ON THE SMALL HULLS OF A COMMUTATIVE RING

Manabu HARADA

(Received June 7, 1977)

This short note is a continuous one of [1]. We always assume that every ring R is a commutative ring with identity 1 and every ring homomorphism fis unitary, i.e. f(1) is the identity. Let R and R' be rings and $f: R \rightarrow R'$ a ring homomorphism. Then every R'-module may be regarded as an R-module through f. If f(R) is a small submodule of R' as an R-module, we say f being small or R being small in R' [1]. In this note, we shall find the smallest small homomorphism of R.

We shall make use of the same notations as in [1]. We define the smallest small homomorphism as follows:

DEFINITION. Let R and \tilde{R} be rings and $f: R \rightarrow \tilde{R}$ a ring homomorphism. We say \tilde{R} being a small hull of R if the following conditions are satisfied.

1) f is small.

2) For any small (ring) homomorphism $g: R \rightarrow R'$, there exists a unique (ring) homomorphism $h: \tilde{R} \rightarrow R'$ such that g=hf.

We say \vec{R} being a local small hull of R if the following conditions are satisfied.

 \tilde{R} is a local ring and the properties 1), 2) above are satisfied whenever R' is a local ring (R is not necessarily local).

It is clear that (local) small hulls of R are unique up to isomorphism if they exist.

Proposition 1. We assume R has a (local) small hull $f: R \rightarrow \tilde{R}$. Then for any (local) ring R' and a ring homomorphism $g: R \rightarrow R'$ g is small if and only if there exists a homomorphism $h: \tilde{R} \rightarrow R'$ such that g=hf.

Proof. It is clear from the definition and [1], Remark 3.

Proposition 2. Let R be a ring. Then the trivial ring 0 is a small hull of R if and only if K. dim R=0.

Proof. We assume K. dim R=0 and $f: R \rightarrow R'$ a ring homomorphism. Let M' be a maximal ideal in R'. If $f \neq 0, M' \cap R$ is maximal. Hence f is not small

by [1], Theorem 1. The converse is clear from Proposition 1 and [1], Proposition 9.

From the definition of the small hull, we have

Proposition 3. If R has a small hull, every small ring extension of R contains the unique minimal small extension of R.

From now on, we assume that a (local) small hull means a non-trivial one unless otherwise stated.

Theorem 4. Let R be a commutative ring. Then R has a local small hull if and only if there exists a unique maximal one \mathfrak{P} among non-maximal prime ideals in R. In this case, $\mu_{\mathfrak{P}}: R \rightarrow R_{\mathfrak{P}}$ is a local small hull and a small hull, too.

Proof. "If" part. $\mu_{\mathfrak{B}}: R \to R_{\mathfrak{B}}$ is small by [1], Theorem 1. Let R' be a local ring with maximal ideal M' and $g: R \to R'$ a small homomorphism. Since $p=R \cap M'$ is not maximal by [1], Theorem 1, $p \subseteq \mathfrak{P}$. Therefore, there exists a unique homomorphism $h: R_{\mathfrak{B}} \to R'$ such that $h\mu_{\mathfrak{B}}=g$, since $R'=R'_{M'}$. Hence, $R_{\mathfrak{B}}$ is a local small bull of R.

"Only if" part. We assume $f: R \to \tilde{R}$ is a local small hull. Let p be a nonmaximal prime ideal in R. Then $\mu_p: R \to R_p$ is small. Hence, there exists punique homomorphism $h: \tilde{R} \to R_p$ such that $\mu_p = hf$. Put $R_0 = h(\tilde{R})$ and $M_0 = h(\tilde{M})$, where \tilde{M} is the maximal ideal of \tilde{R} . Since f is small, $\mathfrak{P} = f^{-1}(\tilde{M})$ is not maximal by [1], Theorem 1. Furthermore, $p = \mu_p^{-1}(pR_p) = (hf)^{-1}(pR_p) = (hf)^{-1}(pR_p \cap R_0) \subseteq$ $(hf)^{-1}(M_0) = f^{-1}(\tilde{M}) = \mathfrak{P}$. We shall show that $R_{\mathfrak{P}}$ is also a small hull of R. Let $g: R \to R'$ be a small homomorphism and $s \in R - \mathfrak{P}$. If $g(s)R' \neq R'$, we can take a maximal ideal M' in R' containing g(s)R'. Then $s \in R \cap M'$. Since g is small, $R \cap M' \subseteq \mathfrak{P}$, which is a contradiction. Hence, g(s)R' = R' i.e. g(s) is unit in R'. Therefore, we obtain a unique homomorphism $h: R_{\mathfrak{P}} \to R'$ such that $h\mu_{\mathfrak{P}} = g$.

The following theorem shows that the existence of a small hull does not quarantee the existence of a local small hull.

Theorem 5. Let R be a commutative noetherian ring. Then R has a small hull if and only if K. dim R=1. In this case, R_s is a small hull of R, where $S=R-\bigcup_{i=1}^{r} p_i$ and $\{p_i\}_{i=1}^{r}$ is the set of minimal but not maximal prime ideals.

Proof. We assume that R had a small hull and K. dim $R \ge 2$. Let M be a maximal ideal and $M \supseteq P' \supseteq P$ a chain of prime ideals in R. Then $R_1 = R/P$ is a noetherian domain of K. dim ≥ 2 . Let R_1^* be the integral closure of R_1 . Then we can take a maximal ideal M_1^* in R_1^* such that $M_1^* \cap R_1 = M/P$ and height $M_1^* \ge 2$ ([2], p. 30). Since $R_1^*_{M_1^*}$ is a Krull ring by [2], Theorem 33.10,

680

 $R_1^*_{M_1^*} = \bigcap_{p^*} R_1^*_{p^*}$, where the p^* ranges over all prime ideals in M_1^* of height 1 and so the p^* is not maximal. Hence, R_1^* is small in $R_1^*_{p^*}$. Therefore, R is small in $R_1^*_{p^*}$ by [2], p. 30 and [1], Proposition 4. Accordingly, R is small in $R_1^*_{M_1^*}$ by Proposition 3. On the other hand, $M_1^*R_1^*_{M_1^*} \cap R = M_1^* \cap R_1 \cap R =$ $M/P \cap R = M$. Therefore, R is not small in $R_1^*_{M_1^*}$ by [1], Theorem 1. Thus, we have proved K.dim $R \leq 1$. Therefore, K.dim R = 1 by Proposition 2. Conversely, we assume K.dim R = 1. Let $g: R \to R'$ be a small homomorphism and M' a maximal ideal in R'. Since K.dim R = 1 and $M' \cap R$ is not maximal by [1], Theorem 1, $R - (M' \cap R) \subset S$. Therefore, there exists a unique homomorphism $h: R_s \to R'$ such that $h\mu_s = g$ as in the proof of Theorem 4. Accordingly, R_s is a small hull of R, since R is small in R_s by [1], Theorem 1.

REMARK. If R is a valuation ring of K. dim $R \ge 2$, then $R_{\mathfrak{P}}$ is a small hull of R for a prime ideal \mathfrak{P} of depth 1. Hence, Theorem 5 is not true if R is not noetherian.

Proposition 6. Let R be a domain. Then the quotient field Q of R is a (local) small hull of R if and only if K. dim R=1.

Proof. It is clear from Theorem 4 and [1], Proposition 11.

Proposition 7. Let R be a local ring with principal maximal ideal (m). Then if m is nilpotent, the trivial ring is a small hull of R and if m is not nilpotent, $R_{(m^i)}$ is a small hull of R.

Proof. The first part is clear from Proposition 2. If $g: R \to R'$ is small, g(m)R'=R' by [1], Theorem 1. Hence, $R_{(m^i)}$ is a small hull of R.

Proposition 8. Let R be a domain. We assume that every non-zero prime ideal contains a prime element (e.g. U.F.D., see [2], p. 42). Then R has a small hull if and only if K.dim R=1. In this case, R is noetherian.

Proof. If K. dim R=1, Q is a small hull of R by Proposition 6. Conversely, we assume that R has a small hull. Let M be a maximal ideal and $R_1=R_M$. Then R_M satisfies the same condition as in the proposition. Let m be a prime element in $M_1=MR_1$. Let n be any non-zero element in M_1 . We assume $nR_1 \oplus mR_1$. Let x be in $R_{1(m^t)} \cap R_{1(n^s)}$. Then $x=a/m^{t'}=b/n^{s'}$; $a, b \in R_1$. Since mR_1 is prime, $a \in mR_1$. Therefore, $R_1=R_{1(m^t)} \cap R_{1(n^s)}$. Since R_1 is small in $R_{1(m^t)}$ and $R_{1(n^s)}$, R is small in R_1 by Proposition 3 and [1], Proposition 4. On the other hand, R is not small in R_1 by [1], Theorem 1. Therefore, $M_1=(m)$. Since every non-zero prime ideal contains a prime element, M_1 is a unique nonzero prime ideal. Therefore, K. dim R=1 and R is noetherian by [2], Theorem 3.4. A Krull ring R satisfies

(*) any principal ideal $aR(\pm 0)$ of R is the intersection of a finite number of primary ideals of height 1.

Proposition 9. Let R be a domain satisfying (*). Then R has a small hull if and only if K.dim R=1.

Proof. If K. dim R=1, Q is a small hull of R from Proposition 6. We assume R has a small hull and K. dim $R \ge 2$. If we use the same argument as in the proof of Theorem 5, we may assume R is local. Then $R = \bigcap_{p} R_{p}$ by [2], p. 115, where the p ranges over all prime ideals of height 1. Since K. dim $R \ge 2$, R is small in R_{p} , which is a contradiction from Proposition 3.

OSAKA CITY UNIVERSITY

References

[1] M. Harada: On small ring homomorphisms, Osaka J. Math. 15 (1978), 365-370.

[2] M. Nagata: Local rings, Intersci, Tracts in Pure And Applied Math. 13 (1962).