ON REAL J-HOMOMORPHISMS

Dedicated to Professor A. Komatu on his 70th birthday

Haruo MINAMI

(Received June 7, 1978)

1. In the present work we consider a Real analogue of J-homomorphisms in the sense of [3]. We use here the notation in [4], $\S \S 1$ and 9 and [9], $\S 2$ for the equivariant homotopy groups which are discussed by Bredon [5] and Levine [10]. Moreover we shall use notations and terminologies of [4], $\S 1$ without any references.

Let us denote by $G L(n, \boldsymbol{C})$ (resp. $G L(\infty, \boldsymbol{C})$) the general linear group of degree n (resp. the infinite general linear group) over the complex numbers with involutions induced by complex conjugation. Let X be a finite pointed τ-complex. Then, by following the construction of usual J-homomorphisms (cf. [13], p. 314, [2]) we can define homomorphisms

$$
\begin{align*}
J_{R, n}:\left[\Sigma^{p, q} X, G L(n, \boldsymbol{C})\right]^{\tau} \rightarrow\left[\Sigma^{p+n, q+n} X, \Sigma^{n, n}\right]^{\tau} \tag{1.1}\\
J_{R}:\left[\Sigma^{p, q} X, G L(\infty, \boldsymbol{C})\right]^{\tau} \rightarrow \pi_{s}^{0,0}\left(\Sigma^{p, q} X\right)
\end{align*}
$$

and
for $p \geqq 0$ and $q \geqq 1$ where let $\pi_{s}^{0,0}\left(\Sigma^{p, q} X\right)=\lim _{n \rightarrow \infty}\left[\Sigma^{p+n, q+n} X, \Sigma^{n, n}\right]^{\tau}$. We now give definitions of $J_{R, n}$ and J_{R} below. Let $\Omega_{d}^{n, n} \Sigma^{n, n}$ denote the subspace of $\Omega^{n, n}$ $\Sigma^{n, n}$ consisting of maps of degree d in the usual sense. Let γ be the τ-map of $\Sigma^{n, n}$ induced by the correspondence of $R^{n, n}$ such that $\left(x_{1}, \cdots, x_{2 n}\right) \mapsto\left(x_{1}, \cdots, x_{2 n-1}\right.$, $-x_{2 n}$). By adding γ to the elements of $\Omega_{1}^{n, n} \Sigma^{n, n}$ with respect to the loop addition along fixed coordinates of $\Sigma^{n, n}$ we have a τ-map $t: \Omega_{1}^{n, n} \Sigma^{n, n} \rightarrow \Omega_{0}^{n, n} \Sigma^{n, n}$. Then we obtain $J_{R, n}$ by assigning to a base-point-preserving τ-map $f: \Sigma^{p, q} X \rightarrow G L(n, C)$ the adjoint of the composite

$$
\Sigma^{p, q} X \xrightarrow{f} G L(n, C) \stackrel{i}{\subset} \Omega_{1}^{n, n} \Sigma^{n, n} \xrightarrow{t} \Omega_{0}^{n, n} \Sigma^{n, n}
$$

where i is the canonical inclusion map.
As is easily seen the diagram

$$
\begin{aligned}
& {\left[\Sigma^{p, q} X, G L(n+1, C)\right]^{\top} \xrightarrow{J_{R, n+1}}\left[\Sigma^{p+n+1, q+n+1} X, \Sigma^{n+1, n+1}\right]^{\top}}
\end{aligned}
$$

is commutative under the identification $\Sigma^{r, s} \wedge \Sigma^{p, q}=\Sigma^{r+p, s+q}$ where j_{*} is the
homomorphism induced by a canonical inclusion map $j: G L(n, \boldsymbol{C}) \subset G L(n+1, \boldsymbol{C})$ and $\Sigma_{*}^{1,1}$ is the suspension homomorphism ([4], (7.2)). Therefore, by taking the direct limits we get a homomorphism

$$
J_{R, \infty}: \lim _{n \rightarrow \infty}\left[\Sigma^{p, q} X, G L(n, C)\right]^{\tau} \rightarrow \pi_{s}^{0,0}\left(\Sigma^{p, q} X\right) .
$$

Also, as X is compact we have a canonical isomorphism $\mu: \lim _{n \rightarrow \infty}\left[\Sigma^{p, q} X\right.$, $G L(n, \boldsymbol{C})]^{\top} \rightarrow\left[\Sigma^{p, q} X, G L(\infty, \boldsymbol{C})\right]^{\tau}$. So we define J_{R} to be the composite $J_{R, \infty} \mu^{-1}$.

Taking $X=S^{0,1}$ in (1.1) J_{R} becomes the homomorphism from $\pi_{p, q}(G L(\infty, C))$ to $\pi_{p, q}^{s}$. The aim of this paper is to prove the following theorem for the homomorphism

$$
\begin{equation*}
J_{R}: \pi_{2 p-2 k, 2 p+2 k-1}(G L(\infty, C)) \rightarrow \pi_{2 p-2 k, 2 p+2 k-1}^{s} \tag{1.2}
\end{equation*}
$$

for $p \geqq k \geqq 0$ and $p+k \geqq 1$.
Theorem. The image $J_{R}\left(\pi_{2 p-2 k, 2 p+2 k-1}(G L(\infty, \boldsymbol{C}))\right)$ of the homomorphism (1.2) is a cyclic group of the following order:

$$
\begin{array}{ll}
m(2 p) & \text { if either } p, k \text { are even or odd } \\
\frac{1}{2} m(2 p) & \text { if } p \text { is even and } k \text { is odd } \\
m(2 p) \text { or } 2 m(2 p) \text { if } p \text { is odd and } k \text { is even }
\end{array}
$$

where $m(t)$ is the numerical function as in [1], II, p. 139.
2. Let X be a compact pointed τ-space throughout this section.

Let $K R$ denote the Real K-functor [3]. Then a similar proof to the complex case gives rise to a canonical isomorphism

$$
\begin{equation*}
[X, G L(\infty, C)]^{\tau} \cong \widetilde{K R}\left(\Sigma^{0,1} X\right) \tag{2.1}
\end{equation*}
$$

(cf. [8], Chap. I, Theorem 7.6) and so we may consider J_{R} of (1.1) the homomorphism from $\widetilde{K R^{-1}}\left(\Sigma^{p, q} X\right)$ to $\pi_{s}^{0,0}\left(\Sigma^{p, q} X\right)$ through this isomorphism. In particular, there exist isomorphisms

$$
\begin{equation*}
\pi_{2 p-2 k, 2 p+2 k-1}(G L(\infty, C)) \cong \widetilde{K R}\left(\Sigma^{2 p-2 k, 2 p+2 k}\right) \cong \widetilde{K O}\left(S^{4 k}\right) \cong Z \tag{2.2}
\end{equation*}
$$

by (2.1) and the Real Thom isomorphism theorem [3]. Similarly we have isomorphisms

$$
\begin{equation*}
\pi_{4 p-1}(G L(\infty, C)) \cong \tilde{K}\left(S^{4 p}\right) \cong \tilde{K}\left(S^{4 k}\right) \cong Z \tag{2.3}
\end{equation*}
$$

in the complex K-theory.
Let $\psi: \pi_{p, q}(X) \rightarrow \pi_{p+q}(X)$ and $\psi: \pi_{p, q}^{s}(X) \rightarrow \pi_{p+q}^{s}(X)$ denote the forgetful homomorphisms [4,5]. Then, from the above discussion we have the following commutative diagram:

where c is the natural complexification homomorphism and J_{U} is the complex stable J-homomorphism.

In the following we identify $\Sigma^{r, s} \wedge \Sigma^{p, q}$ with $\Sigma^{r+p, s+q}$. Regarding $\Sigma^{1,0}$ as the one-point compactification of $R^{1,0}$ with ∞ as base-point, the quotient $\Sigma^{1,0} /$ $\{0, \infty\}$ is homeomorphic to $S^{1} \vee S^{1}$ as τ-spaces where $S^{1} \vee S^{1}$ has the invloution T interchanging factors. For a base-point-preserving map $f: S^{p+q} \rightarrow X$, define a τ-map $\tilde{f}: \sum^{p, q} \rightarrow X$ by the composition

$$
\begin{aligned}
\Sigma^{p, q} & =\Sigma^{p-1,0} \wedge \Sigma^{1,0} \wedge \Sigma^{0, q} \xrightarrow{1} \wedge \pi \wedge 1 \\
& \approx\left(\Sigma^{p-1,0} \wedge S^{1} \wedge \Sigma^{0, q}\right) \vee\left(\Sigma^{p-1,0} \wedge\left(\Sigma^{1,0}\{\{0, \infty\}) \wedge S^{1} \wedge \Sigma^{0, q}\right) \xrightarrow{f \vee \tau \tau^{\prime}} X\right.
\end{aligned}
$$

for $p, q \geqq 1$ where π is the natural projection, τ is the involution of X and τ^{\prime} is the involution of $\left(\Sigma^{p-1,0} \wedge S^{1} \wedge \Sigma^{0, q}\right) \vee\left(\Sigma^{p-1,0} \wedge S^{1} \wedge \Sigma^{0, q}\right)$ induced by that of $\Sigma^{p-1, q+1}=\Sigma^{p-1,0} \wedge S^{1} \wedge \Sigma^{0, q}$ and T. Then the correspondence $f \mapsto \tilde{f}$ determines a homomorphism

$$
\begin{equation*}
\alpha: \pi_{p+q}(X) \rightarrow \pi_{p, q}(X) \tag{2.5}
\end{equation*}
$$

for $p, q \geqq 1$ (cf. [5], p. 286, [4], (10.5)).
Let $J_{U, n}: \pi_{4 p-1}(G L(n, \boldsymbol{C})) \rightarrow \pi_{4 p-1+2 n}\left(S^{2 n}\right)$ be the complex J-homomorphism. Let $\alpha_{n}: \pi_{4 p-1}(G L(n, \boldsymbol{C})) \rightarrow \pi_{2 p-2 k, 2 p+2 k-1}(G L(n, \boldsymbol{C}))$ and $\alpha_{n}: \pi_{4 p-1+2 n}\left(S^{2 n}\right) \rightarrow \pi_{2 p-2 k+n, 2 p}$ $+2 k-1+n\left(\Sigma^{n, n}\right)$ denote the homomorphisms of (2.5) for $X=G L(n, \boldsymbol{C})$ and $X=\Sigma^{n, n}$ respectively. Then we have the commutative diagram:

$$
\begin{aligned}
\pi_{4 p-1}(G L(n, C)) \xrightarrow{\alpha_{n}} & \pi_{2 p-2 k, 2 p+2 k-1}(G L(n, C)) \\
& \left.\downarrow J_{U, n}\right) \\
\pi_{4 p-1+2 n}\left(S^{2 n}\right) \xrightarrow{\alpha_{n}} & \stackrel{J_{R, n}}{2 p-2 k+n, 2 p+2 k-1+n}\left(\Sigma^{n, n}\right) .
\end{aligned}
$$

The commutativity is proved as follows. For a τ-map $g: \sum^{2 p-2 k, 2 p+2 k-1} \rightarrow G L(n, \boldsymbol{C})$ we denote by adg the adjoint of the composition: $\Sigma^{2 p-2 k, 2 p+2 k-1} \xrightarrow{g} G L(n, C) \subset \Omega_{1}^{n, n}$ $\Sigma^{n, n} \xrightarrow{t} \Omega_{0}^{n, n} \Sigma^{n, n}$. Then $J_{R, n}$ is given by the assignment $g \mapsto a \mathrm{ad} g$ as in $\S 1$. In the above, forgetting the Z_{2}-action we get the homomorphism $J_{U, n}$. Hence we also use the same notation for maps in the complex case. Let us define a map $\lambda: S^{n} \wedge S^{2 p-2 k} \wedge S^{n} \wedge S^{2 p+2 k-1} \rightarrow S^{n} \wedge S^{n} \wedge S^{2 p-2 k} \wedge S^{2 p+2 k-1}$ by $\lambda\left(u_{1} \wedge v_{1} \wedge u_{2} \wedge v_{2}\right)=$ $u_{1} \wedge u_{2} \wedge v_{1} \wedge v_{2}\left(u_{1}, u_{2} \in S^{n}, v_{1} \in S^{2 p-2 k}, v_{2} \in S^{2 p+2 k-1}\right)$. And we define a map
$f^{\prime}: S^{4 p-1+2 n} \rightarrow S^{2 n}$ by $f^{\prime}=(\operatorname{ad} f) \lambda$ for a map $f: S^{4 p-1} \rightarrow G L(n, C)$. Then $f^{\prime} \simeq \operatorname{ad} f$ since the degree of λ is 1 , and so $\tilde{f}^{\prime} \simeq \widetilde{ }$ ad $f . \quad$ Besides we see easily that $\tilde{f}^{\prime}=\operatorname{ad} \tilde{f}$. Therefore $\widetilde{\operatorname{ad} f} \simeq_{\tau} \operatorname{ad} \tilde{f}$ which implies $\alpha_{n} J_{U, n}([f])=J_{R, n} \alpha_{n}([f])$ where $[f]$ denotes the homotopy class of f.

Here, by taking the direct limits we get the commutative diagram

$$
\begin{align*}
& \pi_{4 p-1}(G L(\infty, \boldsymbol{C})) \stackrel{\alpha}{\longrightarrow} \pi_{2 p-2 k, 2 p+2 k-1}(G L(\infty, \boldsymbol{C})) \tag{2.6}\\
& \downarrow J_{U} \quad \alpha \stackrel{\downarrow}{ } J_{R} \\
& \pi_{4 p-1}^{s} \xrightarrow{s} \pi_{2 p-2 k, 2 p+2 k-1}
\end{align*}
$$

where each α is defined as the direct limit of α_{n}. As in proof of the commutativity of the above diagram, we can show that the lower homomorphism α is well-defined.

By the definition of α it follows that the realification homomorphism $r: \tilde{K}^{-1}$ $\left(S^{4 p-1}\right) \rightarrow \widetilde{K R^{-1}}\left(\Sigma^{2 p-2 k, 2 p+2 k-1}\right)[12]$ coincides with $\alpha: \pi_{4 p-1}(G L(\infty, \boldsymbol{C})) \rightarrow \pi_{2 p-2 k, 2 p+2 k-1}$ $(G L(\infty, C))$ through the natural isomorphisms. Because, $\psi \alpha=1+*, \psi=c, c r=1$ $+*$ and c is injective where $*$ is the operation on $K(X)$ defined in [12], §2. Thus, by (2.2), (2.3) and (2.6) we get the commutative diagram

where r is the realification homomorphism.
Let $G L(\infty, \boldsymbol{R})$ denote the infinite general linear group over the real numbers and J_{o} denote the real stable J-homomorphism in stable dimensions $4 p-1$. Let us put

$$
g_{\Lambda}=J_{\Lambda}(1), \quad \Lambda=O, U \text { or } R
$$

identifying $\pi_{4 p-1}(G L(\infty, \boldsymbol{R})), \pi_{4 p-1}(G L(\infty, \boldsymbol{C}))$ and $\pi_{2 p-2 k, 2 p+2 k-1}(G L(\infty, \boldsymbol{C}))$ with Z. Then, from (2.4), (2.7) and [12], (2.2) we see that
and

$$
\begin{align*}
& \alpha\left(g_{U}\right)= \begin{cases}2 g_{R} & \text { if } k \text { is even } \\
g_{R} & \text { if } k \text { is odd }\end{cases} \tag{2.8}\\
& \psi\left(g_{R}\right)= \begin{cases}g_{U} & \text { if } k \text { is even } \\
2 g_{U} & \text { if } k \text { is odd }\end{cases}
\end{align*}
$$

Furthermore it is known that

$$
g_{U}= \begin{cases}2 g_{o} & \text { if } p \text { is even } \tag{2.9}\\ g_{o} & \text { if } p \text { is odd }\end{cases}
$$

and the order of g_{o} is equal to the number $m(2 p)$ ([1], II, Theorem (2.7) and [11]) which is divisible by 8 ([1], II, p.139).

Let $o(p, k)$ denote the order of the image of (1.2). Then, by (2.8) and (2.9), we obtain

Lemma. For $p>k$,
$o(p, k)= \begin{cases}d m(2 p) & \text { if either } k, p \text { are even or odd } \\ 2 d m(2 p) & \text { if } k \text { is even and } p \text { is odd } \\ \frac{1}{2} d m(2 p) & \text { if } k \text { is odd and } p \text { is even }\end{cases}$
where $d=\frac{1}{2}$ or 1 .
We shall give a proof of Theorem in $\S \S 3-5$.
3. Proof for $p>k, k$ odd and p even. By [5], Fig. we have an exact sequence

$$
\pi_{2 p-2 k-1,2 p+2 k}^{s} \xrightarrow{\psi} \pi_{4 p-1}^{s} \xrightarrow{\alpha} \pi_{2 p-2 k, 2 p+2 k-1}^{s}
$$

(cf. [4], (10.5)). Therefore, if we suppose that $o(p, k)=\frac{1}{4} m(2 p)$ then $\alpha\left(\frac{1}{2} m(2 p)\right.$ $\left.g_{o}\right)=\frac{1}{4} m(2 p) g_{R}=0$ by (2.8), (2.9) and so there exists an equivariant map

$$
f: \Sigma^{2 p-2 k-1+n, 2 p+2 k+n} \rightarrow \Sigma^{n, n} \text { for } n \text { sufficiently large }
$$

such that the image of the homotopy class of f by ψ is $\frac{1}{2} m(2 p) g_{o}$.
Since k is odd,

$$
\begin{array}{ll}
& \widetilde{K R}\left(\Sigma^{2 p-2 k-1+n, 2 p+2 k+n}\right) \cong \widetilde{K O}\left(S^{4 k+1}\right)=0 \\
\text { and } & \widetilde{K R}\left(\Sigma^{2 p-2 k-1+n, 2 p+2 k+n+1}\right) \cong \widetilde{K O}\left(S^{4 k+2}\right)=0 .
\end{array}
$$

Therefore we have the commutative diagram

where f^{\prime} is a representative of $\frac{1}{2} m(2 p) g_{o}, C A$ is the cone of A and c is the natural complexification homomorphism ([12], §2). This diagram implies that $e_{c}\left(f^{\prime}\right)$ $=0$, which contradicts to the fact that $e_{c}\left(f^{\prime}\right)=\frac{1}{2}([1]$, IV, $\S 7)$. Hence we see by Lemma that $o(p, k)=\frac{1}{2} m(2 p)$.
4. Proof for $p>k$ and p, k even or odd. Using the notation of Landweber for the stable homotopy groups [9], by [5], Fig. and (12) we have the following commutative diagram in which the columns and the rows are exact sequences:

for $k \geqq 0$. ($\lambda_{p, q}^{s}$ and $\pi_{p, q}^{s}$ are Bredon's $\pi_{p+q, p}^{*}$ and $\pi_{p+q, p}$ respectively.) If we assume that $o(p, k)=\frac{1}{2} m(2 p)$, then $\alpha\left(\frac{1}{2} m(2 p) g_{o}\right)=\frac{1}{2} m(2 p) g_{R}=0$ by (2.8), (2.9) and therefore there is an equivariant map

$$
\tilde{f}: \Sigma^{2 p-2 k-1+n, 2 p+2 k+n} / \Sigma^{0,2 p+2 k+n} \rightarrow \Sigma^{n, n} \text { for } n \text { sufficiently large }
$$

such that the image of the homotopy class of \tilde{f} by ψ^{*} is $\frac{1}{2} m(2 p) g_{o}$.
Consider the diagram

$$
\begin{array}{cc}
\Sigma^{2 p-2 k-1+n, 2 p+2 k+n} / \Sigma^{0,2 p+2 k+n} \\
\uparrow \pi & \hat{f} \\
\Sigma^{2 p-2 k-1+n, 2 p+2 k+n} & f \\
\searrow
\end{array} \Sigma^{n, n}
$$

where $f=\tilde{f} \pi$ and π is the map collapsing $\sum^{0,2 p+2 k+n}$ to a point.
Putting

$$
\begin{aligned}
& A=\widetilde{K O}_{Z_{2}}\left(\Sigma^{2 p-2 k-1+n, 2 p+2 k+n} / \Sigma^{0,2 p+2 k+n}\right), \\
& B=\widetilde{K O}_{Z_{2}}\left(\Sigma^{2 p-2 k-1+n, 2 p+2 k+n}\right), \\
& C=\widetilde{K O}_{Z_{2}}\left(\Sigma^{2 p-2 k-1+n, 2 p+2 k+n+1}\right)
\end{aligned}
$$

and taking

$$
n \equiv 0 \quad \bmod 8
$$

we have by [9], Lemma 4.1

$$
A \cong K O^{-2 p-2 k-n-1}\left(P^{2 p-2 k-2+n}\right)
$$

where P^{m} is the real projective m-space and we have by [6] and [9], Theorem 3.1

$$
A \cong \begin{cases}0 & \text { if } p=2 q, k=2 l \text { and } q+l \text { is odd } \\ & \text { or } p=2 q+1, k=2 l+1 \text { and } q+l \text { is even } \\ Z_{2} \oplus Z_{2} & \text { if } p=2 q, k=2 l \text { and } q+l \text { is even } \\ & \text { or } p=2 q+1, k=2 l+1 \text { and } q+l \text { is odd }\end{cases}
$$

$$
B \cong Z, C \cong Z_{2} \quad \text { if } p, k \text { are even }
$$

and

$$
B \cong Z, C=0 \quad \text { if } p, k \text { are odd }
$$

In any case A, C are torsion groups and B is a free abelian group. Hence $f^{*}=\pi^{*} \tilde{f}^{*}: \widetilde{K O}_{z_{2}}\left(\Sigma^{n, n}\right) \rightarrow B$ is a zero map since $\pi^{*}: A \rightarrow B$ is so. And therefore we have the commutative diagram

$$
\begin{align*}
& 0 \leftarrow \widetilde{K O}_{Z_{2}}\left(\Sigma^{n, n}\right) \leftarrow \widetilde{K O}_{Z_{2}}\left(\Sigma^{n, n} \bigcup_{f} C \Sigma^{2 p-2 k-1+n, 2 p+2 k+n}\right) \leftarrow C \\
& \rho \downarrow \begin{array}{c}
\rho \downarrow \\
0 \leftarrow \widetilde{K O}\left(S^{2 n}\right) \longleftarrow \widetilde{K O}\left(S^{2 n} \bigcup_{f^{\prime}} C S^{4 p-1+2 n}\right) \leftarrow \\
\widetilde{K O}\left(S^{4 p+2 n}\right) \leftarrow 0 \\
\cong Z
\end{array} \tag{4.1}
\end{align*}
$$

where f^{\prime} is a representative of $\frac{1}{2} m(2 p) g_{o}$ and ρ is the forgetful homomorphism.
From [9], Theorem 3.1 and Proposition 3.4 we see that $\widetilde{K O}_{Z_{2}}\left(\Sigma^{8 m, 8 m}\right)$ is a free $R O\left(Z_{2}\right)$-module with a single generator u for which the Adams operation ψ^{k} satisfy

$$
\psi^{k}(u)= \begin{cases}k^{8 m} u+\frac{1}{2} k^{8 m}(H-1) u & \text { if } k \text { is even } \tag{4.2}\\ k^{8 m} u+\frac{1}{2}\left(k^{8 m}-k^{4 m}\right)(H-1) u & \text { if } k \text { is odd }\end{cases}
$$

for $m>0$ where H is a canonical, non-trivial, 1-dimensional representation of Z_{2}. Since $\rho(u)$ becomes a generator of $\widetilde{K O}\left(S^{16 m}\right),(4.1)$ and (4.2) imply that $e_{R}^{\prime}\left(f^{\prime}\right)=0$. On the other hand $e_{R}^{\prime}\left(f^{\prime}\right)=\frac{1}{2}([1]$, IV, $\S 7)$. This contradiction and Lemma show that $o(p, k)=m(2 p)$.
5. Proof for $p=k$. Considering the following diagram

$$
\begin{aligned}
\pi_{0,4 p-1}(G L(\infty, \boldsymbol{C})) & \stackrel{\varphi}{\cong} \pi_{4 p-1}(G L(\infty, \boldsymbol{R})) \\
\downarrow J_{R} & \downarrow \\
\pi_{0,4 p-1}^{s}-\quad \varphi & \\
& \pi_{4 p-1}^{s} J_{o}
\end{aligned}
$$

where φ is the fixed-point homomorphism [4,5] we see that this diagram is commutative and therefore $o(p, p)$ is divisible by $m(2 p)$.

Let us denote by $\Omega_{d}^{n} S^{n}$ the space of base-point-preserving maps of S^{n} into itself of degree d, by $G L(n, \boldsymbol{R})$ the general linear group of degree n over the real numbers and by $G L(n, \boldsymbol{R})_{0}$ its identity component. Then the real J homomorphism $J_{o, n}: \pi_{4 p-1}(G L(n, \boldsymbol{R})) \rightarrow \pi_{4 p-1+n}\left(S^{n}\right)$ is induced by the composition

$$
G L(n, \boldsymbol{R})_{0} \stackrel{i^{\prime}}{\subset} \Omega_{1}^{n} S^{n} \xrightarrow{t^{\prime}} \Omega_{0}^{n} S^{n}
$$

where i^{\prime} is the inclusion map and t^{\prime} is a similar one to t in $\S 1$ ([2], §1). Particularly, if $n \geqq 4 p+1$ then we may consider $J_{o, n}$ the stable real J-homomorphism $J_{o}: \pi_{4 p-1}(G L(\infty, \boldsymbol{R})) \rightarrow \pi_{4 p-1}^{s}$.

For a map $f: S^{4 p-1} \rightarrow \Omega_{1}^{n} S^{n}$, define a map $f^{\prime}: S^{4 p-1} \rightarrow \Omega_{1}^{n, n} \Sigma^{n, n}$ by $f^{\prime}(x)=f(x)$ $\wedge f(x)\left(x \in S^{4 p-1}\right)$. Here we regard $S^{n} \wedge S^{n}$ as a space with involution switching factors and then $S^{n} \wedge S^{n} \approx \Sigma^{n, n}$ as τ-spaces. The assignment $f \mapsto f^{\prime}$ determines a homomorphism $\omega^{\prime}: \pi_{4 p-1}\left(\Omega_{1}^{n} S^{n}\right) \rightarrow \pi_{0, p-1}\left(\Omega_{1}^{n, n} \Sigma^{n, n}\right)$. And so we define a homomorphism

$$
\omega: \pi_{4 p-1}\left(\Omega_{1}^{n} S^{n}\right) \rightarrow \pi_{0,4 p-1}^{s}
$$

by the composition

$$
\begin{aligned}
\pi_{4 p-1}\left(\Omega_{1}^{n} S^{n}\right) & \xrightarrow{\omega^{\prime}} \pi_{0,4 p-1}\left(\Omega_{1}^{n, n} \sum^{n, n}\right) \\
& \stackrel{t_{*}}{\rightarrow} \pi_{0,4 p-1}\left(\Omega_{0}^{n, n} \sum^{n, n}\right) \rightarrow \pi_{0,4 p-1}^{s}
\end{aligned}
$$

where the unlabelled arrow is the obvious homomorphism. Then we can easily check that the diagram with the natural isomorphism $\pi_{4 p-1}(G L(n, R))$ $\cong \pi_{\text {ap-1 }}(G L(\infty, \boldsymbol{R}))$

$$
\begin{array}{cc}
\pi_{0,4 p-1}(G L(\infty, \boldsymbol{C})) & \stackrel{\varphi}{\cong} \pi_{4 p-1}(G L(\infty, \boldsymbol{R})) \cong \\
\downarrow \pi_{4 p-1}(G L(n, \boldsymbol{R})) \\
\downarrow \quad i_{R}^{\prime} \\
\pi_{0,4 p-1}^{s} \longleftarrow & \omega \\
\pi_{4 p-1}\left(\Omega_{1}^{n} S^{n}\right)
\end{array}
$$

is commutative for $n \geqq 4 p+1$. From the commutativity of this diagram and the fact that J_{o} factors into the following three homomorphism:

$$
\begin{aligned}
\pi_{4 p-1}(G L(n, \boldsymbol{R})) & \stackrel{i_{*}^{\prime}}{\rightarrow} \pi_{4 p-1}\left(\Omega_{1}^{n} S^{n}\right) \stackrel{t_{*}^{\prime}}{\rightleftharpoons} \pi_{4 p-1}\left(\Omega_{0}^{n} S^{n}\right) \\
& \cong \pi_{4 p-1+n}\left(S^{n}\right)
\end{aligned}
$$

for $n \geqq 4 p+1$ ([12], $\S 1)$, it follows that $m(2 p)$ is divisible by $o(p, p)$. This completes the proof of Theorem.
6. Finally we observe examples for the case k even and p odd.

By [5], (8) and [7], Table 1 we obtain

$$
\lambda_{2,1}^{s} \cong Z_{12} \text { and } \lambda_{6,5}^{s} \cong Z_{504}
$$

using the Landweber's notation and so, making use of the exact sequence of [9], p.129, we have

$$
\pi_{2,1}^{s} \cong Z_{24} \text { and } \pi_{6,5}^{s} \cong Z_{504}
$$

Since $m(2 p)=24$ and $m(2 p)=504$ if $p=1$ and $p=3$ respectively, we get by Lemma
and the above isomorphisms $o(p, k)=m(2 p)$ for $(p, k)=(1,0),(3,0)$. We therefore conjecture that $o(p, k)=m(2 p)$ for k even and p odd generally.

Osaka City University

References

[1] J.F. Adams: On the groups $J(X)$ II, IV, Topology 3 (1965), 137-171; 5 (1966), 21-71.
[2] M.F. Atiyah: Thom complexes, Proc. London Math. Soc. 11 (1961), 291-310.
[3] -: K-theory and reality, Quart. J. Math., Oxford, 17 (1966), 367-386.
[4] S. Araki and M. Murayama: τ-Cohomology Theories, Japan. J. Math. 4 (1978), 363-416.
[5] G.E. Bredon: Equivariant homotopy, Proc. of the Conference on Transformation Groups, 1967, Springer-Verlag, 1968, 281-292.
[6] M. Fujii: K_{o}-groups of projective spaces, Osaka J. Math. 4 (1967), 141-149.
[7] C.S. Hoo and M.E. Mahowald: Some homotopy groups of Stiefel manifolds, Bull. Amer. Math. Soc. 71 (1965), 661-667.
[8] M. Karoubi: K-theory, Springer-Verlag, 1978.
[9] P.S. Landweber: On equivariant maps between spheres with involutions, Ann. of Math. 89 (1969), 125-137.
[10] J. Levine: Spaces with involution and bundles over P^{n}, Amer. J. Math. 85 (1963), 516-540.
[11] D. Quillen: The Adams conjecture, Topology 10 (1971), 67-80.
[12] R.M. Seymour: The real K-theory of Lie groups and homogeneous spaces, Quart. J. Math., Oxford, 24 (1973), 7-30.
[13] R.M.W. Wood: Framing the exceptional Lie group G_{2}, Topology 15 (1976), 303320.

