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0. Introduction

Let © be a connected Lie group with Lie algebra G. Following Goto [2],
, we define the index (of the exponential map) ind^) to be the smallest

positive integer q such thatg^eexp G, if it exists, otherwise, ind(g)=°o. The
index ind(@) of © is defined to be the least common multiple of all ind^) (g^®).

Given a complex simple Lie algebra G with a Cartan subalgebra H, let
—αo=flί1αίi+•••+*»/#/ be the highest root of G with respect to H expressed in
terms of a simple root system {αx, •••,<*/}. Consider the center-free Lie group
with Lie algebra G, which can be identified with the adjoint group of (all inner
automorphisms of) G. In Lai [4], we proved the following theorem:

Theorem. {ind(g)\ g^Ad(G)} = {\, mu ••-,#*/} = {</; dis a factor of some
m}.

The main purpose of this paper is to generalize the above result to an arbitrary
(always assumed to be connected) complex simple Lie group ©.

Theorem. Let ® be a complex simple Lie group with Lie algebra G. We
can find certain positive integers pOy "-yp^depending on the center Z(@) of ®, to be
defined in the next section) such that

{ind(g); g e © } = {d; d is a factor of some pJmj (0<j<l) with m0 — 1} .

The author would like to express his gratitude to Professor M. Goto for
his generous help during the preparation of this paper.

1. Notation and definition of p ;'s

Let G be a complex semisimple Lie algebra with a (fixed) Cartan subalgebra
H. Let Δ be the root system of G with respect to H> Yl== {au •••, α7} a funda-
mental root system of Δ, and — ao=m1cti-\ Ym^i be the highest root.
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Let B be the Killing form on G. Then for each «GΔ,we can find

with B(h, ha)=a(h) for all h^H, and ea^G such that

[A, eΛ] = a(h)ea , [έ?β, eβ] = Na>βea+β if α + / ? Φ 0 is in Δ ,

[eΛ, e_a] = -A Λ , [*β, *β] - 0 if

Let HodHbe the real vector space spanned by AΛ(αGΔ), then /3|#0 is real
for any ] 8 G Δ . Since Π={tfi> •••,#/} is linearly independent, we can choose

Ai, •••,A/Gi?o such that α (A;.)=δίy 1 <*,/</. The lattice Ω=Z2τr£ΛH h
Z2^rfA/Cί//0 (/= V^ 1 ! ) is the kernel of exp|#: H-*Ad(G). On the other hand,
let © be the simply connected Lie group with Lie algebra G, denoting
2hJB(hayha) by A$, the lattice Ω* generated by {2πihi; α e Λ } becomes the
kernel of exp|#: //->©,Ω* is of finite index in Ω. For simplicity, we identify
Δ with a subset of iH0 by the map a^>haβπiy and introduce an inner product in
iH0 by (A, A0= -5(A, A')/(2ττ)2. Then (α, h)=a(h)/2πi for α e A,h<=ΞtH0.

If © is a connected Lie group with G as its Lie algebra. Let Ω' be the
kernel of exp|#: #->©, then ^(ZΩ'ciΩ,, so that Ω7 is an additive subgroup of
finite index in Ω. For each hp let p. be the smallest positive integer such that
2πtpjhj^: Ω7 (j= 1, , /). Denote by p0 the least common multiple of {pi, •••,/>/},
and mQ=\.

REMARK. p0 is the smallest positive integer such t h a t ^ o ^ l for any element
g in the center Z((S) (which is equal to exp(Ω)). In case G is simple, computa-
tion shows th.ΆtpQ=^pj for somey=l, •••,/. (For this, see, e.g. Goto-Grosshans
[3] Chapter 5.)

Let Ad(Δ) denote the Weyl group of Δ. Any element S of Ad(A)> regard-
ed as a linear transformation on iHQ9 can be extended to an inner automorphism
of the Lie algebra G. Let T(Ω*) be the group of translations of the euclidean
space iH0 induced by elements in Ω*. Then, if G is simple, the group
Ad(A) T(Ω*) acts transitively on the set of all cells, see Goto-Grosshans [3]
Chapter 5. We summarize as follows:

Proposition. Let G be a complex simple Lie algebra and Co the fundamental
cell: Co= {h<=iH0; (au A)>0, •••, (ah A)>0 and (-aOy A)<1}. Let Co denote
the closure of Co. Then for any h in iH0, we can find U(ΞAd(A)-T(Ω,*)=Afd(A)
such that h<=UC0.

In the following, we assume © is a connected simple complex Lie group.

2. Upper bound for ind(g)

T h e o r e m . For any gG®, ind(^) is a factor of p.mj for some j=0, •••,/.
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Any element g in © has a decomposition g=go*expN into semisimple ρartg0 and
unipotent part exp N such that gQ exρ N=exρN g0. Let G(l>Adg0) denote
the 1-eigensρace of Adg0 in G. Then G(l,Adg0) is a subalgebra of G and
NtEG(l,Adg0).

By Gantmacher [1], g0 is conjugate to some element in exp H. Hence, to
prove our theorem, it suffices to consider elements g whose semisimple part lies
in exp//, i.e., £=exρA0 expiV, Λoe// and N^G(l>Adexp h0). Let A(ho)=
{a^A;Adexpho-ea = ea} = {a^A;a(ho)^2πiZ}. Then G(l, Adexρho) =
^+Σα>eΔ(λo)C

r£Λ, and A(h0) is a subsystem of Δ, we can choose a simple root
system Π(A0)={i91, - , £,} for Δ(Λ0).

Lemma 1. To find an upper bound for ind(^) (g^®), it suffices to consider
elements with semisimple part exp h0, where hoξΞtHo and U(h0) has cardinality
/=rank of G.

Proof. Assume that ho=x1h1-\ \-xιhι for some complex numbers x{. For
each 7=1, •••, r, since (Ad exp h0— l) eβj=0, we have βj(h0)—2πikj for some
ϋ.GZ, If kj are all zero, then [hQ, N]=0 for any N^G(ίy Ad exp h0), so that
exp hQ exp N= exp (ko+N)y and ind (exp h0 exp N) = 1. So we assume that
some &;φ0, after this.

Since exp A0=exp (/?0+ίY), if we can find a positive integer J and integers
nly ~-,nι such that for h=dhQ+*Σι

ι

j=ι2πinjpjhp [h, dN]=0, then ind(expΛ0 expΛΓ)
divides d. For this, it suffices to choose d and n. with α(A)=0 for all αGΔ(A0),
or equivalently, for all αGΠ(i 0 ). Therefore, the problem reduces to finding d
so that A (ΣJ>-I

 njPjhj)=—dki has integral solutions Wj, •••, n7.
Choose j8 r + 1,-j jδ/GΔ so that {A, •••,/3/} is a maximal linearly inde-

pendent subset of Δ. We write /5, — Σ ί - i ^ί/^ where q{.^Z. Consider the
following system of linear equations:

?πMiH HuPfli = ~ki i = 1, —, r

ϊίiMiH r-?. /Λ«/ = 0 ί = r + l , •••,/.

Since (qijpj) is a nonsingular integral matrix with determinant /v ••/>;• det^^)
(which is not zero by the choice of βjs and the fact that pj are positive), and k{

are integers, this has a rational solution, say, ru •••, rt.
Let ho

/=^Σίlj9aι2πirjpjhj^iHOy then /S^ •••, jS/GΔ^) . Suppose we can find
a positive integer df and integers w/, •••, w/ such that j δ ^ V + Σ y - i 2πin/pjhj)=0
for all β^A(h0'), then («!, •••, W/)—(w/, •••, w/) is the solution for the following
system of linear equations:

Σ ί - i 9ijPjni = —d% i = 1, —, r;
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Thus we can find » . , G Z such that /8f (Σy-i 2πinjpjhj)=—2πid'ki (i=l, -- , r ) .
Hence for h=d'ho+i>]ι

jssl2πinjpjhp we have βi(h)=0 (i=l, —,r) and so β(h)=0
forall/3eΞΔ(λ0).

We have proved that ind(exρ /z0 exp N) is a factor of ind(exp ho' expN).
Therefore, we may replace h0 by h0' which satisfies Lemma 1. ||

Let S be in the Weyl group Ad(A). Then S can be extended to an inner
automorphism σ of the Lie algebra G, which can be extended to an inner
automorphism of the Lie group @. Clearly md(g)=ind(σg). Therefore, to find
an upper bound for ind(^) (ge©), we may replace g (whose semisimple part is
exp h0) by an element whose semisimple part is exp Sho(S^Ad(A)).

On the other hand, exp ho= exp (VfΩ*) (because Ω*Cίl /), so we may
replace h0 by T(Ω*)/?0. We get the following lemma by applying the proposition
we stated at the end of section 1.

Lemma 2. Let —ao=m1ai-\ Ymflti be the highest root. To find an
upper bound for ind(^) (#£©), it suffices to consider elements whose semisimple part
have the form exp A, h^iH0 with 0<(αi, h), •••, 0<(ah h) and (—a0, h)<\.

Let Π = {a0, au ••*> cίι\ be the extended simple root system. The following
two lemmas, proved in [4], being properties of simple Lie algebras, can be
applied in the present case too. For a proof, please see [4] or Goto-Grosshans
[3] Chapter 8.

Lemma 3. Let h^Cobe an element satisfying Lemma 1, then Π ' = Π Π Δ(A)
is a simple root system for A(h) with respect to a suitable ordering.

Since U(h)=UΓ[A(h) has cardinality/. If Π(h)=Π, then Δ(A)=Δ and
λeί2,in this case, ind(exp A exp N) is a factor of p0 (=pomo) becausepJi^Ω'.

Lemma 4. If U(h) =t= Π has cardinality I, then h = 2πihi\mi for some
7=1, •••, I such that m.*>\.

In the case nij=ί9 we have Il(2πihjlmJ)=Il.

Conclusion. Let © be a connected complex simple Lie group. To find
an upper bound for {ind(^); g^(&}> it suffices to consider elements g^® whose
semisimple part has the form tπρ2πihjjmj for some / = 0, l , •••,/. i.e.
£=exp 2πihj/mj exp N.

Clearly, gpjmj=exp (p nijN) because 2πipjhj^Ω'.

Theorem. For any g^®, there exists j (0<j<l) such that gpjmj^txp G.
In other words, ind(g) is a factor of some ppn. (0<j<l).

3. Existence of elements with index exactly equal to Pjirij

An element x in a semisimple Lie algebra G is said to be regular if the
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centralizer zG(x)={y^G;[x,y]=0} of x has minimal dimension. If H is a
Cartan subalgebra of G with root system Δ and £/=Σα»o Cem then B=H-\- U
is a Borel subalgebra (i.e. a maximal solvable subalgebra). The following pro-
position is a consequence of the Lie algebra analogous of Theorem 1 and its
corollary in Steinberg [5] (pp. 110-112).

Proposition. If x=^o6>o caea^U(cΛ^C) is a nilpotent element in G, then
x is regular if and only if caΦ0for any simple root a. In such case, zG(x) C U, in
particular, zG(x) consists only of nilpotent elements.

Retaining the notation used in the previous sections, consider ho=2πihjlmJ

(ί<j<l). Then Π = Π— {α;} is a simple root system for A(h0) and
G(l, Ad exp Ao) = / / + 2 Λ G Δ ( A o ) Cea is a semisimple subalgebra of G. Let
iV=Σί=o, ..,/;»*/*,» then N is a regular element in G(l, Ad exp h0), so that any
element of G(l, Ad exp h0) which commutes with N must be nilpotent.

Let £=exp ho expN, and ®λ be the connected subgroup of © correspond-
ing to the subalgebra Gi=G(l, Adg)=G(l, Ad exp hQ). Clearly, g^®ι because
h0, N^Gi. Therefore ^ G ® ! for any positive integer q.

If for certain q> gq=exp x for some x^G, then x lies in Gλ (because
Gx— {y^G; expy^®^). We know that x has a decomposition x = xo-\-Ny

where x0 is semisimple and [χOf N]=0. Since x, N^GU we have xo^Gι=
G(l, Ad exp h0). But [xo> N] = 0, the above argument implies that x0 is
nilpotent. Thus #0 = 0 because x0 is also semisimple. This implies that
exp #0=exp qho=l, or ^ 0 G Ω ; . This cannot happen if qKpjMj.

Therefore ind(g)=pjmj.
In case/=0, let A0=Σy=i 2πihjf then qhQ^Ω' unless q is a multiple of p0.

Let ΛΓ=2y-i ÔJ > which is regular in G. The same argument as above proves
that ind(exρ h0 exp N)=po—pomo. Q.E.D.

The results in sections 2 and 3 give the following:

Theorem. Let Qbbea connected complex simple Lie group. Retaining the above
notation. Then {ind(^); g^®} = {q; q is a factor of some ppnp 0<j<l} = {q; q
is a factor of some ppn.> 1 </</}.

Corollary. ind((S) is the least common multiple of {pimu •"ypιm^.

4. List of ind(gr) when ® is simply connected

In this case, pj can be found by using the inverse matrix of Cartan matrix
of G, please see e.g. Goto-Grosshans [3] Chapter 5.
(a) G is of type Ax

The highest root is —α0

=tfi+•••+<*/.
<*2
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Hence {ind(g);g^®} = {q; q divides 7+1} and ind(©)=/+l.
In fact, for any connected complex simple Lie group of type Ay ind(©)=

order of the center Z(©).
(b) G is of type Bx

The highest root is — ao=ai+2(a2-\ \-ai).
pj=2 when 7 is odd, p~\ when^ is even.

Hence {ind(g);g<=®} = {1,2,4} in case / > 3 and ind(©) = 4. And

{ind(^) £ £ © } = {1, 2} in case 1=2 and ind(©)=2.

(c) G is of type C,

The highest root is — aQ=2(aι-\
pι=2 andp.= 1 when j</.
Hence {ind(^);^e©} = {l, 2} and ind(©)=2.

(d) G is of type Ώt

OCl-2
at

The highest root is — ao=aι+2(a2-i

Case 1. When / is even, / \ = 2 if j </— 2 is odd or j=l—ly /; /) ; =1 other-
©} } ©wise. Hence {ind(^); ^ e © } = {1, 2} and ind(©)=2.

Case 2. When / is odd, p =2 if j<l—2 is odd, ^>/_1=/>/=4; £ , = 1 other-

wise. Hence {ind(g); g^®}={l, 2, 4} and ind(©)=4.

(e) G is of type E6

The highest root is — ao=a1+2a2+3a3+2a4+2a5+a6.

Hence {ind(^); g£Ξ®} = {1, 2, 3, 6} and ind(©)=6.

(f) G is of type E7

&7 CCQ
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The highest root is — ao=aι+2a2+3a3+4a4+2a5+3a6+2a7.

pι—ρz==ρ5z=2 andpj=l otherwise.

Hence {ind(g); g(=®} = {factors of 12} and ind(©)=12.

Note that^κ=l for any/ in case G is of type Es> F4y or G2.
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