Lai, H.-L. Osaka J. Math. 15 (1978), 561-567

INDEX OF THE EXPONENTIAL MAP ON A COMPLEX SIMPLE LIE GROUP

Heng-Lung LAI

(Received November 21, 1977)

0. Introduction

Let \mathfrak{G} be a connected Lie group with Lie algebra G. Following Goto [2], for $g \in \mathfrak{G}$, we define the index (of the exponential map) $\operatorname{ind}(g)$ to be the smallest positive integer q such that $g^q \in \exp G$, if it exists, otherwise, $\operatorname{ind}(g) = \infty$. The index ind(\mathfrak{G}) of \mathfrak{G} is defined to be the least common multiple of all $\operatorname{ind}(g)(g \in \mathfrak{G})$.

Given a complex simple Lie algebra G with a Cartan subalgebra H, let $-\alpha_0 = m_1 \alpha_1 + \dots + m_l \alpha_l$ be the highest root of G with respect to H expressed in terms of a simple root system $\{\alpha_1, \dots, \alpha_l\}$. Consider the center-free Lie group with Lie algebra G, which can be identified with the adjoint group of (all inner automorphisms of) G. In Lai [4], we proved the following theorem:

Theorem. $\{ind(g); g \in Ad(G)\} = \{1, m_1, \dots, m_l\} = \{d; d \text{ is a factor of some } m_j\}.$

The main purpose of this paper is to generalize the above result to an arbitrary (always assumed to be connected) complex simple Lie group \mathfrak{G} .

Theorem. Let \mathfrak{G} be a complex simple Lie group with Lie algebra G. We can find certain positive integers p_0, \dots, p_l (depending on the center Z(\mathfrak{G}) of \mathfrak{G} , to be defined in the next section) such that

 $\{ind(g); g \in \mathfrak{G}\} = \{d; d \text{ is a factor of some } p_i m_i (0 \le j \le l) \text{ with } m_0 = 1\}$.

The author would like to express his gratitude to Professor M. Goto for his generous help during the preparation of this paper.

1. Notation and definition of p_i 's

Let G be a complex semisimple Lie algebra with a (fixed) Cartan subalgebra H. Let Δ be the root system of G with respect to H, $\Pi = \{\alpha_1, \dots, \alpha_l\}$ a fundamental root system of Δ , and $-\alpha_0 = m_1\alpha_1 + \dots + m_l\alpha_l$ be the highest root.

¹⁾ Work partially supported by the National Science Council, Republic of China.

Let B be the Killing form on G. Then for each $\alpha \in \Delta$, we can find $h_{\alpha} \in H$ with $B(h, h_{\alpha}) = \alpha(h)$ for all $h \in H$, and $e_{\alpha} \in G$ such that

 $G = H + \sum_{\alpha \in \Delta} C e_{\alpha}$ $[h, e_{\alpha}] = \alpha(h)e_{\alpha}, \qquad [e_{\alpha}, e_{\beta}] = N_{\alpha,\beta}e_{\alpha+\beta} \quad \text{if } \alpha + \beta \neq 0 \text{ is in } \Delta,$ $[e_{\alpha}, e_{-\alpha}] = -h_{\alpha}, \qquad [e_{\alpha}, e_{\beta}] = 0 \quad \text{if } 0 \neq \alpha + \beta \notin \Delta.$

Let $H_0 \subset H$ be the real vector space spanned by $h_{\alpha}(\alpha \in \Delta)$, then $\beta|_{H_0}$ is real for any $\beta \in \Delta$. Since $\prod = \{\alpha_1, \dots, \alpha_l\}$ is linearly independent, we can choose $h_1, \dots, h_l \in H_0$ such that $\alpha_i(h_j) = \delta_{i_j}$ $1 \le i, j \le l$. The lattice $\Omega = \mathbb{Z} 2\pi i h_1 + \dots + \mathbb{Z} 2\pi i h_l \subset i H_0$ $(i = \sqrt{-1})$ is the kernel of $\exp|_H : H \to Ad(G)$. On the other hand, let \mathfrak{G} be the simply connected Lie group with Lie algebra G, denoting $2h_{\alpha}/B(h_{\alpha}, h_{\alpha})$ by h_{α}^* , the lattice Ω^* generated by $\{2\pi i h_{\alpha}^*; \alpha \in \Delta\}$ becomes the kernel of $\exp|_H : H \to \mathfrak{G}, \Omega^*$ is of finite index in Ω . For simplicity, we identify Δ with a subset of iH_0 by the map $\alpha \mapsto h_{\alpha}/2\pi i$, and introduce an inner product in iH_0 by $(h, h') = -B(h, h')/(2\pi)^2$. Then $(\alpha, h) = \alpha(h)/2\pi i$ for $\alpha \in \Delta, h \in iH_0$.

If \mathfrak{G} is a connected Lie group with G as its Lie algebra. Let Ω' be the kernel of $\exp|_{H}: H \rightarrow \mathfrak{G}$, then $\Omega^* \subset \Omega' \subset \Omega$, so that Ω' is an additive subgroup of finite index in Ω . For each h_j , let p_j be the smallest positive integer such that $2\pi i p_j h_j \in \Omega'(j=1,\dots,l)$. Denote by p_0 the least common multiple of $\{p_1,\dots,p_l\}$, and $m_0=1$.

REMARK. p_0 is the smallest positive integer such that $g^{p_0}=1$ for any element g in the center $Z(\mathfrak{G})$ (which is equal to $\exp(\Omega)$). In case G is simple, computation shows that $p_0=p_j$ for some $j=1, \dots, l$. (For this, see, e.g. Goto-Grosshans [3] Chapter 5.)

Let $Ad(\Delta)$ denote the Weyl group of Δ . Any element S of $Ad(\Delta)$, regarded as a linear transformation on iH_0 , can be extended to an inner automorphism of the Lie algebra G. Let $T(\Omega^*)$ be the group of translations of the euclidean space iH_0 induced by elements in Ω^* . Then, if G is simple, the group $Ad(\Delta) \cdot T(\Omega^*)$ acts transitively on the set of all cells, see Goto-Grosshans [3] Chapter 5. We summarize as follows:

Proposition. Let G be a complex simple Lie algebra and C_0 the fundamental cell: $C_0 = \{h \in iH_0; (\alpha_1, h) > 0, \dots, (\alpha_l, h) > 0 \text{ and } (-\alpha_0, h) < 1\}$. Let \overline{C}_0 denote the closure of C_0 . Then for any h in iH_0 , we can find $U \in Ad(\Delta) \cdot T(\Omega^*) = Afd(\Delta)$ such that $h \in U\overline{C}_0$.

In the following, we assume ^(S) is a connected simple complex Lie group.

2. Upper bound for ind(g)

Theorem. For any $g \in \mathfrak{G}$, $\operatorname{ind}(g)$ is a factor of $p_i m_i$ for some $j=0, \dots, l$.

562

Any element g in \mathfrak{G} has a decomposition $g=g_0 \cdot \exp N$ into semisimple part g_0 and unipotent part $\exp N$ such that $g_0 \cdot \exp N = \exp N \cdot g_0$. Let $G(1, Adg_0)$ denote the 1-eigenspace of Adg_0 in G. Then $G(1, Adg_0)$ is a subalgebra of G and $N \in G(1, Adg_0)$.

By Gantmacher [1], g_0 is conjugate to some element in exp H. Hence, to prove our theorem, it suffices to consider elements g whose semisimple part lies in exp H, i.e., $g = \exp h_0 \cdot \exp N$, $h_0 \in H$ and $N \in G(1, Ad \exp h_0)$. Let $\Delta(h_0) =$ $\{\alpha \in \Delta; Ad \exp h_0 \cdot e_{\alpha} = e_{\alpha}\} = \{\alpha \in \Delta; \alpha(h_0) \in 2\pi i \mathbb{Z}\}$. Then $G(1, Ad \exp h_0) =$ $H + \sum_{\alpha \in \Delta(h_0)} Ce_{\alpha}$, and $\Delta(h_0)$ is a subsystem of Δ , we can choose a simple root system $\Pi(h_0) = \{\beta_1, \dots, \beta_r\}$ for $\Delta(h_0)$.

Lemma 1. To find an upper bound for ind(g) $(g \in \mathfrak{G})$, it suffices to consider elements with semisimple part $\exp h_0$, where $h_0 \in iH_0$ and $\Pi(h_0)$ has cardinality l=rank of G.

Proof. Assume that $h_0 = x_1h_1 + \dots + x_ih_i$ for some complex numbers x_i . For each $j=1, \dots, r$, since $(Ad \exp h_0-1) \cdot e_{\beta_j}=0$, we have $\beta_j(h_0)=2\pi ik_j$ for some $k_j \in \mathbb{Z}$. If k_j are all zero, then $[h_0, N]=0$ for any $N \in G(1, Ad \exp h_0)$, so that $\exp h_0 \cdot \exp N = \exp (h_0 + N)$, and $\operatorname{ind}(\exp h_0 \cdot \exp N) = 1$. So we assume that some $k_j \neq 0$, after this.

Since $\exp h_0 = \exp (h_0 + \Omega')$, if we can find a positive integer d and integers n_1, \dots, n_i such that for $h = dh_0 + \sum_{j=1}^{l} 2\pi i n_j p_j h_j$, [h, dN] = 0, then $\operatorname{ind}(\exp h_0 \cdot \exp N)$ divides d. For this, it suffices to choose d and n_j with $\alpha(h) = 0$ for all $\alpha \in \Delta(h_0)$, or equivalently, for all $\alpha \in \Pi(h_0)$. Therefore, the problem reduces to finding d so that $\beta_i(\sum_{j=1}^{l} n_j p_j h_j) = -dk_i$ has integral solutions n_1, \dots, n_l .

Choose $\beta_{r+1}, \dots, \beta_l \in \Delta$ so that $\{\beta_1, \dots, \beta_l\}$ is a maximal linearly independent subset of Δ . We write $\beta_i = \sum_{j=1}^l q_{ij} \alpha_j$ where $q_{ij} \in \mathbb{Z}$. Consider the following system of linear equations:

$$\begin{array}{ll} q_{i1}p_{1}n_{1}+\cdots+q_{il}p_{l}n_{l}=-k_{i} & i=1,\cdots,r;\\ q_{i1}p_{1}n_{1}+\cdots+q_{il}p_{l}n_{l}=0 & i=r+1,\cdots,l. \end{array}$$

Since $(q_{ij}p_j)$ is a nonsingular integral matrix with determinant $p_1 \cdots p_i \cdot \det(q_{ij})$ (which is not zero by the choice of β_j 's and the fact that p_j are positive), and k_i are integers, this has a rational solution, say, r_1, \cdots, r_i .

Let $h_0' = \sum_{j=1}^l 2\pi i r_j p_j h_j \in iH_0$, then $\beta_1, \dots, \beta_l \in \Delta(h_0')$. Suppose we can find a positive integer d' and integers n_1', \dots, n_l' such that $\beta(d'h_0' + \sum_{j=1}^l 2\pi i n_j' p_j h_j) = 0$ for all $\beta \in \Delta(h_0')$, then $(n_1, \dots, n_l) = (n_1', \dots, n_l')$ is the solution for the following system of linear equations:

$$\begin{split} \sum_{j=1}^{l} q_{ij} p_{j} n_{i} &= -d' k_{i} \qquad i = 1, \, \cdots, \, r; \\ \sum_{j=1}^{l} q_{ij} p_{j} n_{i} &= 0 \qquad \qquad i = r+1, \, \cdots, \, l \,. \end{split}$$

HENG-LUNG LAI

Thus we can find $n_j \in \mathbb{Z}$ such that $\beta_i(\sum_{j=1}^l 2\pi i n_j p_j h_j) = -2\pi i d' k_i$ $(i=1, \dots, r)$. Hence for $h = d' h_0 + \sum_{j=1}^l 2\pi i n_j p_j h_j$, we have $\beta_i(h) = 0$ $(i=1, \dots, r)$ and so $\beta(h) = 0$ for all $\beta \in \Delta(h_0)$.

We have proved that $ind(exp h_0 \cdot exp N)$ is a factor of $ind(exp h_0' \cdot exp N)$. Therefore, we may replace h_0 by h_0' which satisfies Lemma 1. ||

Let S be in the Weyl group $Ad(\Delta)$. Then S can be extended to an inner automorphism σ of the Lie algebra G, which can be extended to an inner automorphism of the Lie group \mathfrak{G} . Clearly $\operatorname{ind}(g)=\operatorname{ind}(\sigma g)$. Therefore, to find an upper bound for $\operatorname{ind}(g)$ ($g \in \mathfrak{G}$), we may replace g (whose semisimple part is $\exp h_0$) by an element whose semisimple part is $\exp Sh_0(S \in Ad(\Delta))$.

On the other hand, $\exp h_0 = \exp(h_0 + \Omega^*)$ (because $\Omega^* \subset \Omega'$), so we may replace h_0 by $T(\Omega^*)h_0$. We get the following lemma by applying the proposition we stated at the end of section 1.

Lemma 2. Let $-\alpha_0 = m_1\alpha_1 + \cdots + m_l\alpha_l$ be the highest root. To find an upper bound for ind(g) $(g \in \mathfrak{G})$, it suffices to consider elements whose semisimple part have the form $\exp h$, $h \in iH_0$ with $0 \leq (\alpha_1, h)$, \cdots , $0 \leq (\alpha_l, h)$ and $(-\alpha_0, h) \leq 1$.

Let $\Pi = \{\alpha_0, \alpha_1, \dots, \alpha_l\}$ be the extended simple root system. The following two lemmas, proved in [4], being properties of simple Lie algebras, can be applied in the present case too. For a proof, please see [4] or Goto-Grosshans [3] Chapter 8.

Lemma 3. Let $h \in \overline{C}_0$ be an element satisfying Lemma 1, then $\Pi' = \widetilde{\Pi} \cap \Delta(h)$ is a simple root system for $\Delta(h)$ with respect to a suitable ordering.

Since $\Pi(h) = \Pi \cap \Delta(h)$ has cardinality *l*. If $\Pi(h) = \Pi$, then $\Delta(h) = \Delta$ and $h \in \Omega$, in this case, ind(exp $h \cdot \exp N$) is a factor of $p_0 (=p_0 m_0)$ because $p_0 h \in \Omega'$.

Lemma 4. If $\Pi(h) \neq \Pi$ has cardinality *l*, then $h = 2\pi i h_j / m_j$ for some $j=1, \dots, l$ such that $m_j > 1$.

In the case $m_i = 1$, we have $\Pi(2\pi i h_i/m_i) = \Pi$.

Conclusion. Let \mathfrak{G} be a connected complex simple Lie group. To find an upper bound for {ind(g); $g \in \mathfrak{G}$ }, it suffices to consider elements $g \in \mathfrak{G}$ whose semisimple part has the form $\exp 2\pi i h_j/m_j$ for some $j=0, 1, \dots, l$. i.e. $g = \exp 2\pi i h_j/m_j \cdot \exp N$.

Clearly, $g^{p_j m_j} = \exp(p_i m_i N)$ because $2\pi i p_i h_i \in \Omega'$.

Theorem. For any $g \in \mathfrak{G}$, there exists $j (0 \le j \le l)$ such that $g^{p_j m_j} \in \exp G$. In other words, $\operatorname{ind}(g)$ is a factor of some $p_j m_j (0 \le j \le l)$.

3. Existence of elements with index exactly equal to $p_i m_i$

An element x in a semisimple Lie algebra G is said to be regular if the

564

centralizer $z_G(x) = \{y \in G; [x, y] = 0\}$ of x has minimal dimension. If H is a Cartan subalgebra of G with root system Δ and $U = \sum_{\alpha>0} Ce_{\alpha}$, then B = H + U is a Borel subalgebra (i.e. a maximal solvable subalgebra). The following proposition is a consequence of the Lie algebra analogous of Theorem 1 and its corollary in Steinberg [5] (pp. 110-112).

Proposition. If $x = \sum_{\alpha>0} c_{\alpha} e_{\alpha} \in U$ ($c_{\alpha} \in C$) is a nilpotent element in G, then x is regular if and only if $c_{\alpha} \neq 0$ for any simple root α . In such case, $z_{G}(x) \subset U$, in particular, $z_{G}(x)$ consists only of nilpotent elements.

Retaining the notation used in the previous sections, consider $h_0=2\pi i h_j/m_j$ $(1 \le j \le l)$. Then $\Pi = \Pi - \{\alpha_j\}$ is a simple root system for $\Delta(h_0)$ and $G(1, Ad \exp h_0) = H + \sum_{\alpha \in \Delta(h_0)} Ce_{\alpha}$ is a semisimple subalgebra of G. Let $N=\sum_{i=0,\dots,l:\ i\neq j}e_{\alpha_i}$, then N is a regular element in $G(1, Ad \exp h_0)$, so that any element of $G(1, Ad \exp h_0)$ which commutes with N must be nilpotent.

Let $g = \exp h_0 \cdot \exp N$, and \mathfrak{G}_1 be the connected subgroup of \mathfrak{G} corresponding to the subalgebra $G_1 = G(1, Adg) = G(1, Ad \exp h_0)$. Clearly, $g \in \mathfrak{G}_1$ because $h_0, N \in G_1$. Therefore $g^q \in \mathfrak{G}_1$ for any positive integer q.

If for certain $q, g^q = \exp x$ for some $x \in G$, then x lies in G_1 (because $G_1 = \{y \in G; \exp y \in \mathfrak{G}_1\}$). We know that x has a decomposition $x = x_0 + N$, where x_0 is semisimple and $[x_0, N] = 0$. Since $x, N \in G_1$, we have $x_0 \in G_1 = G(1, Ad \exp h_0)$. But $[x_0, N] = 0$, the above argument implies that x_0 is nilpotent. Thus $x_0 = 0$ because x_0 is also semisimple. This implies that $\exp x_0 = \exp qh_0 = 1$, or $qh_0 \in \Omega'$. This cannot happen if $q < p_j m_j$.

Therefore $ind(g) = p_j m_j$.

In case j=0, let $h_0=\sum_{j=1}^{l} 2\pi i h_j$, then $qh_0 \notin \Omega'$ unless q is a multiple of p_0 . Let $N=\sum_{j=1}^{l} e_{\alpha_j}$, which is regular in G. The same argument as above proves that ind $(\exp h_0 \cdot \exp N)=p_0=p_0m_0$. Q.E.D.

The results in sections 2 and 3 give the following:

Theorem. Let \mathfrak{G} be a connected complex simple Lie group. Retaining the above notation. Then $\{ind(g); g \in \mathfrak{G}\} = \{q; q \text{ is a factor of some } p_jm_j, 0 \le j \le l\} = \{q; q \text{ is a factor of some } p_jm_j, 0 \le j \le l\} = \{q; q \text{ is a factor of some } p_jm_j, 1 \le j \le l\}.$

Corollary. ind(\mathfrak{G}) is the least common multiple of $\{p_1m_1, \dots, p_im_i\}$.

4. List of ind(g) when \bigotimes is simply connected

In this case, p_j can be found by using the inverse matrix of Cartan matrix of G, please see e.g. Goto-Grosshans [3] Chapter 5.

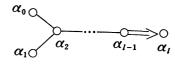
(a) G is of type A_l The highest root is $-\alpha_0 = \alpha_1 + \dots + \alpha_l$. $p_1 = \dots = p_l = l+1$.



Hence $\{ind(g); g \in \mathfrak{G}\} = \{q; q \text{ divides } l+1\}$ and $ind(\mathfrak{G}) = l+1$.

In fact, for any connected complex simple Lie group of type A, $ind(\mathfrak{G})=$ order of the center $Z(\mathfrak{G})$.

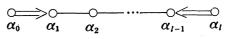
(b) G is of type B_l



The highest root is $-\alpha_0 = \alpha_1 + 2(\alpha_2 + \dots + \alpha_i)$. $p_j = 2$ when j is odd, $p_j = 1$ when j is even.

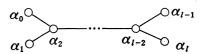
Hence $\{ind(g); g \in \mathfrak{G}\} = \{1, 2, 4\}$ in case $l \ge 3$ and $ind(\mathfrak{G}) = 4$. And $\{ind(g); g \in \mathfrak{G}\} = \{1, 2\}$ in case l=2 and $ind(\mathfrak{G})=2$.

(c) G is of type C_l



The highest root is $-\alpha_0 = 2(\alpha_1 + \dots + \alpha_{l-1}) + \alpha_l$. $p_l = 2$ and $p_j = 1$ when j < l. Hence $\{ind(g); g \in \mathfrak{G}\} = \{1, 2\}$ and $ind(\mathfrak{G}) = 2$.

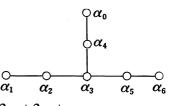
(d) G is of type D_l



The highest root is $-\alpha_0 = \alpha_1 + 2(\alpha_2 + \cdots + \alpha_{I-2}) + \alpha_{I-1} + \alpha_I$.

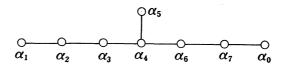
Case 1. When *l* is even, $p_j=2$ if $j \le l-2$ is odd or j=l-1, *l*; $p_j=1$ otherwise. Hence $\{ind(g); g \in \mathfrak{G}\} = \{1, 2\}$ and $ind(\mathfrak{G})=2$.

Case 2. When *l* is odd, $p_j=2$ if $j \le l-2$ is odd, $p_{l-1}=p_l=4$; $p_j=1$ otherwise. Hence $\{ind(g); g \in \mathfrak{G}\} = \{1, 2, 4\}$ and $ind(\mathfrak{G})=4$. (e) *G* is of type E_6



The highest root is $-\alpha_0 = \alpha_1 + 2\alpha_2 + 3\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_6$. $p_1 = p_2 = p_5 = p_6 = 3$ and $p_3 = p_4 = 1$. Hence {ind(g); $g \in \mathfrak{G}$ } = {1, 2, 3, 6} and ind(\mathfrak{G})=6.

(f) G is of type E_7



566

EXPONENTIAL MAP ON A COMPLEX SIMPLE LIE GROUP

The highest root is $-\alpha_0 = \alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4 + 2\alpha_5 + 3\alpha_6 + 2\alpha_7$. $p_1 = p_3 = p_5 = 2$ and $p_j = 1$ otherwise. Hence $\{ind(g); g \in \mathfrak{G}\} = \{factors of 12\}$ and $ind(\mathfrak{G}) = 12$. Note that $p_j = 1$ for any j in case G is of type E_8 , F_4 , or G_2 .

NATIONAL TSING-HUA UNIVERSITY

Bibliography

- [1] F. Gantmacher: Canonical representations of automorphisms of a complex semisimple Lie group, Rec. Math. 5 (1939), 101-144.
- [2] M. Goto: Index of exponential map of a semi-algebraic group (to appear).
- [3] M. Goto and F. Grosshans: Semisimple Lie algebras, Marcel Dekker, New York, 1978.
- [4] H.L. Lai: Index of the exponential map of a center-free complex simple Lie group, Osaka J. Math. 15 (1978), 553-560.
- [5] R. Steinberg: Conjugacy classes in algebraic groups, Lecture Notes in Mathematics No. 366, Springer-Verlag, 1974.