ON F-PROJECTIVE STABLE STEMS

Hideaki ŌSHIMA

(Received May 22, 1978)

In this note we study F-projective stable stems in dimension n with $7 \leqq$ $n \leqq 22$, where F denotes the complex $(F=C)$ or quaternionic ($F=H$) number field. D. Randall [9] determined them in dimension $\leqq 6$.

We use the notations and terminologies defined in the previous paper [8] or the book of Toda [11] without any reference.

1. Definitions and results

Given a pointed space X and a positive integer m, we define

$$
\pi_{m}^{S F}(X)=\left\{\begin{array}{l}
\text { image of } p_{n}^{*}:\left\{F P_{n}, X\right\} \rightarrow\left\{S^{n d-1}, X\right\} \quad \text { if } m=n d-1 \\
0 \quad \text { if } m \neq-1 \bmod (d) .
\end{array}\right.
$$

An element of $\pi_{m}^{S F}(X)$ is said to be F-projective. In this note we only consider the case of X being the spheres. Remark that $\pi_{n d-1}^{S F}\left(S^{l}\right)$ is a subgroup of $G_{n d-l-1}$. We say that the m-stem G_{m} is fully F-projective if there exist integers l and n with $m=n d-l-1$ and $\pi_{n d-1}^{S F}\left(S^{l}\right)=G_{m}$.

Given a positive integer m, we consider the following problems.
(Q.1) $)_{m}$ Compute $\pi_{n d-1}^{S F}\left(S^{l}\right)$ for each n and l with $m=n d-l-1$.
(Q.2) ${ }_{m} \quad$ What elements of G_{m} are F-projective?
$(\mathrm{Q} .3)_{m} \quad$ Is G_{m} fully F-projective?
Of course answers of $(\mathrm{Q} .1)_{m}$ solve $(\mathrm{Q} .2)_{m}$ and $(\mathrm{Q} .3)_{m}$. Our main results are tabled as follows. Here 0 means that the problem is completely solved but no signed place not completely solved yet*). Details are given in (1.6) and § 2 .

In what follows in this section we prove some general results. Since p_{n}^{H} is the composition of $p_{2 n}^{C}$ and the canonical map $C P_{2 n} \rightarrow H P_{n}$, we have

[^0]| | $(\mathrm{Q} .1)_{m}$ | | $(\mathrm{Q} .)_{m}$ | | $(\mathrm{Q} .3)_{m}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m | H | C | H | C | H | C |
| 7 | 0 | 0 | 0 | 0 | no | no |
| 8 | 0 | | 0 | 0 | no | yes |
| 9 | 0 | 0 | 0 | 0 | no | yes |
| 10 | 0 | | 0 | 0 | no | yes |
| 11 | 0 | 0 | 0 | 0 | yes | yes |
| 13 | 0 | 0 | 0 | 0 | yes | yes |
| 15 | | | | 0 | no | yes |
| 17 | | | | | no | |
| 21 | | | | 0 | | yes |
| 22 | | | 0 | 0 | yes | yes |
| | | | | | | |

Proposition 1.1. $\quad \pi_{4 n-1}^{S H}\left(S^{l}\right)$ is contained in $\pi_{4 n-1}^{S C}\left(S^{l}\right)$ for any l and n.
We have also
Proposition 1.2. If $a \in G_{m}$ or $b \in G_{n}$ is F-projective, then $a b \in G_{m+n}$ is F-projective.

Proposition 1.3. If $0 \leqq j<d, \pi_{(n+k) d-1}^{S F}\left(S^{n d-j}\right)$ is equal to the image of $p_{n+k, k} *:\left\{F P_{n+k, k}, S^{n d-j}\right\} \rightarrow\left\{S^{(n+k) d-1}, S^{n d-j}\right\}$.

These can be proved easily so we omit the details.
In [7] we proved the following.
Proposition 1.4. $\pi_{(n+k) d-1}^{S F}\left(S^{n d}\right)$ contains a cyclic subgroup of the order $\operatorname{den}\left[F\{n, k\} \alpha_{F}(n, k)\right]$.

Recall that $F P_{n+k, k}$ can be identified with the Thom space $\left(F P_{k}\right)^{n \xi_{k}}$ [3]. Let $M_{k}(F)$ be the order of ξ_{k} in the J-group $J\left(F P_{k}\right)$, which was determined by AdamsWalker [2] and Sigrist-Suter [10]. Then we have

Proposition 1.5. If $m \equiv n \bmod \left(M_{k+1}(F)\right)$, then

$$
\pi_{(m+k) d-1}^{S F}\left(S^{m d-j}\right)=\pi_{(n+k) d-1}^{S F}\left(S^{n d-j}\right)
$$

for $0 \leqq j<d$.
Proof. For a vector bundle $\tau, S(\tau)$ and $D(\tau)$ denote the associated sphere and disk bundle respectively. Without any loss of generality we may assume $m>n$. By assumption there exists an integer l and a fibre homotopy equivalence [3]

$$
f^{\prime}: S\left((m-n) \xi_{k+1} \oplus l \underline{l}\right) \rightarrow S((\underline{m-n) d+l)}
$$

where \underline{j} denotes the real j-dimensional trivial vector bundle over $F P_{k+1}$. Naturally we can extend f^{\prime} to a fibre homotopy equivalence

$$
D\left((m-n) \xi_{k+1} \oplus l\right) \rightarrow D((\underline{m-n}) d+l)
$$

and to a fibre homotopy equivalence

$$
f^{\prime \prime}:\left(D\left(m \xi_{k+1} \oplus l\right), S\left(m \xi_{k+1} \oplus \underline{l}\right)\right) \rightarrow\left(D \left(n \xi _ { k + 1 } \oplus \left(\frac{(m-n) d+l)}{S\left(n \xi_{k+1} \oplus((\underline{m-n)}) d+l)\right)} .\right.\right.\right.
$$

Hence we have a homotopy equivalence

$$
\begin{aligned}
f^{\prime \prime \prime}: E^{l} F & P_{m+k+1, k+1}=\left(F P_{k+1}\right)^{m \xi_{k+1}} \oplus \underline{l} \\
& \left.\rightarrow\left(F P_{k+1}\right)^{n \xi_{k+1} \oplus((m-n) d+l}\right)=E^{(m-n) d+l} F P_{n+k+1, k+1}
\end{aligned}
$$

where E denotes the reduced suspension. Consider the following diagram in which the horizontal sequences are the natural cofibrations.

$$
\begin{aligned}
& \begin{array}{l}
E^{l} S^{(m+k) d-1} \xrightarrow{E^{l} p_{m+k}} E^{l} F P_{m+k, k} \stackrel{i}{\subset} E^{l} F P_{m+k+1, k+1} \\
E^{(m-n) d+l} S^{(n+k) d-1} \xrightarrow{E^{(m-n) d+l} p_{n+k, k}} E^{(m-n) d+l} F P_{n+k, k} \stackrel{i}{\subset} E^{(m-n) d+l} F P_{n+k+1, k+1}
\end{array} \\
& \xrightarrow{q} E^{l+1} S^{(m+k) d-1} \\
& \xrightarrow{q} E^{(m-n) d+l+1} S^{(n+k) d-1} .
\end{aligned}
$$

By cellular approximation we may assume that there exists

$$
f: E^{l} F P_{m+k, k} \rightarrow E^{(m-n) d+l} F P_{n+k, k}
$$

with $i \circ f=f^{\prime \prime \prime} \circ i$ and so there exists

$$
h: E^{l+1} S^{(m+k) d-1} \rightarrow E^{(m-n) d+l+1} S^{(n+k) d-1}
$$

with $h \circ q=q \circ f^{\prime \prime \prime}$. In the stable category f is clearly an equivalence and so h is an equivalence, too. Therefore in the stable category we have the following commutative square in which the vertical stable maps are equivalences.

This and (1.3) complete the proof.
We prove a negative result.
Theorem 1.6. Let $\mu_{k}(k \geqq 0)$ denote the Adams element in $G_{8 k+1}[1]$. Then μ_{k} is not H-projective.

Proof. Consider a commutative diagram in which f and f^{\prime} are stable maps

Apply \tilde{K} to this diagram; since $\tilde{K}(X)=0$ if X is a finite complex with cells of only odd dimensions, we have the following commutative diagram

Let $a \in \tilde{K}\left(C\left(f \circ p_{n+1 k, 2 k}\right)\right)$ be an element which maps to the generator $g_{c}^{2 n-1} \in$ $\tilde{K}\left(S^{4 n-2}\right)$, and $b \in \tilde{K}\left(C\left(f \circ p_{n+2 k, 2 k}\right)\right)$ be the generator of the image of π^{*} with $f^{\prime *}(b)=z^{n+2 k}$. Then a and b generate $\tilde{K}\left(C\left(f \circ p_{n+2 k, 2 k}\right)\right)$. We have

$$
\psi^{2}(a)=2^{2 n-1} a+\lambda b
$$

for some integer λ, and

$$
e_{C}\left(f \circ p_{n+2 k, 2 k}\right)=\lambda /\left(2^{2 n+4 k}-2^{2 n-1}\right)
$$

Put $f^{\prime} *(a)=\sum_{i=0}^{2 k} a_{i} z^{n+i}$. Then

$$
\begin{aligned}
& \psi^{2}\left(f^{\prime *}(a)\right)=\sum_{i} a_{i}\left(z^{2}+4 z\right)^{n+i}=\sum_{i, j} a_{i}\binom{n+i}{j-i} 4^{n+2 i-j} z^{n+j} \\
& \psi^{2}\left(f^{\prime *}(a)\right)=f^{\prime} *\left(\psi^{2}(a)\right)=2^{2 n-1} \sum_{i=0}^{2 k} a_{i} z^{n+i}+\lambda z^{n+2 k}
\end{aligned}
$$

Comparing the coefficients of $z^{n+2 k}$, we have

$$
\lambda=\sum_{i=0}^{2 k-1} a_{i}\binom{n+i}{2 k-i} 4^{n+2 i-2 k}+\left(2^{2 n+4 k}-2^{2 n-1}\right) a_{2 k}
$$

and so

$$
e_{C}\left(f \circ p_{n+2 k, 2 k}\right)=\sum_{i=0}^{2 k-1} a_{i}\binom{n+i}{2 k-i} 4^{n+2 i-2 k} /\left(2^{2 n+4 k}-2^{2 n-1}\right) .
$$

On the other hand

$$
\begin{aligned}
0 & =f^{*}\left(\operatorname{ch}\left(g_{C}^{2 n-1}\right)\right)=\operatorname{ch}\left(f^{*}\left(g_{C}^{2 n-1}\right)\right)=\sum_{i=0}^{2 k-1} a_{i}(\operatorname{ch}(z))^{n+i} \\
& =\sum_{i=0}^{2 k-1} a_{i}\left(\phi_{H}(t)\right)^{n+i} .
\end{aligned}
$$

Since $\phi_{H}(t)=t+$ higher terms, we have

$$
a_{0}=a_{1}=\cdots=a_{2 k-1}=0
$$

and then

$$
e_{C}\left(f \circ p_{n+2 k, 2 k}\right)=0 .
$$

Since μ_{k} has non-trivial e_{C}-invariant, the conclusion follows.
Since $\mu_{0}=\eta, \mu_{0}$ is C-projective. We shall prove that μ_{1} is C-projective (2.9).

2. Computations

From now on, we work in the stable category of pointed spaces and stable maps between them with exceptions in (2.3), (ii) of (2.4), (2.5) and (2.7).

Concerning with F-projective 7 -stems we have
Theorem 2.1. (i) $\pi_{4 n+7}^{S H}\left(S^{4 n}\right) \cong Z / \operatorname{den}\left[H\{n, 2\} \alpha_{H}(n, 2)\right]$.
(ii) $\pi_{2 n+7}^{S C}\left(S^{2 n}\right) \cong Z / \operatorname{den}\left[C\{n, 4\} \alpha_{C}(n, 4)\right]$.

Proof. Given $f \in\left\{H P_{n+2,2}, S^{4 n}\right\}$, we have

$$
e_{C}\left(f \circ p_{n+2,2}\right)=-\operatorname{deg}(f) \alpha_{H}(n, 2)
$$

from Theorem 1.1 of [7]. Since $e_{C}: G_{7} \rightarrow Z / 2^{4} \cdot 3 \cdot 5$ is an isomorphism, the conclusion (i) follows. By the same methods (ii) follows too.

By an easy calculation we have

$$
\operatorname{den}\left[H\{n, 2\} \alpha_{H}(n, 2)\right] \mid 2^{2} \cdot 3 \cdot 5
$$

and these are equal when for example $n=4$, and

$$
\operatorname{den}\left[C\{n, 4\} \alpha_{C}(n, 4)\right] \mid 2^{3} \cdot 3 \cdot 5
$$

and these are equal when for example $n=13$. Thus, since $G_{7}=Z_{2}{ }^{4}\{\sigma\} \oplus Z_{15}$, we have

Corollary 2.2. $2 \sigma \in G_{7}$ is not H-projective but C-projective, and σ is not C-projective.

Recall that $g_{4}=p_{2}^{H}: S^{7} \rightarrow S^{4}$ denotes the Hopf map. Let $g_{n}=E^{n-4} g_{4} \in \pi_{n+3}\left(S^{n}\right)$ for $n>4$. Then we have

Lemma 2.3. $g_{5}=\nu_{5}+\alpha_{1}(5)$.
We have also
Lemma 2.4. (i) $\langle\eta, m \nu, n \nu\rangle=\left\langle\eta, m g_{\infty}, n g_{\infty}\right\rangle \supset \frac{1}{2} m n\langle\eta, 2 \nu, \nu\rangle$ for any integers m and n with $m n \equiv 0 \bmod (2)$.
(ii) $\left\{\eta_{5}, \nu_{6}, 2 \nu_{9}\right\}_{1}=\left\{\eta_{5}, m g_{6}, 2 n g_{9}\right\}_{1}=\mathcal{E}_{5}$ for any odd integers m and n.

Proof. We have

$$
\begin{aligned}
&\left\langle\eta, m g_{\infty}, n g_{\infty}\right\rangle=\left\langle\eta, m \nu, n g_{\infty}\right\rangle+\left\langle\eta, m \alpha_{1}, n g_{\infty}\right\rangle \quad \text { by (3.8) of [11], } \\
&\left\langle\eta, m \nu, n g_{\infty}\right\rangle \subset\langle\eta, m \nu, n \nu\rangle+\left\langle\eta, m \nu, n \alpha_{1}\right\rangle \quad \text { by (3.8) of ibid., } \\
&\left\langle\eta, m \nu, n \alpha_{1}\right\rangle=\left\langle\eta, m \nu, 16 n \alpha_{1}\right\rangle \quad \text { since } 3 \alpha_{1}=0 \\
& \subset\left\langle\eta, 16 m \nu, n \alpha_{1}\right\rangle \quad \text { by (3.5) of ibid., } \\
& \equiv 0 \quad \text { since } 8 \nu=0,
\end{aligned}
$$

and so

$$
\left\langle\eta, m \nu, n g_{\infty}\right\rangle \subset\langle\eta, m \nu, n \nu\rangle
$$

but their indeterminacies are equal to ηG_{7}, hence

$$
\begin{aligned}
\left\langle\eta, m \nu, n g_{\infty}\right\rangle & =\langle\eta, m \nu, n \nu\rangle \\
& \supset \frac{1}{2} m n\langle\eta, 2 \nu, \nu\rangle \quad \text { by (3.5) and (3.8) of [11]. }
\end{aligned}
$$

We have also

$$
\left\langle\eta, m \alpha_{1}, n g_{\infty}\right\rangle=\left\langle\eta, 4 m \alpha_{1}, n g_{\infty}\right\rangle \supset\left\langle 4 \eta, m \alpha_{1}, n g_{\infty}\right\rangle \equiv 0
$$

and so

$$
\left\langle\eta, m \alpha_{1}, n g_{\infty}\right\rangle \equiv 0
$$

and then

$$
\left\langle\eta, m g_{\infty}, n g_{\infty}\right\rangle=\langle\eta, m \nu, n \nu\rangle \supset \frac{1}{2} m n\langle\eta, 2 \nu, \nu\rangle .
$$

Thus the conclusion (i) follows.
By the proof of (6.1) of [11]

$$
E^{2} \varepsilon_{3}=\varepsilon_{5}=\left\{\eta_{5}, \nu_{6}, 2 \nu_{9}\right\}_{1}
$$

Given $a \in \pi_{11}\left(S^{8}\right)$ and $b \in \pi_{8}\left(S^{5}\right)$ with $b \circ a=0$, we consider the Toda bracket

$$
\left\{\eta_{5}, E^{1} b, E^{1} a\right\}_{1} \in \pi_{13}\left(S^{5}\right) /\left(\pi_{10}\left(S^{5}\right) E^{2} a+\eta_{5} E^{1} \pi_{12}\left(S^{5}\right)\right) .
$$

By Toda [11] it is easy to see that $\eta_{5} E^{1} \pi_{12}\left(S^{5}\right)=\pi_{10}\left(S^{5}\right) E^{2} a=0$. Hence $\left\{\eta_{5}, E^{1} b, E^{1} a\right\}_{1}$ consists of a single element. Then by the same methods as the proof of (i) we have

$$
\left\{\eta_{5}, \nu_{6}, 2 \nu_{9}\right\}_{1}=\left\{\eta_{5}, m \nu_{6}, 2 n \nu_{9}\right\}_{1}=\left\{\eta_{5}, m g_{6}, 2 n g_{9}\right\}_{1}
$$

for any odd integers m and n. Thus the conclusion (ii) follows.
We have
Lemma 2.5. (i) $i^{*}:\left\{H P_{n+2,2}, S^{4 n-1}\right\} \rightarrow\left\{S^{4 n}, S^{4 n-1}\right\}$ is an isomorphism.
(ii) $i^{*}:\left\{H P_{n+2,2}, S^{4 n-2}\right\} \rightarrow\left\{S^{4 n}, S^{4 n-2}\right\}$ is an isomorphism if n is odd.
(iii) If n is even, we have a split exact sequence:

$$
0 \rightarrow\left\{S^{4 n+4}, S^{4 n-2}\right\} \xrightarrow{q^{*}}\left\{H P_{n+2,2}, S^{4 n-2}\right\} \xrightarrow{i^{*}}\left\{S^{4 n}, S^{4 n-2}\right\} \rightarrow 0 .
$$

Proof. Considering the Puppe exact sequence associated with the cofibration $S^{4 n+3} \rightarrow H P_{n+1,1} \subset H P_{n+2,2}$, we obtain (i), since $G_{4}=G_{5}=0$. Recall that

$$
p_{n+1,1}=n g_{4 n}: S^{4 n+3} \rightarrow H P_{n+1,1}=S^{4 n}
$$

from [5] (or see (1.14) of [8]). We have the following exact sequence:

$$
\left.\begin{array}{rl}
\left\{S^{4 n+1}, S^{4 n-2}\right\} & \xrightarrow{p_{n+1,1} *}\left\{S^{4 n+4},\right. \\
\left.=S^{4 n-2}\right\} & \xrightarrow{q^{*}}\left\{H P_{n+2,2}, S^{4 n-2}\right\} \\
=Z_{2}\left\{\nu^{2}\right\}
\end{array}\right]
$$

Since $p_{n+1,1}{ }^{*}\left(g_{\infty}\right)=n g_{\infty}^{2}=n \nu^{2}, p_{n+1,1} *$ is epimorphic and i^{*} is isomorphic if n is odd. Thus the conclusion (ii) follows. If n is even, $p_{n+1,1}{ }^{*}=0$ and we obtain the short exact sequence in (iii). Hence $\left\{H P_{n+2,2}, S^{4 n-2}\right\} \cong Z_{4}$ or $Z_{2} \oplus Z_{2}$. Suppose that $\left\{H P_{n+2,2}, S^{4 n-2}\right\} \cong Z_{4}$. Then $q^{*}\left(\nu^{2}\right)$ is divisible by 2. Hence $p_{n+2,2}{ }^{*}\left(q^{*}\left(\nu^{2}\right)\right)$ $=0$ since $2 G_{9}=0$. But $q \circ p_{n+2,2}=p_{n+2,1}=(n+1) g_{4 n+4}$, therefore $p_{n+2,2}{ }^{*}\left(q^{*}\left(\nu^{2}\right)\right)=$ $(n+1) \nu^{3} \neq 0$. This is a contradiction. Thus $\left\{H P_{n+2,2}, S^{4 n-2}\right\} \cong Z_{2} \oplus Z_{2}$. This completes the proof.

Recall that $K O^{*}\left(H P_{n}\right)=K O^{*}[\xi] /\left(\tilde{\xi}^{n}\right)$. Using the complexification $c: K O^{*} \rightarrow$ K^{*} we can easily prove the following. Details are omitted.

Lemma 2.6. $\psi^{3}(\tilde{\xi})=3^{4} \tilde{\xi}+3^{3} y_{1} \tilde{\xi}^{2}+3^{2} y_{2} \hat{\xi}^{3}$.
Now we determine H-projective 8 and 9 -stems. Recall that $G_{8}=Z_{2}\{\bar{\nu}\}$ $\oplus Z_{2}\{\varepsilon\}$ and $G_{9}=Z_{2}\left\{\nu^{3}\right\} \oplus Z_{2}\{\eta \varepsilon\} \oplus Z_{2}\{\mu\}$ with the relations $\eta \sigma=\bar{\nu}+\varepsilon$ and $\eta \bar{\nu}=\nu^{3}$. We have

Theorem 2.7. The groups $\pi_{4 n+7}^{S H}\left(S^{4 n-j}\right)(j=1,2)$ are given by the following table.

$n \bmod (4)$	$\pi_{4 n+7}^{S H}\left(S^{4 n-1}\right)$	$\pi_{4 n+7}^{S H}\left(S^{4 n-2}\right)$
1	$Z_{2}\{\varepsilon\}$	$Z_{2}\{\eta \varepsilon\}$
2	$Z_{2}\{\bar{\nu}\}$	$Z_{2}\left\{\nu^{3}\right\}$
3	$Z_{2}\{\eta \sigma\}$	$Z_{2}\left\{\eta^{2} \sigma\right\}$
0	0	$Z_{2}\left\{\nu^{3}\right\}$

Proof. By (i) of (2.5), $\left\{H P_{n+2,2}, S^{4 n-1}\right\} \cong Z_{2}$. Let f be a generator of it. Then $\pi_{4 n+7}^{S H}\left(S^{4 n-1}\right)$ is a subgroup of G_{8} generated by $f \circ p_{n+2,2}$ and we have the following commutative diagram

Since $p_{n+1,1}=n g_{4 n}$ and $p_{n+2,1}=(n+1) g_{4 n+4}$, we have

$$
f \circ p_{n+2,2} \in\left\langle\eta, n g_{\infty},(n+1) g_{\infty}\right\rangle .
$$

By (i) of (2.4) this Toda bracket contains $\frac{1}{2} n(n+1)\langle\eta, 2 \nu, \nu\rangle$. Hence

$$
\begin{aligned}
\left\langle\eta, n g_{\infty},(n+1) g_{\infty}\right\rangle & = \begin{cases}\eta \circ G_{7} & \text { if } n \equiv 0 \text { or } 3 \bmod (4) \\
\langle\eta, 2 \nu, \nu\rangle & \text { if } n \equiv 1 \text { or } 2 \bmod (4)\end{cases} \\
& = \begin{cases}\{0, \eta \sigma\} & \text { if } n \equiv 0 \text { or } 3 \bmod (4) \\
\{\varepsilon, \bar{\nu}\} & \text { if } n \equiv 1 \text { or } 2 \bmod (4)\end{cases}
\end{aligned}
$$

Hence
(*) $f \circ p_{n+2,2}=0$ or $\eta \sigma$ if $n \equiv 0$ or $3 \bmod (4)$, and ε or $\bar{\nu}$ if $n \equiv 1 \operatorname{or} 2 \bmod (4)$.
Suppose that $n \equiv 1 \bmod (4) . \quad$ By (ii) of (2.4), $\varepsilon_{5}=\left\{\eta_{5}, n g_{6},(n+1) g_{9}\right\}_{1}$. Consider the following diagram:

Then we have

$$
\varepsilon_{5} \in \text { Image of }\left(E^{2} p_{3}\right)^{*}:\left[E^{2} H P_{3}, S^{5}\right] \rightarrow \pi_{13}\left(S^{5}\right)
$$

and $\varepsilon \in \pi_{11}^{S H}\left(S^{3}\right)$, and then

$$
\pi_{11}^{S H}\left(S^{3}\right)=Z_{2}\{\varepsilon\} .
$$

If $n \geqq 2$, we have

$$
\varepsilon_{4 n-1}=E^{4 n-6}\left\{\eta_{5}, n g_{6},(n+1) g_{9}\right\}_{1} \in\left\{\eta_{4 n-1}, n g_{4 n},(n+1) g_{4 n+3}\right\}_{4 n-5}
$$

by Proposition (1.3) of [11]. Since the Toda bracket in the right hand is a coset of $\pi_{4 n+4}\left(S^{4 n-1}\right)(n+1) g_{4 n+4}+\eta_{4 n-1} E^{4 n-5} \pi_{12}\left(S^{5}\right)=0$, we have

$$
\varepsilon_{4 n-1}=\left\{\eta_{4 n-1}, n g_{4 n},(n+1) g_{4 n+3}\right\}_{4 n-5}
$$

Since $\left[H P_{n+2,2}, S^{4 n-1}\right] \cong\left\{H P_{n+2,2}, S^{4 n-1}\right\}, f$ is representable by an unstable map, we denote it by the same letter f. Then

$$
\varepsilon_{4 n-1}=f \circ p_{n+2,2}
$$

Thus $\pi_{4 n+7}^{S H}\left(S^{4 n-1}\right)=Z_{2}\{\varepsilon\}$ if $n \equiv 1 \bmod (4)$. From (ii) of (2.5), $\left\{H P_{n+2,2}, S^{4 n-2}\right\}$ $=\eta\left\{H P_{n+2,2}, S^{4 n-1}\right\} \cong Z_{2}$ if n is odd. Hence $\pi_{4 n+7}^{S H}\left(S^{4 n-2}\right)=Z_{2}\{\eta \varepsilon\}$ if $n \equiv 1 \bmod (4)$.

We use the Adams $d_{R^{-}}$and $e_{R^{\prime}}$-invariants [1]. Let $e_{1} \in K O^{-1}$ be the generator, and put $e_{9}=g_{R} e_{1} \in K O^{-9}$. For $f \in\left\{H P_{n+2,2}, S^{4 n-1}\right\}$ we have the commutative diagram:

$$
\begin{aligned}
& S^{4 n+7} \xrightarrow{P_{n+2,2}} H P_{n+2,2} \subset \quad H P_{n+3,3}
\end{aligned}
$$

Apply $\widetilde{K O}{ }^{-4 n-9}$ to this diagram, then we have the following commutative diagram in which the horizontal sequences are exact:

Let $a \in \widetilde{K_{O}}{ }^{-4 n-9}\left(C\left(f \circ p_{n+2,2}\right)\right)$ be an element which maps to a generator of $\widetilde{K O^{-4 n-9}}\left(S^{4 n-1}\right) \cong Z$, and $b \in \widetilde{K O^{-4 n-9}}\left(C\left(f \circ p_{n+2,2}\right)\right)$ be the element which is the
 and $\widetilde{K O^{-4 n-9}}\left(H P_{n+3,3}\right)=Z_{2}\left\{e_{9} \tilde{\xi}^{n}\right\} \oplus Z_{2}\left\{e_{1} \tilde{\xi}^{n+2}\right\}$ we have

$$
f^{\prime *}(a)=x e_{9} \tilde{\xi}^{n}+y e_{1} \tilde{\xi}^{n+2}
$$

for some $x, y \in Z_{2}$. We have also

$$
\psi^{3}(a)=3^{4 n+4} a+\lambda b
$$

for some $\lambda \in Z_{2}$, and

$$
e_{R}\left(f \circ p_{n+2,2}\right)=\lambda .
$$

We have

$$
\begin{aligned}
f^{\prime *}\left(\psi^{3}(a)\right) & =f^{\prime *}\left(3^{4 n+4} a+\lambda b\right)=3^{4 n+4} f^{\prime} *(a)+\lambda f^{\prime *}(b) \\
& =3^{4 n+4} x e_{9} \tilde{\xi}^{n}+\left(3^{4 n+4} y+\lambda\right) e_{1} \tilde{\xi}^{n+2}
\end{aligned}
$$

and

$$
\begin{aligned}
& f^{\prime *}\left(\psi^{3}(a)\right)= \psi^{3}\left(f^{\prime *}(a)\right)=\psi^{3}\left(x e_{9} \tilde{\xi}^{n}+y e_{1} \widehat{\xi}^{n+2}\right) \\
&= x \psi^{3}\left(e_{9}\right) \psi^{3}\left(\tilde{\xi}^{n}\right)+y \psi^{3}\left(e_{1}\right) \psi^{3}\left(\tilde{\xi}^{n+2}\right) \\
&= x 3^{4} e_{9}\left(3^{4 n} \widetilde{\xi}^{n}+3^{4 n-1} n y_{1} \widetilde{\xi}^{n+1}+3^{4 n-2} n y_{2} \tilde{\xi}^{n+2}\right) \\
& \quad \begin{aligned}
& \quad y e_{1} 3^{4(n+2)} \xi^{n+2} \quad \text { by }(2.6)
\end{aligned} \\
&= x 3^{4 n+4} e_{9} \tilde{\xi}^{n}+\left(x 3^{4 n+2} n+y 3^{4 n+8}\right) e_{1} \tilde{\xi}^{n+2} \text { since } e_{9} y_{1}=0 \\
& \quad \text { and } e_{9} y_{2}=e_{1} .
\end{aligned}
$$

Comparing the coefficients of $e_{1} \widetilde{\xi}^{n+2}$, we have

$$
\lambda=n x \quad\left(\text { in } Z_{2}\right)
$$

On the other hand the following triangle is commutative by (i) of (2.5).

Hence we have the commutative triagle

and $i^{*} f^{*} j^{*}(a)=x e_{9} \tilde{\xi}^{n}$ where $j^{*}(a)$ is the generator of $\widetilde{K_{O}}{ }^{-4 n-9}\left(S^{4 n-1}\right) \cong Z$. Since $\eta^{*}=d_{R}(\eta) \neq 0$, we have $x \neq 0$ and so

$$
e_{R}\left(f \circ p_{n+2,2}\right)=n
$$

Since $e_{R}(\eta \sigma) \neq 0$ [1], by $\left(^{*}\right)$ we know that $\pi_{4 n+7}^{S H}\left(S^{4 n-1}\right)=Z_{2}\{\eta \sigma\}$ if $n \equiv 3 \bmod (4)$, or 0 if $n \equiv 0 \bmod (4)$. Then $\pi_{4 n+7}^{S H}\left(S^{4 n-2}\right)=Z_{2}\left\{\eta^{2} \sigma\right\}$ if $n \equiv 3 \bmod (4)$ from (2.5).

Suppose that n is even. By the fact $e_{C}\left(\nu^{3}\right)=e_{C}(\eta \varepsilon)=0$ and the proof of (1.6), we see that

$$
Z_{2}\left\{\nu^{3}\right\} \subset \pi_{4 n+7}^{S H}\left(S^{4 n-2}\right) \subset Z_{2}\left\{\nu^{3}\right\} \oplus Z_{2}\{\eta \varepsilon\} .
$$

If $\pi_{4 n+7}^{S H}\left(S^{4 n-2}\right)=Z_{2}\left\{\nu^{3}\right\} \oplus Z_{2}\{\eta \varepsilon\}, \pi_{4 n+7}^{S H}\left(S^{4 n-2}\right)$ contains the J-image $\eta^{2} \sigma=\nu^{3}+\eta \varepsilon$, that is, there exists $h \in\left\{H P_{n+2,2}, S^{4 n-2}\right\}$ with $h \circ p_{n+2,2}=\eta^{2} \sigma$. Using $\widetilde{K_{O}}{ }^{-4 n-10}$ and the same methods as above we have

$$
e_{R}\left(h \circ p_{n+2,2}\right)=n x=0
$$

for some $x \in Z_{2}$, but this is a contradiction since $e_{R}\left(\eta^{2} \sigma\right) \neq 0[1]$. Therefore

$$
\begin{equation*}
\pi_{4 n+7}^{S H}\left(S^{4 n-2}\right)=Z_{2}\left\{\nu^{3}\right\} \text { if } n \text { is even. } \tag{**}
\end{equation*}
$$

Next suppose that $n \equiv 2 \bmod (4) . \quad B y(*), \pi_{4 n+7}^{S H}\left(S^{4 n-1}\right)=Z_{2}\{\overline{\bar{v}}\}$ or $Z_{2}\{\varepsilon\}$. If $\pi_{4 n+7}^{S H}\left(S^{4 n-1}\right)=Z_{2}\{\varepsilon\}, \pi_{4 n+7}^{S H}\left(S^{4 n-2}\right)$ contains $\eta \varepsilon$. This contradicts to $\left(^{* *}\right)$. Thus $\pi_{4 n+7}^{S H}\left(S^{4 n-1}\right)=Z_{2}\{\overline{\mathrm{~V}}\}$ and the proof is completed.

Concerning with C-projective 8 -stems we prove
Theorem 2.8. $\pi_{2 n+7}^{S C}\left(S^{2 n-1}\right)$ is equal to
(i) $G_{8} \quad$ if $n \equiv 2$ or $4 \bmod (8)$,
(ii) $0 \quad$ if n is odd,
(iii) $Z_{2}\{\eta \sigma\}$ or $G_{8} \quad$ if $n \equiv 0$ or $6 \bmod (8)$.

Proof. Suppose that n is even. Since $q_{3} \circ p_{n+4,4}=p_{n+4,1}=\eta$ from (i) of (1.13) of [8], $\pi_{2 n+7}^{S C}\left(S^{2 n-1}\right)$ contains $\sigma \circ q_{3} \circ p_{n+4,4}=\sigma \eta$. Then by (1.1) and (2.7), $\pi_{2 n+7}^{S C}\left(S^{2 n-1}\right)=G_{8}$ if $n \equiv 2$ or $4 \bmod (8)$.

Next suppose that n is odd. Put $n=2 m+1$. Consider the following Puppe exact sequences:

$$
\begin{aligned}
&\left\{S^{4 m+3}, S^{4 m+1}\right\} \xrightarrow{\left(E P_{2 m+2,1}\right)^{*}}\left\{S^{4 m+4}, S^{4 m+1}\right\} \xrightarrow{q^{*}}\left\{C P_{2 m+3,2}, S^{4 m+1}\right\} \\
& \rightarrow\left\{S^{4 m+2}, S^{4 m+1}\right\} \xrightarrow{p_{2 m+2,1}^{*}}\left\{S^{4 m+3}, S^{4 m+1}\right\}, \\
&\left\{S^{4 m+6}, S^{4 m+1}\right\} \xrightarrow{q^{*}}\left\{C P_{2 m+4,3}, S^{4 m+1}\right\} \xrightarrow{i^{*}}\left\{C P_{2 m+3,2}, S^{4 m+1}\right\} \\
& \rightarrow\left\{S^{4 m+5}, S^{4 m+1}\right\}
\end{aligned}
$$

Since $p_{2 m+2,1}=\eta$ and $\eta^{3}=12 g_{\infty},\left\{C P_{2 m+4,3}, S^{4 m+1}\right\} \simeq Z_{12}$. Let $a \in\left\{C P_{2 m+4,3}, S^{4 m+1}\right\}$
be an element with $i^{*}(a)=q^{*}\left(g_{\infty}\right)$. Then a is a generator. Let $f \in\left\{C P_{2 m+5,4}\right.$ $\left.S^{4 m+1}\right\}$ be an element. Then $\left.f\right|_{C P_{2 m+4,3}}=x a$ for some integer x. Consider the following commutative diagram:

where the fact $p_{2 m+5,1}=0$ assures the existence of s. We have

$$
x g_{\infty} \circ \pi \circ q \circ i=x g_{\infty} \circ q=x a \circ i
$$

Since i^{*} is monomorphic in the above Puppe sequence, we have

$$
x g_{\infty} \circ \pi \circ q=x a
$$

Then

$$
f \circ p_{2 m+5,4}=x a \circ s=x g_{\infty} \circ \pi \circ q \circ s=x g_{\infty} \circ 0=0
$$

since $\pi \circ q \circ s \in G_{5}=0$. This completes the proof.
Concerning with C-projective 9 -stems we prove
Theorem 2.9. $\pi_{2 n+9}^{S C}\left(S^{2 n}\right)$ is equal to
(i) $G_{9} \quad$ if $n \equiv 5,7 \bmod (8), 3,9 \bmod (16)$, or $17 \bmod (32)$,
(ii) $Z_{2}\left\{\eta^{2} \sigma\right\} \oplus Z_{2}\{\eta \varepsilon\} \quad$ if $n \equiv 11 \bmod (16)$ or $1 \bmod (32)$,
(iii) $Z_{2}\left\{\nu^{3}\right\} \quad$ if $n \equiv 0 \bmod (4)$,
(iv) $0 \quad$ if $n \equiv 2 \bmod (4)$.

Proof. By (1.1) of [7]

$$
e_{c}\left(f \circ p_{n+5,5}\right)=-\operatorname{deg}(f) \alpha_{c}(n, 5)
$$

for $f \in\left\{C P_{n+5,5}, S^{2 n}\right\}$. Hence $\pi_{2 n+9}^{S C}\left(S^{2 n}\right)$ contains μ if and only if $\nu_{2}(C\{n, 5\} \times$ $\left.\alpha_{C}(n, 5)\right)=-1$, since $e_{C}(\mu)=\frac{1}{2}$ and $e_{C}\left(\nu^{3}\right)=e_{C}(\eta \varepsilon)=e_{C}\left(\eta^{2} \sigma\right)=0$. By (1.16) and (3.1) of [8] and an elementary analysis, we have

$$
\begin{gathered}
\nu_{2}(C\{n, 5\})=\left\{\begin{array}{l}
4 \text { if } n \equiv 4,5,6 \text { or } 7 \bmod \left(2^{3}\right) \\
3 \text { if } n \equiv 3 \bmod \left(2^{3}\right) 8,9 \operatorname{or} 10 \bmod \left(2^{4}\right) \\
2 \text { if } n \equiv 1,2 \bmod \left(2^{4}\right) \text { or } 16 \bmod \left(2^{5}\right) \\
1 \text { if } n \equiv 32 \bmod \left(2^{6}\right) \\
0 \text { if } n \equiv 0 \bmod \left(2^{6}\right),
\end{array}\right. \\
\nu_{2}\left(\alpha_{C}(n, 5)\right)=\left\{\begin{array}{l}
-5 \text { if } n \equiv 5 \text { or } 7 \bmod \left(2^{3}\right) \\
-4 \text { if } n \equiv 6 \bmod \left(2^{3}\right), 3 \text { or } 9 \bmod \left(2^{4}\right) \\
-3 \text { if } n \equiv 10 \bmod \left(2^{4}\right), 11 \operatorname{or} 17 \bmod \left(2^{5}\right) \\
-2 \text { if } n \equiv 4,8 \bmod \left(2^{4}\right), 18 \bmod \left(2^{5}\right), 27 \text { or } 33 \bmod \left(2^{6}\right) \\
-1 \text { if } n \equiv 16,28 \bmod \left(2^{5}\right), 2 \bmod \left(2^{6}\right) \text { or } 59 \bmod \left(2^{7}\right) \\
\geqq 0 \text { if } n \equiv 0,12 \bmod \left(2^{5}\right), 1,34 \bmod \left(2^{6}\right) \text { or } 123 \bmod \left(2^{7}\right) .
\end{array}\right.
\end{gathered}
$$

Hence $\pi_{2 n+9}^{S C}\left(S^{2 n}\right)$ contains μ if and only if $n \equiv 5,7 \bmod \left(2^{3}\right), 3,9 \bmod \left(2^{4}\right)$, or $17 \bmod \left(2^{5}\right)$.

If n is odd, $q_{4} \circ p_{n+5,5}=p_{n+5,1}=\eta$ and $\pi_{2 n+9}^{S c}\left(S^{2 n}\right)$ contains $\left\{S^{2 n+8}, S^{2 n}\right\} \circ q_{4} \circ p_{n+5,5}$ $=G_{8} \circ \eta=Z_{2}\left\{\eta^{2} \sigma\right\} \oplus Z_{2}\{\eta \varepsilon\}$. Thus the conclusions (i) and (ii) follow.

Next consider the case of n being even. First we show that $\pi_{2 n+9}^{S C}\left(S^{2 n}\right)$ does not contain J-image $\eta^{2} \sigma=\nu^{3}+\eta \varepsilon$. Consider a commutative diagram:

We apply $\widetilde{K O}$ if $n \equiv 0 \bmod (4)$ or $\widetilde{K O}{ }^{-4}$ if $n \equiv 2 \bmod (4)$ to this diagram. The methods for $n \equiv 0 \bmod (4)$ and $n \equiv 2 \bmod (4)$ are quite similar to a part of the proof of (2.7), so we sketch the proof only for $n \equiv 0 \bmod (4)$. Put $n=4 m$. We have the following commutative diagram:

Let a and b be elements of $\widetilde{K O}\left(C\left(f \circ p_{4 m+5,5}\right)\right)$ such that a maps to a generator of $\widetilde{K O}\left(S^{8 m}\right) \cong Z$ and b is the image of the generator of $\widetilde{K O}\left(S^{8 m+10}\right) \cong Z_{2}$. Then

$$
\psi^{3}(a)=3^{4 m} a+\lambda b
$$

for some $\lambda \in Z_{2}$, and

$$
e_{R}\left(f \circ p_{4 m+5,5}\right)=\lambda
$$

Since $\widetilde{K O}\left(C P_{4 m+6,6}\right)=Z\left\{z_{0}^{2 m}, z_{0}^{2 m+1}, z_{0}^{2 m+2}\right\} \oplus Z_{2}\left\{z_{0}^{2 m+3}\right\}$ [4], we may put $f^{\prime} *(a)=$ $\sum_{i=0}^{3} d_{i} z_{0}^{2 n+i}$ for some integers $d_{i}(0 \leqq i \leqq 2)$ and $d_{3} \in Z_{2}$. Analysing the equation $f^{\prime *}\left(\psi^{3}(a)\right)=\psi^{3}\left(f^{\prime *}(a)\right)$, we know that $\lambda=0$. Hence J-image $\eta^{2} \sigma$ is not contained in $\pi_{2 n+9}^{S C}\left(S^{2 n}\right)$, since $e_{R}\left(\eta^{2} \sigma\right) \neq 0$ [1]. Therefore $\pi_{2 n+9}^{S C}\left(S^{2 n}\right)=0, Z_{2}\left\{\nu^{3}\right\}$ or $Z_{2}\{\eta \varepsilon\}$ if n is even.

Second we show (iii). Cnsider the following diagram in which the triangle is commutative by (1.15) of [8].

Since $p_{n+4,1}=\eta, \nu^{2} p_{n+4,1}=0$ and there exists $h \in\left\{C P_{n+5,2}, S^{2 n}\right\}$ with $h \circ i=\nu^{2}$. Then $h \circ p_{n+5,2}=\nu^{2} \circ\left(\frac{1}{2} n+3\right) g_{\infty}=\nu^{3}$ if $n \equiv 0 \bmod$ (4) or 0 if $n \equiv 2 \bmod$ (4). Thus $\pi_{2 n+9}^{S C}\left(S^{2 n}\right)=Z_{2}\left\{\nu^{3}\right\}$ if $n \equiv 0 \bmod (4)$, and the conclusion (iii) follows.

Third we show (iv). Suppose that $n \equiv 2 \bmod (4)$. Consider the following diagram in which the two horizontal and one vertical sequences are parts of suitable Puppe exact sequences.

Since $p_{n+2,1}=\eta$ and $\eta^{3}=12 g_{\infty} \neq 0, p_{n+2,1} *$ is monomorphic and the image of $q_{1}{ }^{*}$ is not contained in the image of $i^{\prime *}$, and so $\left\{C P_{n+3,3}, S^{2 n}\right\} \cong Z$ and i^{*} is isomorphic on a free subgroup. Then we can choose $h \in\left\{C P_{n+4,4}, S^{2 n}\right\}$ which is a generator
of a free part and satisfies $i^{\prime \prime *} i^{\prime} * i^{*}(h)=\operatorname{deg}(h)=C\{n, 4\}$. Let $s \in\left\{S^{2 n+9}, C P_{n+4,4}\right\}$ be an element with $p_{n+5,5}=i_{1} \circ s$. Let f be any element of $\left\{C P_{n+5,5}, S^{2 n}\right\}$. Then $f \circ i_{1}=(\operatorname{deg}(f) / C\{n, 4\}) h+e \circ q$ for some $e \in\left\{S^{2 n+6}, S^{2 n}\right\}$ and

$$
f \circ p_{n+5,5}=f \circ i_{1} \circ s=(\operatorname{deg}(f) / C\{n, 4\}) h \circ s+e \circ q \circ s
$$

Since $q_{\circ} s=\left(\frac{1}{2} n+3\right) g_{\infty}$ or $\left(\frac{1}{2} n+15\right) g_{\infty}$ from (1.15) of [8], $q_{\circ} s$ is divisible by 2 , and then

$$
f \circ p_{n+5,5}=(\operatorname{deg}(f) / C\{n, 4\}) h \circ s
$$

for $\left\{S^{2 n+6}, S^{2 n}\right\} \cong Z_{2} . \quad$ By (1.16) and (3.1) of [8], we know easily that

$$
\begin{aligned}
& C\{n, 4\}=24 /(n, 24)=2^{2} \cdot 3 /\left(\frac{1}{2} n, 3\right), \\
& \nu_{2}(C\{n, 5\})=\left\{\begin{array}{l}
4 \text { if } n \equiv 6 \bmod (8) \\
3 \text { if } n \equiv 10 \bmod (16) \\
2 \text { if } n \equiv 2 \bmod (16) .
\end{array}\right.
\end{aligned}
$$

Hence if $n \equiv 6 \bmod (8)$ or $10 \bmod (16), C\{n, 5\} / C\{n, 4\} \equiv 0 \bmod (2)$ and $f \circ p_{n+5,5}$ $=0$ since $\operatorname{deg}(f)$ is a multiple of $C\{n, 5\}$. Thus the conclusion (iv) follows if $n \equiv 6 \bmod (8)$ or $10 \bmod (16)$. In case of $n \equiv 2 \bmod (16)$, we constructed the following commutative diagram in the proof of (v) of (3.1) in [8] and found that $q_{1} \circ S_{3}$ is divisible by 2 .

Choose $u \in\left\{C P_{n+2,2}, S^{2 n}\right\}$ with $\operatorname{deg}(u)=1$. Then $\left.f\right|_{C P_{n+2,2}}=\operatorname{deg}(f) u+e \circ q_{1}$ for some $e \in\left\{S^{2 n+2}, S^{2 n}\right\}$, and

$$
\begin{aligned}
f \circ p_{n+5,5} & =3 f \circ p_{n+5,5}, \quad \text { since } 2 G_{9}=0 \\
& =\left.f\right|_{C P_{n+2,2} \circ s_{3}} \\
& =\operatorname{deg}(f) u \circ s_{3}+e \circ q_{1} \circ s_{3} \\
& =\operatorname{deg}(f) u \circ s_{3}, \quad \text { since } e \in G_{2}=Z_{2} \text { and } 2 \mid q_{1} \circ s_{3} .
\end{aligned}
$$

By (1.16) and (3.1) of [8]

$$
\nu_{2}(C\{n, 5\}) \geqq 1
$$

hence $\operatorname{deg}(f) \equiv 0 \bmod (2)$ and

$$
f \circ p_{n+5,5}=0
$$

since $u \circ \circlearrowleft_{3} \in G_{9}$ and $2 G_{9}=0$. Thus $\pi_{2 n+9}^{S C}\left(S^{2 n}\right)=0$ if $n \equiv 2 \bmod (16)$ and the proof is completed.

We determine H-projective 10 -stems. Recall that $G_{10}=Z_{2}\{\eta \mu\} \oplus Z_{3}\left\{\beta_{1}\right\}$.
Theorem 2.10. $\pi_{4 n+7}^{S H}\left(S^{4 n-3}\right)=Z_{3}\left\{\beta_{1}\right\}$ if $n \equiv 1 \bmod (3)$ or 0 if $n \equiv 1 \bmod (3)$.
Proof. Consider the following diagram:

Given $f \in\left\{H P_{n+2,2}, S^{4 n-3}\right\}$, we have $f \circ i=m g_{\infty}$ for some integer m with $m n \equiv$ $0 \bmod (2)$, since $p_{n+1,1}=n g_{\infty}$ and $0=f \circ i \circ p_{n+1,1}=m n \nu^{2}$. By definition of Toda bracket we have

$$
f \circ p_{n+2,2} \in\left\langle f \circ i, p_{n+1,1},(n+1) g_{\infty}\right\rangle
$$

Since all Toda brackets which appear in this proof have zero indeterminacies from a similar method as the proof of (i) of (2.4), we have

$$
\begin{aligned}
\left\langle f \circ i, p_{n+1,1},(n+1) g_{\infty}\right\rangle & =\left\langle m g_{\infty}, n g_{\infty},(n+1) g_{\infty}\right\rangle \\
& =\frac{1}{2} m n(n+1)\langle\nu, 2 \nu, \nu\rangle+m n(n+1)\left\langle\alpha_{1}, \alpha_{1}, \alpha_{1}\right\rangle .
\end{aligned}
$$

But

$$
\begin{aligned}
\langle\nu, 2 \nu, \nu\rangle & =-\langle 2 \nu, \nu, 2 \nu\rangle & & \text { by (3.10) of [11] } \\
& =-\langle\nu, 4 \nu, \nu\rangle & & \text { by (3.5) of ibid. } \\
& =-2\langle\nu, 2 \nu, \nu\rangle & & \text { by (3.8) of ibid. } \\
& =0 & &
\end{aligned}
$$

and

$$
\left\langle\alpha_{1}, \alpha_{1}, \alpha_{1}\right\rangle=\beta_{1} \quad \text { by p. } 180 \text { of ibid. }
$$

and then

$$
f \circ p_{n+2,2}=m n(n+1) \beta_{1} .
$$

Conversely for any m with $m n \equiv 0 \bmod (2)$ there exists $f \in\left\{H P_{n+2,2}, S^{4 n-3}\right\}$ with $f \circ i=m g_{\infty}$. Thus the conclusion follows.

We prove

Theorem 2.11. $\pi_{2 n+9}^{S C}\left(S^{2 n-1}\right)$ is equal to
(i) $G_{10} \quad$ if $n \equiv 1 \bmod (6)$,
(ii) $Z_{2}\{\eta \mu\} \quad$ if $n \equiv 3 \bmod (6)$,
(iii) $Z_{3}\left\{\beta_{1}\right\} \quad$ if $n \equiv 4 \bmod (6)$,
(iv) $0 \quad$ if $n \equiv 0 \bmod (6)$,
(v) 0 or $Z_{3}\left\{\beta_{1}\right\} \quad$ if $n \equiv 2 \bmod (6)$,
(vi) $Z_{2}\{\eta \mu\}$ or G_{10} if $n \equiv 5 \bmod (6)$.

Proof. First we suppose that n is odd. Since $q_{4} \circ p_{n+5,5}=p_{n+5,1}=\eta$, $\pi_{2 n+9}^{S C}\left(S^{2 n-1}\right)$ contains $\mu \circ q_{4} \circ p_{n+5,5}=\mu \eta$ and (vi) follows, (i) also follows from (1.1) and (2.10). Given $f \in\left\{C P_{n+5,5}, S^{2 n-1}\right\}$, we have

$$
0=\left.f\right|_{C P_{n+1,1}} \circ p_{n+1,1}=\left.f\right|_{C P_{n+1,1}} \circ \eta
$$

so $\left.f\right|_{C P_{n+1,1}}=0$ and

$$
\pi_{2 n+9}^{S C}\left(S^{2 n-1}\right)=\text { image of } p_{n+5,4}^{*}:\left\{C P_{n+5,4}, S^{2 n-1}\right\} \rightarrow\left\{S^{2 n+9}, S^{2 n-1}\right\}
$$

In case of $n \equiv 3 \bmod (6)$ we construct a commutative diagram:

Since $q_{3} \circ p_{n+5,4}=p_{n+5,1}=\eta, q_{3} \circ 2 p_{n+5,4}=0$ and there exists s_{1} with $i \circ s_{1}=2 p_{n+5,4}$. By (1.15) of [8] $q_{2} \circ s_{1}=(n+3) g_{\infty}$. Then $4 q_{2} \circ s_{1}=0$ and there exists s_{2} with $i \circ s_{2}=4 s_{1}$. Since $q_{1} \circ s_{2} \in G_{5}=0$, there exists s_{3} with $i \circ s_{3}=s_{2}$. Thus the construction of the above diagram is completed. Given $f \in\left\{C P_{n+5,4}, S^{2 n-1}\right\}$, we have

$$
\begin{aligned}
8 f \circ p_{n+54} & =\left.f\right|_{C P_{n+2,1} \circ S_{3}} \\
& =0, \text { since } G_{3} \circ G_{7}=0
\end{aligned}
$$

so $\pi_{2 n+9}^{S C}\left(S^{2 n-1}\right)$ does not contain $Z_{3}\left\{\beta_{1}\right\}$ and hence (ii) follows.
Next we suppose that n is even. If $\pi_{2 n+9}^{S C}\left(S^{2 n-1}\right)$ contains $\eta \mu$, that is, there exists $f \in\left\{C P_{n+5}, S^{2 n-1}\right\}$ with $f \circ p_{n+5}=\eta \mu$, we have the following commutative triangle

But $6 n+9 \equiv 1 \bmod (8)$ (if $n \equiv 0 \bmod (4)$) or $5 \bmod (8)$ (if $n \equiv 2 \bmod (4)$) and hence $\widetilde{K O^{-6 n-9}}\left(C P_{n+5}\right)=0$ by Theorem 2 of Fujii [4] and

$$
d_{R}(\eta \mu)=p_{n+5} * f^{*}=0 .
$$

This is a contradiction since $d_{R}(\eta \mu) \neq 0$ [1]. Thus $\pi_{2 n+9}^{S C}\left(S^{2 n-1}\right)$ does not contain $\eta \mu$. Hence (v) follows.

In case of $n \equiv 0 \bmod (6)$, we obtain the following commutative diagram by the methods used in the proof of (3.1) of [8].

Given $f \in\left\{C P_{n+5,5}, S^{2 n-1}\right\}$, we have

$$
2^{8} \cdot 5 f \circ p_{n+5,5}=\left.f\right|_{C P_{n+1,1} \circ s_{4} \in G_{1} \circ G_{9}=Z_{2} .} .
$$

Thus $\pi_{2 n+9}^{S C}\left(S^{2 n-1}\right)$ does not contain $Z_{3}\left\{\beta_{1}\right\}$. Hence (iv) follows.
In case of $n \equiv 4 \bmod (6)$, we construct the following commutative diagram which implies (iii) since $h \circ g \circ p_{n+5,4} \in\left\langle\alpha_{1}, \alpha_{1}, \alpha_{1}\right\rangle=\beta_{1}$.

$\alpha_{1}^{2}=0$ assures the existence of h. By Theorem 2.6 of Randall [9], there exists f with $f \circ p_{n+5,4}=\alpha_{1}$. Consider the Puppe exact sequence

$$
\begin{array}{r}
\cdots \rightarrow\left\{C P_{n+2,1}, S^{2 n+2}\right\} \xrightarrow{p_{n+2,1}^{*}}\left\{S^{2 n+3}, S^{2 n+2}\right\} \rightarrow\left\{C P_{n+3,2}, S^{2 n+3}\right\} \\
\left\{C P_{n+2,1}, S^{2 n+3}\right\}=0 \rightarrow \cdots
\end{array}
$$

Since $p_{n+2,1}=(n+1) \eta=\eta$, the above $p_{n+2,1}^{*}$ is an epimorphism, hence $\left\{C P_{n+3,2}\right.$, $\left.S^{2 n+3}\right\}=0$. Considering the suitable Puppe sequences, we know easily that $i^{*}:\left\{C P_{n+5,4}, S^{2 n+3}\right\} \rightarrow\left\{C P_{n+4,3}, S^{2 n+3}\right\}$ and $q_{2}^{*}:\left\{S^{2 n+6}, S^{2 n+6}\right\} \rightarrow\left\{C P_{n+4,3}, S^{2 n+6}\right\}$ are isomorphisms. Consider the Puppe exact sequence

$$
\begin{aligned}
\cdots \rightarrow\left\{C P_{n+3,2}, S^{2 n+2}\right\} \xrightarrow{P_{n+3,2}^{*}}\left\{S^{2 n+5},\right. & \left.S^{2 n+2}\right\} \xrightarrow{q_{2}^{*}}\left\{C P_{n+4,3}, S^{2 n+3}\right\} \\
& \rightarrow\left\{C P_{n+3,2}, S^{2 n+3}\right\}=0 \rightarrow \cdots
\end{aligned}
$$

Then we have the following diagram

$$
\begin{aligned}
& \cong \uparrow i^{*} \\
& \left\{C P_{n+5,4}, S^{2 n+3}\right\}
\end{aligned}
$$

By Theorem 2.6 of [9], $\alpha_{1} \in \pi_{2 n+5}^{S C}\left(S^{2 n+2}\right)$. Hence the image of $\alpha_{1^{*}}$ in the left hand side is contained in $\pi_{2 n+5}^{S C}\left(S^{2 n+2}\right)$, and the image of $\alpha_{1^{*}}$ in the right hand side is zero. Therefore $i^{*}\left(\alpha_{1} \circ f\right)=\alpha_{1^{*}}(f \circ i)=0$ and $\alpha_{1} \circ f=0$. Thus there exists g with $q \circ g=f$.

This completes the proof.
We determine F-projective 11-stem. Given $f \in\left\{H P_{n+3,3}, S^{4 n}\right\}$ we have

$$
e_{R}^{\prime}\left(f \circ p_{n+3,3}\right)=-\frac{1}{2} \operatorname{deg}(f) \alpha_{H}(n, 3)
$$

by (1.5) of [8]. Since $e_{R}^{\prime}: G_{11} \rightarrow Z_{504}$ is an isomorphism, we have
Theorem 2.12. $\quad \pi_{4 n+11}^{S H}\left(S^{4 n}\right) \cong Z / \operatorname{den}\left[\frac{1}{2} H\{n, 3\} \alpha_{H}(n, 3)\right]$.
We have also
Theorem 2.13. $\quad \pi_{2 n+11}^{S c}\left(S^{2 n}\right)$ is isomorphic to
(i) $Z / 2 \operatorname{den}\left[C\{n, 6\} \alpha_{C}(n, 6)\right]$ if $n \equiv 0 \bmod (2), 5,7 \bmod (8), 11 \bmod (16)$, 1 or $3 \bmod (32)$,
(ii) $Z / \operatorname{den}\left[C\{n, 6\} \alpha_{C}(n, 6)\right]$ if $n \equiv 9 \bmod (16), 17$ or $19 \bmod (32)$.

Proof. Let $u(n)$ be the order of the cyclic group $\pi_{2 n+11}^{S C}\left(S^{2 n}\right)$. Given $f \in$ $\left\{C P_{n+6,6}, S^{2 n}\right\}$, we have

$$
e_{R}^{\prime}\left(f \circ p_{n+6,6}\right)=\frac{1}{2} a_{6}(f)-\frac{1}{2} \operatorname{deg}(f) \alpha_{c}(n, 6)
$$

for some integer $a_{6}(f)$ by (1.5) of [8]. Choose f_{0} with $\operatorname{deg}\left(f_{0}\right)=C\{n, 6\}$. Then

$$
u(n)=\operatorname{den}\left[\frac{1}{2} a_{6}\left(f_{0}\right)-\frac{1}{2} C\{n, 6\} \alpha_{C}(n, 6)\right]
$$

for $e_{R}^{\prime}: G_{11} \rightarrow Z_{504}$ is an isomorphism. Then it is easy to see that $u(n)$ is equal to $\operatorname{den}\left[C\{n, 6\} \alpha_{C}(n, 6)\right]$ or $2 \operatorname{den}\left[C\{n, 6\} \alpha_{C}(n, 6)\right]$, and equal to $2 \operatorname{den}\left[C\{n, 6\} \alpha_{C}(n, 6)\right]$ if $\nu_{2}\left(\operatorname{den}\left[C\{n, 6\} \alpha_{C}(n, 6)\right]\right) \geqq 1 . \quad$ By (1.16) and (3.1) of [8], $\nu_{2}\left(\operatorname{den}\left[C\{n, 6\} \alpha_{c}(n, 6)\right]\right) \geqq 1$ if and only if $n \equiv 7 \bmod (8), 11 \bmod (16)$ or $n \equiv 0$ $\bmod (2)$ and $n \neq 4 \bmod (8), 50 \bmod (64)$ and $0 \bmod (128)$. First suppose that $n \equiv 4 \bmod (8), 50 \bmod (64)$ or $0 \bmod (128)$. Since $q_{5} \circ p_{n+6,6}=p_{n+6,1}=\eta, \pi_{2 n+11}^{S C}\left(S^{2 n}\right)$ contains $\mu \eta \circ q_{5} \circ p_{n+6,6}=\mu \eta^{2}=4 \zeta$ and hence $u(n)$ is even and in fact $u(n)=$ $2 \operatorname{den}\left[C\{n, 6\} \alpha_{C}(n, 6)\right]$. Thus $u(n)=2 \operatorname{den}\left[C\{n, 6\} \alpha_{C}(n, 6)\right]$ if n is even. Next consider the case of n being odd. By (1.16), (3.1), (iii) of (1.4) of [8] and an easy calculation, we check that $a_{6}\left(f_{0}\right) \equiv 0 \bmod (2)$ (if $n \equiv 3 \bmod (4)$ or $33 \bmod (64)$) or $1 \bmod (2)$ (if $n \equiv 5 \bmod (8), 9 \bmod (16), 17 \bmod (32)$ or $1 \bmod (64)$). Then by also an easy calculation $u(n)$ is determined as the forms given in Theorem. The proof is completed.

It is easily seen from (1.16) and (2.1) of [8] that $\operatorname{den}\left[\frac{1}{2} H\{3,3\} \alpha_{H}(3,3)\right]$ $=504$, and hence G_{11} is fully H-projective and fully C-projective by (1.1). Thus we have

Corollary 2.14. G_{11} is fully H - and C-projective .
Concerning with F-projective 12 -stems, we have no problems, since $G_{12}=0$. Recall that $G_{13}=Z_{3}\left\{\beta_{1} \alpha_{1}\right\}$. We have

Theorem 2.15. $\pi_{4 n+11}^{S H}\left(S^{4 n-2}\right)$ is equal to
$\begin{array}{ll}\text { (i) } G_{13} & \text { if } n \equiv 0 \text { or } 2 \bmod (3), \\ \text { (ii) } 0 & \text { if } n \equiv 1 \bmod (3) .\end{array}$
Proof. Since $q_{2} \circ p_{n+3,3}=p_{n+3,1}=(n+2) g_{\infty}$ from (2.10) of [5] (or see (1.14) of [8]), $\pi_{4 n+11}^{S H}\left(S^{4 n-2}\right)$ contains $\beta_{1} \circ q_{2} \circ p_{n+3,3}=(n+2) \beta_{1} \alpha_{1}$. Thus the conclusion (i) follows. Suppose that $n \equiv 1 \bmod (3)$. Then $8 q_{2} \circ p_{n+3,3}=0$ and there exists $s \in\left\{S^{4 n+11}, H P_{n+2,2}\right\}$ with $i_{1} \circ s=8 p_{n+3,3}$. Given $f \in\left\{H P_{n+3,3}, S^{4 n-2}\right\}$ we have

$$
f \circ p_{n+3,3}=16 f \circ p_{n+3,3}=2 f \circ i_{1} \circ s
$$

But $2\left\{H P_{n+2,2}, S^{4 n-2}\right\}=0$ by (2.5). Thus $2 f \circ i_{1} \circ s=0$ and the conclusion (ii) follows.

We have also
Theorem 2.16. $\pi_{2 n+13}^{S C}\left(S^{2 n}\right)$ is equal to
(i) G_{13} if $n \equiv 0$ or $2 \bmod (3)$,
(ii) $0 \quad$ if $n \equiv 1 \bmod (3)$.

Proof. By Randall [9, Theorems 2.5, 2.6], $\alpha_{1} \in \pi_{2 n+13}^{S C}\left(S^{2 n+10}\right)$ if and only if $n \equiv 0$ or $2 \bmod (3)$. Then (i) follows from (1.2). In case of $n \equiv 1 \bmod (6)$, (ii) was proved in the proof of (vii) of [8]. By the same methods we can prove (ii) in case of $n \equiv 4 \bmod (6) . \quad$ We omit the details.

Concerning with F-projective 14 -stems, we prove the following. Recall that $G_{14}=Z_{2}\left\{\sigma^{2}\right\} \oplus Z_{2}\{\kappa\}$.

Theorem 2.17. $\pi_{4 n+11}^{S H}\left(S^{4 n-3}\right)=Z_{2}\left\{\sigma^{2}\right\}$ if $n \equiv 6 \bmod (8)$.
Proof. Suppose that $n \equiv 6 \bmod (8)$. Since $q_{1} \circ p_{n+3,2}=p_{n+3,1}=(n+2) g_{\infty}$, $3 q_{1} \circ p_{n+3,2}=0$ and there exists $s \in\left\{S^{4 n+11}, H P_{n+2,1}\right\}$ with $i_{1} \circ s=3 p_{n+3,2}$. Since $\sigma \circ p_{n+2,1}=(n+1) \sigma \circ g_{\infty}=(n+1) \sigma \nu=0$, there exists $f \in\left\{H P_{n+3,2}, S^{4 n-3}\right\}$ with $f \circ i_{1}$ $=\sigma$. Put $n=8 m+6$. Then by (ii) of (1.13) of [8], we have

$$
e_{c}(s)=(8 m+7)(20 m+17) / 2^{4} \cdot 3 \cdot 5
$$

Hence $\# s \equiv 0 \bmod \left(2^{4}\right)$ and

$$
\begin{aligned}
f \circ p_{n+3,2} & =f \circ 3 p_{n+3,2}, \text { since } 2 G_{14}=0 \\
& =\sigma s \\
& =\sigma^{2} .
\end{aligned}
$$

Thus $\pi_{4 n+11}^{S H}\left(S^{4 n-3}\right)$ contains σ^{2}. By the following Theorem (2.18), $\eta \circ \pi_{4 n+11}^{S H}\left(S^{4 n-3}\right)$ (which is a subgroup of $\pi_{4 n+11}^{S H}\left(S^{4 n-4}\right)$) does not contain $\eta \kappa$ and hence $\pi_{4 n+11}^{S H}\left(S^{4 n-3}\right)$ does not contain κ. This completes the proof.

Recall that $G_{15}=Z_{2}\{\eta \kappa\} \oplus Z_{2^{5}}\{\rho\} \oplus Z_{15}$ and there is a split exact sequence

$$
0 \rightarrow Z_{2}\{\eta \kappa\} \rightarrow G_{15} \xrightarrow{e_{C}} Z / 2^{5} \cdot 3 \cdot 5 \rightarrow 0 .
$$

We have
Theorem 2.18. $\pi_{4 n+15}^{S H}\left(S^{4 n}\right)$ is isomorphic to
(i) $\quad Z_{2}\{\eta \kappa\} \oplus Z / v(n) \quad$ if $n \equiv 0$ or $3 \bmod (4)$,
(ii) $Z / v(n) \quad$ if $n \equiv 5 \bmod (8)$,
(iii) $Z_{2}\{\eta \kappa\} \oplus Z / v(n)$ or $Z / v(n)$ if $n \equiv 2 \bmod (4)$ or $1 \bmod (8)$, and $\pi_{4 n+15}^{S H}\left(S^{4 n}\right)$ does not contain $\eta \kappa$ if $n \equiv 5 \bmod (8)$, where $v(n)=\operatorname{den}[H\{n, 4\} \times$ $\left.\alpha_{H}(n, 4)\right]$.

Proof. The conclusions (i), (ii) and (iii) follow from (1.2) of [8], because
$\eta \kappa \in \pi_{4 n+15}^{S H}\left(S^{4 n}\right)$ if $n \equiv 0$ or $3 \bmod (4)$ from (2.2) of [8]. Next consider the case of $n \equiv 5 \bmod (8)$. Since $q_{3} \circ p_{n+4,4}=(n+3) g_{\infty}, 3 q_{3} \circ p_{n+4,4}=0$ and there exists $s \in\left\{S^{4 n+15}, H P_{n+3,3}\right\}$ with $i_{1} \circ s=3 p_{n+4,4}$. Let $a \in\left\{H P_{n+3,3}, S^{4 n}\right\}$ be an element with $\operatorname{deg}(a)=H\{n, 3\}$. Then a generates a free part of $\left\{H P_{n+3,3}, S^{4 n}\right\}$ which is of rank 1. Given $f \in\left\{H P_{n+4,4}, S^{4 n}\right\}$, we have

$$
f \circ i_{1}=(\operatorname{deg}(f) / H\{n, 3\}) a+e \circ q_{2}
$$

for some $e \in\left\{H P_{n+3,1}, S^{4 n}\right\}=G_{8}$ and

$$
\begin{aligned}
3 f \circ p_{n+4,4} & =f \circ i_{1} \circ s \\
& =(\operatorname{deg}(f) / H\{n, 3\}) a \circ s+e \circ q_{2} \circ s \\
& =(\operatorname{deg}(f) / H\{n, 3\}) a \circ s, \text { since } G_{8} \circ G_{7}=0 .
\end{aligned}
$$

But by (1.16) and (2.1) of [8], $\nu_{2}(H\{n, 3\})=3$ and $\nu_{2}(H\{n, 4\})=6$. Thus $\operatorname{deg}(f) / H\{n, 3\} \equiv 0 \bmod (8)$ since $\operatorname{deg}(f)$ is a multiple of $H\{n, 4\}$. Suppose that $\pi_{4 n+11}^{S H}\left(S^{4 n}\right)$ contains $\eta \kappa+x$ for some x which is orthogonal to $Z_{2}\{\eta \kappa\}$, then $\eta \kappa+x=f \circ p_{n+4,4}$ for some $f \in\left\{H P_{n+4,4}, S^{4 n}\right\}$. Then

$$
\eta \kappa+3 x=3 f \circ p_{n+4,4}=(\operatorname{deg}(f) / H\{n, 3)\} a \circ s
$$

and hence $\eta \kappa+3 x$ is divisible by 8 . This is a contradiction, for $\#(\eta \kappa)=2$. Thus $\pi_{4 n+11}^{S H}\left(S^{4 n}\right)$ does not contain $\eta \kappa+x$ for any $x \in G_{15}$ which is orthogonal to $Z_{2}\{\eta \kappa\}$. This completes the proof.

By (1.16) and (2.1) of [8] we have easily that $\nu_{2}(v(n)) \leqq 4$, and $\nu_{2}(v(n))=4$ if and only if $n \equiv 25 \bmod (32)$. Hence we have

Corollary 2.19. $\rho \in G_{15}$ is not H-projective but 2ρ or $2 \rho+\eta \kappa$ is H-projective.
By (1.1), (2.18) and the above split exact sequence we have
Theorem 2.20. $\pi_{2 n+15}^{S C}\left(S^{2 n}\right)$ is isomorphic to
(i) $Z_{2}\{\eta \kappa\} \oplus Z \mid w(n) \quad$ if n is even,
(ii) $Z_{2}\{\eta \kappa\} \oplus Z \mid w(n)$ or $Z / w(n)$ if n is odd, where $w(n)=\operatorname{den}\left[C\{n, 8\} \alpha_{C}(n, 8)\right]$.

By (1.16) and (3.1) of [8] we have that $\nu_{2}(w(n))=5$ if and only if $n \equiv 50$ $\bmod (64)$, and in case of $n \equiv 2 \bmod (4)$, we have that $\nu_{3}(w(n))=1$ if and only if $n \equiv 14,22,26,34 \bmod (36), 10,38,46,74 \bmod (108), 82$ or $190 \bmod (324)$, and $\nu_{5}(w(n))=1$ if and only if $n \equiv 2,14,18 \bmod (20), 10,30,70$ or $90 \bmod (100)$. Hence we have

Corollary 2.21. G_{15} is fully C-projective and the smallest n for which $\pi_{2 n+15}^{S C}\left(S^{2 n}\right)=G_{15}$ is 178.

Recall that $G_{17}=Z_{2}\left\{\eta \eta^{*}\right\} \oplus Z_{2}\{\nu \kappa\} \oplus Z_{2}\left\{\eta^{2} \rho\right\} \oplus Z_{2}\{\bar{\mu}\}$. We have

Proposition 2.22. $\bar{\mu}$ and the Adams element $\mu_{2} \in G_{17}$ are not contained in $\pi_{2 n+17}^{S C}\left(S^{2 n}\right)$ if $n \neq 3 \bmod \left(2^{7}\right)$.

Proof. Since $e_{C}(\bar{\mu})=e_{C}\left(\mu_{2}\right)=\frac{1}{2}$ from (12.13) of [1], it will suffice to show that $\nu_{2}\left(C\{n, 9\} \alpha_{C}(n, 9)\right) \geqq 0$ if $n \equiv 3 \bmod \left(2^{7}\right)$. Indeed by (1.16) and (3.1) of [8] we have

$$
\begin{aligned}
& C\{n, 9\} /\left(C\{n, 8\} \operatorname{den}\left[C\{n, 8\} \alpha_{C}(n, 8)\right]\right) \\
&= \begin{cases}1 & \text { or } 2 \text { if } n \equiv 3 \bmod \left(2^{7}\right) \text { or } 1 \bmod \left(2^{9}\right) \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

and an calculation shows that if $n \equiv 3 \bmod \left(2^{7}\right)$ and $1 \bmod \left(2^{9}\right)$ we have $\nu_{2}\left(C\{n, 9\} \alpha_{C}(n, 9)\right) \geqq 0$, and if $n \equiv 1 \bmod \left(2^{9}\right)$ we have $\nu_{2}\left(C\{n, 8\} \alpha_{C}(n, 9)\right) \geqq 0$ and hence $\nu_{2}\left(C\{n, 9\} \alpha_{C}(n, 9)\right) \geqq 0$, and the conclusion follows.

By Randall [9, Theorems 2.5, 2.6] we know that $\nu \in \pi_{2 n+17}^{S C}\left(S^{2 n+14}\right)$ if and only if $n \equiv 3 \bmod (4)$. And by (i) of (1.13) of [8], $p_{n+9,1}=(n+8) \eta=n \eta$, and so $\eta \in \pi_{2 n+17}^{S C}\left(S^{2 n+16}\right)$ if and only if n is odd. Thus if $n \equiv 3 \bmod (4), \pi_{2 n+17}^{S C}\left(S^{2 n}\right)$ contains $\nu \kappa, \eta \eta^{*}$ and $\eta^{2} \rho$. Hence we have

Corollary 2.23. If $n \equiv 3 \bmod (4)$, then $\pi_{2 n+17}^{S C}\left(S^{2 n}\right)$ contains $Z_{2}\left\{\eta \eta^{*}\right\} \oplus$ $Z_{2}\{\nu \kappa\} \oplus Z_{2}\left\{\eta^{2} \rho\right\}$.

Recall that there exists a split exact sequence [1]

$$
0 \rightarrow Z_{2} \rightarrow G_{19} \xrightarrow{e_{R}^{\prime}} Z_{264} \rightarrow 0 .
$$

By (1.5) of [8] we have
Proposition 2.24. $\pi_{4 n+19}^{S H}\left(S^{4 n}\right)$ contains a cyclic subgroup of the order $\operatorname{den}\left[\frac{1}{2} H\{n, 5\} \alpha_{H}(n, 5)\right]$.

Take $f \in\left\{C P_{n+10,10}, S^{2 n}\right\}$ with $\operatorname{deg}(f)=C\{n, 10\}$. From (1.5) of [8]

$$
e_{R}^{\prime}\left(f \circ p_{n+10,10}\right)=\frac{1}{2} a_{10}-\frac{1}{2} C\{n, 10\} \alpha_{c}(n, 10)
$$

for some integer a_{10}, and so $\pi_{2 n+19}^{S C}\left(S^{2 n}\right)$ contains a cyclic subgroup of the order $\operatorname{den}\left[\frac{1}{2} a_{10}-\frac{1}{2} C\{n, 10\} \alpha_{c}(n, 10)\right]$. Even if we can not determine $a_{10} \bmod (2)$, we have $\operatorname{den}\left[\frac{1}{2} a_{10}-\frac{1}{2} C\{n, 10\} \alpha_{C}(n, 10)\right]=\operatorname{den}\left[\frac{1}{2} C\{n, 10\} \alpha_{c}(n, 10)\right]$ when

$$
\begin{equation*}
\nu_{2}\left(C\{n, 10\} \alpha_{c}(n, 10)\right) \leqq-1 \tag{*}
\end{equation*}
$$

For example if $n \equiv 10,12,14 \bmod \left(2^{4}\right), 18,20,22 \bmod \left(2^{5}\right), 6,34,36 \bmod \left(2^{6}\right)$ or
$102 \bmod \left(2^{7}\right)$, then $C\{n, 10\}=C\{n, 7\} \operatorname{den}\left[C\{n, 7\} \alpha_{C}(n, 8)\right]$ by (3.1) of [8] and $\left.{ }^{*}\right)$ is satisfied. This follows from elementary but routine calculation using (1.16) of [8]. Hence we have

Proposition 2.25. If $n \equiv 10,12,14 \bmod \left(2^{4}\right), 18,20,22 \bmod \left(2^{5}\right), 6,34$, $36 \bmod \left(2^{6}\right)$ or $102 \bmod \left(2^{7}\right)$, then $\pi_{2 n+19}^{S C}\left(S^{2 n}\right)$ contains a cyclic subgroup of the order $\operatorname{den}\left[\frac{1}{2} C\{n, 7\} \cdot \operatorname{den}\left[C\{n, 7\} \alpha_{C}(n, 8)\right] \cdot \alpha_{C}(n, 10)\right]$.

Recall that $G_{21}=Z_{2}\{\eta \bar{\kappa}\} \oplus Z_{2}\left\{\sigma^{3}\right\}$ from [6]. By (1.2) and (2.17) we have
Proposition 2.26. If $n \equiv 4 \bmod (8)$, then $\pi_{4 n+19}^{S H}\left(S^{4 n-2}\right)$ contains σ^{3}.
Since $p_{m, 1}^{c}=(m-1) \eta$, by (2.26) we have
Proposition 2.27. If $n \equiv 7 \bmod (16)$, then $\pi_{2 n+21}^{S C}\left(S^{2 n}\right)=G_{21}$.
Recall that $G_{22}=Z_{2}\{\varepsilon \kappa\} \oplus Z_{2}\{\nu \bar{\sigma}\}$ from [6]. Since $p_{m, 1}^{H}=(m-1) g_{\infty}$, by (1.2) and (2.7) we have

Proposition 2.28. $\pi_{4 n+19}^{S F}\left(S^{4 n-3}\right)$ is equal to G_{22} if $n \equiv 3 \bmod (4)$, and contains $Z_{2}\{\varepsilon \kappa\}$ if $n \equiv 2 \bmod (4)$ or $Z_{2}\{\nu \bar{\sigma}\}$ if n is odd.

Osaka City University

References

[1] J.F. Adams: On the groups $J(X)$-IV, Topology 5 (1966), 21-71.
[2] J.F. Adams and G. Walker: Complex Stiefel maniflolds, Proc. Camb. Phil. Soc. 61 (1965), 81-103.
[3] M.F. Atiyah: Thom complexes, Proc. London Math. Soc. 11 (1961), 291-310.
[4] M. Fujii: K_{0}-groups of projective spaces, Osaka J. Math. 4 (1967), 141-149.
[5] I.M. James: Spaces associated with Stiefel manifolds, Proc. London Math. Soc. 9 (1959), 115-140.
[6] M. Mimura: On the generalized Hopf homomorphism and the higher composition. Part II. $\pi_{n+i}\left(S^{n}\right)$ for $i=21$ and 22, J. Math. Kyoto Univ. 4 (1965), 301-326.
[7] H. Ōshima: On F-projective homotopy of spheres, Osaka J. Math. 14 (1977), 179-189.
[8] H. Ōshima: On stable James numbers of stunted complex or quaternionic projective spaces, Osaka J. Math. 16 (1979), 479-504.
[9] D. Randall: F-projective homotopy and F-projective stable stems, Duke Math. J. 42 (1975), 99-104.
[10] F. Sigrist and U. Suter: Cross-sections of symplectic Stiefel manifolds, Trans. Amer. Math. Soc. 184 (1973), 247-259.
[11] H. Toda: Composition methods in homotopy groups of spheres, Ann. of Math. Studies 49, Princeton 1962.

[^0]: *) Recently in his dissertation, R.E. Snow has determined the C-projectivity of the 2-components for the stems less than or equal to 15 .

