ON HOLOMORPHIC SECTIONS WITH SLOW GROWTH OF HERMITIAN LINE BUNDLES ON CERTAIN KÄHLER MANIFOLDS WITH A POLE

Atushi KASUE and Takushiro OCHIAI

(Received June 29, 1979)

1. Introduction. We call (M, o) a Riemannian manifold with a pole iff M is a Riemannian manifold and $\exp _{0}: M_{0} \rightarrow M$ is a global diffeomorphism. We write $r(x)$ for the distance function from o. Suppose now our (M, o) satisfies the following condition:
(1-1) There exist C^{∞} functions $k, K:[0, \infty) \rightarrow[0, \infty)$ such that
(i) $-k(r(x)) \leqq$ all the radial curvature at $x \leqq K(r(x))$,
(ii) $\int_{0}^{\infty} t k(t) d t<\infty$,
(iii) $\int_{0}^{\infty} t K(t) d t \leqq 1$.

In (i) above, a radial curvature at an $x \in M$ denotes the sectional curvature of a 2-dimensional plane in M_{x} which is tangent to the unique geodesic joining the pole o of M to x (if $x=0$, then simply define a radial curvature to be a sectional curvature at o). R. Greene and H. Wu have studied general properties of Riemannian manifolds with a pole in [1]. Among other things, they have shown that Riemannian manifolds with a pole satisfying condition (1-1) give r se to a very interesting class of Riemannian manifolds. Making use of their results, we shall prove the following theorem.

Theorem 1. Let (M, o) be an m-dimensional Kähler manifold with a pole satisfying condition (1-1) above ($m \geqq 2$). Let $L \rightarrow M$ be a hclomorphic line bundle over M with a hermitian fibre metric h. Suppose the Chern form $\omega=-(i / 2 \pi) \partial \bar{\partial} \log$ h of the hermitian line bundle $\{L, h\}$ satisfies one of the following conditions:

$$
\begin{equation*}
\omega \text { is non positive, } \tag{1-2}
\end{equation*}
$$

where $v(t)$ is a nonnegative function on $[0, \infty)$ which satisfies

$$
\begin{equation*}
\int_{0}^{\infty} t v(t) d t<\infty \tag{1-4}
\end{equation*}
$$

Then there exists a positive number ν_{0} such that if s is a non-zero holomorphic section of L over M which satisfies

$$
\begin{equation*}
\|s(x)\| \leqq C(1+r(x))^{\nu} \tag{1-5}
\end{equation*}
$$

on M for some constant $C>0$ and some $\nu<\nu_{0}$, then s is nowhere zero on M.
When (M, o) has negative curvatures everywhere, above Theorem 1 has been proved by Greene and $W u$ (cf. Step III in the proof of Theorem J in [1]). Before them, Siu and Yau have proved above Theorem 1 when M is negatively curved and $k(t)=A t^{-2-\varepsilon}(\varepsilon>0)$ (cf. Proposition 2-4 in [5]). Our proof of Theorem 1 will be given by generaiizing the agruments in the proofs of Step III in [1] and Proposition 2-4 in [5] cited above.

It has been conjectured that an m - d :mensional Kähler manifold (M, o) with a pole satisfying condition (1-1) should be biholomorphic to C^{m}. In fact this is true in the case where (M, o) is negatively curved and $k(t)=A t^{-2-8}([5])$. More generally Greene and $W u$ have verified this conjecture in the case where (M, o) is negatively curved and $k(t)$ is nondecreasing on $[\theta, \infty)$ for some $\theta>0$ (cf. Theorem J in [1]). In the proofs of these results, one of the crucial steps was to prove above Theorem 1 in case (M, o) is negatively curved (Step III, [1], p. 188). Therefore our Theorem 1 will be of some use to study the conjecture mentioned above. In fact an application of our Theorem 1 to the case where (M, o) is positively curved will be published elsewhere.
2. Preliminaries. Let (M, o) be an m-dimensional Kähler manifold with a pole which satisfies condition (1-1). We recall several facts from Theorem C in [1] and Theorem in [4] as follows.

Fact 2-1. Define C^{∞} functions $p(t$, and $q(t)$ by

$$
\begin{equation*}
p^{\prime \prime}-k p=0, p(0)=0 \text { and } p^{\prime}(0)=1 \tag{2-1}
\end{equation*}
$$

Then the following inequalities hold on $[0, \infty)$:

$$
\begin{align*}
& 1 \leqq p^{\prime}(t) \leqq \eta \text { and } t \leqq p(t) \leqq \eta t, \tag{2-3}\\
& 1 \geqq q^{\prime}(t) \geqq \mu \text { and } t \geqq q(t) \geqq \mu t, \tag{2-4}
\end{align*}
$$

where the constants η and μ are positive and satisfy

$$
\begin{align*}
& 1 \leqq \eta \leqq \exp \left\{\int_{0}^{\infty} t k(t) d t\right\}, \tag{2-5}\\
& 1 \geqq \mu \geqq 1-\int_{0}^{\infty} t K(t) d t \tag{2-6}
\end{align*}
$$

Fact 2-2. Let $p(t)$ and $q(t)$ be as in Fact 2-1. Set $\eta^{*}(t)=t p^{\prime}(t) / p(t)$ and $\mu^{*}(t)=t q^{\prime}(t) / q(t)$. Then for any $t \geqq 0$, we have

$$
\begin{align*}
& 1 \leqq \eta^{*}(t) \leqq \eta, \tag{2-7}\\
& 1 \geqq \mu^{*}(t) \geqq \mu . \tag{2-8}
\end{align*}
$$

If $D^{2} r\left(r e s p . D^{2} r^{2}\right)$ denotes the Hessian of the function r (resp. the function r^{2}), then the following inequalities hold on $M-\{0\}$:

$$
\begin{gather*}
\frac{\mu^{*}(r)}{r}(g-d r \otimes d r) \leqq D^{2} r \leqq \frac{\eta^{*}(r)}{r}(g-d r \otimes d r), \tag{2-9}\\
2 \mu g \leqq D^{2} r^{2} \leqq 2 \eta g, \tag{2-10}
\end{gather*}
$$

where $g=2 \sum g_{j \bar{k}} d z^{j} d \bar{z}^{k}$ is the Kähler metric of (M, o).
As usual the associated Kähler form Ω of the Kähler metric $g=2 \sum g_{j \bar{k}} d z^{j}$. $d \bar{z}^{k}$ is defined by $\Omega=i \sum g_{j \bar{k}} d z^{j} \wedge d \bar{z}^{k}$.

Lemma 2-1. The following inequalities hold in $M-\{o\}$:

$$
\begin{gather*}
\frac{\eta^{*}(r)}{r}(\Omega-i \partial r \wedge \bar{\partial} r) \geqq i \partial \bar{\partial} r \geqq \frac{\mu^{*}(r)}{r}(\Omega-i \partial r \wedge \bar{\partial} r), \tag{2-11}\\
2 \eta \Omega \geqq i \partial \bar{\partial} r^{2} \geqq 2 \mu \Omega, \tag{2-12}\\
\Omega \geqq 2 i \partial r \wedge \bar{\partial} r . \tag{2-13}
\end{gather*}
$$

Proof. Let J be the natural almost complex structure on M. Define J invariant symmetric covariant two tensors h_{1} and h_{2} by

$$
\begin{aligned}
& h_{1}(X, Y)=(d r \otimes d r)(X, Y)+(d r \otimes d r)(J X, J Y), \\
& h_{2}(X, Y)=D^{2} r(X, Y)+D^{2} r(J X, J Y) .
\end{aligned}
$$

Then $h_{1}(J X, Y)=2 i \partial r \wedge \bar{\partial} r(X, Y)$. Since $h_{1}(X, X) \leqq g(X, X)$, we have (2-13). On the other hand, since g is a Kähler metric, we have $h_{2}(x, x)=(2 i \partial \bar{\partial} r)(X, J X)$. Then (2-9) and (2-13) im im_{\vdash} ly (2-11). Finally (2-10) implies (2-12). q.e.d.

We need a few more facts from [1]. A Riemannian manifold with a pole (N, e) is called a model iff the linear isotropy group of isometries at the pole e is the full orthogonal group. Then for a point $x \in N$, all the radial curvature at x are the same. Hence there exists a C^{∞} function $K_{N}:[0, \infty) \rightarrow \boldsymbol{R}$ such that for a point x, any 1 adial curvature at x is equal to $k_{N}\left(r_{N}(x)\right)$, where $r_{N}: N \rightarrow[0, \infty)$ is the distance function from e. The k_{N} is called the radial curvature funtion of the model (N, e). Moreover the metric g_{N} of N relative to geodesic polar coordinate centered at e assumes the form

$$
\begin{equation*}
g_{N}=d t^{2}+f(t)^{2} d \theta^{2} \tag{2-14}
\end{equation*}
$$

where f is a C^{∞} function on $[0, \infty)$ which satisfies $f>0$ on $(0, \infty)$ and

$$
\begin{equation*}
f^{\prime \prime}+k_{N} f=0 \text { with } f(0)=0 \text { and } f^{\prime}(0)=1 \tag{2-15}
\end{equation*}
$$

Conversely for any C^{∞} function $f(t)$ on $[0, \infty)$ satisfying $f>0$ on $(0, \infty), f(0)=0$ and $f^{\prime}(0)=1$, there exists uniquely (up to isometry) a model (N, e) such that $(2-14)$ holds. Then the radial curvature function k_{N} is equal to $-f^{\prime \prime} \mid f$. Therefore by (2-3) we have the forlowing fact (cf. p. 60 of [1]).

Fact 2-3. Consider the function $p(t)$ defined in Fact 2-1. Then there exists a 2 m dimensional model $(N,$.$) whcse metric relative to geodesic polar coordinates$ centered at e is given by

$$
g_{N}=d t^{2}+p(t)^{2} d \theta^{2}
$$

and the radial curvature function k_{N} is exactly $-k$.
Now by Proposition 2.15 (Laplacian Comparison Theorem) of [1], we have the following fact.

Fact 2-4. Let (M, o) be a Kähler manifold with a pole satisfying condition (1-1) and (N, r) the model constructed in Fact 2-3. Let $f(t)$ be a nondecreasing C^{∞} function on $(0, \infty)$. Then for every $x \in M-\{o\}$ and $y \in N-\{e\}$ such that $r(x)$ $=r_{N}(y)$, we have

$$
\Delta f(r)(x) \leqq \Delta f\left(r_{N}\right)(y)
$$

Lemma 2-2. Let (M, o) be a Kähler manifold with a pole satisfying condition (1-1). Let $p(x)$ be the C^{∞} function defined in Fact 2-1. For a positive number $R>0$, define a C^{∞} function f_{R} on $(0, \infty)$ by

$$
f_{R}(t)=\int_{t}^{R} \frac{d s}{p(s)^{2 m-1}} .
$$

Then we have $\Delta f_{R}(r) \geqq 0$ on $M-\{o\}$.
Proof. Let (N, e) be the model constructed in Fact 2-3. Let $\left\{x^{1}, \cdots, x^{2 m}\right\}$ be the geodesic polar coordinate system of N centered at e such that $x^{1}=r_{N}$. Then on $N-\{e\}$ we see

$$
\begin{aligned}
\Delta f_{R}\left(r_{N}\right) & =\frac{1}{\sqrt{G}} \sum_{A, B} \frac{\partial}{\partial x^{A}}\left(\sqrt{G} g_{N}^{A B} \frac{\partial}{\partial x^{B}} f_{R}\left(r_{N}\right)\right) \\
& =\left(p(t)^{2(2 m-1)}\right)^{-1 / 2} \frac{d}{d t}\left\{\left(p(t)^{2(2 m-1)}\right)^{1 / 2} \frac{d}{d t} f_{R}(t)\right\} \\
& =0
\end{aligned}
$$

Since $-f_{R}(t)$ is atnondecreasing C^{∞} function on $(0, \infty)$, Fact 2-4 implies $\Delta\left(-f_{R}(r)\right)$
$\left(\leqq \Delta\left(-f_{R}\left(r_{N}\right)\right)=0\right.$ on $M-\{o\}$.
q.e.d.

Lemma 2-3. Let (M, o) be a Kähler manifold with a pole satisfying condition (1-1). Let $q(t)$ be the C^{∞} function defined in Fact 2-1. Set $F(t)=$ $\exp \left(2 \int_{1}^{t} \frac{d t}{q}\right)$. Then we have the following:
(i) $F(r)$ is an C^{∞} function on M,
(ii) $F(r) / q(r)^{2}$ is a positive monotone increasing C^{∞} function on $[0, \infty)$
(iii) $\frac{2 \mu F(r)}{q(r)^{2}} \Omega \leqq i \partial \bar{\partial} F(r) \leqq \frac{2(1+\eta) F}{q(r)^{2}}$,
(iv) $i \partial \bar{\partial} \log F(r) \geqq 0 \quad$ on $M-\{o\}$.

Proof. As we obtain Fact 2-3, there exists a Riemannian metric g on R^{2} which can be written as

$$
g=d t^{2}+q(t)^{2} d \theta^{2}
$$

on $R^{2}-\{o\}$, where (t, θ) is the usual polar coordinates. We put a complex structure on R^{2} so that g becomes a Kähler metric. Define a map $I: R^{2}-\{o\} \rightarrow$ $R^{2}-\{0\}$ by

$$
\left.I(t, \theta)=\left(\exp \int_{1}^{t} \frac{d t}{q}\right), \theta\right)
$$

where (t, θ) is the polar coordinates on $R^{2}-\{o\}$. Then I is a diffeomorphism. Since we have

$$
\begin{equation*}
I^{*}\left(d t^{2}+t^{2} d \theta^{2}\right)=\left\{\frac{\exp \left(\int_{1}^{t} \frac{d t}{q}\right)}{q}\right\}^{2}\left(d t^{2}+q^{2} d \theta^{2}\right) \tag{2-16}
\end{equation*}
$$

I is a conformal map. Hence, if we consider I to be a C-valued function, I is a holomorphic function on $R^{2}-\{o\}$. Since I is bounded on a neighbourhood of o, I can be extended holomorphically to o and we have $I(o)=o$. Set $\widetilde{F}(s)=$ $|I((s, o))|^{2}$ for any $s \in R$. Then \widetilde{F} is an even C^{∞} function on R and $F(t)=\widetilde{F}(t)$ for any $t>0$. Since r^{2} is a C^{∞} function on M, we know that $F(r)$ is a C^{∞} function on M. Since I is holomorphic at o, I is a biholomorphic map. Consequently, (2-16) imples that $F(t) / q(t)^{2}$ is an even positive C^{∞} function. Hence $F(r) / q(r)^{2}$ a positive C^{∞} function on M. On the other hand, we have

$$
\left(\frac{F(t)}{q(t)^{2}}\right)^{\prime}=\frac{2 F(t)}{q(t)^{3}}\left(1-q^{\prime}(t)\right)
$$

By (2-4), we see $F(t) / q(t)^{2}$ is an increasıng function. Since we have

$$
i \partial \bar{\partial} F(r)=F^{\prime}(r) i \partial \bar{\partial} r+F^{\prime \prime}(r) i \partial r \wedge \bar{\partial} r
$$

$$
=\frac{2 F(r)}{q(r)} i \partial \bar{\partial} r+\frac{2 F(r)}{q(r)^{2}}\left(2-q^{\prime}(r)\right) i \partial r \wedge \bar{\partial} r,
$$

by ($2 \cdot-11$) and ($2-4$), we see

$$
\begin{aligned}
i \partial \bar{\partial} F(r) & \geqq \frac{2 F(r)}{q(r)} \frac{\mu^{*}(r)}{r}(\Omega-i \partial r \wedge \bar{\partial} r)+\frac{2 F(r)}{q(r)^{2}}\left(2-q^{\prime}(r)\right) i \partial r \wedge \bar{\partial} r \\
& =\frac{2 F(r)}{q(r)}\left\{q^{\prime} \Omega+2\left(1-q^{\prime}\right) i \partial r \wedge \bar{\partial} r\right\} \geqq \frac{2 \mu F(r)}{q(r) .^{2}} \Omega .
\end{aligned}
$$

On the other hand, by (2.11) and (2.3), we see

$$
\begin{aligned}
i \partial \bar{\partial} F(r) & \leqq \frac{2 F(r)}{q(r)} \frac{\eta^{*}(r)}{r}(\Omega-i \partial r \wedge \bar{\partial} r)+\frac{2 F(r)}{q(r)^{2}}\left(2-q^{\prime}(r)\right) i \partial r \wedge \bar{\partial} r \\
& =\frac{2 F(r)}{q(r)} \frac{p^{\prime}(r)}{p(r)}(\Omega-i \partial r \wedge \bar{\partial} r)+\frac{2 F(r)}{q(r)^{2}}\left(2-q^{\prime}(r)\right) i \partial r \wedge \bar{\partial} r \\
& \leqq \frac{2 F(r)}{q(r)} \frac{p^{\prime}(r)}{p(r)} \Omega+\frac{2 F(r)}{q(r)^{2}} \cdot 2 i \partial r \wedge \bar{\partial} r \\
& \leqq \frac{2 \eta F(r)}{q(r)^{2}} \Omega+\frac{2 F(r)}{q(r)^{2}} \Omega
\end{aligned}
$$

Finally by (2-11), we have

$$
\begin{aligned}
i \partial \bar{\partial} \log F(r) & =\frac{2}{q(r)} i \partial \bar{\partial} r-\frac{2 q^{\prime}(r)}{q(r)^{2}} i \partial r \wedge \bar{\partial} r \\
& \geqq \frac{2}{q(r)} \frac{\mu^{*}(r)}{r}(\Omega-i \partial r \wedge \bar{\partial} r)-\frac{2 q^{\prime}(r)}{q(r)^{2}} i \partial r \wedge \bar{\partial} r \\
& =\frac{2 q^{\prime}(r)}{q(r)^{2}} \Omega-\frac{4 q^{\prime}(r)}{q(r)^{2}} i \partial r \wedge \bar{\partial} r \\
& \geqq 0
\end{aligned}
$$

q.e.d.
3. A volume estimate for analytic subsets. Let V te a closed analytic subset in M of pure dimension n. For a positive number t, we set $B(t)=$ $\{x \in M, r(x)<t\}$ and $\partial B(t)=\{x \in M, r(x)=t\}$. Then $\overline{B(t)}$ is compact and $\partial B(t)$ is a hypersurface in M. We write $\operatorname{Vol}(V \cap B(t))$ for the vorume of $V \cap B(t)$. Then we have

$$
\operatorname{Vol}(V \cap B(t))=\frac{1}{2^{n} n!} \int_{V \cap B(t)} \Omega^{n}
$$

As usual we set $d^{c}=i(\bar{\partial}-\partial) / 2$ so that $d d^{c}=i \partial \bar{\partial}$. In this section we shall prove
Proposition 3-1. Let (M, o) be as in Theorem 1 in section 1. Then there exists a positive constant A depending only on (M, o) such that for any closed an-
alytic subset V in M of pure dimension n, we have $\operatorname{Vol}(V \cap B(t)) \geqq A l(V) t^{2 n}$ for $t \geqq 0$, where $l(V)$ is the multiplicity of V at o.

Proof. Set $B(t, s)=B(s)-\overline{B(t)}$ for $0<t<s$. Using Stokes Theorem for analytic subsets (cf. [3] or Theorem 1.28 in [2]), for $0<t<s$, we have

$$
\begin{aligned}
& \frac{1}{F(s)^{n}} \int_{V \cap B(s)}\left(d d^{c} F(r)\right)^{n}-\frac{1}{F(t)^{n}} \int_{V \cap B(t)}\left(d d^{c} F(r)\right)^{n} \\
= & \frac{1}{F(s)^{n}} \int_{V \cap \partial B(s)} d^{c} F(r) \wedge\left(d d^{c} F(r)\right)^{n-1} \\
& -\frac{1}{F(t)^{n}} \int_{V \cap \partial B(t)} d^{c} F(r) \wedge\left(d d^{c} F(r)\right)^{n-1} \\
= & \int_{V \cap \partial B(t)} \frac{d^{c} F(r)}{F(s)} \wedge\left(\frac{d d^{c} F(r)}{F(s)}-\frac{d F(r) \wedge d^{c} F(r)}{F(s)^{2}}\right)^{n-1} \\
& -\int_{V \cap \partial B(t)} \frac{d^{c} F(r)}{F(t)} \wedge\left(\frac{d d^{c} F(r)}{F(t)}-\frac{d F(r) \wedge d^{c} F(r)}{F(t)^{2}}\right)^{n-1}
\end{aligned}
$$

(dF(r) being zero on $B(t)$ and $B(s))$

$$
\begin{aligned}
= & V_{V \cap \partial B(t)} \int d^{c} \log F(r) \wedge\left(d d^{c} \log F(r)\right)^{n-1} \\
& -\int_{V \cap \partial B(t)} d^{c} \log F(r) \wedge\left(d d^{c} \log F(r)\right)^{n-1} \\
= & \int_{V \cap B(s)}\left(d d^{c} \log F(r)\right)^{n}-\int_{V \cap B(t)}\left(d d^{c} \log F(r)\right)^{n} \\
= & \int_{V \cap B(t, s)}\left(d d^{c} \log F(r)\right)^{n} \\
\geqq & 0
\end{aligned}
$$

(cf. (i1) of Lemma 2-3). Therefore we know

$$
\frac{1}{F(t)^{n}} \int_{V \cap B(t)}\left(d d^{c} F(r)\right)^{n}
$$

is a non-negative increasing function for $t>0$. In particular there exists

$$
\lim _{t \not 00} \frac{1}{F(t)^{n}} \int_{V \cap B(t)}\left(d d^{c} F(r)\right)^{n}
$$

which is denoted by $n^{*}(V, o)$. Now by (iii) and (ii) of Lemma 2-3, we have

$$
\begin{align*}
\frac{\operatorname{Vol}(V \cap B(t)}{t^{2 n}} & =\frac{1}{2^{n} n!t^{2 n}} \int_{V \cap B(t)} \Omega^{n} \tag{3-1}\\
& \geqq \frac{1}{2^{2 n} n!(1+\eta)^{n} t^{2 n}} \cdot \int_{V \cap B(t)}\left(\frac{q(r)^{2}}{F(r)}\right) n^{n}\left(d d^{c} F(r)\right)^{n}
\end{align*}
$$

$$
\begin{aligned}
& \geqq \frac{1}{2^{2 n} n!(1+\eta)^{n} t^{2 n}} \cdot \frac{q(t)^{2 n}}{F(t)^{n}} \int_{V \cap B(t)}\left(d d^{c} F(r)\right)^{n} \\
& \geqq \frac{\mu^{2 n}}{2^{2 n} n!(1+\eta)^{n}} \frac{1}{F(t)^{n}} \int_{V \cap B(t)}\left(d d^{c} F(r)\right)^{n} .
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
\operatorname{Vol}(V \cap B(t)) \geqq \frac{\mu^{2 n}}{2^{2 n} n!(1+\eta)^{n}} n^{*}(V, o) t^{2 n} \tag{3-2}
\end{equation*}
$$

for $t \geqq 0$. By (2-4), we see

$$
\begin{equation*}
\frac{1}{t^{2}} \leqq \frac{1}{F(t)} \leqq \frac{1}{t^{2 \mu}} \tag{3-3}
\end{equation*}
$$

for $0<t \leqq 1$. By (ii) and (iii) of Lemma 2-3, there exists a positive constant B_{1} such that

$$
\begin{equation*}
i \partial \bar{\partial} F(r) \geqq B_{1} \Omega \tag{3-4}
\end{equation*}
$$

on $B(1)$. Then (3-3) and (3-4) imply

$$
\begin{equation*}
\frac{1}{F(t)^{n}} \int_{V \subset B(t)}\left(d d^{c} F(r)\right)^{n} \geqq \frac{B_{1}{ }^{n}}{t^{2 n}} \int_{V \cap B(t)} \Omega^{n} \tag{3-5}
\end{equation*}
$$

for $0<t \leqq 1$. Now take sufficiently small $\varepsilon>0$ so that $B(\varepsilon)$ is a holomorphic local coordinate neighbourhood with a holomorphic local coordinate system $\left\{z^{1}, \cdots, z^{m}\right\} \quad\left(z^{i}(o)=0,1 \leqq i \leqq m\right)$. Let $g_{0}=\sum d z^{j} d \bar{z}^{j}$ be the usual flat Kähler metric on $B(\varepsilon)$. Then $\alpha_{0}=\left\{i \partial \bar{\partial}\left(\sum\left|z^{j}\right|^{2}\right)\right\} / 2$ is the associated Kähler form of g_{0}. By using $i \partial \bar{\partial} \log \left(\Sigma\left|z^{j}\right|^{2}\right) \geqq 0$ on $B(\varepsilon)-\{o\}$, the same argument to have obtained $n^{*}(V, o)$ implies that if we set

$$
n(t, o)=\frac{1}{t^{2 n}} \int_{V \cap\left\{\Sigma\left|z^{j}\right|^{2}<t^{2}\right\}} \alpha_{0}^{n}
$$

then $n(t, o)$ is an increasing function of t and $\lim _{t \rightarrow 0} n(t, o)=B_{2} l(V)$ where B_{2} is a universal constant (cf. Corollary 1.29 in [2]). Since there exists a positive constant B_{3} such that

$$
\frac{1}{B_{3}} \alpha_{0} \leqq \Omega \leqq B_{3} \alpha_{0}
$$

on $B\left(\frac{\varepsilon}{2}\right)$, we know there exists a positive constant B_{4} such that

$$
\begin{equation*}
\frac{1}{t^{2 n}} \int_{V \cap B(t)} \Omega^{n} \geqq B_{4} l(V) \tag{3-6}
\end{equation*}
$$

for sufficiently small t. By (3-5) and (3-6) we have

$$
\begin{equation*}
n^{*}(V, o) \geqq B_{1}{ }^{n} B_{4} l(V) \tag{3-7}
\end{equation*}
$$

Then (3-7) and (3-2) imply Proposition 3-1.
q.e.d.

Corollary. For a positive number R, there exists a positive constant $B^{*}(R)$ such that for $t \geqq R$ we have

$$
\operatorname{Vol}(V \cap B(t)) \geqq B^{*}(R) V^{*}(R) t^{2 n}
$$

where $\quad V^{*}(R)=\int_{V \cap B(R)}\left(d d^{c} F(r)\right)^{n}$.
Proof. By (3-1) we see

$$
\frac{\operatorname{Vol}(V \cap B(t)}{t^{2 n}} \geqq \frac{2^{2 n} n!(1+\eta)^{n}}{2 n} \frac{1}{F(R)^{n}} V^{*}(R)
$$

q.e.d.
4. Proof of Theorem 1. We keep the notation of the previous sections. Let $p(t)$ be the function defined in Fact 2-1. For any positive number R, define a C^{∞} function F_{R} on $M-\{0\}$ by $F_{R}(x)=f_{R}(r(x))$ where f_{R} is the function defined in Lemma 2-2.

Let s by any nonzero holomorphic section of L such that

$$
\begin{equation*}
\{x \in M ; s(x)=0\} \text { is not empty, } \tag{4-1}
\end{equation*}
$$

$$
\begin{equation*}
\|s(x)\| \leqq C(1+r(x))^{\nu} \tag{4-2}
\end{equation*}
$$

for some positive constants C and ν. Let V be the divisor defined by the zeros of s. For $R>1$, we set $B(R, 1)=B(R)-B(1)$. Then Green's formula implies

$$
\begin{aligned}
& \int_{B(R, 1)} \Delta F_{R} \cdot \log \|s\|^{2}-\int_{B(R, 1)} F_{R} \cdot \Delta \log \|s\|^{2} \\
= & \int_{\partial B(R)} \log \|s\|^{2} * d F_{R}-\int_{\partial B(1)} \log \|s\|^{2} * d F_{R} \\
- & \int_{\partial B(r)} F_{R} * d \log \|s\|^{2}+\int_{\partial B(1)} F_{R} * d \log \|s\|^{2} .
\end{aligned}
$$

By (2-3) we have

$$
\frac{1}{\eta^{2 m-1}} \int_{t}^{R} \frac{1}{t^{2 m-1}} \leqq f_{R}(t) \leqq \int_{t}^{R} \frac{d t}{t^{2 m-1}}
$$

Hence we obtain

$$
\begin{equation*}
\frac{1}{(2 m-1) \eta^{2 m-1}}\left(\frac{1}{t^{2 m-2}}-\frac{1}{R^{2 m-2}}\right) \leqq f_{R}(t) \leqq \frac{1}{2 m-2}\left(\frac{1}{t^{2 m-2}}-\frac{1}{R^{2 m-2}}\right) . \tag{4-1}
\end{equation*}
$$

Therefore we have an estimate:

$$
\begin{aligned}
& \left|-\int_{\partial B(1)} \log \|s\|^{2} * d F_{R}+\int_{\partial B(1)} F_{R} * d \log \|s\|^{2}\right| \\
= & \left|-f_{R}^{\prime}(1) \int_{\partial B(1)} \log \|s\|^{2} * d r+f_{R}(1) \int_{\partial B(1)} * d \log \|s\|^{2}\right| \\
\leqq & \left.\frac{1}{p(1)^{2 m-1}}\left|\int_{\partial B(1)} \log \|s\|^{2} * d r\right|+\frac{1}{2 m-2}\left(1-\frac{1}{R^{2 m-2}}\right) \int_{\partial B(1)} * d \log \|s\|^{2} \right\rvert\, \\
= & 0(1)
\end{aligned}
$$

where $0(1)$ stands for a bounded term as $R \rightarrow \infty$. Since $F_{R} \equiv 0$ on $\partial B(R)$, we have

$$
\begin{align*}
& \int_{B(R, 1)} \Delta F_{R} \cdot \log \|s\|^{2}-\int_{B(R, 1)} F_{R} \cdot \Delta \log \|s\|^{2} \tag{4-2}\\
= & \int_{\partial B(R)} \log \|s\|^{2} f_{R}^{\prime}(R) * d r+O(1) .
\end{align*}
$$

On the other hand, Poincare-Lelong's formula implies

$$
\begin{equation*}
\frac{2^{m} m!}{2 \pi} \int_{B(R, 1)} F_{R} \Delta \log \|s\|^{2}=\int_{B(R 1) \cap V} F_{R} \Omega^{m-1}-\int_{B(R, 1)} F_{R} \omega \wedge \Omega^{m-1} \tag{4-3}
\end{equation*}
$$

(cf. [3] or Theorem 1.11 in [2]). Since $\Delta F_{R} \geqq 0$ by Lemma 2-2, we see by (4-2)

$$
\int_{B(R, 1)} \Delta F_{R} \cdot \log \|s\|^{2} \leqq \int_{B(R, 1)} \Delta F_{R} \cdot \log \left\{C(1+r)^{\nu}\right\}
$$

Now by Green's formula, we have

$$
\begin{aligned}
& \int_{B(R, 1)} \Delta F_{R} \cdot \log \left\{C(1+r)^{\nu}\right\} \\
= & \int_{B(R, 1)} F_{R} \cdot \Delta \log \left\{C(1+r)^{\nu}\right\}+\int_{\partial B(R)} \log \left\{C(1+r)^{\nu}\right\} * d F_{R} \\
& -\int_{\partial B(1)} \log \left\{C(1+r)^{\nu}\right\} * d F_{R}-\int_{\partial B(R)} F_{R} * d \log \left\{C(1+r)^{\nu}\right\} \\
& +\int_{\partial B(1)} F_{R} * d \log \left\{C(1+r)^{\nu}\right\} \\
= & \left.\int_{B(R, 1)} F_{R} \cdot \Delta \log C(1+r)^{\nu}\right\}+\int_{\partial B(R)} \log \left\{C(1+r)^{\nu}\right\} * d F_{R}+O(1)
\end{aligned}
$$

Therefore we have

$$
\begin{equation*}
\int_{B(R, 1)} \Delta F_{R} \cdot \log \|s\|^{2} \leqq \int_{B(R, 1)} F_{R} \cdot \Delta \log \left\{C(1+r)^{\nu}\right\} \tag{4-4}
\end{equation*}
$$

$$
+\int_{\partial B(R)} \log \left\{C(1+r)^{v}\right\} f_{R}^{\prime}(R) * d r+O(1) .
$$

From (4-4), (4-2) and (4-3), we obtain

$$
\begin{aligned}
& \int_{B(R, 1)} F_{R} \cdot \Delta \log \left\{C(1+r)^{\nu}\right\}+\int_{\partial B(R)} \log \left\{C(1+r)^{\nu}\right\} f_{R}^{\prime}(R) * d r+O(1) \\
\geqq & \int_{B(R, 1)} \Delta F_{R} \cdot \log \|s\|^{2} \\
= & \int_{B(R, 1)} F_{R} \cdot \Delta \log \|s\|^{2}+\int_{\partial B(R)} \log \|s\|^{2} f_{R}^{\prime}(R) * d r+O(1) \\
= & \frac{2 \pi}{2^{m} m!} \int_{B(R, 1) \cap V} F_{R} \Omega^{m-1}-\frac{2 \pi}{2^{m} m!} \int_{B(R, 1)} F_{R} \omega \wedge \Omega^{m-1} \\
& +\int_{\partial B(R)} \log \|s\|^{2} f_{R}^{\prime}(R) * d r+O(1) .
\end{aligned}
$$

Since $f_{R}^{\prime}(R)<0$, we see

$$
\int_{\partial B(R)} \log \left\{C(1+r)^{\nu}\right\} f_{R}^{\prime}(R) * d r \leqq \int_{\partial B(R)} \log \|s\|^{2} f_{R}^{\prime}(R) * d r .
$$

Therefore we obtain

$$
\begin{align*}
& \frac{2^{m} m!}{2 \pi} \int_{B(R, 1)} F_{R} \cdot \Delta \log \left\{C(1+r)^{\nu}\right\} \tag{4-5}\\
\geqq & \int_{B(R, 1) \cap V} F_{R} \Omega^{m-1}-\int_{B(R, 1)} F_{R} \omega \wedge \Omega^{m-1}+O(1)
\end{align*}
$$

Now by (2-9) and (2-7), we have

$$
\begin{equation*}
\Delta r \leqq \frac{(2 m-1) \eta}{r} \tag{4-6}
\end{equation*}
$$

Then (4-6) implies

$$
\begin{align*}
\Delta \log C(1+r) & =\frac{\Delta r}{1-r}-\frac{1}{(1+r)^{2}} \tag{4-7}\\
& \leqq \frac{(2 m-1) \eta}{(1+r) r}
\end{align*}
$$

Now (4-7) and (4-1) imply

$$
\begin{align*}
\int_{B(R, 1)} F_{R} \Delta \log \left\{C(1+r)^{\nu}\right\} & \leqq \nu \int_{B(R, 1)} \frac{1}{(2 m-2) r^{2 m-2}} \cdot \frac{(2 m-1) \eta}{(1+r) r} \tag{4-8}\\
& \leqq \frac{(2 m-1) S(2 m-1) \eta^{2 m} \nu}{2 m-2} \log (1+R),
\end{align*}
$$

where $S(2 m-1)$ denotes the Euclidian volume of $(2 m-1)$ dimensional unit sphere. By the same way we have

$$
\begin{aligned}
\int_{B(R, 1) \cap V} F_{R} \Omega^{m-1}= & \int_{1}^{R} d t \int_{\partial B(t) \cap V} F_{R} \iota\left(\frac{\partial}{\partial r}\right) \Omega^{m-1} \\
= & \int_{1}^{R} f_{R}(t) d t \int_{\partial B(t) \cap V}\left(\frac{\partial}{\partial r}\right) \Omega^{m-1} \\
= & \int_{1}^{R}\left[\frac{d}{d t}\left\{f_{R}(t) \int_{1}^{t} d t \int_{\partial B(t) \cap V} \ell\left(\frac{\partial}{\partial r}\right) \Omega^{m-1}\right\}\right] d t \\
& -\int_{1}^{R}\left\{f_{R}^{\prime}(t) \int_{1}^{t} d t \int_{\partial B(t) \cap V} \iota\left(\frac{\partial}{\partial r}\right) \Omega^{m-1}\right\} d t \\
= & 2^{m-1}(m-1)!\left[f_{R}(t) \operatorname{Vol}(B(t) \cap V)\right]_{1}^{R} \\
& +2^{m-1}(m-1)!\int_{1}^{R} \frac{\operatorname{Vol}(B(t, 1) \cap V)}{p(t)^{2 m-1}} .
\end{aligned}
$$

Then by (2-3) and $f_{R}(R)=0$, we have

$$
\begin{equation*}
\int_{B(R, 1) \cap V} F_{R} \Omega^{m-1} \geqq \frac{2^{m-1}(m-1)!}{\eta^{2 m-1}} \int_{1}^{R} \frac{\operatorname{Vol}(B(t) \cap V)}{t^{2 m-1}} d t+O(1) \tag{4-9}
\end{equation*}
$$

From (4-5), (4-8) and (4-9) we obtain

$$
\begin{align*}
E_{1} \eta \nu \log (1+R) & \geqq \frac{2^{m-1}(m-1)!}{\eta^{2 m-1}} \int_{1}^{R} \frac{\operatorname{Vol}(B(t) \cap V)}{t^{2 m-1}} d t \tag{4-10}\\
& -\int_{B(R, 1)} F_{R} \omega \wedge \Omega^{m-1}+O(1)
\end{align*}
$$

where E_{1} is a positive constant depending only on m.
If the Chern form ω satisfies (1-3), we have

$$
\begin{equation*}
-\int_{B(R, 1)} F_{R} \omega \wedge \Omega^{m-1} \geqq 0 \tag{4-11}
\end{equation*}
$$

If ω satisfies (1-4), we see by (4-1)

$$
\begin{align*}
\left|\int_{B(R, 1)} F_{R} \omega \wedge \Omega^{m-1}\right| & \leqq D \int_{B(R, 1)} F_{R}\|\omega\| \Omega^{m} \tag{4-12}\\
& \leqq D^{\prime} S(2 m-1) \int_{1}^{R} f_{R}(t) v(t) t^{2 m-1} d t \\
& \leqq D^{\prime \prime} \int_{1}^{R} t v(t) d t=O(1)
\end{align*}
$$

where $D, D^{\prime}, D^{\prime \prime}$ are constants independent of s. Therefore by (4-10), (4-11) and (3-12), we have

$$
\begin{equation*}
E_{1} \eta \nu \log (1+R) \geqq \frac{2^{m-1}(m-1)!}{\eta^{2 m-1}} \int_{1}^{R} \frac{\operatorname{Vol}(B(t) \cap V)}{t^{2 m-1}} d t+O(1) . \tag{4-13}
\end{equation*}
$$

Therefore from Proposition 3-1, we obtain

$$
\begin{aligned}
E_{1} \nu \log (1+R) & \geqq \frac{2^{m-1}(m-1)!}{\eta^{2 m}} \int_{1}^{R} \frac{A l(V) t^{2 m-2}}{t^{2 m-1}} d t+O(1) \\
& \geqq E_{2} l(V) \log R+O(1),
\end{aligned}
$$

where E_{2} is a positive constant depending only on (M, o). Hence, taking the limit, we have

$$
\begin{equation*}
\nu \geqq \frac{E_{2}}{E_{1}} l(V), \tag{4-14}
\end{equation*}
$$

where E_{1} and E_{2} are positive constants depending only on (M, o).
Lemma 4-1. Let (M, o) and $\{L, h\}$ be as in Theorem 1. For a positive number ν, denote by $\Gamma(M, L ; \nu)$ the complex vector space of holomorphic sections s over M which satisfy

$$
\begin{equation*}
\|s(x)\| \leqq C(1+r(x))^{v} \tag{4-15}
\end{equation*}
$$

for some positive C. Then there exists a positive number ν^{*} depending only on (M, o) such that the dimension of $\Gamma\left(M, L ; \nu^{*}\right)$ is at most one.

Proof. Take $E_{2} / 2 E_{1}$ as ν^{*}, where E_{1}, E_{2} are as in (4-14). Take any holomorphic section s in $\Gamma\left(M, L ; \nu^{*}\right)$. Then by (4-15), we see $l(V)=0$, i.e., $s(o) \neq 0$. Suppose there were two elements s_{1} and s_{2} in $\Gamma\left(M, L ; \nu^{*}\right)$ which are linearly independent. Since $s_{1}(o) \neq 0$ and $s_{2}(o) \neq 0$, there would exist a number a such that $\left(a s_{1}+s_{2}\right)(o)=0$. Then $a s_{1}+s_{2}$ should be zero. This is a contradiction.

Proof of Theorem 1. Let ν^{*} be as in Lemma 4-1. It is enough to check the case when $\Gamma\left(M, L ; \nu^{*}\right)$ contains an element s_{0} such that $\{x \in M$; $\left.s_{0}(x)=0\right\}$ is non empty. Fix a sufficiently large number R_{0} so that

$$
\begin{equation*}
B(R) \cap\left\{x \in M ; s_{0}(x)=0\right\} \neq \emptyset . \tag{4-16}
\end{equation*}
$$

Then by (4-13) and Corollary to Proposition 3-1, for $R>R_{0}$ we have

$$
\begin{aligned}
E_{1} \nu \log (1+R) & \geqq \frac{2^{m-1}(m-1)!}{\eta^{2 m}} \int_{R_{0}}^{R} \frac{\operatorname{Vol}(B(t) \cap V)}{t^{2 m-1}} d t+O(1) \\
& \geqq \frac{2^{m-1}(m-1)!B^{*}\left(R_{0}\right) V^{*}\left(R_{0}\right)}{\eta^{2 m}} \log R+O(1)
\end{aligned}
$$

Hence, takıng the limit, we see

$$
\begin{equation*}
\nu \geqq \frac{E_{3}}{E_{1}} B^{*}\left(R_{0}\right) V^{*}\left(R_{0}\right) \tag{4-17}
\end{equation*}
$$

where E_{1}, E_{3} are positive constants depending only on (M, o), and $B^{*}\left(R_{0}\right)$ is positıve. By (4-16), we see $V^{*}\left(R_{0}\right)$ is positive. Now set

$$
\nu_{0}=\min \left\{\nu^{*}, \frac{E_{3} B^{*}\left(R_{0}\right) V^{*}\left(R_{0}\right)}{2 E_{1}}\right\} .
$$

Then we have $\Gamma\left(M, L ; \nu_{0}\right)=0$. In fact take any erement s in $\Gamma\left(M, L ; \nu_{0}\right)$. Then by Lemma 4-1, there exists a reai number a such that $s=a s_{0}$. Suppose $a \neq 0$. Then since $\{x \in M ; s(x)=0\}=\left\{x \in M ; s_{0}(x)=0\right\}$, (4-17) implies $\nu_{0} \geqq E_{3} B^{*}\left(R_{0}\right)$ $V^{*}\left(R_{0}\right) / E_{1}$. This is a constradiction. q.e.d.

References

[1] R.E. Greene and H. Wu: Function theory on manifolds which possess a pole, Lecture Notes in Mathematics, No. 699, Springer-Verlag, Berlin, 1979.
[2] R. Harvey: Holomorphic chains and their boundaries, Proc. of Sym. in Pure Math., Vol. XXX (1977), 302-382.
[3] P. Lelong: Fonctions plurisousharmoniques et formes différentielles positives, Gordon and Breach, New York, 1969.
[4] Y.T. Siu and S.T. Yau: Complete Kähler manifolds with nonpositive curvature of faster than quadratic decay, Ann. of Math. 105 (1977), 225-264.
[5] H. Wu: On a problem concerning the intrinsic characterization of C^{n}, (to appear)

Department of Mathematics University of Tokyo
Hongo, Tokyo 113
Japan

