ON THE COEFFICIENT RING OF A TORUS EXTENSION

Ken-ichi YOSHIDA

(Received June 20, 1979)

Introduction. S. Abhyankar, W. Heinzer and P. Eakin treated the following problem in [1]; if $A[X]=B[Y]$, when is A isomorphic or identical to B ? Replacing the polynomial ring by the torus extension we shall take up the following problem; if $A\left[X, X^{-1}\right]=B\left[Y, Y^{-1}\right]$, when is A isomorphic or identical to B ? We say that A is torus invariant (resp. strongly torus invariant) whenever $A\left[X, X^{-1}\right]=B\left[Y, Y^{-1}\right]$ implies $A \cong B$ (resp. $A=B$). The rolles played by polynomial rings in [1] are played by the graded rings in our theory. A graded ring $A=\sum A_{i}, i \in \boldsymbol{Z}$, with the property that $A_{i} \neq 0$ for each $i \in \boldsymbol{Z}$, will be called a Z-graded ring. Main results are the followings.

An affine domain A of dimension one over a field \boldsymbol{k} is always torus invariant. Moreover A is not strongly torus invariant if and only if A has a graded ring structure. An affine domain of dimension two is not always torus invariant. We shall construct an affine domain of dimension two which is not torus invariant. Let A be an affine domain over \boldsymbol{k} of dimension two. Assume that the field \boldsymbol{k} contains all roots of "unity" and is of characteristic zero. If A is not torus invariant, then A is a \boldsymbol{Z}-graded ring such that there exist invertible elements of non-zero degree.

In Section 1 we study elementary properties of graded rings. Especially we are interested in \boldsymbol{Z}-graded rings with invertible elements of non-zero degree. In Section 2 we discuss some conditions for A to be torus invariant. In Section 3 we give several sufficient conditions for an integral domain to be strongly torus invariant. Some relevant results will be found in S. Iitaka and T. Fujita [2]. Section 4 is devoted to the proof of the main results mentioned above. In Section 5 we fix an integral domain D and we treat only D-algebras and D-isomorphisms there. We shall prove the following two results. When A is a D-algebra of $t r . \operatorname{deg}_{D} A=1$ and A is not D-torus invariant, A is a \boldsymbol{Z}-graded ring such that D is contaned in A_{0}. If A is a Z-graded ring such as $D=A_{0}$, then the number of elements of the set of $\{D$-isomorphic classes of D-algebras B such that $\left.A\left[X, X^{-1}\right]=B\left[Y, Y^{-1}\right]\right\}$ is $\Phi(d)$, where d is the smallest positive integer among the degrees of units in A and Φ is the Euler function.

I'd like to express my sincere gratitude to the referee for his valiable advices.

1. Some properties of graded rings

Let R be commutative ring with indentity. The ring R is said to be a graded ring if R is a graded module, $R=\sum R_{i}$, and $R_{n} R_{m} \subseteq R_{n+m}$.

Lemma 1.1. Let R be a graded domain. Then we have the following.
(1) The unity element of R is homogeneous.
(2) If a is homogeneous and $a=b c$, then b and c are both homogeneous. In particular every invertible element is homogeneous.
(3) If R contains a field k, then k is a subring of R_{0}.

Proof. (1) follows immediately from the relation $1^{2}=1$. The proof of (2) is easy and will be omitted. To prove (3) we can assume \boldsymbol{k} is different from F_{2} by (1). Let a be an element of \boldsymbol{k} different from 1. Then $1-a$ is homogeneous from (2). The unity 1 is homogeneous of degree 0 by (1). Hence a should be homogeneous of degree 0 .

We call a graded ring $R=\sum R_{i}$ to be a \boldsymbol{Z}-graded ring if $R_{i} \neq 0$, for some $i \in$ \boldsymbol{Z}^{+}and \boldsymbol{Z}^{-}.

Proposition 1.2. Let R be a Z-graded domain. Let $S=\left\{i \in Z ; R_{i} \neq 0\right\}$. Then $S=n \boldsymbol{Z}$ for a certain integer n.

Proof. Since R is a domain, S is a semi-group. Hence (1.2) is immediately seen by the following lemma.

Lemma 1.3. Let $S \subseteq Z$ be a semi-group. If $S \cap Z^{+} \neq 0$ and $S \cap Z^{-} \neq 0$, then S is a subgroup of Z.

If R is a \boldsymbol{Z}-graded domain, then we may assume $R_{i} \neq 0$ for any $i \in \boldsymbol{Z}$.
Proposition 1.4. Let R be a graded ring. If there is an invertible element x in R_{1}, then $R=R_{0}\left[x, x^{-1}\right]$.

Proof. For any $\imath \in R_{n}, r=r\left(x^{-1} x\right)^{n}=r x^{-n} x^{n}$ and $r x^{-n}$ is in R_{0}, therefore $r \in R_{0} x^{n}$. Hence $R=R_{0}\left[x, x^{-1}\right]$.

Corollary. Let R be a Z-graded domain. If R_{0} is a field, so $R=R_{0}[x$, $\left.x^{-1}\right]$ for every $x \in R_{1}, x \neq 0$.

Proof. Choose non-zero elements $x \in R_{1}$, and $y \in R_{1}$. Since R_{0} is a field, $0 \neq x y$ is invertible, therefore x and y are units in R, hence $R=R_{0}\left[x, x^{-1}\right]$.

2. Torus invariant rings

A ring A is said to be torus invariant provided that A has the following property:

If there exist a ring B, a variable Y over B, and a variable X over A such that $A\left[X, X^{-1}\right]$ is isomorphic to $B\left[Y, Y^{-1}\right]$,

$$
\Phi: A\left[X, X^{-1}\right] \rightarrow B\left[Y, Y^{-1}\right]
$$

then A is always isomorphic to B.
Especially if we have always $\Phi(A)=B$ in such case, we say that the ring A is strongly torus invariant.

To show A is torus invariant (resp. strongly torus invariant) it suffices to prove that A is isomorphic to B (resp. $A=B$) under the assumption: $A[X$, $\left.X^{-1}\right]=B\left[Y, Y^{-1}\right]$.
(2.0) We begin with some elementary observations. Assume that

$$
\begin{equation*}
R=A\left[X, X^{-1}\right]=B\left[Y, Y^{-1}\right] \tag{1}
\end{equation*}
$$

Then X and Y are units of R. It follows from (1.1) that we have

$$
\begin{equation*}
X=v Y^{f} \text { and } Y=u X^{f^{\prime}}, v \in B \text { and } u \in A \tag{2}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
v=u^{-f} X^{1-f f^{\prime}} \text { and } u=v^{-f^{\prime}} Y^{1-f f^{\prime}} \tag{3}
\end{equation*}
$$

In the rest of our paper we shall use the letters u and v to denote the elements of A and B respectively satisfying the relations (2) and (3) whenever we encounter the situation (1).
(2.1) The element u is in B if and only if $f f^{\prime}=1$. In this case we have $A[X$, $\left.X^{-1}\right]=B\left[X, X^{-1}\right]$, thus we have $A \cong B$.

Proof is easy and is omitted.
Proposition 2.2. Let \boldsymbol{k} be a field and A be a \boldsymbol{k}-algebra. If A^{*} (the set of all invertible elements in $A)=\boldsymbol{k}^{*}$, then the ring A is torus invariant.

Proof. Let $R=A\left[X, X^{-1}\right]=B\left[Y, Y^{-1}\right] . \quad B y(1.1)$ the field \boldsymbol{k} is contained in B. Since $A^{*}=\boldsymbol{k}^{*}$, the unit element u of A is in \boldsymbol{k}, hence in B, It follows from (2.1) that A is torus invariant.

Proposition 2.3. Let $A=A_{0}\left[t_{1}, t_{2}, \cdots, t_{n},\left(t_{1} t_{2} \cdots t_{n}\right)^{-1}\right]$ where t_{i} 's are independent variables over \boldsymbol{k}-algebra A_{0} and $A_{0}^{*}=\boldsymbol{k}^{*}$, then A is torus invariant.

Proof. Let $R=A\left[X, X^{-1}\right]=B\left[Y, Y^{-1}\right]$. Then by the lemma (1.1) $Y=$ $u X^{f^{\prime}}$ and $X=v Y^{f}$. Since u is invertible in $A=A_{0}\left[t_{1}, t_{2}, \cdots, t_{n},\left(t_{1} \cdots t_{n}\right)^{-1}\right], Y=$

On the other hand as t_{i} is invertible in $R=B\left[Y, Y^{-1}\right], t_{i}=b_{i} Y^{f_{i}}, b_{i} \in B^{*}$. Then we have that

$$
f f^{\prime}+\sum e_{i} f_{i}=1
$$

Therefore the following natural homomorphism is surjective.

$$
\begin{gathered}
j: \boldsymbol{Z}^{(n+1)}=\boldsymbol{Z} \oplus \cdots \oplus \boldsymbol{Z} \rightarrow \boldsymbol{Z} \\
j\left(i_{0}, i_{1}, \cdots, i_{n}\right)=i_{0} f^{\prime}+\sum i_{j} e_{j} .
\end{gathered}
$$

Since \boldsymbol{Z} is P.I.D., we can construct a basis of $\boldsymbol{Z}^{(n+1)}$ containing this vector (f^{\prime}, e_{1}, \cdots, e_{n}). Put this basis

$$
\begin{aligned}
& e_{0}=\left(f^{\prime}, e_{1}, \cdots, e_{n}\right) \\
& \cdots \cdots \cdots \cdots \cdots \cdots \\
& e_{i}=\left(f_{i}, f_{i 1}, \cdots, f_{i n}\right)
\end{aligned}
$$

$$
R=A_{0}\left[u_{1}, \cdots, u_{n},\left(u_{1} \cdots u_{n}\right)^{-1}\right]\left[Y, Y^{-1}\right]=A\left[X, X^{-1}\right]=B\left[Y, Y^{-1}\right] .
$$

Therefore A is isomorphic to B. Hence A is torus invariant.
(2.4) Let $R=A\left[X, X^{-1}\right]=B\left[Y, Y^{-1}\right]$. An ideal I of R is said to be vertical relative to A if there exists an ideal J of A such that $J R=I$. If J is an ideal of A such that $J R$ is vertical relative to B, then we will simply say that J is vertical relative to B. If A is a k-affine domain, the prime ideals defined by the singular locus of $\operatorname{Spec} A$ are vertical relative to B.

Proposition 2.5. Let $R=A\left[X, X^{-1}\right]=B\left[Y, Y^{-1}\right]$. If there exists a maximal ideal of A which is vertical relative to B, then $A\left[X, X^{-1}\right]=B\left[X, X^{-1}\right]$. In particular A and B are isomorphic.

Proof. Let m be a maximal ideal of A which is vertical elative to B. Then there exists an ideal n of B such that $m R=n R$. Therefore $R / m R=A / m[X$, $\left.X^{-1}\right]=R / n R=B / n\left[Y, Y^{-1}\right]$, where $X=\bar{v} Y^{f}$ and $Y=\bar{u} X^{f^{\prime}}$. Since m is a maximal ideal, A / m is a field. Hence \bar{u} is in B / n by (1.1). Therefore we obtain $f= \pm 1$ by (2.1). Thus A is isomorphic to B.

Corollary 2.6. Let A be a k-affine domain with isolated singular points, then A is torus invariant.

3. Strongly torus invariant rings

In this section we investigate strongly torus invariant rings.
Proposition 3.1. Let $A\left[X, X^{-1}\right]=B\left[Y, Y^{-1}\right]$. If $Q(A) \subseteq Q(B)$, then $A=B$, where $Q(R)$ is the total quotient field of R.

Proof. Let x be an element of A, then there exist two elements b and b^{\prime} of B such as $x=b / b^{\prime}$. Hence $b=b^{\prime} x$. In the graded ring $B\left[Y, Y^{-1}\right]$ the elements b and b^{\prime} are homogeneous of degree zero, thus x is also degree zero. Hence we have $A \subseteq B$. Let b be an element of B. Then $b=\sum a_{j} X^{j}, a_{j} \in A$. By (2) of (2.0) we have that $b=\sum a_{j} v^{j} Y^{j f}$. If $f=0$, then $X \in B$. Thus $A\left[X, X^{-1}\right] \subseteq B$,
it's a contradiction, hence $f \neq 0$. Since $a_{j} v^{j} \in B$ and Y is a variable over B, $b=a_{0} \in A$. Thus $A=B$.

Corollary 3.2. Let \bar{A} denote the integral closure of A. If \bar{A} is strongly torus invariant, then A is also so.

Proof. It is easily seen that if $A\left[X, X^{-1}\right]=B\left[Y, Y^{-1}\right]$ then $\bar{A}\left[X, X^{-1}\right]=$ $\bar{B}\left[Y, Y^{-1}\right]$. Since \bar{A} is strongly torus invariant, $\bar{A}=\bar{B}$. Hence $Q(A)=Q(B)$, and we have that $A=B$.

Proposition 3.3. Let A be a domain with $J(A) \neq 0$, where $J(D)$ is the Jacobson radical of a ring D. Then A is strongly torus invariant.

Proof. Let a be a non-zero element of $J(A)$. Then $1+a$ is unit, so in the graded ring $B\left[Y, Y^{-1}\right], 1+a$ is homogeneous. Since the "unity 1 " is a homogeneous element of degree 0 , the element a is also so. Thus the element a is contained in B.

Let x be any element of A. Since $x a$ is contained in $J(A), x a$ is in B. Hence A is contained in $Q(B)$. By (3.1), we have that $A=B$.

Corollary 3.4. If A is a local domain, then A is strongly torus invariant.
Proposition 3.5. Let A be an affine ring over a field k and let $A\left[X, X^{-1}\right]$ $=B\left[Y, Y^{-1}\right]$. Then $A=B$ if and only if every maximal ideals of A is vertical relative to B.

Proof. It suffices to prove the "if" part of the (3.5). By (3.3) we may assume that $J(A)=0$. Let x be an element of B and let $x=\sum_{j=s}^{t} a_{j} X^{j}$, where $s<t, a_{j} \in A$ and $a_{t} \neq 0$ and $a_{s} \neq 0$. For any maximal ideal m of A there exists a maximal ideal n of B such as $m R=n R$, where $R=A\left[X, X^{-1}\right]$. Let \bar{x} denote the residue class of x in B / n. Then \bar{x} is algebraic over the coefficient field \boldsymbol{k}, hence there exist elements $\lambda_{0}, \lambda_{1}, \cdots \lambda_{n-1}$ in \boldsymbol{k}, such that $f(x)=x^{n}+\lambda_{n-1} x^{n-1}+\cdots$ $+\lambda_{0} \in n R=m R$. If $t \neq 0$, then the highest degree term of $f(x)$ with respect to X is $a_{t}^{n} x^{n t} \in m R$, thus a_{t} is contained in m for every maximal ideal in A. Since $J(A)=0, a_{t}=0$. It's a contradiction. Therefore $t=0$. By the same way, we have that $s=0$, hence x is in A. Thus $A=B$.

We denote the subring generated by all the units of A by A_{u}.
Proposition 3.6. Let A be a k-affine domain with an isolated singular point. If A is algebraic over A_{u}, then A is strongly torus invariant.

Proof. Let $A\left[X, X^{-1}{ }_{\jmath}=B\left[Y, Y^{-1}\right]\right.$ and let m be the maximal ideal defined by the isolated singular point. Then there exists a maximal ideal n of B such as $m R=n R$. Let a be a unit element of A. In the graded ring $B\left[Y, Y^{-1}\right]$, the
element a is also invertible, so $a=b Y^{j}$, for some invertible element b in B and a certain integer j. Since A / m is algebraic over k, there exist elements $\lambda_{0}, \lambda_{1}, \cdots, \lambda_{n}$ $\in \boldsymbol{k}$ such that $\lambda_{n} a^{n}+\cdots+\lambda_{1} a+\lambda_{0} \in m R=n R$. If $j \neq 0, \lambda_{n} b^{n}$ is in n, hence b is not invertible, it's a contradiction. Thus we have that $A_{u} \subseteq B$. By the following lemma our proof is over.

Lemma 3.7. Let $A\left[X, X^{-1}\right]=B\left[Y, Y^{-1}\right]$. If A is algebraic over $A \cap B$, then $A=B$.

Proof. Since A is algebraic over $A \cap B, A$ is also algebraic over B, but B is algebraically closed in $B\left[Y, Y^{-1}\right]$, therefore A is contained in B. Thus we have that $A=B$.

Let A be an integral domain containing a field \boldsymbol{k}. We denote the set of all automorphisms of A over \boldsymbol{k} by $\operatorname{Aut}_{k}(A)$.

Proposition 3.8. Let A be an integral domain containing an infinite field \boldsymbol{k}. If $\operatorname{Aut}_{k}(A)$ is a finite set, then A is strongly torus invariant.

Proof. Let $R=A\left[X, X^{-1}\right]=B\left[Y, Y^{-1}\right]$. Let $\Phi_{\lambda}, \lambda \in \boldsymbol{k}^{*}$, be an automorphism of R defined by $\Phi_{\lambda}(Y)=\lambda Y$ and $\Phi_{\lambda}(b)=b$ for $b \in B$. Following the notation of (2.0) we have $X=v Y^{f}$, thus $\Phi_{\lambda}(X)=\lambda^{f} X$, therefore $R=\Phi_{\lambda}(A)[X$, $\left.X^{-1}\right]$. Let p be the projection $A\left[X, X^{-1}\right] \rightarrow A$ defined by $p(X)=1$ and i be the canonical injection $A \hookrightarrow A\left[X, X^{-1}\right]$. Define $\sigma_{\lambda}=q \circ \Phi_{\lambda} \circ i$. Then σ_{λ} is an endomorphism of A. We shall show that σ_{λ} is surjective. Let x be an element of A. Since $R=\Phi_{\lambda}(A)\left[X, X^{-1}\right]$, there exist elements a_{j} 's of A such as $x=$ $\sum \Phi_{\lambda}\left(a_{j}\right) X^{j}$. Hence $x=p(x)=\sum p \Phi_{\lambda}\left(a_{j}\right)$. Let $x^{\prime}=\sum a_{j} \in A$, then $\sigma_{\lambda}\left(x^{\prime}\right)=$ $\sum p \Phi_{\lambda}\left(a_{j}\right)=x$. Thus σ_{λ} is surjective. Next we shall show that σ_{λ} is injective. Since $\Phi_{\lambda}^{-1}\left((X-1) R \cap \Phi_{\lambda}(A)\right)=\Phi_{\lambda}^{-1}(X-1) R \cap A=\left(\lambda^{-f} X-1\right) R \cap A=0$, we have $(X-1) R \cap \Phi(A)=0$, therefore σ_{λ} is injective. Hence σ_{λ} is an automorphism of A.

We shall prove that the set $\left\{\sigma_{\lambda} \mid \lambda \in \boldsymbol{k}^{*}\right\}$ is infinite when $A \neq B$. Since $u=v^{-f} Y^{1-f f^{\prime}}, \sigma_{\lambda}(u)=\lambda^{1-f f^{\prime}} u$. Therefore our assertion is proved when $1-f f^{\prime}$ $\neq 0$. Suppose $f f^{\prime}=1$. Then we may assume that $R=A\left[X, X^{-1}\right]=B\left[X, X^{-1}\right]$. If $A \subseteq B$, then $A=B$, so there exists an element x of A not contained in B, say $x=\sum_{j=s}^{t} b_{j} X^{j}, t>s$. Since ker $p=(X-1) R$ and $(X-1) R \cap B=0, p\left(b_{j}\right) \neq 0$ for $b_{j} \neq 0$. Since $\sigma_{\lambda}(x)=\sum p\left(b_{j}\right) \lambda^{j}$ and $p\left(b_{j}\right) \neq 0$ for some $j \neq 0$, the set $\left\{\sigma_{\lambda} ; \lambda \in \boldsymbol{k}^{*}\right\}$ is infinite.

Next we shall give two cases of rings which are not strongly torus invariant. If A has a non-trivial locally finite iterative higher derivation $\psi: A \rightarrow A[T]$, then $A[T]=B[T]$, where $B=\psi(A)$ and $A \neq B$, as is proved in [4]. Hence we have that $A\left[T, T^{-1}\right]=B\left[T, T^{-1}\right]$ and $A \neq B$. If A is a graded ring, then A is not strongly torus invariant. Indeed, let X be a variable over A and let
$B_{i}=\left\{a_{i} X^{i} ; a_{i} \in A_{i}\right\}$. Then B_{i} is an A_{0}-module contained in $A\left[X, X^{-1}\right]$. Let $B=\sum B_{i}$. Then B is a graded ring and we easily see that $A\left[X, X^{-1}\right]=B[X$, X^{-1}]. We shall show that X is a variable over B. Assume that there exist elements $b_{0}, b_{1}, \cdots, b_{n}$ in B such that $b_{n} \neq 0$ and $b_{n} X^{n}+\cdots+b_{1} X+b_{0}=0$. By the definition of B we denote $b_{i}=\sum a_{i j} X^{j}, a_{i j} \in A_{j}$. In the graded ring $A\left[X, X^{-1}\right]$ the homogeneous term of degree t of this equation is that

$$
\left(a_{n, t-n}+a_{n-1, t-n+1}+\cdots+a_{0, t}\right) X^{t}=0
$$

Since A is a graded ring and $a_{i j}$ is a homogeneous element of degree j, we obtain $a_{i j}=0$ for all index i and j, hence X is a variable over B.

By [4] we have that a k-algebra A has a non-trivial locally finite iterative higher derivation if and only if $\operatorname{Aut}_{k}(A)$ has a subgroup isomorphic to $G_{a}=$ Spec $\boldsymbol{k}[T]$. We easily see that A is a non-trivial graded ring if and only if $\operatorname{Aut}_{k}(A)$ has a subgroup isomorphic to $G_{m}=\operatorname{Spec}\left(\boldsymbol{k}\left[T, T^{-1}\right]\right)$.

Proposition 3.9. A k-algebra A is not strongly torus invariant, if $A u t_{k}(A)$ has a subgroup isomorphic to G_{a} or G_{m}.

Assume that $\operatorname{Aut}_{k}(A)$ is an infinite group. If $\operatorname{Aut}_{k}(A)$ has an algebraic group structure, then there exists the following exact sequence;

$$
0 \rightarrow T \rightarrow \operatorname{Aut}_{k}(A)_{0} \rightarrow \theta \rightarrow 0
$$

where $\operatorname{Aut}_{k}(A)_{0}$ is the connected component containing the identity I_{A}, and T is a maximal torus subgroup of $\operatorname{Aut}_{k}(A)_{0}$ and θ is an abelian variety. Let P be an arbitrary closed point of $\operatorname{Spec}(A)$. If $T=0$, then there exists a regular map

$$
\begin{gathered}
\Phi: \operatorname{Aut}_{k}(A)_{0} \rightarrow \operatorname{Spec}(A) \\
\sigma \rightarrow \sigma(P) .
\end{gathered}
$$

Since $\operatorname{Im}(\Phi)$ is a projective variety contained in the affine variety $\operatorname{Spec}(A)$, the set $\operatorname{Im}(\Phi)$ consists of one point, it contradicts $\operatorname{dim} \operatorname{Aut}_{k}(A)_{0}>0$. Hence we have that $T \neq 0$. Since $T \supseteqq G_{a}$ or G_{m}, we have the following result:

Proposition 3.10. If $\operatorname{Aut}_{k}(A)$ is not a finite set and has an algebraic group structure, then A is not strongly torus invariant.

4. Affine domains of dimension $\leqq 2$

Let \boldsymbol{k} be a field of characteristic zero which contains all roots of "unity". In this section let A be an affine domain over \boldsymbol{k}. We shall see that if $\operatorname{dim} A=1$, then A is always torus invariant. Moreover A is not strongly torus invariant if and only if $\operatorname{Aut}_{k}(A) \supseteqq G_{m}$. Let $\operatorname{dim} A \geqq 2$. Then A is not always torus
invariant. But if an integrally closed domain A is not a \boldsymbol{Z}-graded ring, then A is torus invariant.

For the proof we need a lemma.
Lemma 4.1. Let K be a finite separable algebraic field extension of a field \boldsymbol{k}. If A is a one-dimensional affine normal ring such that $\boldsymbol{k} \subset A \subseteq K\left[X, X^{-1}\right]$, then A is a polynomial ring or a torus ring over \boldsymbol{k}^{\prime} where \boldsymbol{k}^{\prime} is the algebraic closure of \boldsymbol{k} in A.

Proof. We may assume that $\boldsymbol{k}=\boldsymbol{k}^{\prime}$. Following the similar device to the proof of (2.9) in [1, p 322], we have $Q(A)=\boldsymbol{k}(\theta)$ for some element θ of A.

Since $\boldsymbol{k}[\theta] \subseteq A \subset \boldsymbol{k}(\theta), A=\boldsymbol{k}[\theta]$ or $A=\boldsymbol{k}\left[\theta, \frac{1}{f(\theta)}\right]$ for some polynomial $f(\theta) \in \boldsymbol{k}[\theta]$. Let $A=\boldsymbol{k}\left[\theta, \frac{1}{f(\theta)}\right]$. Then we may assume that $f(\theta)$ has no multiple factors. The element $f(\theta)$ is invertible in A, so is also invertible in $K\left[X, X^{-1}\right]$. Thus we have $f(\theta)=\beta X^{r}, \beta \in K, \theta \in K\left[X, X^{-1}\right]$. We may assume that $r \geqq 0$, if neccessary, by replacing X with X^{-1}. Then we easily see that $\theta \in K[X]$. The uniqueness of the irreducible decomposition in a polynomial ring implies that $\operatorname{deg}_{\theta} f(\theta)=1$, since the polynomial $f(\theta)$ has not multiple factors and $f(\theta)=\beta X^{r}$. Hence we may assume that $f(\theta)=\theta$ and we obtain $A=\boldsymbol{k}\left[\theta, \frac{1}{\theta}\right]$.

Let A be an integral domain. If A is contained in $K\left[X, X^{-1}\right]$, then \bar{A} is a polynomial ring or a torus ring over \boldsymbol{k}^{\prime}.

Proposition 4.2. Let A be a one-dimensional affine domain over a field \boldsymbol{k} of characteristics zero. Then we obtain that
(1) A is torus invariant,
(2) A is not strongly torus invariant if and only if $A t_{k}(A)$ has a subgroup isomorphic to G_{m}. If A is not strongly torus invariant and A is integrally closed, then A is a polynomial ring or a torus ring over the algebraic closure of \boldsymbol{k} in A.

Proof. At first we shall prove (2). The sufficiency follows from (3.9). Let $R=A\left[X, X^{-1}\right]=B\left[Y, Y^{-1}\right]$ in which $A \neq B$. If $m R \cap A \neq 0$ for any maximal ideal m of B, then m is vertical relative to A, and we have $A=B$ by (3.5). Hence there exists a maximal ideal m such as $m R \cap A=0$. Since ch $\boldsymbol{k}=0, B / m=K$ is a finite separable algebraic field over \boldsymbol{k}. The residue mapping of R to $R / m R$ yields (up to isomorphism) $k \subset A \subseteq K\left[Y, Y^{-1}\right]$ where Y is algebraiclly independent over K. Therefore A is a polynomial ring or a torus ring by the lemma (4.1). Thus the automorphism group $\operatorname{Aut}_{k} A$ contains a subgroup isomorphic to G_{m}.

Assume that A is not integrally closed. Then prime divisors in A of the conductor $\mathrm{t}(\bar{A} / A)$ are vertical relative to B. Hence we may assume $X=Y$ by
(2.5). The above lemma (4.1) implies that $\bar{A}=\boldsymbol{k}^{\prime}\left[t, t^{-1}\right]$ or $\bar{A}=\boldsymbol{k}^{\prime}[t]$ where \boldsymbol{k}^{\prime} is the algebraic closure of \boldsymbol{k} in \bar{A}.

Firstly let $\bar{A}=\boldsymbol{k}^{\prime}[t]$. Since $\bar{A} \cong \bar{B}$, there exists an element s in \bar{B} such as $\bar{B}=\boldsymbol{k}^{\prime}[s]$. Since $\bar{R}=\bar{A}\left[X, X^{-1}\right]=\bar{B}\left[X, X^{-1}\right]$, we have $\boldsymbol{k}^{\prime}\left[X, X^{-1}\right][t]=\boldsymbol{k}^{\prime}\left[X, X^{-1}\right]$ [s], hence we easily see that $t=f_{1}(X) s+f(X)$ and $s=g_{1}(X) t+g(X)$ where $f_{1}(X)$ $g_{1}(X)=1$ and $f(X), g(X) \in \boldsymbol{k}^{\prime}\left[X, X^{-1}\right]$. We may assume that $t=X^{n} s+f(X)$ and $s=X^{-n} t+g(X)$. Let \bar{n} be a prime divisor in \bar{A} of the conductor $\mathrm{t}(\bar{A} / A)$.

Then there exists a maximal ideal \bar{m} of \bar{B} such as $\bar{n} \bar{R}=\bar{m} \bar{R}$. Since \bar{A} / \bar{n} is algebraic over \boldsymbol{k}, there exist elements $\lambda_{0}, \lambda_{1}, \cdots, \lambda_{d-1} \in \boldsymbol{k}$ such that $t^{d-1}+\lambda_{d-1}$ $t^{d-1}+\cdots+\lambda_{0} \in \bar{m} \bar{R}=\bar{n} \bar{R}$. Hence we have that $\left(X^{n} s+f(X)\right)^{d}+\lambda_{d-1}\left(X^{n} s+f(X)\right)^{d-1}$ $+\cdots+\lambda_{0} \in \bar{n} \bar{R}$. The constant term of this polynomial with respect to s is the following;

$$
f(X)^{d}+\lambda_{d-1} f(X)^{d-1}+\cdots+\lambda_{0} \in \bar{n} \boldsymbol{k}^{\prime}[s]\left[X, X^{-1}\right] .
$$

Therefore $f(X)=f \in \boldsymbol{k}^{\prime}$. Hence we may assume that $t=X^{n}$ s. We shall show that A is a graded ring. Let a be an element of A. Since a is contained in $\bar{A}=\boldsymbol{k}^{\prime}[t]$ and $t=X^{n} s$, we have that $a=\sum \lambda_{j} t^{j}=\sum \lambda_{j} s^{j} X^{j n}, \lambda_{j}{ }^{j} \in \bar{B}$. On the other hand, as the element a is contained in $B\left[X, X^{-1}\right], a=\sum b_{i} X^{i}, b_{i} \in B$. Comparing the coefficient of the each term in the following; $\sum \lambda_{j} s^{j} X^{j n}=\sum b_{i} X^{i}$, we have $b_{i}=\lambda_{j} s^{j}(i=j n)$ and $b_{i}=0(i \notin n \boldsymbol{Z})$. If $b_{i} \neq 0$, then $b_{i} X^{i}=\lambda_{j} s^{j} X^{j n}=$ $\lambda_{j} t^{j} \in B\left[X, X^{-1}\right] \cap \bar{A}=A\left[X, X^{-1}\right] \cap \bar{A}=A$. Therefore A has a graded ring structure.

Secondary let $\bar{A}=\boldsymbol{k}^{\prime}\left[t, t^{-1}\right]$. Then $\bar{B}=\boldsymbol{k}^{\prime}\left[s, s^{-1}\right]$. Since t and s are invertible in \bar{R}, we may assume that $t=s^{i} X^{n}$ and $s=t^{j} X^{m}$, then $t=\left(t^{j} X^{m}\right)^{i} X^{n}=t^{i j} X^{i m+n}$, therefore $i j=1$. Hence we may assume $t=s X^{n}$. By the same method as in the case $\bar{A}=\boldsymbol{k}^{\prime}[t]$ we have that A is a graded ring.

Proof of (1). If A is not integrally closed, then the prime divisors of the conductor $\mathfrak{t}(\bar{A} / A)$ are vertical relative to B. Since non-zero prime ideals of A are maximal, the ring A is isomorphic to B by (2.5). If A is integrally closed and A is neither a polynomial ring nor a torus ring, then A is strongly torus invariant, hence A is torus invariant. If A is either a polynomial ring or a torus ring, A is torus invariant by (2.2) and (2.3).

Next we shall consider the case; the coefficient field k has all roots of "unity" and its characteristic is zero. Then we prove the following:

Theorem 4.3. Let A be an integrally closed k-affine domain of dimension two, where the field \boldsymbol{k} has all roots of "unity" and ch $\boldsymbol{k}=0$. If A is not torus invariant, then A is a \boldsymbol{Z}-graded ring which contains units of non-zero degree.

Proof. Assume that A is not torus invariant. Then there exist a \boldsymbol{k}-algebra B and independent variables X, Y such that A is not isomorphic to B and $R=$ $A\left[X, X^{-1}\right]=B\left[Y, Y^{-1}\right] . \quad$ By (2.0) and $(2,1)$ we obtain $f f^{\prime} \neq 1$. We shall show
that it follows from $f f^{\prime} \neq 1$ that A is a \boldsymbol{Z}-graded ring. We may only consider the case $1-f f^{\prime}>0$. Let x be a $\left(1-f f^{\prime}\right)-t h$ root of u and let $y=x^{-f} \mid X$. Then $y^{1-f f^{\prime}}=v$. Since $\left(y^{-f^{\prime}} y\right)^{1-f f^{\prime}}=u, x=\lambda y^{-f^{\prime}} Y$ for some $\left(1-f f^{\prime}\right)-t h$ root λ of "unity". From the relations; $y=x^{-f} X$ and $Y=u X^{f^{\prime}}$, we have $\lambda=1$.

Since $y=x^{-f} X$ and $x=y^{-f^{\prime}} Y$ are invertible, we have $A[x]\left[X, X^{-1}\right]=B[y]$ $\left[Y, Y^{-1}\right]=A[x]\left[y, y^{-1}\right]=B[y]\left[x, x^{-1}\right]$. Define a surjective homomorphism $j: A[x]\left[y, y^{-1}\right] \rightarrow A[x]$ by $j(y)=1$. Let $A_{0}=j(B[y]) \subseteq A[x]$. We shall show that $A[x]=A_{0}\left[x, x^{-1}\right]$. Let a be an element of A. Then $a=\sum b_{i} x^{i}, b_{i} \in B$. Since $j(a)=a$ and $j(x)=x$, we have that $a=\sum j\left(b_{i}\right) x^{i}, j\left(b_{j}\right) \in A_{0}$. Thus $A[x]=$ $A_{0}\left[x, x^{-1}\right]$ and x is algebraically independent over A_{0}. By the same way $B[y]=$ $B_{0}\left[y, y^{-1}\right]$.

Since the every ($1-f f^{\prime}$)-th roots of "unity" is contained in k and ch $k=0$ and A is normal, the extension $A[x] / A$ is a Galois extension with a cyclic group $G=\langle\sigma\rangle$ (cf. [3] p 214). Indeed when $|G|=n, n \mid 1-f f^{\prime}$ and there exists a primitive $n-t h$ root λ of "unity" such that $\sigma(x)=\lambda x$ and the invariant subring $(A[x])^{\sigma}=A$ and $A[x]=A+A x+\cdots+A x^{n-1}$ is a free A-module.

Since the element u is a unit of A and $\operatorname{ch}(\boldsymbol{k})=0$, the extension $A[x] / A$ is etale. Since A is a normal domain, $A[x]$, hence $A_{0}\left[x, x^{-1}\right]$, is also a normal domain. From this we see that A_{0} is always normal.

We shall show that there exists a subring A_{0}^{\prime} in $A[x]$ such that $A[x]=A_{0}^{\prime}[x$, $\left.x^{-1}\right]$ and $\sigma\left(A_{0}^{\prime}\right)=A_{0}^{\prime}$. If A_{0} is strongly torus invariant, then $\sigma\left(A_{0}\right)=A_{0}$; for $\sigma\left(A_{0}\right)\left[x, x^{-1}\right]=A_{0}\left[x, x^{-1}\right]$, therefore A_{0} satisfies the conditions. If A_{0} is not strongly torus invariant, then $A_{0}=\boldsymbol{k}^{\prime}[t]$ or $=\boldsymbol{k}^{\prime}\left[t, t^{-1}\right]$ by (4.2). Firstly let $A_{0}=\boldsymbol{k}^{\prime}[t]$. Since $\boldsymbol{k}^{\prime}\left[x, x^{-1}\right][t]=\boldsymbol{k}^{\prime}\left[x, x^{-1}\right][\sigma(t)]$, we easily see that $\sigma(t)=\mu x^{i} t+$ $f(x), \mu \in k^{*}$ and $f(x) \in \boldsymbol{k}^{\prime}\left[x, x^{-1}\right]$. The order of σ is n, i.e. $\sigma^{n}=$ Identity, so $\sigma^{n}(t)=t$, the other hand $\sigma^{n}(t)=\mu^{n} \lambda^{(1+\cdots n-1) i} x^{i n} t+g(x), g(x) \in \boldsymbol{k}^{\prime}\left[x, x^{-1}\right]$, therefore we have that $i=0$, thus $\sigma(t)=\mu t+f(x)$ and $\mu^{n}=1$. Let $f(x)=\sum f_{i} x^{i}$ and define the set $\Delta=\left\{j \in Z ; \lambda^{j} \neq \mu\right\}$. Let $h(x)=\sum_{j \in \Delta} h_{j} x^{j}$, where $h_{j}=f_{j}\left(\mu-\lambda^{j}\right)^{-1}$, and put $s=t+h(x)$. Then $\sigma(s)=\mu s+\sum_{i \notin \Delta} f_{j} x^{i}$, hence $\sigma^{n}(s)=\mu^{n} s+n \mu^{n-1}\left(\sum_{i \notin \Delta} f_{i} x^{i}\right)=s+n \mu^{n-1}$ $\left(\sum_{i \notin \Delta} f_{i} x^{i}\right)$. Since $\sigma^{n}(s)=s$, we have $\sigma(s)=\mu s$. We set $A_{0}^{\prime}=\boldsymbol{k}^{\prime}[s]$, then A_{0}^{\prime} satisfies the conditions.

Secondary let $A_{0}=\boldsymbol{k}^{\prime}\left[t, t^{-1}\right]$. Since $\boldsymbol{k}^{\prime}\left[x, x^{-1}\right]\left[t, t^{-1}\right]=\boldsymbol{k}^{\prime}\left[x, x^{-1}\right]\left[\sigma(t), \sigma(t)^{-1}\right]$, we easily see that $\sigma(t)=\mu x^{i} t$ or $\sigma(t)=\mu x^{i} t^{-1}, \mu \in \boldsymbol{k}^{\prime *}$.

Case (i); $\sigma(t)=\mu x^{i} t$. Since $\sigma^{n}(t)=\mu^{n} \lambda^{(1+\cdots+n-1) i} x^{n i} t$ and $\sigma^{n}(t)=t$, we have that $\sigma(t)=\mu t$, so $\sigma\left(A_{0}\right)=A_{0}$.

Case (ii); $\sigma(t)=\mu x^{i} t^{-1}$. If n is odd, 'say $n=2 m+1$, then $\sigma^{n}(t)=\mu \lambda^{i m} x^{i} t^{-1}$, but this is imposible for $\sigma^{n}(t)=t$. Therefore n is even, say $n=2 m$. Then $\sigma^{n}(t)=\lambda^{i m} t$. Since λ is a primitive $n-t h$ root of "unity", the integer i is even, say $i=2 j$. Let $s=x^{-j} t$ and $A_{0}^{\prime}=\boldsymbol{k}^{\prime}\left[s, s^{-1}\right]$. Then A_{0}^{\prime} satisfies the conditions.

Next we shall show that A has a \boldsymbol{Z}-graded ring structure. Let a be an element of A. Since $a \in A_{0}^{\prime}\left[x, x^{-1}\right], a=\sum a_{i} x^{i}$. Then $a=\sigma(a)=\sum \sigma\left(a_{i}\right) \lambda^{i} x^{i}$ and $\sigma\left(a_{i}\right) \in A_{0}^{\prime}$. Comparing the coefficient of each Iterm in the equality; $\sum a_{i} x^{i}=$ $\sum \sigma\left(a_{i}\right) \lambda^{i} x^{i}$, we have that $a_{i}=\sigma\left(a_{i}\right) \lambda^{i}$, then $\sigma\left(a_{i} x^{i}\right)=a_{i} x^{i}$. Thus $a_{i} x^{i}$ is an element of A. Therefore A is a graded ring. Since there exists units of non-zero degree, A has a \boldsymbol{Z}-graded ring structure.

Remark. The converse of this theorem is false. Indeed we find by (2.3) that the ring $\boldsymbol{k}[T]\left[X, X^{-1}\right]$ is a \boldsymbol{Z}-graded ring with respect to X which is torus invariant.

Example. We shall construct an example of an affine dimension A of dimension two which is not torus invariant.

Let D be an integrally closed domain of dimension one over an algebraically closed field \boldsymbol{k} and $D^{*}=\boldsymbol{k}^{*}$. Let a be a non-unit of D and $\alpha^{5}=a, \alpha \in D$. Assume that D is noetherian and $D[\alpha]$ is strongly torus invariant. Since an affine domain of dimension one whose totally quotient field has a positive genus is strongly torus invariant by (4.2), this assumption can be satisfied for a suitable choice of D. Let T be a variable over D and $A=D\left[\alpha T, T^{5}, T^{-5}\right]$. Let X be a variable over A and $S=T^{2} X$ and $Y=T^{5} X^{2}$. Let $B=D\left[\alpha S^{3}, S^{5}, S^{-5}\right]$. Since $T=$ $S^{-2} Y$ and $X=S^{5} Y^{-2}$, we have that $A\left[X, X^{-1}\right]=B\left[Y, Y^{-1}\right]$. By (1.1) invertible elements in the graded ring A are homogeneous. Since $D^{*}=\boldsymbol{k}^{*}$, we obtain $A^{*}=\left\{\eta T^{5 i} ; \eta \in \boldsymbol{k}^{*}\right.$ and $\left.i \in \boldsymbol{Z}\right\}$. Hence the quotient $A^{*} / \boldsymbol{k}^{*}$ is generated by T^{5}. Similary $B^{*} / \boldsymbol{k}^{*}$ is generated by S^{5}. We shall show that A is not isomorphic to B. We assume that there exists an isomorphism σ of A to B. Since σ is a group-isomorphism of A^{*} to B^{*}, we have $\sigma\left(T^{5}\right)=\mu S^{5}$ or $\sigma\left(T^{5}\right)=\mu S^{-5}$, $\mu \in \boldsymbol{k}^{*}$. We shall only consider the case: $\sigma\left(T^{5}\right)=\mu S^{5}$, since the proof of the other case is the similar. Let $\bar{\sigma}$ be an isomorphism of $A[T]$ to $B[S]$ defined by $\bar{\sigma}=\sigma$ on A and $\bar{\sigma}(T)=\zeta S, \zeta^{5}=\mu$. Then we have that $D[\alpha]\left[S, S^{-1}\right]=$ $\bar{\sigma}(D[\alpha])\left[S, S^{-1}\right]$, therefore $\bar{\sigma}(D[\alpha])=D[\alpha]$; for $D[\alpha]$ is strongly torus invariant. Since $\sigma(D) \subseteq D[\alpha] \cap B=D$, we have $\sigma(D)=D$, therefore we easily see that σ is an isomorphism as graded rings. Thus we have $\sigma((\alpha T) D)=$ $\left(\alpha^{2} S\right) D$, hence $\sigma(a) \in a^{2} D$. Since the element a is not a unit, $a^{2} D \subsetneq a D$, thus $\sigma(a) D \subseteq a^{2} D \subsetneq a D$, so $a D \subsetneq \sigma^{-1}(a) D$, hence we have a proper ascending chain $\left\{\sigma^{-n}(a) D\right\}$, but it contradicts the netherian assumption of D. Hence A is not torus invariant.
(4.4) Now let $A=\sum A_{i}$ be an integrally closed \boldsymbol{Z}-graded domain which contains invertible elements of non-zero degree. Let e be an invertible element of A with the smallest positive degree d. Let a be a unit of A, then a is a homogeneous elements with $\operatorname{deg} a=j d$ for some integer j, and there exists an element ξ of A_{0}^{*} such as $a=\xi e^{j}$. Let i be any positive integer and x be one of the $i j d$-th roots of a, say $x^{i j d}=a$. Since $A[x]$ is a \boldsymbol{Z}-graded ring with the
invertible elements x of degree one, $A[x]=A_{0}^{\prime}\left[x, x^{-1}\right]$ by (1.4) where A_{0}^{\prime} contains A_{0}. Let f and f^{\prime} be integers such as $f f^{\prime}+i j d=1$ and let X be a variable over A. Put $y=x^{-f} X$ and $Y=a X^{f^{\prime}}$. Then $x=y^{-f^{\prime}} Y$ and $X=y^{i j d} Y^{f}$. Therefore $A_{0}^{\prime}\left[x, x^{-1}\right]\left[X, X^{-1}\right]=A_{0}^{\prime}\left[y, y^{-1}\right]\left[Y, Y^{-1}\right]$. Since the every n-th roots of "unity" is contained in k and A is integral closed, the extension $A[x] / A$ is a Galois extension with a cyclic group $G=\langle\sigma\rangle$. Indeed $|G|=d i$ and there exists a primitive di-th root λ of "unity" such as $\sigma(x)=\lambda x$, and $(A[x])^{\sigma}=A$. Since A_{0}^{\prime} is algebraic over $A_{0}, \sigma\left(A_{0}^{\prime}\right)$ is also so, hence $\sigma\left(A_{0}^{\prime}\right)$ is algebraic over A_{0}^{\prime}, but A_{0}^{\prime} is algebraically closed in $A_{0}^{\prime}\left[x, x^{-1}\right]$, therefore $\sigma\left(A_{0}^{\prime}\right)=A_{0}^{\prime}$. Since $\sigma(y)=\lambda^{-f} y$, σ is an automorphism of $A_{0}^{\prime}\left[y, y^{-1}\right]$. Let $B=A_{0}^{\prime}\left[y, y^{-1}\right]^{\sigma}$ and $\bar{\sigma}$ be an automorphism of $A_{0}^{\prime}\left[x, x^{-1}\right]\left[X, X^{-1}\right]$ defined by $\bar{\sigma}(X)=X$ and $\bar{\sigma}=\sigma$ over $A_{0}^{\prime}\left[x, x^{-1}\right]$. Since $\bar{\sigma}(Y)=Y$ and $\bar{\sigma}(X)=X$, we obtain $B\left[Y, Y^{-1}\right]=A_{0}^{\prime}\left[y, y^{-1}\right]\left[Y, Y^{-1}\right]^{\sigma}$ $=A_{0}^{\prime}\left[x, x^{-1}\right]\left[X, X^{-1}\right]^{\sigma}=A\left[X, X^{-1}\right]$.

Proposition 4.5. Let A be an integrally closed \boldsymbol{k}-affine domain of dimension 2. If $A\left[X, X^{-1}\right]=B\left[Y, Y^{-1}\right]$ and $f f^{\prime} \neq 1$, then A has a Z-graded ring structure and B is isomorphic to one of algebras constructed in (4.4).

Proof. The first statement is already mentioned in the proof of (4.3) and we obtained $A_{0}^{\prime}\left[x, x^{-1}\right]\left[X, X^{-1}\right]=A_{0}^{\prime}\left[y, y^{-1}\right]\left[Y, Y^{-1}\right]$ and $\sigma\left(A_{0}^{\prime}\right)=A_{0}^{\prime}$. Let $B^{\prime}=A_{0}^{\prime}\left[y, y^{-1}\right]^{\sigma}$. Then B^{\prime} is one of algebras in (4.4). Since $B^{\prime}\left[Y, Y^{-1}\right]=$ $B\left[Y, Y^{-1}\right], B$ is isomorphic to B^{\prime}.

5. D-torus invariant

Let D be an integral domain contining a field \boldsymbol{k} of characteristic zero and A be a D-algebra. The ring A is called D-torus invariant; if $A\left[X, X^{-1}\right]=B[Y$, Y^{-1}] for a certain D-algebra B and independent variables X and Y, then we have always $A \cong_{D} B$. Then we have the following result:

Proposition 5.1. Let A be an integrally closed domain over D and tr. deg ${ }_{D}$ $A=1$. If A is not D-torus invariant, then A is a Z-graded ring containing units of non-zero degree.

Proof. Let $A\left[X, X^{-1}\right]=B\left[Y, Y^{-1}\right]$, where B is a D-algebra and not D isomorphic to A. By (2.0) and (2.1) we easily see that $f f^{\prime}=1$. Then we may assume $1-f f^{\prime}>0$. Let x be a $\left(1-f f^{\prime}\right)-t h$ root of u and $y=x^{-f} X$. Then we have that $A[x]=A_{0}\left[x, x^{-1}\right]$ and $B[y]=B_{0}\left[y, y^{-1}\right]$ as the proof of (4.3), where A_{0} and B_{0} are respectively subalgebras of $A[x]$ and $B[y]$ containing D. Let σ be a generator of the cyclic Galois group of the extension $A[x] / A$. We shall show that $\sigma\left(A_{0}\right)=A_{0}$. Since tr. $\operatorname{deg}_{D} A_{0}\left[x, X^{-1}\right]=1, A_{0}$ is algebraic over D, thus $\sigma\left(A_{0}\right)$ is also so. Since A_{0} is algebraically closed in $A_{0}\left[x, x^{-1}\right]$, we have that $\sigma\left(A_{0}\right)=A_{0}$. Following the similar devise to the proof of (4.3) we obtain
that A is a \boldsymbol{Z}-graded ring, and D is contained in A.
In the following we shall consider the case where A is a \boldsymbol{Z}-graded ring and $A_{0}=D$. We consider only D-isomorphisms of D-algebras.

Theorem 5.2. Let A be an integrally closed \boldsymbol{Z}-graded ring. Assume that the subring A_{0} contains an algebraically closed field \boldsymbol{k} and that $A_{0}^{*}=\boldsymbol{k}^{*}$. Let d be the smallest positive integer among the set of degrees of units in A. Then the number of the isomorphic classes of A_{0}-algebra as B such that $A\left[X, X^{-1}\right]=B\left[Y, Y^{-1}\right]$ equals to $\Phi(d)$, where Φ is the Euler function.

Proof. Let i be an integer such as $1 \leqq i<d$ and $(i, d)=1$. Since $(i, d)=1$, $i j+d h=1$ for some integers j and h. Moreover we may assume $h \geqq 0$. Fix a unit e of degree d. Let x be one of the d-th roots of e. Then we have that $A[x]=A_{0}^{\prime}\left[x, x^{-1}\right]$ for a subring A_{0}^{\prime} containing A_{0} by (1.4). Let σ be a generator of the cyclic Galois group of the extension $A[x] / A$. Then $\sigma(x)=\lambda x$, where λ is a primitive d-th root of "unity". Since A_{0}^{\prime} is algebraic over A_{0} and algebraically closed in $A_{0}^{\prime}\left[x, x^{-1}\right]$, we obtain. $\sigma\left(A_{0}^{\prime}\right)=A_{0}^{\prime}$. Let X be a variable over A and let $y=x^{-i} X$ and $Y=e^{h} x^{j}$. Then we have that $A_{0}^{\prime}\left[x, x^{-1}\right]\left[X, X^{-1}\right]=A_{0}^{\prime}[y$, $\left.y^{-1}\right]\left[Y, Y^{-1}\right]$. Define $B_{i}=A_{0}^{\prime}\left\lceil y, y^{-1}\right]^{\sigma}$ and let $\bar{\sigma}$ be an isomorphism of $A_{0}^{\prime}[x$, $\left.x^{-1}\right]\left[X, X^{-1}\right]$ defined by $\bar{\sigma}(X)=X$ and $\bar{\sigma}=\sigma$ on $A_{0}^{\prime}\left[x, x^{-1}\right]$. Since $Y=e^{h} X^{j}$, $\bar{\sigma}(Y)=Y$, therefore we obtain that $A\left[X, X^{-1}\right]=B_{i}\left[Y, Y^{-1}\right]$. We can easily see that B_{i} is a X-graded ring and $\left(B_{i}\right)_{0}=A_{0}$. Especially we have $B_{1} \cong A$.

Let i_{1} and i_{2} be integers such as $1 \leqq i_{1}<i_{2}<d$ and $\left(i_{1}, d\right)=\left(i_{2}, d\right)=1$. Let $B^{\prime}=A_{0}^{\prime}\left[y, y^{-1}\right]^{\sigma}$ and $B^{\prime \prime}=A_{0}^{\prime}\left[z, z^{-1}\right]^{\sigma}$ where $\sigma(y)=\lambda^{-i_{1}} y$ and $\sigma(z)=\lambda^{-i_{2}}$ i.e., $B^{\prime}=B_{i_{1}}$ and $B^{\prime \prime}=B_{i_{2}}$. We shall show that B^{\prime} and $B^{\prime \prime}$ are not isomorphic. Assume that there exists an A_{0}-isomorphism ψ of B^{\prime} to $B^{\prime \prime}$. Let a be a unit in B^{\prime} of non-zero degree, say degree $a=n, n \neq 0$. Let b be a homogeneous element of B^{\prime} and degree $b=t$. Then we have $b^{n}=r a^{t}$ for an element r in the coefficient ring A_{0}, hence $\psi\left(b^{n}\right)=\psi(b)^{n}=r \psi\left(a^{t}\right)$. Since r and $\psi\left(a^{t}\right)$ are homogeneous, $\psi(b)$ is also homogeneous by (1.1), therefore ψ is an isomorphism as graded rings.

Let c be a homogeneous element in B^{\prime} of degree one. Then $c=s_{1} y$ for an element s_{1} in A_{0}^{\prime}. Since $\sigma(c)=c$ and $\sigma(y)=\lambda^{-i_{1}} y$, we have $\sigma\left(s_{1}\right)=\lambda^{i_{1}} s_{1}$ hence s_{1}^{d} is in B^{\prime}. Since $\psi\left(s_{1} y\right)$ is a homogeneous element of degree one, we obtain $\psi\left(s_{1} y\right)=s_{2} z$ for an element s_{2} in A_{0}^{\prime}. Since $\sigma\left(s_{2} z\right)=s_{2} z$ and $\sigma(z)=\lambda^{-i_{2} z}$, we have $\sigma\left(s_{2}\right)=\lambda^{i^{2} s_{2}}$, hence s_{2}^{d} is in $B^{\prime \prime}$. By the relations; $s_{1}^{d} \psi\left(y^{d}\right)=\psi\left(\left(s_{1} y\right)^{d}\right)=$ $\psi\left(s_{1} y\right)^{d}=s_{2}^{d} z^{d}$, we obtain $s_{2}^{d}=\psi\left(y^{d}\right) z^{-d} s_{1}^{d}$. Since $\psi\left(y^{d}\right) z^{-d}$ is an invertible element in $B^{\prime \prime}$ and degree zero, we have $\zeta=\psi\left(y^{d}\right) z^{-d} \in A_{0}^{*}=\boldsymbol{k}^{*}$, therefore we have $s_{2}=\eta s_{1}$ for some $\eta \in k, \eta^{d}=\xi$. Hence $\sigma\left(s_{2}\right)=\lambda^{i_{1} s_{2}}$, but it contadicts the fact that $\sigma\left(s_{2}\right)$ $=\lambda^{i_{2} S_{2}}$ and λ is a primitive d-th root of "unity". Therefore $B^{\prime} \nsubseteq B^{\prime \prime}$.

Finally we shall show that if $A\left[X, X^{-1}\right]=B\left[Y, Y^{-1}\right]$ then B is isomorphic to B_{i} for some i satisfying $0<i<d$ and $(i, d)=1$. The invertible element u
in (2.0) is homogeneous. Let n be the degree of u. If $n=0$, then A is isomorphic to B by (2.1), hence $B \cong B_{1}$. Assume $n \neq 0$. Let c be a non-zero homogeneous element of degree 1 and put $\eta=c^{n} u^{-1}$. Then η is an element of A_{0}. In the graded ring $B\left[Y, Y^{-1}\right]$ the elements u and η are homogeneous, hence c is also homogeneous, thus we denote $c=b Y^{j}$ for some element b in B and some integer j. Then we obtain that $c^{n}=b^{n} Y^{n j}$. On the other hand we have $c^{n}=$ $\eta u=\eta v^{-f^{\prime}} Y^{1-f f^{\prime}}$ by (2.0). Therefore we have $1-f f^{\prime}=n j$.

By the minimality of d we obtain $n=l d$ for some integer l and $u=\xi e$, $\xi \in A_{0}^{*}=\boldsymbol{k}^{*}$. Since the field \boldsymbol{k} is algebraically closed, we may assume $\xi=1$, then the d-th root x of e is an n-th root of u. Since the element λ is a primitive d-th root of "unity", there exists the unique integer i such that $\lambda^{-f}=\lambda^{-i}, 0<$ $i<d$, then $(i, d)=1$ since $(f, d)=1$. Let $y^{\prime}=x^{-f} X^{j}$ and $B^{\prime}=\left(A_{0}^{\prime}\left[y^{\prime}, y^{\prime-1}\right]\right)^{\bar{\sigma}}$. Then $\sigma\left(y^{\prime}\right)=\lambda^{-f} y^{\prime}=\lambda^{-i} y^{\prime}$, hence $B^{\prime}=B_{i}$. We can easily show that $x=y^{\prime-f^{\prime}} Y^{j}$, therefore we obtain $A_{0}^{\prime}\left[x, x^{-1}\right]\left[X, X^{-1}\right]=A_{0}^{\prime}\left[y^{\prime}, y^{\prime-1}\right]\left[Y, Y^{-1}\right]$. Since $\sigma(X)=X$ and $\sigma(Y)=Y$, we have $A\left[X, X^{-1}\right]=B_{i}\left[Y, Y^{-1}\right]$, hence $B\left[Y, Y^{-1}\right]=B_{i}\left[Y, Y^{-1}\right]$. Thus we have $B \cong B_{i}$.

References

[1] S. Abhyankar, W. Heinzer and P. Eakin: On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310-342.
[2] S. Iitaka and T. Fujita: Cancellation theorem for algebraic varieties, J. Fac. Sci. Univ. of Tokyo, Sec. IA, 24 (1977), 123-127.
[3] S. Lang: Algebra, Addison-Weslay, New York, 1964.
[4] M. Miyanishi and Y. Nakai: Some remarks on strongly invariant rings, Osaka J. Math. 12 (1975), 1-17.

