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In [1] we descussed general properties of T-cohomology theories. One
of the basic tools in studying a 7-cohomology theory is the forgetful exact
sequences which form a natural exact couple. Hence it provides a natural
spectral sequence which we call the forgetful spectral sequences. An analysis
of this spectral sequence will provide a deeper insight to the structure of the
forgetful exact sequence, which we do for MR*'*(pt) in a forth-coming work.
These spectral sequences arc used partly by Landweber [4] for MR**(pt)
and by Seymour [9] for KR**(X).

In the present work we study basic properties of these spectral sequences.
In §1 we study elementary properties of them and show that a forgetful spec-
tral sequence converges to the fixed-point cohomology under certain conditions
(Theorem 1.14 and Proposition 1.16). In §2 we see that they have analogies
with Bockstein spectral sequences with respect to differentials. In §3 we
discuss periodicities which come essentially from Clifford modules. In §4 we
study multiplicative properties of them for multiplicative T-cohomology theories.

1. Definitions and elementary properties
In the present work every T-cohomology theory is considered on pairs of
finite T-complexes for the sake of simplicity. Notations and terminologies of

[1] are used freely.
Let A** be a T-cohomology theory. There holds the following exact

SC(]UCUCC
X ¥ 5
e (X, A) S B (X, A) > kX, ) > B, A) - e

called the forgetful exact sequence, for any pair (X, A) of finite T-complexes [1],
(5.1). Set

Dt = h"(X, A), E{*=yh**(X, 4),

i, = X: Dp1— Dy g = DYt — EDY,

k= §: Ep?— Dy bott,
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We get a bigraded exact couple
<D>1k'*) E;lk'*’ il:jl: k1>’ D>1k'* = 2 Dll)'q’ ET'* = pz Eg‘q 4
0,1 7

in the sense of Massey [7], which yields a bigraded spectral sequence E¥*
=>1E»% r=1, in the standard way. This will be called the forgetful spectral
b9

sequence associated with A**(X, 4). To make the meaning of bigrading of
E¥* more precise, we remark that we are rather regarding as

EPt = h7(S'x X, S"Ox A)
which is identified with the above setting through the isomorphism
h?y(STOx X, SYOX A) =~ ph** (X, A)

([1], (3.3)). The forgetful spectral sequence is natural with respect to (X, 4)
because of the naturality of the forgetful exact sequence. The forgetful spectral
sequence associated with MR*'*(pt) was partially discussed by Landweber [4]

and will be completely computed in a forth-coming paper of the author.
Put

Dyt = Im[X: h?~09(X, A) — h*Y X, A)]
for r=2 as usual. Then
(DF*, B¥*3 i, j, k>, DF* = S1DI, Bf* = STE!,
r=2, are successive derived couples. Since
deg i = (1, 0), degj, = (0, 0) and deg %k, = (—1,1).
we see that
degi, = (1, 0), degj, = (1—7,0) and degk, = (—1,1).

Hence the r-th differential of the spectral sequence is the following type of
homomorphism:

(L1) d,: BV Errent
The modules D?? give the following decreasing filtration
h?(X, A) = DP*DO DY DDIDO DI, D e
of (X, A). Put
(1.2) D&t = nDpe.

A non-zero clement of D% is called an element of infinite filtration of h*9(X, /).
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Thus A*%X, A) contains no elements of infinite filtration iff D%%= {0}. We
say that A**(X, A) contains no elements of infinite filtration iff 29X, A)
contains no elements of infinite filtration for every (p, ¢)€Z X Z.

Put

(1.3) K71 = Ker [X™: h»(X, A) - h**" 29X, A)]
for 1=7<co. We get an increasing sequence
{0} = KPcKpic---cKPicKifh - Chty(X, A).
We define
(1.4) Kt = UK.
Express
Ele = Z79 By

as the sub-quotient of E?*%, 1<r<oco. Then

(1.5) Z09 = kT'D27be! and B = j Kb
for 1<r< oo, as is well-known (e.g., cf., [6], p. 336, (5.4)).
Put

(1.6) Z%' = NZ%»* and B%'= UB)?.

Or equivalently,
(1.6") Z%% = ky'DE7bett and BLY =5, K20,
We define the E..-term by

E%* = %Eﬂ:", E% = ZL9B%e .

Observe the homomorphism
Ji: Dp1— Ep9.
By (1.6') we see that
nDiczZiiczZyy, I=r<oo.

Since Ker j,=D%", we see by (1.5) and (1.6") that

JTiBl? = Db K, Isr=so0,
Thus j, induces injections

(1.7) l,: DY (DY 4-KP)CZL B C E?



176 S. ARAKI
for 1ISrL 0.

Remark 1.8. If h?~%9*(X, 4) contains no elements of infinite filtration,
then Z%’=Ker k=1Im j, by (1.6'), whence /.. becomes an isomorphism in deg (p,
9)-

We shall see that E%? is related with the direct limit li_r)n {r(X, 4), X}.

Let '
k=K, ,: WYX, A)— li_r)n R(X, A)
be the canonical map and put s
(1.9) Frt=1Imck,,.
We get an increasing filtration
we. CFPOC FrHbac ...
of liin kX, A) such that L;’JF"'q—_-l_i_r)n h*%(X, A). By definitions we see that
/cl,’q:sD’{"’—>FM is surjective and Ker /c:,,quﬁ;". That is, we get an isomorphism
Dy YKL i~F?e
induced by «, ,. Let
Q(Iifn (X, 4)) = ;} FrajFs-ta

be the bigraded module associated with th;: filtration (1.9) of ligl h¥(X, 4)
=Z1] lin (X, A). Since the diagram s

Dje Kp.a
x\ lim hS,Q(X’ A)
Di-vi Kp-14 ¢
is commutative, we get an isomorphism
(1.10) B, 2 DY (DY A4 KL ) ~Fri|Fr=t1

induced by «, ,.

Composing (1.10) with (1.7) for r=co and making use of Remark 1.8 we
obtain

Proposition 1.11. The E.-term of the forgetful spectral sequence associated
with h**(X, A) contains the bigraded module G(lim h**(X, A)) as a bigraded
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submodule. If h**(X, A) contains no elements of infinite filtration, then there
holds the bigraded isomorphism EX*~ G(lim h**(X, A)).

When the forgetful cohomology theory yrA* is connective, the forgetful spec-
tral sequence behaves more conveniently for applications.

Lemma 1.12. If the forgetful cohomology theory ~yh* is comnective, then
1§ induces an isomorphism

lin hi(X, A) ~ oh'(¢pX, pA)
for every q=Z. :
Proof. In the exact sequence of A** for the triple (X, ¢X U4, A4),
(X, pX UA) =~ I (X/(pX UA)) =~ 0
for large s since X/(¢pX U A4) is almost free, [1], Lemma 5.3; and
K (pX UA, A) = h'(¢pX, ¢pA)
by excision isomorphism. Hence
ik (X, A) = B(pX, pA)
is isomorphic for large s, and
l_irén (X, 4)~ Iin B (pX, pA)

for all g=Z, in which the right hand side is the same as ¢h’(¢pX, pA4) by the
definition of the fixed-point cohomology theory ¢h*, [1], (4.4). q.e.d.

Thus, when A* is connective, the filtration (1.9) in lim £*‘(X, 4) can be

regarded as a filtration in ¢h*(¢pX, ¢pA) by the above lemma and the associated
bigraded module G(ph*(pX, ¢pA)) is isomorphic to G(lim A**(X, A4)).
—_

Lemma 1.13. If the forgetful cohomology theory ~rh* 1is connective, then
there exists an integer ro=r(p, q)>0 for each (p, 9)EZ X Z such that

Kt~ Ky~ -~ KB

Proof. +h?*9(X, A)~0 for large p. Hence, by the forgetful exact
sequence X: A”Y(X, A)—h?t>1(X, A) is isomorphic for large p, which shows
the lemma.

By Proposition 1.11 and Lemmas 1.12 and 1.13 we obtain
Theorem 1.14. Let h** be a T-cohomology theory such that the forgetful



178 S. ARAKI

theory \rh* is connective, and (X, A) be a pair of finite T-complexes. 1) The E -term
of the forgetful spectral sequence associated with h**(X, A) contains the bigraded
module G(ph*(pX, pA)) as a bigraded submodule. If h**(X, A) contains no
elements of infinite filtration, then there holds the bigraded isomorphism E%*~
G(ph*(pX, pA)). ii) For each (p, Q) EZ X Z there exists an integer ro=r(p, q)>0
suchfthat

Bl ~ Br%y ~ - ~ BL'
and there holds the decreasing sequence
ElDEL, D DEL?.
When +rh* is connective, we get an inclusion
NEMDEL!
'>'0
for each (p, g)€Zx Z. And the convergence problem of the forgetful spectral
sequence becomes to find conditions which makes the above inclusion an actual

isomorphism. Our spectral sequence is called finitely convergent if there exists
an integer r,=7,(p, q) >0 for each (p, ) Z x Z such that

0 a B2 A e ~ EP
Eflq -~ Eglqﬂ ~ e~ B
The finite convergence is of course the convergence in the strongest sense.

Lemma 1.15. If Vh* and ¢ph* are of finite type, and if ph* is connective,
then h*Y(X, A) is finitely generated for any (p, Q) EZXZ and any pair (X, A) of
finite T-complexes.

Proof. Recall that a cohomology theory k* is of finite type iff £"(pt) is finitely
generated for every integer n. 'Then, by induction on dim Y we see that X*(Y, B)
is finitely generated for any integer n and any pair (Y, B) of finite CIW-complexes.

Now, F: h*(X, A)~¢ph'(¢pX, ¢pA) for large p (cf., the proof of Lemma
1.12), which is finitely generated. Making use of the forgetful exact sequence
and the fact that 2" (X, A) is finitely generated, an induction on p in decending
order completes the proof.

We remark that the above lemma can be applied to SR** and MR**,

Proposition 1.16. The foregiful spectral sequence associated with MR**
(X, A) is finitely convergent.

Proof. Im X=D?%? consists of elements of order 2 by [1], Corollary
12.13. Hence it is a finite group for every (p, ¢ EZ X Z by the above lemma,
and the sequence
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D} Dyt DD

becomes stationary after a finite step, which, combined with (1.5) and Theorem
1.14, implies the proposition. q.e.d.

The forgetful spectral sequence associated with MR**(X, 4) converges to
MO*(¢pX, $pA) if MR**(X, A) contains no elements of infinite filtration.
This assumption is true in case (X, 4)=pt. But we have no good general charac-
terization for vanishing of elements of infinite filtration at the moment.

2. Differentials

In this section we will see an analogy between forgetful and Bockstein
spectral sequences with respect to differentials. In a Bockstein spectral sequence
successive differentials are related to higher Bockstein operations. Similar
phenomena can be found also in forgetful spectral sequences.

Let h** be a 7-cohomology theory. All discussions in the present work
is valid for any pair (X, A4) of finite T-complexes unless otherwise stated. But
we discuss mainly for a finite T-complex X to simplify notations. The readers
may replace X by (X, A4), whereby X, by X/4 of course.

The smash product of the 7-cofibration

(21) S;O _L"_) Br 0 Br O/Sr 0 zr 0

with X, induces the exact sequence

*

%k
- PSRN KL) o B A X L) — B(STAXY)
8F .
—_ h[”Hl(E"O/\X.,_) — e

for each integer r>0. Here

(SN X L) = h*(S7°x X)),
A(SON X ) ~ B (X))

by o”*’-suspension isomorphism, and

”P(BLONX L) ~ k(X))
since B"? is T-contractible. 'Thus we get the following exact sequence
(2.2) ee —> h”"’q(X) — h? q(X) —_— q(Sf OXX) — Ly ppn q+l(X)

for each r>0. Particularly when r=1. (2.2) gives our fundamental exact couple
to define forgetful spectral sequence, i.e.,
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(2.3) oy =1d, Bi=7j and & = k.

Identify B} °=BY°A B "% and 3"'=3" A" for r > 1, then n,=n, Am,_;,
which implies that a,=a,0a,_,. Thus, inductively on 7, we see that

(2.4) a, = 17: k(X)) — (X)) .
Therefore
Drt=1Im q,., and K?»?= Ker a,_,
and, by (1.5)
(24) Z»1 = k'(Im a,_,) and B} = j(Ker a,.,).
Let
v, B"°C B

be the 7-inclusion such that v, (¢;,:-,%,)=(t,, :**, 1,,0, -+, 0) for 0<r=<s, which
is an inclusion (B, §™% C (B>’ S*° or T-pairs and hence induces 7-inclusions

(2.6) 7,50 S”CS™ and ¢, ZM0CEM
by restrictions and passing to quotients. 'The commutative diagram

Lr 7rf

S",O —_— B",O —_ Z",O
2.7 171,,5 l%,s lgr,s

g0 ey pro To soe
induces a commutative diagram involving the exact sequences
(2.2) for r and s. Here

vks =id|h"Y(X)

since B”® and B"° are T-contractible, where v¥,=(v, ,A1)*. &, can be fac-

torized as the composition of the sequence

1/\70'5—7 1/\77:3-—1'
—_—>

27.0 — 27,0/\ Bg,o ET,OABi—r,O ~ > Es'o .

Thus we see that
(2.8) Fo= oy, = i7" (X)) — Wera(X)

Thereby no troubles arise from permutations of parameters because of [1],
Proposition 4.2. Now we get the following commutative diagram:

s s 85
—> hl’—S:q(X) i, hp.q(X) - B > hﬁ»q(Ss»OXX) > hﬁ-s,q—i—l(X) —
(2.9) i }f . vt it~

> WP T(X) =2 (X ) D (ST X) o H(X) -
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for 0<r<s.
In particular, putting r=1 and replacing s by 7, we get the following com-
mutative diagram:

— fppn “(X) I, p "(X) — pPy(STOx X) —> he7r ety X) —

(2.10) lz, b ' , lm.r 5 it
L ppta 1, Die ) > Eb _a Di-verl s

(2.10) yields the following commutative diagram:

Ja(S70 % X) 0 porasi(x) L0 prenarysros x)

(2.10") lni“,r - H - 7t
(31 | J1

Eba 1, Di-Latl Di-rart > Ep-ratl
on one hand. Chasing the diagram (2.10) we see easily that
(2.11) Im 7f, = Z)¢

on the other hand. Hence, passing to sub-quotient of range, »¥, induces an
epimorphism

(2.12) At hP9(SP0x X) = Eba

for r>0. (2.10") and (2.12) imply the following commutative diagram

S, ;
(S0 X)), pmragro x)
(2.13) I, \ i [

Ej;,q #A_'_> Df 1,g+1 ]r > E.b r,q+1

for >0, where vertical maps are all epimorphic. As to the corresponding
diagram of Bockstein spectral sequences we refer to [2], Proposition 11.1.
Obviously

77:!<,t = ’7>rk.s°77§<.t

for 0<r=<s=<t. Since Ker d,=Z0%/B>? and A,on¥,,, is induced from 7»¥,,,
(2.11) implies that

(2.14) Ker d, = Im (\,0nF, 1)
for r>0.

To discuss further relations we need some preparations. Let (X, 4) and
(Y, B) be compact 7-pairs. As quotient spaces of X UXXIx YUY, routine
checks of identifying relations show the following equalities of T-spaces:
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(2.15) X*Y|(A*Y UX%B) = (X[A)AZ*'A(Y|B),
(2.16) (X*Y)/(X*B) = (C(X )/ X)\(Y/B),
where “+”’ denote unreduced joins. These relations are well-known in non-

equivariant case. Particularly when B=¢, we get
(2.16%) X*xY/X = (C(XL)/X)N(Y,)
from (2.16) because X*¢p=2X.
Proposition 2.17. There holds the T-homeomorphism
Sre0/8r0 ~ 3Ir(S%°)
for r>0 and s> 0.

Proof. Identify S"%S%°=S"**° by the corresopndence “(x, t, y)> ('t «,

V1—ty)’, 28 ye 8+, 0<t<1, and C(S7°)=B"° so that cone-parameters
correspond to radial lengths. Then we get the proposition from (2.16"). q.e.d.

The T-homeomorphism (2.17) may be given by the correspondence

(2.17") (%, ¥) = (%, (llyl1)y)
for (.X', y)ES'+s'0, x:(xh oty xy) and _y:(ylw "',ys)'
Let X be a finite T-complex. The cofibration

0 7]r Jts §r+s s

Sr Sr+s ,0 Sr+s O/Sr 0 ~ zr O(Ss 0)

smashed with X, induces the following exact sequence

ET—* s,s
e —> hP—f,q(Ss,OxX) ] hp,q(Sr+s,0><X)

(2.18) 5.

¥ r+sh1, q(Sr °><X)-——-)hp rq+1(Ss °><X) ,
where
(2.18') By et BPI(S™OX X) — BPHro(STH0% X)

is the composition of the following sequence

hP(SHOX X) = hPI(S$AX )
7,0
T (S A XL ~ (TSN X,) by (2.17)

gf SS/\
( + ) hp+r q(SHs 0/\X ) — hp+r,q(Sr+s,0><X) s

and
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(2.18) 5,5 HH(S™0x X) — b= ari(§205¢ X)
is the composition of the sequence

hP9(S7Ox X) = hr(STONX )

N ~
—_— hl),q+1(Sr+s,0/Sr,0/\X_'_) ~ hp.qfl—l(zr,O(Si.O)/\X+) by (2‘17)
-7,0

ag h‘p—y,q+l(Si.0/\X+) — hp—r,q+1(Ss,0><X) X
The projection B"**°—B"? to the first  coordinates induces the following
commutative diagram:

’7r ,7ts Er+s ,$

SH—s »0 Sr+s O/Sr 0~ Er O(SS 0)

Ll | s
7, 30!
Sr 0__) Br 0______> Zr 06—————2' O(Bs 0)

where z’: B5°—>3%0 is the T-homotopy equivalence and =/, is T-equivalent to
ty+, through the 7-homotopy equivalence B"°=_B’**° The commutativity of
the right square follows from (2.17’). Hence it induces the following commuta-
tive diagram:

—> hﬁ 75 q(X) _, ht q(X) _&, he q(Sr OXX) —————-)h" s q+l(X)
(2.19) 1,8 - lﬁm o H 5., L@s
— W79 A) = kY(B) ——> b 9(S™Ox X)-—> b7 (4) —

where A=S8""x X, B=S""""x X, £*=E¥, , n*=n¥,,, for simplicity, and the
horizontal sequences are exact sequences (2.2) and (2.18).

Proposition 2.20. Z)'=Ker §,_, ; and B}'*=Im §, ,_, for r>1.

Proof. Replace (r, s) by (1, 7—1) in the diagram (2.19). By (2.3) and (2.4)
we see that

8r—1,1 = Br—-logl = ﬁr—lokl
up to signs and
Z01 = ki(Im «a,_,) = Ker (B8,-,0k) = Ker §,_, ;.
Next, replace (r, s) by (r—1, 1) in the diagram (2.19). Then

81,r—~1 = (108, :.i1°3r—1
and
Blr¢ = j(Ker a,-;) = Im (j,068,-,)) = Im §, ,_, . q.e.d.

(2.19) for s=1, combined with (2.13), implies the following commutative
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diagram:

B §70% X) s e ppnen
Eg,q . r > Ef—r,q»H. ,

where p, is the canonical projection, which will be used in the next section.

3. Periodicities

As usual, a map
(3.1) p: R*XR"—R"

is called an orthogonal multiplication iff g is bilinear and norm-preserving,
i.e., ||u(x, ¥)||=|lx||-]|y|| for any x&R* and y&R". The orthogonal multiplica-
tion (3.1) will be called to be of #ype (k, n). As is well-known, an orthogonal
multiplication of type (k, n) exists iff R" becomes a C,.,-mcdule, where C,
denotes the Clifford algebra generated by R* with a negative definite quadratic
form and Cy=R. Hence it exists iff » is a multiple of a,, where a4,=2¢*"1,
@(k)=the number of integers s such that 0<s<k and s=0,1,2 or 4 mod 8. (Cf,,
e.g. [3]).

Let o be an orthogonal multiplication of type (k, n). Denote u(x, y)=xy
for simplicity and define a map

Wy, R¥OX R"® — R¥O% R™"
by o, ,(*,y)=(x,xy). Then w,, is a T-map and induces a T-homeomorphism
(denoted by the same letter)
(3.2) gt SPOX (B0, S™0) ~ SOy (B, SO%)

of T-pairs by restricting domain and range, which is called a periodicity map of
type (k, n).

Let h** be a T-cohomology theory and X a finite 7-complex. The 7-
homeomorphism (3.2) induces the isomorphism

3.3) w¥ ]1P'4(Sk'°><X) ~ hp-n,q+n(Sk.oXX)

for any (p, g)€Z X Z as the composition of the following sequence of isomor-
phisms:

0,n
hp,q(Sk,o X X)O—% hp,q—Ht(Sk.OX (BO,n’ So.n) X X)
n /\ 1 *
((Dk, %) hp,q+n(SIz.0>< (Bn,O’ Sn.O) % X)

-n,0

a
~ hpmen(Shox X)
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The isomorphism (3.3) is of course natural with respect to X, and hence we
may regard it as a kind of periodicity. Since a, is the minimal # for a fixed k&
such that w, , is defined, we obtain

Proposition 3.4. 7** with coefficients S*° admits a periodic isomorphism
of period (—a,, a,) for any T-cohomology theory h**.

Let 7 and s be positive integers and
Wypst ST (B, S™0) = STH0x (B¥", §O7)
be a periodicity map of type (r+s,7n). Let
Sr0c S0 and S0 .Srts0

be T-inclusions to the first » and last s coordinates rcspectively. By restricting
®,+, we get induced periodicity maps

w,: Sr,OX(Bn.O, Sn.O) ~ Sr.OX(BO,n, SO.n)
and
: Ss.OX(Bn.D, Sn.()) ~ SS'OX(BO'”, SO,n)

respectively. The cofibration S%°C.S3*%—S7+0/8"° smashed with =*° and
3%#, yields the following commutative diagram:

S:.O/\En.o —> S:_—!s,()/\zn.o > (Srw‘—s,O/Sr,O)/\zn,o
lwr Wy s o’

SZ.'O/\ZO'" — S:—Fs,O/\ Zo.n — (SH—s,O/Sr.O)/\zr,O ,

where o’ is the induced 7-homeomorphism. Replace S7*+°/S"° by Z"%(S%),
Proposition 2.17. Then o’ will be replaced by the 7-homeomorphism

o ZP(SYOYAZM = ZP(STO)AZ.
Lemma 3.5. o= 3",
Proof. Indentify
Sr(S5°) = (S™OX IX.S%S"Ox 1 x ¥ U, S°,
where 7,0 S7°%0x S-S0 is the projection. Then o” is given by
(@ 1, 2), 9) = (@ 1, ), (V T,V I=E 0)y),
ueS™, vesS’ 0=<r=1, and ye="° Define a T-homotopy

Qg1 STOXIX 890X (B, §™%) — §"0X I X S*°X (B*", §"")
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by Q4((%, £, ©), ¥)=((1, t, v), (Vt0u,/1—10 v)y), 0<O=<1. Since Qy(S"°X 1
X §%0x B*) C S™0x 1 X §%°x B**, passing to quotients we get a 7-homotopy
Qo: (Sr.OXIX Ss,O/Sr,OX 1 X Ss,O)/\En,O — (Sr'OX IX Ss,O/Sr,OX 1 X Ss,O)/\ZO,n ,

0<0=<1. 0,|S8"°x0xS*°x Z*° does not depend on € and transforms to w,
through projection zyx 1. Thus, putting w;=0, U ,,x; », We get a T-homotopy

w(): Er,O(S.i.O)/\En,O _— Z”“(Si“’)/\E"'” ,
0=<6=<1. By construction we see easily that
w, = 2%, and o, = o’ q.e.d.

By the above lemma we get the following 7-homotopy-commutative
diagram of cofibrations:

S:_o/\zn,o s S:}s,()/\zn,() > Er,O(Si,O)/\En,O
lco, Dyt s 2o,

STONZ - SPeOATE > ZrYSTO)AZ" .
Thus we get
Proposition 3.6. Let
Wyps gt STHOX (B0, §0) &~ S7F0x (B"S%")
be a periodicity map of type (r-+s, n), and

mr,n: Sr.OX(Bn,O’ Su,O) ~ Sr,OX(BO,n’ SO,n)’
ms,”: SS'OX(B”'O, Sn,O) ~ SS’UX(BU'”, So.n)

be periodicity maps defined by restricting , . ,, i.e., 0, ;=4 ,| SO X (B"°, §™°)
and o, /=, ,|S"°X(B"°, S™°). Then homomorphisms in the exact sequence (2.18)
commute with periodicity isomorphisms wf¥,, ¥, and o}, up to signs.

The signs in the above proposition come from permutations of suspension
parameters and depend only on 7, s and #.
Let

(3.7) w: SI,OX(BH,O, Sﬂ.U) ~ SI,OX(BO,n, So,ﬂ)
be the periodicity map defined by
(3.7) o(—1, x) = (—1,x) and (1, x) = (1, —x),

xEB", which is defined for all #>1 and will be called the canonical periodicity
map of type (1, n).
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Let
wln: SI,OX(Bn,O’ Sn,O) ~ SI,OX(BO,n’ So.n)

be an arbitrary periodicity map of type (1, 7). Since w,, is defined by making
use of an orthogonal multiplication, we see that the assignment “xi—r,00; ,
(1, x)”’, x=R", is an orthogonal map, where z,: S**X R"—R" is the 2-nd pro-
jection. Hence there exists A=0(n) such that w, ,(—1, x)=(—1, x4) for all
x*€B". Then o, ,(1, x)=(1, —x4) by bilinearlity. Thus we get the following
commutative diagram of 7-homeomorphisms:

® Sl,OX(BO.n’ So,n)
Sl.OX(Bn,O, Sn,O) f llXA
Sl,oX(BO,n’ SO.n)’

which implies that
¥, = (det A)oo* .
And we obtain

Proposition 3.8. Every periodicity isomorphism oF, coincides to each other
up to +1 times for the same n.

In the sense of this proposition we may regard that of, is essentially
unique.

Take an integer »>0. Let w,, be a periodicity map of type (7, n), and
o’ and o” be periodicity maps of types (1,7) and (r—1, n) respectively induced
by w,, restricted. By Proposition 3.6 we get the (up to signs) commutative
diagram

r—-1,1

)
hﬁ.q(Sl,oxX) —_ hp—l,q+l(Sr—1,0XX)
o g Ao
r—1

k”—”’“”(Sl’OXX) ;1 hp—n—l.q+n+l(Sr—l,0><X) ,
which implies that
w'*: 20~ Zmatn
by Proposition 2.20. Similarly we get the commutative diagram

81 r—1

hq-q(Sr-l.Ox X) s hp—r+1,q+1(S1,oX X)
2 o* N w’™

hp—n,q-l—n(Sr—l.OXX) 81":1 hp—n—r+1,q+n+1(S1,oXX) ,

which implies that



188 S. ARAKI
w'*: qu ~ Blr)—n,q-l—n

by Proposition 2.20. Now, passing to quotients we get an induced periodic
isomorphism

(3.9) WF . EDt a Bbmein

which is unique up to -1 times by Proposition 3.8. Note that (3.9) is essentially
induced by w,, so that we denoted it by w,.

The above periodicity map o,, induces a periodicity map of type (s, n) by
restriction for 0 <s=<7 and hence gives rise to a periodic isomorphism

(3.9) ofu: BLt ~ Binets

for 0 <s=<r, which is denoted also by ¥ ,.
Using a periodicity map of type (r, a,) we obtain

Theorem 3.10. Let h** be a T-cohomology theory and X a finite -
complex. In the forgetful spectral sequence associated with h* *(X) there holds
a periodic isomorphism

w,: B0t Bi-orare

of period (—a,, a,) for each r, 0<r<oo, and any (p, Q)Zx Z. This isomor-
phism is unique up to 41 times and natural with respect to X.

Remark that the epimorphism \,, (2.12), is induced by »¥, and hence
commutes with ¥, by Proposition 3.6.

Next, all maps in the diagram (2.21) except d, commute up to signs with
periodic isomorphisms induced by a periodicity map of type (r-+1, #). Since
A, and p, are surjective in (2.21), it follows that d, commutes also with such a
periodic isomorphism up to signs 4-1. Thus we obtain

Theorem 3.11. Let w,,,, be a periodicity map of type (r+1,n). In the
forgetful spectral sequence associated with h**(X), let of,.,: EVi~E?™™" he
the induced periodic isomorphism. Then the following diagram is commutative up
to 41 times:

d,
Egrll AN Ef—r,q—kl
U w;l: 1. U Q);k—u,n
Eﬁ-ﬂ.q%‘n ri Eﬁ—n—r_q inil .

In particular, the periodic isomorphism

5k « Fha P—a, , ,q-a
C‘)r+1.a,+l- Er, ~Er rrt T+l

commutes with d, up to sign +1.
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Let , ,, and w, , be periodicity maps of types (1, m) and (1, n) respectively.
w; 5 X @ ,, restricted to the diagonal of S™*x .S gives a periodicity map
@) w1y  Obviously we can decompose as

C‘)l,m-i-n = (c"l,m X 1)0(1 X O)l,n) ’
which implies that
(312) wik,m-m = :*:wik.mowik.n

because p=—1 on A**(S"°x X), [1], Proposition 3.6. (3.12) and Proposition
3.8 imply that

Proposition 3.13. Let w,, be a periodicity map of type (r, n). Then the
induced periodic isomorphism ¥ ,: ELi~E>""*" s equal to an iterated composition
of @, up to +1 times.

4. Multiplicative structures

Here we discuss multiplicative properties of forgetful spectral sequences.

Let A** be a multiplicative T-cohomology theory, [1], §6, and X and ¥
be finite T-complexes. Let

w: B X)Qh T (Y) — kv (X x Y)

be the multiplication in A**, (p, q, p/, ¢)EZXZXZ X Z, which determines
the following natural homomorphisms:

pP= p: DPX)QDY (V) — DI (X X V)

= (@ x )*ou: EP(X)QEL (V) — Ei*" (X X Y),
p' = p: EP(X)QDY (YY) — Bt v (X X Y),

p’'= p: DP(X)QEY Y (Y) - E{H (X X Y)

after obvious identifications by switching maps, where d: S"°CS"*x .S"? is the

diagonal inclusion.
First we observe the relations of these pairings with 7;, j, and &,. By [1],
(6.4), we obtain the relations

(4.1) LopP(x®y) = pP(Lx®y) = p’(x®uYy) .
Let 7: S}°—>3%° be the map to collapse S*°to 0. The commutative diagrams,
SYOASY? STOASYe
d/ ) Al a7 1 NAA7Z

Si.O 3 20,0/\S_1;0 — Si.ﬁ’ Si,() S.IF,O/\ 20,0 —_ SL.O s

imply the following relations
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p (xQy) = m(*®J1y) ,
p’(x®y) = wm(j1*®Y) -

And the naturality of x implies the relations

4.2)

(#.2) JienP(x®y) = p'(jx®y) = p" (%@ j1y) -

By naturality of x and the relations of x with suspensions, [1], §6, M3), a routine
diagram implies the relation

(4.3) Rop/(xQy) = pP(hix@y) .

And, by a parallel diagram we see that kop/(x®y) and pP(x®k,y) coincide
except the sign (—p)? for x&€DPY(X). But p=—1 on E¥F*(Y)=hr**(S"°
X Y), [1], Proposition 3.6, and hence we get the relation

(#.3) kop"(x®@y) = pP(x@kyy) .
(4.2) and (4.2’) imply relations
(#4)  m(w®hy) = p"(x®5,y) = W (1x®Yy) = jron’(*®) .

In particular, j,: D¥*—E¥* is multipliative, which is but already observed in
[1], §6.
(4.1) implies that

(#5) pPE % @i y) = 17 o uP(x Q)
for >0 and s>0. Hence we get homomorphisms
(4.5) ul: DPY(X)QDY(Y) — DE 1 (XX Y)

by restricting u®. Off course u? = pu”.

(4.3) and (4.3’) imply that
W (ZPAX)®DY - (Y)) C 24+ (XX Y),
p(DPA(X)QZY (V)22 (X x V).

Next, let x&B?%X) and yeD?¥(Y). Express as x=j/, ii ’=0 by (1.5).
Then

(4.6)

#'(x@y) = jion" (¥ ®y)
by (4.2'), and
il p? (¥ @) = (i W Ry) = 0.

Thus p/(x®y)e Bt +¢(Xx Y) by (1.5). Furthermore, if s>1 then j ou®(x’
Qy)=p"(x'Rj,¥)=0. And we get
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(4.6') W (Br(X)@DY - (Y)) B (X< Y),
w (B2 X)QD! 4 (Y)=0 for s>1.

Similarly we get
(4.6”) w/(DI(X)@BY ¢ (Y))C By (XX Y),

' p(DP(X)QB (V) =0 for r>1.

By (4.6), (4.6’) and (4.6”), p’ and p”” indue homomorphisms

(4.7) phet EP(X)QDL 0 (Y) > ERILE (XX Y),

' pils: DPAX)QEL(Y) — ERLf (XX Y)

by passing to sub-quotients.
Observe ul1, pl,, ul, and wi/, by (4.5) and (4.7), then we obtain

Proposition 4.8. D¥* and E¥* are functors of bilateral bigraded h* *-
modules.

By definitions, (4.1) and (4.2"), we see easily the relations
jrol‘l‘llf).l(x®y) == /‘l”/nl(]r'x®y) )
Jeonls(x®y) = pil(x®jv).

And, (4.3) and (4.3’) imply

kr+s—-1°/~(1;.s(x®y) = /Lf.s(er®y) y

kr+s--1°ﬂ'£./s(x®y) == ﬂ?.s(x@ksy) .

Then, (4.9) and (4.10) yield

dyoop! 1(xQy) = pra(dxQy),
dopll(x®y) = pi/(xQd,y) .

By (4.1), (4.9), (4.10) and (4.11) we obtain

(4.9)

(4.10)

(4.11)

Proposition 4.12. i, j,, k, and d, are homomorphisms of bilateral h* *-
modules.

Corollary 4.13. The forgeftul spectral sequences are spectral sequences of
bilateral W*'*-modules whenever h** is multiplicative.

Before going into discussions of multiplications in the forgetful spectral
sequences we need to prepare an involution in each spectral sequence arising

from its structurc.
Let 7: S¥*—S8%° be the involution of S"°. Since 7is a T-map we have an

induced homomorphism
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(Tx 1)*: Ep?— EP?
for each (p, 9)€Z X Z. Put
(4.14) (Tx1)*x ==

for each xET?. Clearly, the map “x+— %" is involutive.

Let z: S>3 be the T-map to collapse S*® to 0. The commutativity
of the following diagram

Syt =
l'T \ 20.0
A
implies
(4.15) R=ux whenever x&Im j,.

The involution of the pair (B, S"°) is also a 7-map. Then the naturality
of the connecting morphisms and A4) of [1], §2, imply that

k& = pokx .
On the otherhand, %, is a A-module map, whence
pokix = ky(pox) = ky(—x) .
Hence
(4.16) k(x+x) =0

for any x E{.

The present involution of E{? induces involutions of E7'7 for all »>1.
However,

Ny 0T ==, 1y,
for r>1 by a rotation is S™°. Hence, by (2.11),
(4.17) X=ux whenever x&Z'* and r>1.
Therefore the involutions induced into higher terms are trivial, i.e.,
(4.18) =x  forx€Eriwithr>1.

The following proposition shows that the condition [u,], #=1, of Massey
[8] is satisfied in our spectral sequence.

Proposition 4.19. Let x&Z?Y(X), yeZ! 7 (V) and 1<r< . There exist
elements ac D! (X)), be DY "+ (Y) and c€ D~ XX Y) such that
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kix=1]"Y(a), kyy=11"%b) and kyou,(xQy)=1i1"Y(c), and satisyfing

Jie = p"(a®y)+(=1)* 0D p/(2R6) .

Once this proposition is established, the standard argument of [8] implies
that

m(ZP(X)QZL (V) CZi (X X Y),
(4.20) m(BP(X)QZE Y (Y))C B (XX V),
w(Z(X)QBY (V) B!t (X X V).
And g, induces the multiplication
(4.21) u,: EP(X)QEY (V) — Et+ (X ) Y)
by passing to quotients for every 1<r=< oo.

Now we go to discuss Proposition 4.19. Identify B*°x B»°=B**"° and
0B*4°=8+#°  Then we get the equality

SEOYSLIASYY) = ZOASLIVSLOAT
of T-spaces. Let
i SOASY SISO ASY)
and
i/ STOAZHC ST Y(SLOASE)
be the 7-inclusions to wedge summands. Then we get the direct sum de-
composition
(S5OSO NSY ) AW L)
= hed(ZONSYOAW ) DR ST AN AW )

induced by (1A 1)*D(77’ A1)*, where W=XXx Y. The following commutative
diagram of T-cofibrations
Bi.O/\Si.O — Eb,O/\Si.O
J \ l 1
S‘:O/\Si'o — S’i+b'0 — Si”'o/Si‘o/\Si'o
N 1 Ty
S« ABY0 — S0 A 30

imply the following commutative diagram
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Y iz'c.d+l(2a.0/\Bi.0/\ W+)
£ HEAD
I A(SEOASEOAW,) o FErdr((STHO[SEOA SEYAT,)
17
N A
ﬁc.d+l(S:.0/\2b.0/\ w.),
where A, ;, 8, and 8}’ are connecting morphisms of the corresponding T-cofibra-
tions, Thus
(4.22) A,y = (maN1)* 080D () AN1)*e8}
where
7[2: S?b'o/(si'b/\si'o) — 2”'0/\81'0
and
”£/: Si+b'°/(Sﬁ'°/\Si‘°) — Sz:L.O/\zb,o
are T-projections to collapse the other wedge summand.
Consider the multiplication
p bS50 X) @ (40X V) — h+atd (S0 S0 X X V).
By naturality and compatibility of p with suspensions, [1], §6, we see that

87 op(u®v) = p(S¥u@v),
8 op(u®0) = p’(—1)"'n(u@8Fv)

for ueh?9(S*°x X), where §*: h#9(S*0x X)—h? 1+ (2*°A X ) is the connecting
morphism.

Identify B °=B"?x .- X B, B***=B"°x B"® and $*"*=0B*"°, and let

d,: S¥Ox (B0, §7%)—> 810 (827, S0 S7°) be the T-map of T-pairs defined
by

(4.23)

A1, 1)= (1, t4|t| =1, t—[t| +1),
Jr('—ly t) == (_1) t— It"’_ly t'}—ltl—‘l);

where t=(t, -+, t,)EB", |t|=(|t], -+, |%,]), and 41 denotes (+1, -, £1)
in B”°.  The induced map of quotient spaces

SIOAZ = STOA(SYYSTOASY)

is also denoted by the same notation d,.
Let

By STOX ST — ST SO SO,
0=60=1, be the T-map defined by
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ho(l, t) - (1) t”f’altl”’e’ t'_'alt]—i_e) ’
ho(—1, &) = (—1, t—01t| +0, t+0t] —0)

for t=(t,, ---, t,)€S8"°*=0B"°, where 46 denotes (46, --+, +-6) in B»°. Then
hy, 06<1, gives a T-homotopy such that

hy = d,|S¥°x 8" and hy= 1xd,,
where d,: S°—S"°x S"° is the diagonal map. Hence
(4.24) ((d,| S¥°x S™)x 1)* = (1xd,x 1)*.
Let
¥ B4 (STOAW,) — et (SrOAW,),
5 BeA(SEOASTIAT.) — FA (S ASOA )
and
A, ,: B SYASTASTO AW L) = B (SEOA (ST ST AST)AWL)

be connecting morphisms of their corresponding 7-cofibrations. By naturality
of connecting morphisms we get the commutativities

(R ATAT)*8F = 8Fo(m ANTAT)*,
(T ATAD*eA, = A, o(x ATAT)¥,

where 7: S4°—>3%0 is the T-map to collapse S*?to 0. (4.24) implies the follow-
ing commutativity

(d,A1)%eR, , = S¥o(1Ad,A1)*.
Thus we get
(R ALAD* o8k o(d, A1)* = (d,A1)*o(x A1AT)*0A,,
on #4(Sy°ASY*AW.). Combining this equality with (4.22) we get

(rATAT)*o8¥o(d, A 1)*

(2 (oA Dod) AT)Fo8i- (et o AT)od) A1) o5

Lemma 4.26. 7} o(w A)od, =7 , A1,
7y o(m A)od, =(m ,0T) A1

after identifying ST N\Z'=3Z""ASL° by switching factors, where T 1is the
involution of S*°.

Proof. mlo(zAl)ed,: S AZO—->Z"A ST is the map:
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1, t)-
2t—1,1, -+, 1)  otherwise,

* 1f ;=20 for some 7, 1 <i<7,

(=L~
(2t+1, —1, .-, —1) otherwise,

{ if ;<0 for some 7, 1 <i<7,
I

where t=(t,, --+, t,)€B"°. Define a T-homotopy ¢!, 0=s<1, by

* if ;=< (s—1)/(s+1) for some 7, 1<i<7,
(t+s(t—1), 1, --+, 1)  otherwise,

* if t;=(1—s)/(s+1) for some 7, 1=<i<r,
(t+s(z+1), —1, ---, —1) othererwise.

pi(l, t) = {

P-11) = |

Then @j=nlo(z Al)ed, and pt=n2},, A1, where 7] ,(1)=(1, ---, 1) and 7{(—1)
=(—1, -+, —1), and »{,,=. 7, , since (—1, -+, —1) and (1, -+, 1) are antipodes
of S0,

wy' o(mAl)od,: SYOANZ0 — SO AZ" is the map:
* if £,=0 for some 7, 1 Zi<7,
(=1, -+, —1, 2t41) otherwise,
* if £,£0 for some 7, 1 <Zi<r,
(—'1) t) — .
(1, -+, 1, 2¢—1)  otherwise.

o |

Define a 7-homotopy @4/, 0<s<1, by
1. 4 {* if t,=(1—s)/(s+1) for some 7, I Si<7,
(Lo = (—1, -+, —1, t+s(t+1)) otherwise,
* if ;= (s—1)/(s+1) for some 7, 1<iZ7,
P (—1,1) = .
(1, -+, 1, t4s(z—1)) otherwise.

Then, @t’=(71,,oT)Al and @{'=r"o(x A\ 1)067,.. q.e.d.

Proof of Proposition 4.19. By (2.11) there exist elements u&h?(S™"x X)
and v€h?" ¢ (S x Y) such that 7¥,u=x and 7¥,0=y. Then

m(x®y) = (dx 1)*op(x®y)
() = (dx 1)*o(n; , X, , X 1)¥ou(u@v)
= 7¥,0(d, X 1)*op(uQ)

by naturality of 4 and the commutativity

(771,r>< 771,1)°d = dr°771,r .

Put
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a=20u,b=23v and ¢ = §,0(d, X 1)*ou(u®v).
Then
ky = 77 (a), kyy = ¢77}(b) and kjop(x®Qy) = i7Y(c)
by (2.10) and (x). Now
ji€) = (X 1 x 1)*o8,0(d, X 1) ¥on(u@e)
= o "%(r X 1 X 1)*e8¥o(d, X 1)*o u(u®9)
= o " (1Xn,,X1)*e8opu(Qv)
+07"%((n;,0T) X 1 X 1)*08; o p(u Q)

by (4.25) and (4.26). Here
(1 X 7]1,r>< 1)*0810#(74@‘0) = (1 X 771,7 X 1)*0/,1,(8?‘14@7))
= p"(§Fu@nt,0) = n'(FuR®y)
by (4.23) and naturality of . Similarly
(71,0T) X 1 X 1)*o8/ op(u@0) = (—1)P*u/(2Q8¥0) .
Thus
J1(€) = (o708 u® y)+(—1) 2T 00D/ (2R 8F0)
= p"(8,uQy)+(—1)"" 0"V (2R8,v) ,

which concludes the proposition.
Proposition 4.19 implies easily the derivation property of d,, whereby the
signs become unnecessary as will be seen in what follows.

Lemma 4.27. p=—1 on Im k,.

Proof. k&, is a A-module map, and p=—1 on E{? by [1], Proposition
3.6. Thus

peky=Fkop= klo(—l) = —k,. qed

Proposition 4.28. For r>1, Im &, and Im d, consists only of elements of
order 2.

Proof. Let r>1 and x=Z?? Then kxeIm 17,. By the above lemma
and [1], Proposition 4.2, we see that

—kx = pkx=hkx,

i.e., kx is an element of order 2, which concludcs the proposition since %, is

induced by k,|Z%7 and d,=j,ok,. q.e.d.
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Propositions 4.19 and 4.28 imply

Theorem 4.29. Let h** be a multiplicative T-cohomology theory. In its
associated forgetful spectral sequences, natural multiplications

u,t EP(X)QE? 4 (Y) — E2# e+ (X X Y)
are tnduced for 1<r= oo, and there hold derivation formulas

dyop,(x@y) = n(dx®y)+p(2@d,y)

for 1=<r< 0,
ReMARK. The derivation property of d, can be rewritten also as

(4.30) dop(xQy) = p(dix Q@ )+ m(x®d,y) .

To see this, first we remark that the involution in the E,-term is multiplicative,

and dx=dx by (4.15). Then, making use of (4.16) we can deform the deriva-
tion formula of Theorem 4.29 into the form (4.30).

Let 1=h*°(pt) be the unity for the multiplication in A**. By (4.4) j,l1e
EY°(pt) plays as the unity for u,, which is denoted also by 1. Then, k1=0,
whence 1 remains in all E:°(pt) and is the unity for all y,, 1<r=< oo, since y, is
induced by g,.

Put

(4.31) u, = w, (1) E;(pt),
where r, is the periodicity isomorphism of Theorem 3.10. Then, for any
xeEr(X)
(%) = w,0m,(10%)
= (@,,q,X 1)*op,(1Qx)
= (4, Q%)

i.e., the periodicity isomorphism <, is obtained by the multiplication with #,.

We call u, the r-th periodicity element. It is a standard matter to see that all
periodicity isomorphism of type (7, n) of E,-terms can be obtained by a multipli-
cation with a power of %, (up to signs) and u, is invertible. In fact,

(4.32) uit = wy(1).
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