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0. Introduction

The purpose of this note is to study Kaihler foliations, which are defined
by requiring the transition functions to be holomorphic isometries of a Kihler
manifold (see Definition 1.1), by adopting the method of [6] [7] [10]. In some
sense Kihler foliations are the holomorphic analogue of Riemannian foliations
and characteristic classes of the latter have been profoundly investigated by
Lazarov and Pasternack (cf.[9], also see [6]). However from the view point of
characteristic classes, the situations are completely different. Namely the
vanishing phenomenon of the Pontrjagin classes of the normal bundles in the
Riemannian case is much stronger than that in the smooth case (cf. strong
vanishing theorem of Pasternack [12] and the Bott’s vanishing theorem [1]).
By contrast, we do not have any strong vanishing phenomenon in the Khler foli-
ations. This fact reflects in the secondary characteristic classes. For example,
all the secondary classes of smooth foliations are zero on Riemannian foliations,
but some of the secondary classes of holomorphic foliations may be non-zero
on Kihler foliations. A new ingredient of our context is the Kihler form
which is a closed 2-form defined for any Kihler foliation.

In § 1 we define Kihler foliations and construct characteristic classes of
them and in § 2 we compute the cohomology of certain truncated Weil algebra.
In §§ 3 and 4, we study the relationships of our characteristic classes with those
of Riemannian and holomorphic foliations. Finally in § 5 we consider deforma-
tions of Kihler foliations.

1 Construction of the characteristic classes

In this section we define the notion of Kihler foliations and construct
characteristic classes of them.

DeriNITION 1.1. A codimension # Kihler foliation F on a smooth mani-
fold M is a maximal family of submersions f,: U,—(C", g,), where U, is an

1) Partially supported by the Sakkokai Foundation



540 T'. MATSUOKA AND S. MORITA

open set in M and g, is a Kidhler metric on C", satisfying the condition: for
every x&€U,N U, there exists a local holomorphic isometry 7,z such that
Js="gaso [ near x.

This is a holomorphic version of the notion of Riemannian foliations.
Since g, is a holomorphic isometry, patching together the pull backs of uni-
tary frame bundle of (C", g,) by the map f,, we obtain a principal U(n)-bundle
w: U(F)—M. We call it the unitary frame bundle of the foliation . Let 67
and g7 be the canonical form and the unique torsionfree Hermitian connection
form of (C", g,). Since holomorphic isometries preserve these forms, we can
define global 1-forms @, and 6, on U(F) such that 6,|,-1v,, 0.l 1w, are
the pull backs of 67, 87. Let E¢(n) be the group generated by parallel trans-
formations and unitary transformations on C" (which is a semi-direct product of
C" and U(n)). The pair (6,, 6,) is an eg(n)-valued 1-form, where ec(n) is the
Lie algebra of E¢(n). (6,, 0,) defines a d.g.a. map

¢: Wiee(n)) = Q*(U(F))

where W(ec(n)) is the Weil algebra of e¢(n) and Q*(U(F)) is the de Rham
complex of U(F). Let o, 0, O, Qi< W(ec(n)) be the universal connection and
curvature forms corresponding to the usual basis (over R) of ec(n)=C"+u(n)C
R*80(2n). If we denote &', §i, &, @) for the ¢-images of o', wf, O, Q}
respectively, then they satisfy the following equations (cf. [8])

(i) ©'=do4+0iN0t =0 (torsionfree-ness)
2.1) (i) d6i— —0iAn6i+6)
(i) ©®;A@/ =0  (the first Bianchi’s identity).

Therefore Ker ¢ contains an ideal I of W{(ec(n)) generated by the following
elements.

(i o
(i) elements whose “length” [ is greater than z,
(2.2) where / is defined by the conditions :

lw}) = (Q) = 0, l(v')=1 and [(Q})=2.
(i) QiNe’.
If we denote W(ec(n))=W(ec(n))/I, then ¢ induces a d.g.a. map
$: Wiec) > QXU(F)).

Now suppose that the normal bundle of F is trivialized by a cross section
s: M— U(F), then we obtain
*

H*(Wee(n)) — Hx(U(F)) —> Hix(M).
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We denote BKT, for the classifying space for codimension z Kihlerian Hae-
fliger structures with trivial normal bundles which is defined similarly as the
ordinary Haefliger structures. Since the above construction is functorial, we
obtain a homomorphism

(1.3) ¢: H*(W(e(n))) - H¥(BKT,; R).

Considering U(n)-basic elements of W(ec(n)) we can also define a d.g.a. map
¢: Wlec(n))yim — Q*(M) and this yields a homomorphism

(14) o: H¥(Wiee(n))uew) — H*(BKT,; R),

where BKT', denotes the classifying space for codimension n» Kihlerian Hae-
fliger structures.
The above is our construction of characteristic classes of Kihler foliations.

2. Cohomology of W(e(n))

Here we compute the cohomology of W(ec(n)). W(ec(n)) has a decreasing
filtration F? defined by F?= {x& W(e(n)); I(x)= p} where [ is the function on
W(ec(n)) induced by the length on W(eg(n)). Let {E?? d,} be the spectral
sequence associated with this filtration. If we define M,= {x& W(ec(n)); I(x)=p
and x contains no o}}, then 1(n) acts on M, by the Lie derivative. Thus M, is
a 1t(n)-module. Let C*(1(n); M,) be the set of g-cochains on 1(n) with coef-
ficients in M,. Then

(2.1) Ebt = N(w(n))QM, = C*(1(n); M,)
and this identification is compatible with the differentials. Thus
(2.2) EYi=H"nu(n); M,).
Let M3™ be the 1(n)-invariant subspace of M,
Lemma 2.1. H*(u(n); M,)=H*(w(n)) QM ;™.

Proof. Let Z be the center of u(z). Then we have u(n)=38u(n)PZ.
Z-action on M, is obtained by differentiating the action of S'CU(n) on M,.
Since S! is compact, M, breaks up as a sum of S'-invariant (=L;-invariant,
I is the generator of Z) subspaces M,=M ;@ W. Then the assertion follows
from an argument in Corollary IV 2.2 [11]. q.e.d.

Now let N,= {x& W(e¢(n)); [(x)=p, x contains no wi}. Then we show
Lemma 2.2. N;®/[INN;®=M}™,

Proof. We have a short exact sequence of 1(n)-modules:



542 T. MATSUOKA AND S. MORITA

0 — I — Wec(n)) = W(eg(n)) > 0.
This induces a long exact sequence

0 — Hu(n); I) - H°(u(n); W(ec(n))) — H(1(n); W(e(n)))
— H'(u(n); 1) — H'(u(n); W(ec(n))) — ---,

where we have H(u(n); I)=I1"™, H(u(n); W(ec(n)))=N""(=@PN}™) and
?»
H(1(n); W(ec(n)))=M"® (=PM4™). Now by the argument of Lemma 2.1,
b4

HY(u(n); IN=H(n(n))BI*™ and
H(n(n); W(ec(n)))=H(u(n))QN"® .

Therefore the map H'(1(n); I)— H'(11(n); W(ec(n))) is injective, which implies
that the homomorphism N"™ — %" is surjective. This completes the proof.
q.e.d.
By virtue of Lemma 2.2, it is enough to determine N}™/I N N}™ instead of
M3®.  To simplify the computation, we consider the complexification of N,. If
we put ¢'=w'+v/ — lo"", Pi=Qi4/—1Q7 (i, j=1, ---,n), then EP(NI,®C)
is multiplicatively generated by ¢, Jf, ¥% where J=o'—+/_ 10", (¥} is not
necessary because ¥i= —+f). The action of an element 4= (a})€ U(n) is
given as follows;

A-¢ = Sdiyt, A-F=aig, and
k k
Aoy = Slabh.

Let <¢>, <>, <> be the complex vector spaces with bases {¢, -+, ¢"},

{J, -, "}, {¥i} respectively and let {¢>", <P>", {dr>™ be the tensor products
of m-copies of them. U(#n) acts on these spaces by the diagnoal action. Now we

define an action of S, , ,=S§,X.S,X S, (the product of the symmetric groups of

degrees p, g, r) on {PX?Q<PH* Q<Y by
(1 s 03)- PP = PO
where (o, 0y, 03)E S, ,, and ¢, 7D denote i1--Pis, J7C0... 7P respectively,

etc.. If we use the same letter S, ,, for a linear endomorphism on {¢>? Q)"

®<4r)" given by
SP.q.'(SbIJ]‘!"]{) = 2 sgn (O-p) sgn (o-q)(a'p! () o_r) ‘ ¢1$l‘l"llf

where (o,, o,, o,) ranges over all elements of S, ,, then the S, ,,-invariant
subspaces (=Im S, ,,) is equal to AP >RAKPIRSCY>CTN,,,15,QC. We
denote this subspace by N, ,,. Since S, ,, is U(n)-equivariant,

N3P CLPIPPRLP LY )™ .

(2.3)
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We can consider {¢YQ<PH' QLYY =y @{P>**" by the map ¢/ P/pf—
YrEPYIL Since this map is U(n)-quivariant,
(PP RLPY QLYY )™ = ({7 RLPHT)H™ .

Lemma 2.3. The vector space ({p>' QLPO™)*™ is non trivial only for l=m

and in that case it has a basis of the following tensors: 33 $'¢°) where o€ S,.
I

Proof. Let f=>)al/P'P’ (D' QPO™")™ wherea a’/ are coeflicients
1,7
in C. fis u(n)-invariant if and only if al/=akala®*, for any (a})eU(n).
Taking (a}) to be the diagonal matrix with entries ai=1 for i+k, af=x (|2 | =1),
a;=0 for i%j, we can show that the entries of I and J coincide. Letting
I,=(1, ---, I) we prove the following

2.4) all = S gle

oH=J

by the decreasing induction on r=the number of distinct elements in I. For
r=m (2.4) clearly holds. Suppose (2.4) is true for r=s+4-1. We consider
the special case when I=J=(1, ---, 1, 2, -+, 2, -++,s, -*+, 5). 'The other cases can

a, a, a;
be treated similarly. We can regard f as an R-multilinear function: (C")*—C
by considering ¢’ (resp. ¢) to be the mapping: C"— C given by
‘/)i(zl’ R 2’”) =3 (resp' S_bi(zly Tt 271) = z;) .

We denote ¢,=(0, :++, 1, ---, 0). Since ¥ *=0 unless K coincides with L as sets,
i

a a_ - a
f(elaly ezaz) ety €51 ST, (es+es+1) ¢ 1’ 2% elalv ety €y °TY, es+1as) =0
where ¢,°1 denotes e, -+, e; and the same rule for other letters. Since the trans-
——

a,
formation A4 of C" given by

A-e, = 1\/[2(e,—e,y), A-egpy = 1N/ 2(e,+e,.1)
A-e, = e, (t£5)
is a unitary transformation, we have
172(f(e,, +--, %7, e;—es_q, €%, ++-, e, "1, (e+-€,41)%)) = 0.
Calculation shows

f(elal) ERE) esas_l’ €s—E€s_ 1y elal’ R es—las_l) (es+es+l)a$)

a a.-1 a a
— I 11,88 T5+1,1 1,00,8 S71,s,0, 841,008
=a’— z :C(
u

where 1% denotes 1, -+, 1 etc.. Therefore by the induction assumption (2.4)
Nt

a,
holds for r=s. This completes the proof. q.e.d.



544 T'. MATSUOKA AND S. MORITA

Now we define elements s, and @ of M*™ by

s, = Trace (i)t for k even,
(2.5) = v/ —1 Trace (y})* for % odd,
P = \/:_1 2 ¢,i$i — 2 wiwn+i .
These forms are real because  is skew-Hermitian.

Proposition 2.4. M""=R]s,, -, s,, ®]/{degree >2n}.
Proof. By Lemma 2.3 a basis for ({¢>?Q<PY'QY> )™ is given by the

tensors
oo) = D FCPL o,

where (o(Z, J)1, o(I, J),) are defined by o(I, J)=(c(L, J)1, o({, J),). Therefore
N3®,=8, , (P QRLP*'QLY))*™ is spanned by the tensors o(o): cES,.,.
If we denote (o) for the image of the projection N}, — Ny@ INY® N (IQRC),
then w(c)=0 for o such that o(1, -+, p)d (1, -+, p) by the Bianchi’s identity.
Therefore

(NWIN'ONDRC = & NG, NG N (I C)
= C[sy, ++, $,, ®]/{degree >2n} .
Taking the real part of this space we obtain our proposition. q.e.d.

Now we define a d.g.a. KW, as follows. Let Ts,& W(e¢(n)) be the Chern-
Simons’ transgression form of s, (cf. [3]) and u, be =(Ts,), where z: W(e¢(n))—
W(ec(n)) is the projection. Then clearly du,=s,. We define KW, to be the
subalgebra generated by u,, s,, ®. It is easy to see that KWW, is isomorphic to

E(uy, -, u,)QR[s;, -+, 5,, @]

where E denotes the real exterior algebra and IAZ[ ] is the real polynomial
algebra truncated by the elements of degree>2n. Now recall that, in our spec-
tral sequence computing the cohomology of W(ec(n)), E%?=H ‘(11(n))QM4™,
The above results show that the inclusion of the subalgebra KW, in W(ec(n))
induces an isomorphism on the Ej;-term. Therefore, by the spectral sequence
comparison theorem, we obtain

Theorem 2.5. H*(W(eq(n)))=H*(KW,).
Let I=(z, ---,4,) and J=(jy, +*~,j;) be s and #-tuples of positive integers
with i, <--<i;and j,= -+ <j,. We denote u;s;®* for u; ---u;5; ++5; D' €KW,

Note that if | J|+k>n, then u;s;®*=0 where |J|=j,+:-+j,. Now the
technique of Vey in [5] shows the following.
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Proposition 2.6. A basis for H*(KW,) is given by the classes of the elements
w8 ;D* with
() iH1J]+E>n

(i1) 4,=j, where we understand i,= oo if I=¢ and similarly for j,.
Since W(ec(n))"™=M"", we can determine H*(W(ec(#))y(n) as follows.

Proposition 2.7. The classes of the elements s;O* with | J|+k=<mn form a
basis of H*(W(ec(n))y(»)-

Now the class @ has the following geometric meaning. On each Kihler
manifold there is defined a 2-form called the Kahlerian form and holomorphic
isometries between Kihler manifolds preserve these forms. Therefore if F is a
codimension 7 Kihler foliation on a smooth manifold M defined by submersions
fs: U,—(C", g,) (see Definition 1.1), then the local forms f,* (Kahler form
of g,) on U, define a global 2-form ®(F) on M which is closed. We call ®(F)
the Kihler form of the foliation F. On the other hand, from the definition of
our characteristic classes, we have a closed 2-form ¢(®) on M. We have

Proposition 2.8. ¢(D)=1/2d(F).

Proof. Since =3 w'w"", we have ¢p(®)=>160¢""". Butit is easy to see
that this form is the lift of 1/2 ®(F) to U(F). q.e.d.

3. Relation with Riemannian case

Let F be a codimension # Riemannian foliation on a smooth manifold M
and let O(F') be the orthonormal frame bundle of F. Let E(n) be the group of
Euclidean motions on R", e(n) the Lie algebra of E(n) and W(e(n)) the Weil
algebra of e(n). Then in [6], [7], [10] a characteristic homomorphism

¢: H*(W(e(n)) — H*(BRT,; R)

was constructed, where BRT, is the classifying space for codimension 7 Rie-
mannian Haefliger structures with trivial normal bundles and W(e(n)) is the
quotient algebra of W(e(n)) by some ideal. Let f,,&I(80(n)) be defined by
fau(X)=Trace(X?) for X &8o(n) and for even z let X< I(80(n)) be the Euler
form. We can consider fy,, X to be elements of W(e(n)). Let Tfy, TX be the
transgression forms of f,, X respectively. If we set ¢,=7(fu), hu=n(Tfx),
X=7(X) and h,==(TX) where z: W(e(n))— W(e(n)) is the projection, then the
subcomplex RW, of W(e(n)) generated by ks, ¢y, and if 7 is even also by &y, X
is a finite complex expressed as

RWn = E(hZJ h4: R hn—l)®é[62: Cy "y cn-l] n Odd)
== E(hZ) h4; MR hn—ZJ hx)@é[é‘z, 64) B} cn—Z: x] n even.
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Furthermore let r,& W(e(n)) be the “p-th scalar curvature” defined in [10].
If we denote

E, = E(hy, hy, -+, h,_y) n odd,
= E(hy, hyy -+, hy_py By) n even,
then all the forms of 7,E, are closed and therefore RW,® 3} 7,E,is a sub-
»

Qeven
0=sp<n

complex of W(e(n)). The inclusion induces an isomorphism on cohomology.
Namely

(3.1) HAWE)=HHRW)S T 1,F,
0= p<n

(see Theorem 3.1 of [10]).
Now we have the forgetful map

BKT, > BRT,, and BKT,—> BRT,,.

Let i: e¢(n)— ¢(2n) be the natural inclusion.
Proposition 3.1. The following diagrams are commutative.
H*(W(e(2n))) ——> H*(BRT,; R)
H*(W(ec(n))) —> H*(BKT,; R),
H*(W(e(2n))oom) —> H*(BRT,; R)
H*W(ec(n))ow) —> H *(BKiFn; R).

The homomorphisms * : H*(W(e(2n)))—H*(W(ec(n))), i*: H*(W(e(21))q(zn))
— H*¥(W(e¢(n))y) in terms of A, ¢js X, 7,, 4;, §;, etc. can be completely de-
termined. For example, as is well known, the image under 7* of monomials on
¢; (=the Pontrjagin classes) can be uniquely described as polynomials on s; (=the
Chern classes) and of course :*(X)=the n-th Chern class. The formura for the
image of k; can be easily deduced from the definitions. We omit the detailed
description of these formulas. Here we only mention the formula for the class 7,.

Proposition 3.2.

¥[r,] = (=) 20— p) | [(n—p[2)[ @2 3 aysi]
11{=2s2
where ay=(—1)E " p n(n—i)) e (n—iy— o —i,_))  for I=(iy, -+, i,).
The proof of this proposition can be given by calculations using the Bianchi’s
identity and is left to the readers.
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This proposition shows that the p-th scalar curvature 7, for a Kihler folia-
tion can be expressed in terms of the Kahler form and the Chern forms.

4. Relation with holomorphic case

A Kibhler foliation can be regarded as a holomorphic foliation by forgetting
the Kahler structures. We recall the construction of the characteristic classes
of holomorphic foliations given by Bott in [2].

Let F be a holomorphic foliation on a smooth manifold M and let J&(F)
be the bundle of holomorphic 2-jets of F. We have a d.g.a. map

¢: W(gl(n; C)) - Q*(Jo(F))®C

defined by $(wi)=0%, $(Q;)=d0i+0;A\6"% where o}, Q} are the universal con-
nection and curvature forms of gl(n; C) in terms of the natural basis and 6} is
the second order canonical forms on J&(F). ¢ has akernel I generated by mono-
mials on O with degree >2n. Therefore if we set W(gl(n; C))=W(gl(n; C))/I
and assume that the normal bundle of F'is trivialized by a cross section s: M —
J&F), then we obtain a homomorphism

g*: H¥(W(gl(n; C))) — H*(J&F); C) —~ H¥(M: C).
Since this construction is functorial, we have
¢: H¥(W(gl(n; C))) ~ H*(BT,C; C).

Let s;e1(gl(n; C)) be given by s,(X)=Trace (v/—1 X)' for X egl(n; C) and let
u;=1Ts;: the transgression form of 5;. u; and s; can be considered as elements of
W(gl(n; C)) and we use the the same letters for their images in W(gl(n; C)).
Now let W¢ be the subalgebra of W(gl(n; C)) generated by the elements s;, u;.
Then we may write W{=E(u, ---, u,,)®é’[sl, -+, 5,] as usual (see [2]) and the
inclusion z: W¢—>W(gl(n; C)) induces an isomorphism on cohomology.

Theorem 4.1. Let F be a codimension n Kdhler foliation on a smooth mani-
fold M with a trivialized normal bundle. Then the class J(u;s;) is a real class
and coincides with ¢(u,s;y).

Proof. This follows from the definitions of the characteristic classes of
Kihler and holomorphic foliations. The point here is the fact that the s;-
form of a complex vector bundle with a Hermitian connection is a real form.

g.e.d.

ReMARK 4.2. Bott[2] has also defined characteristic classes of holomor-
phic foliations whose normal bundles are not necessarily trivial by comparing
Bott and Hermitian connections. For a Kihler foliation these classes are all
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zero because the unique torsionfree Hermitian connection is also a Bott con-
nection.

5. Continuous variation

In this section we study continuous variations of our characteristic classes.

DEFINITION 5.1 An element o of H*(KW,) is called rigid if for any one
parameter family F, of codimension n Kihler foliations on a smooth manifold

M, the classes ¢(at)(F,) is constant with respect to #, namely %(d)(a)(F,)):O

holds.
By the same argument as in Heitsch [5] we obtain

Proposition 5.2. The class [u;s/] is rigid if i,+ | J | >n+-1.

We conjecture that these classes are the only rigid classes. Thus the
classes of u;s;®* would be non rigid if >0 or k=0, 7,4+ | J|=n-+1. We cannot
prove this conjecture at the moment. In the following we prove partial solution
to 1t.

Let (M, g) be a Kihler manifold of dimension # and z: UM)— M the
unitary frame bundle of M. We define a smooth family of codimension »
Kahbler foliations F(M, t) on U(M) as follows. Let (M, t%g) be the Kihler
manifold obtained from M by the scale change g—t*g (t>0). Then F(M, t) is
a foliation on U(M) defined by pulling back the Kahler structure of (M, #2g) by
the projection z.

The unitary frame bundle of this foliation U(F(M, t)) has a cross section

2 UM) — UF(M, 1)) UM)x UM, g)
w U]
x (, %)

where U(M, #2g) is the unitary frame bundle of the Kihler manifold (M, ).
From the definition of characteristic classes, we obtain

Proposition 5.3.
[u8,D*|(F (M, 8)) = £*[(Ts)(M)z*(s,(M))=*(P(M, g))]

where s;(M) is the characteristic form of M corresponding to s;, (Ts), (M) is the
Chern-Simons’ transgression form of s; and ®(M, g) is the Kdhler form of (M, g).

Now we show the following result.

Proposition 5.4. Let N(=2""'n) be the number of the bases in Proposition 2.6
with i,=1, J=(m—k), k=1. Then there is a surjective homomorphism
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Hy(BKT,; Z)—- R"—0.
We prepare several lemmas.

Lemma 5.5. Let P¥C) be the complex projective space with the standard
Kahler metric. Then the classes of Ts(M)(Ts)(M)x*(s,(M)) are linearly in-
dependent in H*(U(P*(C)); R).

Proof. By a well known theorem (see [4] for example), we have an iso-
morphism.

A: H¥(U(PH(C)): R)— H*(R[a]/(a*™")QE(w, -, uy))
where the right hand side is the cohomology of a differential complex

R[a]/(a*™)QE(u,, +++,u,) with a differential d defined by da=0, du;=a’.
The isomorphism A satisfies

A([(Ts)(M)s,(M)]) = [a'ur] -

Therefore for the proof of the lemma, it is enough to show that [a*uu;] are
linearly independent in H*(R[a]/(a**")QE(uy, -+, u,)). But this can be easily
checked by a spectral sequence argument. q.e.d.

Lemma 5.6. Let T be the complex 1-dimensional torus with the standard
Kdhler metric and M be a disjoint union of porducts of P*~*(C) and T*. Then
[us,_ @% (F(M, 1)) are linearly independent in H*(U(M); R).

Proof. Similarly as in Lemma 5.5, we have isomorphisms

Ay H¥(UP*C)XT"; R)—
H*(U(P"HC); R)YQHX(T*; R)QE(ws, -+, ty)
for 0<k=Zn.
Let z,: H¥(T*; R)— H*(T*; R) be the projection onto the part with degree

2k and 7,: P*"*(C)x T*— |J P*"/(C) X T" be the inclusion. Then one can easily
show '

(1@ @ 1) o yoi (utss, DYF(M, 1)
=0 l%k,
— [Ts(M)(Ts),(M)z*(s, (M Q[@(TH ] @uy, 1=k,
where I,=IN {1, ---,n—k}, I,=IN {n—k+1, ---, n}.
Hence the image of wu,s,_,®* by the map
(1Q7,Q1)o Aoty : H¥(UM); R) —
H*(U(P"XC)); RYQH*(T*; R)QE(uUy-p41, > )

[Ts(P*(C))(Ts),(P*~HC))m*(s,- (P HC))] R [D(T)]* Ry, -
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Therefore in view of Lemma 5.5 we complete the proof. q.e.d.

Proof of Proposition 5.2 Choose homology classes x(I, k) H(UM); Z)
so that the matrix (<x(Z, &), [uuss,-,D@(F(M, 1))>) is non-singular. We intro-
duce an N-vector valued parameter t=(t(I, k))= R" and put

%(2) = 23 frr wex(L, R)eH«(BKT,; Z)

where f,; n: UM)—BKT, is the classifying map of the foliation F(M, #(I, k)).
Then

x(t), [y, @' = 2300, H<(J, D), [waegs, 1 " F (M, 1))

Therefore if we define a map A: RY— RY by A#)=(<x(2), [witésS,-1» P*D)s
then the Jacobian matrix of A at #(I, k)=k—1 is {x(I, k), [uu,s,-, PN F(M, 1))>
which is non-singular. This completes the proof. g.e.d.
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