. But this follows readily from Proposition 2.1 and
2.3.

Proposition 2.5. Let A/B be a very strong H-Hopf Galois extension, then
End% (A)=A4H is separable over B in the sense of Hirata [2] (H-separable in

[5D)-

Proof. We get it easily by Sugano [6] Theorem 7, since B is a direct
summand of 4 as a B-B-bimodule.

3. Hopf Galois theory

In this section, we shall investigate the fixed subalgebra A#" of A by an
admissible Hopf subalgebra H' of H. From now on, we always assume that
A|B is a very strong H-Hopf Galois extension.

First we shall show that 4% =(H""-(A#H))(A). For this purpose, we
shall define u: AQ z Hom} (4, B)—End}(4), 7: Homjz (A4, B)®Enayay4—B by
the formulas;

(r(a®N)(®) = af(b), 7(f®a)=fla), a,bE4, f&Homj(4,B).

Then from Morita theory, there exists a one-to-one correspondence between
right ideals of A#H =End}(4) and right B-submodules of 4. Let I be a
right ideal of A#H, then the corresponding right B-submodule of 4 is the image
I(4). Furthermore, there exists a one-to-one correspondence between left B-
submodules of Hom} (4, B) and left ideals of A#H, for a lett B-submodule J
of Homj3(A4, B) the corresponding left ideal is (A#H)-J (the product is taken
as subalgebras of End;(A4)). If we denote the right annihilator of (A#H)-J
by ((A#H)-]), which is a right ideal of A#H. Then by the former cor-
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respondence, the corresponding right B-sumbodule of 4 is J'={ac 4| 7(JQa)=
0} the right annihilator of J relative to 7. Simultaneously if we denote a left
annihilator of a right ideal I by I', then by the later correspondence, the corres-
ponding left B-submodule of Hom} (4, B) is (I(4))'={f =Homj3(4, B)|7(f®
I(A))=0}, the left annihilator of I(A4) relative to r.

Lemma 3.1 (c.f. [1] Lemma 11.1). A4 is a pro-generator as a left BEH'-
module. Further let 7' be the canomical pairing 7': Homjy (A4, B)® 5y 5 A—B,
'(f®a) =f(a), f EHom} (4, B), acA. Then (H'" - A)' = {f €Hom} (4, B)|
' (fQH'™ - A)=0} equals to Homj (A4, B)I,, where I, = {heH’|&(h)=0},
and (Homj (4, B)ly) = {acA|7v'(Homj (4, B);/®a)=0} equals to H'® - A.

Proof. A is a left B H-pro-generator and H is a left H’-pro-generator
by (*), (**). Hence 4 is a left B#H'-pro-generator.

Next the inclusions (H'® -A) DHomj (4, B)I,, and (Homj (A4, B)4) D
H'#"' .4 are clear. To show the inverse inclusions, we may assume that R is
a local ring. First we assume that A=B#H’ as a lett B#H'-module. If a
is an element of Homj (4, B)=B ® Hom, (H’, R), then 7'(a@H'".4)=
' (a@QH" -B§ H'Y=7'(aH'" QB#H'). So 7'(a®H'"-A)=0 if and only if
aH'" =0. But by [4] Proposition 1, Homg (H', R)y=M ® H' as right H'-
modules, with M an invertible R-module. Since we have assumed that R is a

local ring, M == R, thus, BQ®Homg(H', R) iB@H’ as right B#H'-modules.
Hence we have ¢(a)H'? =0. An easy computation shows that ¢(a) E(BQRQH ') y-.
So we get ac(BQHomg(H', R))I,. Nextif uis an element of B§H’, then
7'(Homj (4, B)I yQu)=7'(Hom} (4, B)® I ,u), hence 7'(Homj (4, B)I ; Qu)=
0 if and only if Ipu=0. As is easily proved, this is true if and only if
usB#H'" —H'"(B#H). The general case follows from a routine direct sum
argument. This verifies the assertion.

Corollary 3.2. (A#H-I,)Y =H" «(AgH), (H'" -(A4H)) = (A} H)- I
and u(A" @, Homj (4, B))CH'® -(A#H).

Proof. By the former Morita correspondence of this section, (A% H)+1y/)"
corresponds to (Hom? (4, B)I,/)” and H'" -(A# H) corresponds to H'#'+ A, and
by the later correspondence, (H'# -(A#H)) corresponds to (H'* -(A#H))'=
(H'"'-A)', and (A$H)-I, corresponds to Homj (A4, B)I,.. So we get the
former two relations by Lemma 3.1.

Next as can be easily proved, u(4% @ Homj (4, B)) is contained in (4 #H)-
I,/)", which is equal to H'# ".(A#H) by Lemma 3.1. This verifies the assertion.

Now we shall prove

Proposition 3.3. A¥ =(H'" -(A$H))(A)(=H'" -A) and A¥ is a direct
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summand of A as an A% -A" -bimodule.

Proof. By the Morita correspondence, H'® -(A#H)mW (H'® - (A% H))(A)
M- u((H'™ (A% H))(A)® 5 Homl (4, B)) is identity, so H'® «(A# H)= u((H'® -
(A4 H))(A)® 5 Hom}j (4, B)), which is clearly contained in u(4* ®; Homj
(4, B)), and by Corollary 3.2, u(A* ®Homj (4, B)) is contained in H'#-
(A#H). Thus u(A* @ Homj (4, B))=H'" -(A4H). Again by the Morita
correspondence, A# M (A% @ Homj (4, B))=H'" « (A$H) W (H'" -
(A$H)(A)=H'""- 4 is identity, we get A¥ =H'"'+ 4. Similarly to the proof of
Proposition 2.3, we get that 4% is a direct summand of 4 as an A% —A¥'-
bimodule. This completes the proof.

DerFINITION. Let T be an intermediate ring of 4 and B. We shall write
T=H' to mean that the following condition holds: Given w in A#H, w(T)=0
if and only if we (A4 H)I ..

Theorem 3.4. Let H be a finite co-commutative Hopf algebra over a com-
mutative ring R, and A|B be a very strong H-Hopf Galois extension. Then

(1) If H' is an admissible Hopf subalgebra of H and T is an intermediate
ring of A and B, which is a direct summaud of A as a B-B-bimodule, then T=H'
if and only if T=A". If these conditions hold, then AT is a strong H'-Hopf
Galois extension.

(i) If T'>H' and T"=H" with T', T”, H', H" as in (i), then T'CT" if
and only if H'DH". In particular, T'=T" if and only if H'=H".

(iii) Let H', H” be an admissible Hopf subalgebra of H, then H'CH” if
and only if A¥' DA”.  In particular, H'=H" if and only if A% =A"".

Proof. (iii) is proved in Proposition 1.5 and in view of (i), (ii) is simply
a restatement of (iii). We shall prove (i). Let T==A#, then by Proposition
3.3, T is a direct summand of A as a T-T-bimodaule, hence as a B-B-bimodule.
For weA4§H, w(T)=w(A")=0 means w-(H'* -(A4H))=0 since A* =
(H'™ -(A$H))(A4). Thus w is contained in (H'# -(A#H))', which is (A4 H)- I
by Corollary 3.2.

Conversely, let T' be an intermediate ring of 4 and B which is a direct
summand of 4 as a B-B-bimodule, and assume that T'=> H’ for some admissible
Hopf subalgebra H' of H. If we A#H, then since u(T ® z Homj (4, B))(4)=
T, it is clear that w.u(T ® 3 Hom}; (4, B))=0 if and only if w(7T)=0. But by
definition, this is true if and only if we(A#H)-Iy. Hence (u(7QzHomj
(4, B))=(A#H)-Iy. Since T is a diect summand of A as a B-B-bimodule,
w(T ®p Hom}; (A4, B)) is generated by a projection homomorphism A—T in
End;(4)=A#H, which is an idempotent. Hence w(T ®;Homj (4, B))=
(#(T ® s Homj (4, B)))"'=((A#H)- 1) =H'" -(A4 H) by Corollary 3.2. Thus
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T=(u(T ®;5 Homj (4, B))(A)= (H'" -(A$H))(4)= A¥ by Proposition 3.3.
This completes the proof.
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