Yoshimatsu, Y. Osaka J. Math. 15 (1978), 435-459

H-PROJECTIVE CONNECTIONS AND H-PROJECTIVE TRANSFORMATIONS

YASHIRO YOSHIMATSU

(Received May 16, 1977)

Introduction

Let M be an *n*-dimensional complex manifold. We write J for its natural almost complex structure. Let ∇ be an almost complex affine connection without torsion on M. A curve c(t) in M is called an *H*-planner curve with respect to ∇ if

$$\nabla_{c'}c' = ac' + bJc'$$

for certain smooth functions a and b. Two almost complex affine connections ∇ and ∇' without torsion are said to be *H*-projectively equivalent if they have their *H*-planner curves in common. From the result of T. Otsuki and Y. Tashiro, this is equivalent to existence of a 1-form ρ on *M* satisfying

(0.2)
$$\nabla_X Y - \nabla'_X Y = \rho(X)Y + \rho(Y)X - \rho(JX)JY - \rho(JY)JX$$

for arbitrary vector fields X and Y ([5], [8]). By an *H*-projective transformation of ∇ , we mean a biholomorphic transformation $f: M \rightarrow M$ such that $f^*\nabla$ and ∇ are *H*-projectively equivalent. For example, let $P^n(C) = L/L_0$ be the *n*-dimensional complex projective space of lines in C^{n+1} with the usual connection, where

(0.3)
$$L = SL(n+1, \mathbf{C}),$$
$$L_0 = \left\{ \begin{pmatrix} a & u \\ 0 & B \end{pmatrix} \in SL(n+1, \mathbf{C}) | B \in GL(n, \mathbf{C}) \right\}.$$

Then L/(center) is the group of all *H*-projective transformations.

In the present paper, we shall study *H*-projective equivalence from the view point of L_0 -structure of second order, studied by N. Tanaka and T. Ochiai. In fact, we shall show that *H*-projective equivalence of ∇ and ∇' is the same as $P^n(C)$ -equivalence in [6] and [4] (Theorem 1). Therefore, using their results, the family $\{\nabla\}$ of almost complex affine connections without torsion which are *H*-projectively equivalent to ∇ uniquely determines a Cartan connection ω of type $P^n(C)$. This enables us to show that the group of all *H*-projective

transformations of ∇ is a Lie group of finite dimension (Theorem 2). Then we shall prove that a curve c(t) is an *H*-planner curve with respect to ∇ if and only if the development of c(t) into $P^n(C)$ by ω is an *H*-planner curve in $P^n(C)$ (Theorem 3).

An *H*-planner curve c(t) with respect to ∇ is called an *H*-geodesic of ∇ if a=0 and b is a constant in (0.1). An almost complex affine connection ∇ without torsion is said to be *H*-complete if any *H*-geodesic c(t) of ∇ can be defined for all $t \in \mathbb{R}$. When ∇ is the Kaehler connection of a Kaehler metric ds^2 , *H*-completeness of ∇ is equivalent to completeness of ds^2 (Theorem 4). An almost complex affine connection without torsion is said to be of Kaehler type if its Ricci tensor is hermitian (i.e., symmetric and *J*-invariant). In this case we shall show that an *H*-planner curve c(t) with a=0 in (0.1) is an *H*-geodesic if the development of c(t) is an *H*-geodesic in $\mathbf{P}^n(\mathbf{C})$ (Theorem 5). Finally we shall prove

Theorem 6. Let ∇ and ∇' be H-complete connections of Kaehler type with parallel Ricci tensors S and S' respectively. Suppose that either S=0 or S has at least one negative eigenvalue at one point, and that ∇ and ∇' are H-projectively equivalent. Then we have $\nabla = \nabla'$.

When ∇ and ∇' are the Kaehler connections of complete Kaehler metrics and both S and S' are parallel and negative semi-definite, the above result has been obtained by S. Ishihara and S. Tachibana [1].

Finally we remark that the present paper has been motivated by the paper of N. Tanaka on real projective transformations [7].

I would like to express my gratitude to my thesis advisor, Professor T. Ochiai for his valuable suggestions and encouragement.

NOTATION

Throughout this paper the following standard conventions will be adopted. **R** (resp. **C**) denotes the real (resp. complex) number field. For $z \in C$, Re(z) is the real part of z. We write \mathbb{R}^m (resp. \mathbb{C}^m) for the *m*-dimensional standard real (resp. complex) vector space. An element of \mathbb{R}^m (resp. \mathbb{C}^m) is considered as a column vector. We denote by e_1, \dots, e_m the canonical basis of \mathbb{R}^m or \mathbb{C}^m . For $x \in \mathbb{R}^m$ or \mathbb{C}^m , ^tx denotes the transpose of x. The general linear group acting on \mathbb{R}^m (resp. \mathbb{C}^m) and its Lie algebla are denoted, respectively, by $GL(m, \mathbb{R})$ (resp. $GL(m, \mathbb{C})$) and $gl(m, \mathbb{R})$ (resp. $gl(m, \mathbb{C})$). We write 1_m for the identity $m \times m$ matrix. For an $m \times m$ matrix A, det A denotes the determinant of A.

For a point p of manifold N, $T_p(N)$ is the tangent space to N at p. For a differentiable mapping f, f_* and f^* are the differential and the codifferential of f respectively. For a Lie group G, its Lie algebla is written by the corresponding German letter g. For a G-principal bundle $Q \rightarrow M$, R_a denotes the right tran-

slation by an element a of G acting on Q. For an element A or g, A^* denotes the fundamental vector field on Q corresponding to A.

1. *H*-projective equivalence

Let M be an m-dimensional manifold. Let us denote by $j^{r}(f)$ the r-frame at p=f(0) given by a diffeomorphism f of a neighborhood of the origin 0 of $\mathbb{R}^{m^{r}}$ onto an open subset of M. The set $G^{r}(m)$ of r-frames at $0 \in \mathbb{R}^{m}$ is a Lie group with multiplication defined by the composition of jets. The set $F^{r}(M)$ of rframes of M is a principal bundle over M with natural projection π^{r} satisfying $\pi^{r}(j^{r}(f))=f(0)$, and with structure group $G^{r}(m)$. $F^{1}(M)$ is nothing but the bundle of linear frames.

We have a natural inclusion of $GL(m, \mathbf{R})$ into G'(m), defined by $g \rightarrow j'(g)$ for $g \in GL(m, \mathbf{R})$. In particular $GL(m, \mathbf{R})$ and $G^1(m)$ are isomorphic by this inclusion. We shall identify $GL(m, \mathbf{R})$ with $G^1(m)$ and consider $GL(m, \mathbf{R})$ as a subgroup of G'(m) by this inclusion.

Let f be a diffeomorphism of M onto a manifold N. Then f induces a bundle isomorphism $f^{(r)}: F^r(M) \rightarrow F^r(N)$ defined by

$$f^{(r)}(j^r(h)) = j^r(f \cdot h)$$
 for $j^r(h) \in F^r(M)$.

We have a natural projection $\nu: F^2(M) \to F^1(M)$ defined by $\nu(j^2(f)) = j^1(f) \cdot (j^2(f) \in F^2(M))$. A cross-section s: $F^1(M) \to F^2(M)$ is said to be *admissible* if we have

$$s(xa) = s(x)a$$
 for $x \in F^1(M)$ and $a \in GL(m, \mathbb{R})$.

The \mathbb{R}^m (resp. $gl(m, \mathbb{R})$)-component of the canonical form Θ on $F^2(M)$ (see [2]) for the meaning of terminology) is denoted by Θ_{-1} (resp. Θ_0).

Proposition 1 (S. Kobayashi [2]). For an admissble crosssection $s: F^1(M) \rightarrow F^2(M)$, $s^*\Theta_0$ is an affine connection on M without torsion. And this defines a one-to-one correspondence between affine connections on M without torsion and admissible cross-sections.

Let u^1, \dots, u^m be a local coordinate system in M, and let y^1, \dots, y^m be the natural coordinate system in \mathbb{R}^m . Each 2-frame u (resp. $a \in G^2(m)$) has a unique polynomial respresentation $u = j^2(f)$ (resp. $a = j^2(f)$) of the form

$$f^{i}(y) = u^{i} + \sum u^{i}_{j}y^{j} + \frac{1}{2} \sum u^{i}_{jk}y^{j}y^{k}$$

(resp. $f^{i}(y) = \sum a^{i}_{j}y^{j} + \frac{1}{2} \sum a^{i}_{jk}y^{j}y^{k}$)

,

where $u_{jk}^{i} = u_{kj}^{i}$ (resp. $a_{jk}^{i} = a_{kj}^{i}$), and $f^{i}(y)$ is the *i*-th coordinate of f(y) with respect

to u^1, \dots, u^m (resp. y^1, \dots, y^m). We shall consider (u^i, u^i_j, u^i_{jk}) (resp. (a^i_j, a^i_{jk})) as a local coordinate system in $F^2(M)$ (resp. a coordinate system in $G^2(m)$). In the same way, a local coordinate system (u^i, u^i_j) in $F^1(M)$ and a coordinate system (a^i_j) in $G^1(m)$ are defined. The action of $G^2(m)$ on $F^2(M)$ is then given by

(1.1)
$$(u^i, u^i_j, u^i_{jk}) (a^i_j, a^i_{jk}) = (u^i, \sum u^i_q a^q_j, \sum u^i_q a^q_{jk} + \sum u^i_{lr} a^l_{j} a^r_{k})$$

Let s be the cross-section corresponding by Proposition 1 to an affine connection ∇ without torsion. Then the local expression of s is

(1.2)
$$s(u^i, u^i_j) = (u^i, u^i_j, -\sum u^q_j \Gamma^i_{q_l} u^i_k),$$

where $\Gamma_{q_l}^i$ are the Christoffel's symbols of ∇ with respect to u^1, \dots, u^m ([2]).

Let L and L_0 be as in (0.3). We shall consider $L_0/(\text{center})$ as a subgroup of $G^2(n)$ as follows. Let $\pi: \mathbb{C}^{n+1} \to \{0\} \to \mathbb{P}^n(\mathbb{C})$ be the Hopf fibering. Identifying the subset

$$\left\{ \pi \begin{pmatrix} 1 \\ z \end{pmatrix} \in P^n(C) \mid z \in C^n \right\}$$

of $P^n(C)$ with $C^n = R^{2n}$, $a \in L_0$ can be considered as a local diffeomorphism of R^{2n} leaving the origin 0 of R^{2n} fixed. Here C^n is identified with R^{2n} by the correspondence $(z^1, \dots, z^n) \in C^n \to (x^1, \dots, x^n, y^1, \dots, y^n) \in R^{2n}$, $z^i = x^i + \sqrt{-1}y^i$, $x^i, y^i \in R$, $i=1, \dots, n$. It can be easily verified that $j^2(a) = id$ if and only if a is the identity transformation of L/L_0 . Hence $L_0/(\text{center})$ can be identified with the group of 2-jets $\{j^2(a) | a \in L_0\}$. By a straightforward computation we have

Lemma 1.1. The expression of

$$a = \begin{pmatrix} 1 & t_{\mathfrak{p}} \\ 0 & 1_{\mathfrak{n}} \end{pmatrix} (mod \ center) \in L_0/(center)$$

as an element of $G^2(n)$ is given by (δ_j^i, a_{jk}^i) with

(1.3)
$$a_{jk}^i = \delta_j^i \rho_k + \delta_k^i \rho_j - \phi_j^i \rho_s \phi_k^s - \phi_k^i \rho_s \phi_j^s,$$

where

$$\rho_{k} = \begin{cases} -v^{k} & \text{if } 1 \leq k \leq n \\ v^{k} & \text{if } n+1 \leq k \leq 2n, \end{cases} \begin{pmatrix} \phi_{j}^{i} \end{pmatrix} = \begin{pmatrix} 0 & -1_{n} \\ 1_{n} & 0 \end{pmatrix},$$

 v^k being k-th component of $v \in C^n = R^{2n}$.

Let us denote the Lie algebras of L and L_0 by I and I_0 respectively. Subalgebras g_{-1} , g_0 and g_1 of I are defined, respectively, as follows:

$$\mathfrak{g}_{-1} = \left\{ \begin{pmatrix} 0 & 0 \\ u & 0 \end{pmatrix} \in \mathfrak{l} \, | \, u \in C^n \right\}$$

$$g_0 = \left\{ \begin{pmatrix} z & 0 \\ 0 & A \end{pmatrix} \in \mathfrak{l} | A \in \mathfrak{gl}(n, C) \right\}$$
$$g_1 = \left\{ \begin{pmatrix} 0 & {}^t v \\ 0 & 0 \end{pmatrix} \in \mathfrak{l} | v \in C^n \right\}.$$

In the following, g_{-1} and, g_1 are identified, respectively, with C^n and its dual space $(C^n)^*$. And g_0 is identified with gl(n, C) by the correspondence

$$\begin{pmatrix} z & 0 \\ 0 & A \end{pmatrix} \in \mathfrak{g}_0 \to A - z \mathfrak{l}_n \in \mathfrak{gl}(n, C)$$

Therefore we can consider GL(n, C) as a subgroup of $L_0/(\text{center})$ by the injection

$$B \in GL(n, \mathbb{C}) \to \begin{pmatrix} (\det B)^{-1/n+1} & 0\\ 0 & (\det B)^{-1/n+1}B \end{pmatrix} \pmod{\operatorname{center}} \in L_0/(\operatorname{center})$$

Put $L_1 = \exp \mathfrak{g}_1$. Then

(1.4) $L_0/(\text{center}) = GL(n, C) \cdot L_1$ (semi-direct).

For the remainder of this section we suppose that M is a complex manifold of complex dimension n. Let ∇ be an almost complex affine connection without torsion on M and let γ be its connection form on the bundle C(M) of complex linear frames. By Proposition 1 there exists an admissible cross-section $l: F^1(M)$ $\rightarrow F^2(M)$ corresponding to ∇ . Let ι denote the inclusion map C(M) into $F^1(M)$. Then $s=l \cdot \iota$ is an imbedding of C(M) into $F^2(M)$ such that $s^*\Theta_0 = \gamma$ and s(xa)= s(x)a for $x \in C(M)$ and $a \in GL(n, C)$. Thus C(M) can be considered as a GL(n, C)-subbundle of $F^2(M)$. The group extension of C(M) to $L_0/(\text{center})$ with respect to (1.4) will be denoted by $Q(\nabla)$.

Theorem 1. Let ∇_1 and ∇_2 be two almost complex affine connections without torsion. Then ∇_1 and ∇_2 are H-projectively equivalent if and only if $Q(\nabla_1) = Q(\nabla_2)$.

Proof. Let $z^A = x^A + \sqrt{-1} x^{A+n}$, $A = 1, \dots, n$, be a complex local coordinate system in an open subset U of M. We define the natural almost complex stucture J on M by

$$J(\partial/\partial x^{A}) = \partial/\partial x^{A+n}, J(\partial/\partial x^{A+n}) = -\partial/\partial x^{A}, A = 1, \dots, n.$$

It follows from (1.2) that the injections

 $s_1: C(M) \to Q(\nabla_1)$ and $s_2: C(M) \to Q(\nabla_2)$

corresponding respectively to ∇_1 and ∇_2 are expressed as follows:

$$s_1(x^i, x^i_j) = (x^i, x^i_j, -\sum_{m,l=1}^{2n} x^m_j(\Gamma_1)^i_{ml} x^l_k),$$

$$s_2(x^i, x^i_j) = (x^i, x^i_j, -\sum_{m,l=1}^{2n} x^m_j(\Gamma_2)^i_{ml} x^l_k),$$

where $(\Gamma_1)_{m_l}^i$ and $(\Gamma_2)_{m_l}^i$ are respectively the Christoffel's symbols of ∇_1 and ∇_2 with respect to $x^1, \dots, x^n, x^{n+1}, \dots, x^{2n}$. Note that $(x^i, \delta_j^i) \in C(M)$.

Assume that $Q(\nabla_1)=Q(\nabla_2)$. Then there exists a C^{∞} -map $a: U \to L_0$ such that

(1.5)
$$s_1(x^i, \delta^i_j) = s_2(x^i, \delta^i_j)a, a = (a^i_j, a^i_{jk})$$

By the above formulas for local expression of s_1 and s_2 , we see that $a_j^i = \delta_j^i$. This means $a(U) \subset L_1$.

By (1.1) we have

$$-(\Gamma_2)^i_{jk}+a^i_{jk}=-(\Gamma_1)^i_{jk}$$
.

It follows from Lemma 1.1 that there exist real functions ρ_1, \dots, ρ_{2n} such that

$$(\Gamma_2)^i_{jk} - (\Gamma_1)^i_{jk} = \delta^i_j \rho_k + \delta^i_k \rho_j - \sum_s \phi^i_j \rho_s \phi^s_k - \sum_s \phi^i_k \rho_s \phi^s_j \,.$$

Let J_j^i be the local expression of J with respect to x^1, \dots, x^{2n} , then $J_j^i = \phi_j^i$. Thus we obtain

(1.6)
$$(\Gamma_2)^i_{jk} - (\Gamma_1)^i_{jk} = \delta^i_j \rho_k + \delta^i_k \rho_j - \sum_s J^i_j \rho_s J^s_k - \sum_s J^i_k \rho_s J^s_j .$$

This shows that (ρ_i) is a 1-form. Thus ∇_1 and ∇_2 are *H*-projectively equivalent (cf. the definition in Introduction).

Conversely assume that ∇_1 and ∇_2 are *H*-projectively equivalent, *i.e.*, ∇_1 and ∇_2 are related by the formula (1.6). Define $a=(\delta_j^i, a_{jk}^i) \in L_1$ by (1.3). Then (1.5) holds. Thus we see $Q(\nabla_1)=Q(\nabla_2)$. q.e.d.

Let ∇ be an almost complex affine connection without torsion and let $s: C(M) \rightarrow Q(\nabla)$ be the cross-section corresponding to ∇ . For a biholomorphic transformation $f: M \rightarrow M$, define an admissible cross-section $s': C(M) \rightarrow F^2(M)$ by $s'=(f^{(2)})^{-1} \cdot s \cdot f^{(1)}$. Since $f^{(2)}$ leaves Θ invariant, s' is the admissible cross-section corresponding to $\nabla'=f^*\nabla$. Thus we have $f^{(2)}(Q(\nabla'))=Q(\nabla)$. Therefore $Q(\nabla)=Q(\nabla')$ if and only if $f^{(2)}(Q(\nabla))=Q(\nabla)$. Applying Corollary 11-1 in [4] to our case, we obtain

Theorem 2. Let ∇ be an almost complex affine connection without torsion. Then the group of all H-projective transformations of ∇ is a Lie group of finite dimension.

2. The development of an *H*-planner curve with respect to a Cartan connection of type $P^{n}(C)$

Let M be a manifold of dimension n, G a Lie group, K a closed subgroup

of G with dim G/K=n and Q a principal bundle over M with structure group K. A G/K-Cartan connection in the bundle Q is a 1-form ω on Q with values in the Lie algebra g of G satisfying the following conditions:

- i) $R_h^* \omega = Ad(h^{-1})\omega, \quad h \in K$
- ii) $\omega(A^*) = A$, $A \in \mathfrak{k}$
- iii) $\omega(X) \neq 0$ for every nonzero vector X of Q.

A G/K-Cartan connection is said to be a $P^{n}(C)$ -Cartan connection when G = L/(center) and $K = L_{0}/(\text{center})$, L and L_{0} being as in (0.3).

Let P be the group extension of Q to G, i.e., $P=Q \times_K G$. Then a Cartan connection ω in Q can be uniquely extended to a connection form on P, denoted by $\tilde{\omega}$. Let c(t) be a curve in M and let $z(t) \in P$ be a horizontal lift of c(t) with respect to $\tilde{\omega}$ such that $z(0) \in Q$. Then there exists a curve $a(t) \in G$ such that $z(t)a(t) \in Q$. The development $c^*(t)$ of c(t) at c(0) by ω is defined by

$$c^*(t) = z(0) \cdot a(t) 0 \in Q \times_{\kappa} G/K$$
,

where 0 denotes the origin of G/K ([3]). We shall often identify $c^*(t)$ with the curve $a(t)0 \in G/K$.

We shall consider the case when G=L/(center) and $K=L/_0(\text{center})$, Land L_0 being as in (0.3). We call a curve c(t) in $P^n(C)$ a projective line if there exists a 2-dimensional complex subspace W of C^{n+1} such that $c(t) \in \pi(W-$ (0)). Let M be an *n*-dimensional complex manifold with an almost complex affine connection ∇ without torsion. Let us denote by θ the canonical form on C(M) and by γ the connection form on C(M) corresponding to ∇ . We see in Section 1 that ∇ gives rise to a K-structure $Q(\nabla)$ of second order, i.e., Ksubbundle of $F^2(M)$, and the injection $s: C(M) \rightarrow Q(\nabla)$. We know that there exists a Cartan connection ω on $Q(\nabla)$ satisfying

(2.1)
$$s^*\omega_{-1} = \theta$$
 and $s^*\omega_0 = \gamma$,

where ω_{-1} and ω_0 are respectively g_{-1} -component and g_0 -component of ω .

We shall prove

Proposition 2.1. Let ∇ be an almost complex affine connection on a complex manifold M and let ω be any Cartan connection on $Q(\nabla)$ satisfying (2.1). Then, a curve in M is H-planner if and only if its development with respect to ω is a projective line.

This follows directly from following Lemmas 2.2 and 2.3.

Lemma 2.1. Let c(t) be a curve in M and let x(t) be a horizontal lift of c(t) in C(M). Define $v(t) \in \mathbb{C}^n$ by

$$(2.2) c'(t) = x(t)v(t)$$

Then

$$(2.3) \qquad \nabla_{c'}c' = ac' + bJc'$$

for certain smooth functions a and b if and only if

(2.4)
$$v(t) = \exp\left(\int_{0}^{t} (a(t) + \sqrt{-1} b(t))dt\right)v(0).$$

Proof. From the difinition of covariant derivative, we obtain

 $\nabla_{c'(t)}c'(t) = x(t)v'(t) .$

By (2.2),

$$a(t)c'(t)+b(t)Jc'(t) = x(t) (a(t)+\sqrt{-1} b(t))v(t)$$
.

Therefore (2.3) holds if and only if

(2.5) $v'(t) = (a(t) + \sqrt{-1} b(t))v(t)$.

We have (2.4) if and only if (2.5) holds.

Let c(t) be a regular curve in M and let x(t) (resp. z(t) with z(0)=s(x(0))) be a horizontal lift of c(t) in C(M) (resp. P) with respect to ∇ (resp. $\tilde{\omega}$). Choose a curve $a(t) \in L$ satisfying

(2.6)
$$z(t) [a(t)] = s(x(t)), a(0) = 1_{n+1},$$

where [a(t)] denotes the image of a(t) by the natural projection $L \rightarrow L/(\text{center})$. We may assume that a(t) is smooth since the center of L is discrete. We shall denote the (A+1)-th column vector of a(t) by $a_A(t)$ $(0 \le A \le n)$.

Lemma 2.2. $a_0(t)$, $a'_0(t)$ and $a''_0(t)$ are linearly dependent for each t if and only if c(t) is H-planner.

Proof. Differentiating both sides of (2.6), we obtain

$$R_{[a(t)]*}z'(t) + (a(t)^{-1}a'(t))*_{z(t)[a(t)]} = s_*(x'(t)).$$

Hence we have

(2.7)
$$a(t)^{-1}a'(t) = \tilde{\omega}(s_*x'(t)).$$

Let $\tilde{\omega}_B^A$ $(0 \leq A, B \leq n)$ denote the (A+1, B+1)-component of $\tilde{\omega}(s_*(x'(t)))$. From (2.7) we obtain

$$a_{B'} = \sum_{A=0}^{n} a_A \tilde{\omega}_B^A \qquad 0 \leq B \leq n.$$

Hence

442

q.e.d.

$$a_0^{\prime\prime} = \sum_{A=0}^n a_A rac{d\widetilde{\omega}_0^A}{dt} + \sum_{B=0}^n a_{B^\prime} \widetilde{\omega}_0^B = \sum_{A=0}^n a_A \Big(rac{d\widetilde{\omega}_0^A}{dt} + \sum_{B=0}^n \widetilde{\omega}_B^A \widetilde{\omega}_0^B \Big).$$

Since x(t) is horizontal with respect to ∇ , we have

$$\tilde{\omega}_0^0 = 0$$
 and $\tilde{\omega}_k^j = 0$ $1 \leq j, k \leq n$.

Thus we obtain

$$(2.8) a_0' = \sum_{k=1}^n a_k \widetilde{\omega}_0^k,$$

(2.9)
$$a_0^{\prime\prime} = \sum_{k=1}^n a_0 \widetilde{\omega}_k^0 \widetilde{\omega}_0^k + \sum_{k=1}^n a_k \frac{d\widetilde{\omega}_0^k}{dt}.$$

Now suppose that $a_0(t)$, $a_0'(t)$ and $a_0''(t)$ are linearly dependent for each t. Then there exist functions f(t), g(t) and h(t) such that

$$(2.10) fa_0 + ga_0' + ha_0'' = 0$$

and
$$|f| + |g| + |h| \neq 0$$
.

Substituting (2.8) and (2.9) in (2.10), we have

$$(f(t)+h(t)\sum_{k=1}^{n}\tilde{\omega}_{k}^{0}\tilde{\omega}_{0}^{k})a_{0}+\sum_{j=1}^{n}\left(g(t)\tilde{\omega}_{0}^{j}+h(t)\frac{d\tilde{\omega}_{0}^{j}}{dt}\right)a_{j}=0.$$

Since $a_0(t), a_1(t), \dots, a_n(t)$ are linearly independent, this is equivalent to the following:

$$f(t)+h(t) = \sum_{k=1}^{n} \tilde{\omega}_{k}^{0} \tilde{\omega}_{0}^{k} = 0,$$

$$g(t)\tilde{\omega}_{0}^{j}+h(t)\frac{d\tilde{\omega}_{0}^{j}}{dt} = 0 \text{ for } 1 \leq j \leq n.$$

Since $c'(t) \neq 0$, we have $\tilde{\omega}_0^i \neq 0$ for a certain integer j $(1 \leq i \leq n)$. Hence $h(t) \neq 0$ for each t. Putting

$$F(t) = -g(t)/h(t),$$

we obtain

$$F(t) heta(x'(t)) = d heta(x'(t))/dt$$
,

which shows that F is a differentiable function. Hence

(2.11)
$$\theta(x'(t)) = \exp\left(\int_0^t F(t)dt\right)v_0, \ v_0 \in C^n$$

i.e.,

$$c'(t) = x(t) \exp\left(\int_0^t F(t)dt\right)v_0.$$

Therefore if follows from Lemma 2.1 that c(t) is *H*-planner. Taking the steps backwards, it is now easy to prove the converse.

Lemma 2.3. $a_0(t)$, $a_0'(t)$ and $a_0''(t)$ are linearly dependent for each t if and only if there exists a 2-dimensional complex subspace W of C^{n+1} in which $a_0(t)$ is contained for every t.

Proof. First note that a_0 and a_0' are linearly independent for each t. This follows from formula (2.8), because $\tilde{\omega}_0^k \neq 0$ for a certain integer $k(1 \leq k \leq n)$ and $a_0(t)$, $a_1(t), \dots, a_n(t)$ are linearly independent for each t. Let $b_A (0 \leq A \leq n)$ be the (A+1)-th component of a_0 and define an $(n+1) \times 3$ matrix B by

$$B = \begin{pmatrix} b_0 & b_0' & b_0'' \\ b_1 & b_1' & b_1'' \\ \vdots & \vdots & \vdots \\ b_n & b_n' & b_n'' \end{pmatrix}.$$

We may assume that in an open interval U containing $t=t_0$

(2.12)
$$\det \begin{pmatrix} b_0 & b_0' \\ b_1 & b_1' \end{pmatrix} \neq 0.$$

Now suppose that a_0 , a_0' and a_0'' are linearly dependent. Since rank B=2, $b_j(j=2,3,\dots,n)$ are solutions of the following ordinary linear differential equation of second order:

$$\det egin{pmatrix} b_0 & b_0' & b_0'' \ b_1 & b_1' & b_1'' \ x & x' & x'' \end{pmatrix} = 0 \ .$$

It follows that there exist constants α_i , β_i $(j=2,\dots,n)$ such that

$$b_j = \alpha_j b_0 + \beta_j b_1 \, .$$

Thus we obtain

$$a_0 = b_0 \begin{pmatrix} 1 \\ 0 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} + b_1 \begin{pmatrix} 0 \\ 1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}.$$

This shows that $a_0(t)$ ($t \in U$) is contained in the 2-dimensional complex subspace W of C^{n+1} spanned by

$$\begin{pmatrix} 1 \\ 0 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} \text{ and } \begin{pmatrix} 0 \\ 1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}.$$

We shall see that such a 2-dimensional subspace is independent of the choice of t_0 . In fact, suppose that there exists a 1-dimensional subspace V of C^{n+1} such that $a_0(t) \in V$ for every t in a certain open interval V contained in U. This contradicts (2.12). The proof for the converse is trivial. q.e.d.

EXAMPLE 2.1. S=SU(n+1,C)/(center) acts transitively on $P^n(C)$ in a natural manner. Let H be the isotropy subgroup of S at

$$0 = \pi \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \boldsymbol{P}^{n}(\boldsymbol{C}).$$

Since each $f \in S$ is a transformation of $P^{n}(C)$ and a neighborhood of 0 in $P^{n}(C)$ is identified with a neighborhood of 0 in \mathbb{R}^{2n} in a natural way, the 1-jet $j_0^1(f)$ can be considered as a 1-frame of $P^{n}(C)$ at f(0). The set of all 1-frames thus obtained defines an H-subbundle of the bundle $C(P^n(C))$ of complex linear frames, which may be identified with the bundle S over $P^{n}(C)$. L and L_{0} being as in (0.3), let G and K denote L/(center) and $L_0/(\text{center})$ respectively. Then the set of all 2-frames $\{j_0^2(f) \mid \in G\}$ defines a K-subbundle of $F^2(P^n(C))$, and this can be identified with the bundle G over $P^n(C)$. The Maurer-Cartan form ω of G is a G/K-Cartan connection in G. Define an injection s: $C(P^n(C)) \rightarrow F^2(P^n(C))$ by $s(xa) = \iota(x)a$ for $x \in S$ and $a \in GL(n, C)$, ι being the inclusion map of S into G. Then the bundle G is the group extension of $C(P^n(C))$ by s to the group K. The 1-form $s^*\omega|_{g_0}$ on $C(P^n(C))$, restriction of values of $s^*\omega$ to the Lie algebra \mathfrak{g}_0 of $GL(n, \mathbb{C})$, corresponds to the Kaehler connection ∇ on the symmetric space $P^{n}(C) = S/H$. Thus ω is a Cartan connection corresponding to ∇ and, in fact, ω is the normal Cartan connection (see section 4 for the meaning of terminology) [4]. ω can be uniquely extended to a connection form $\tilde{\omega}$ on the bundle $G \times_{\kappa} G$ over $P^{n}(C)$. A horizontal lift of a curve $c(t) = a(t) 0 \in P^{n}(C)$ $(a(t) \in G)$ with respect to $\tilde{\omega}$ is $z(t) = a(t) \cdot a(t)^{-1}a(0) \in G \times_{\kappa} G$. In fact, noting that $R_{a(0)^{-1}a(t)}z(t)$ belongs to the subbundle G, we have by the definition of $\tilde{\omega}$

$$\begin{split} \widetilde{\omega}(z'(t)) &= \widetilde{\omega}(R_{a(t)^{-1}a(0)^*}R_{a(0)^{-1}a(t)^*}(z'(t))) \\ &= Ad(a(0)^{-1}a(t))\widetilde{\omega}(R_{a(0)^{-1}a(t)^*}z'(t))) \\ &= Ad(a(0)^{-1}a(t)) \left(\omega(a'(t)) + Ad(a(t)^{-1}a(0)) \left(a(0)^{-1}a(t) \left(a(t)^{-1}a(0)\right)'\right)\right) \\ &= Ad(a(0)^{-1}a(t)) \left(a(t)^{-1}a'(t) + \left(a(t)^{-1}\right)'a(t)\right) = 0 \,. \end{split}$$

Here we may assume a(t) is locally differentiable, since z(t) is independent of

the choice of $a(t) \in G$. Thus $c^*(t) = a(0)^{-1}a(t)0 \in P^n(C)$ is the development of c(t) with respect to ω .

Applying Proposition 2.1 to the case when $M = P^{n}(C)$, we obtain

Corollary 2.1. A curve in $P^{n}(C)$ is H-planner if and only if it is a projective line.

By Proposition 2.1 and Corollary 2.1 we have

Theorem 3. The assumptions and notation being as in Proposition 2.1, a curve in M is H-planner if and only if its development with respect to ω is H-planner.

3. H-completeness

We have defined an *H*-geodesic and *H*-completeness in Introduction. In this section we shall prove the following:

Theorem 4. Let M be a connected Kaehler manifold with a Kaehler metric g and let ∇ be the Kaehler connection of g. Then H-completeness of ∇ is equivalent to completeness of g.

Proof. Completeness of g follows from H-completeness of ∇ since a geodesic of g is clearly an H-geodesic of ∇ . Assume that g is complete. Let $c(t) \ 0 \le t < L$ be an H-geodesic, i.e.,

(3.1)
$$\nabla_{c'}c' = bJc'$$
 b: constant.

We shall show that this *H*-geodesic can be extended beyond *L*. Let x(t) be a horizontal lift of c(t) in the unitary frame bundle with respect to *g*. We can choose such a horizontal lift because ∇ is the Kaeler connection of *g*. Then c'(t)=x(t)v(t), where $v(t)=\exp(\sqrt{-1} bt)v(0)$ by Lemma 2.1. Let $\{t_k\}$ be an infinite sequence such that $t_k \rightarrow L \ (k \rightarrow \infty)$. Then

$$d(c(t_k), c(t_l)) \leq |\int_{t_k}^{t_l} g(c'(t), c'(t)dt| \\ = |t_k - t_l| |v(0)|,$$

where d denotes the distance function defined by g and |v(0)| denotes the usual norm of v(0) in \mathbb{C}^n . This shows that $\{c(t_k)\}$ is a Canchy sequence in M with respect to d and hence converges to a point, say p. The limit point is independent of the choice of a sequence $\{t_k\}$ converging to L. Let x^1, x^2, \dots, x^{2n} be a local coordinate system in a relatively compact coordinate neighborhood U of p. The local expression of (3.1) in U is

(3.2)
$$\frac{d^2x^i}{dt^2} + \Gamma^i_{jk} \frac{dx^j}{dt} \frac{dx^k}{dt} = bJ^i_j \frac{dx^j}{dt}.$$

The exists a positive number δ such that $\{c(s)|L-\delta \leq s < L\} \subset U$. Since the length of c' is constant, $\{dx^{j}/dt(s)|L-\delta < s < L\}$ are bounded. It follows from (3.2) that $\{|d^{2}x^{j}/dt^{2}(s)||L-\delta < s < L\}$ are also bounded, and less than a constant N. Let $\{s_{k}\}$ be an infinite sequence such that $s_{k} \rightarrow L$ $(k \rightarrow \infty)$. Then

$$\left|\frac{dx^{j}}{dt}(s_{m})-\frac{dx^{j}}{dt}(s_{l})\right|=\left|\int_{s_{l}}^{s_{m}}\frac{d^{2}x^{j}}{dt^{2}}dt\right|\leq N|s_{m}-s_{l}|.$$

This shows that $\{dx^i/dt(s_k)\}\$ is a Cauchy sequence in R, hence converges to a real number. The limit is independent of the choice of a sequence $\{s_k\}\$ converging to L. Since c(t) and dx^i/dt converge when $t \rightarrow L$, the solution of (3.2) can be extended beyond L. This completes the proof of Theorem 3.

4. A connection of Kaehler type

In this section we shall prove a certain property of a connection of Kaehler type defined in Introduction. The result will be used to prove Theorem 5 and Theorem 6 in the following sections.

Let ∇ be an almost complex affine connection without torsion on a complex manifold M of complex dimension n. And let Q and $s: C(M) \rightarrow Q$ be the corresponding $L_0/(\text{center})$ -structure and the injection. We know that there exists a $P^n(C)$ -Cartan connection ω satisfying (2.1) for any almost complex affine connection without torsion which is H-projectively equivalent to ∇ ([4]). Define a subspace H_q of the tangent space $T_q(Q)$ at $q \in Q$ by

$$H_{q} = \{X \in T_{q}(Q) | \omega_{0}(X) = 0, \, \omega_{1}(X) = 0\}$$

Then $\omega_{-1}: H_q \rightarrow \mathfrak{g}_{-1}$ is a linear isomorphism. Put

$$\Omega = d\omega + [\omega, \omega]/2.$$

Decompose Ω into $\Omega = \Omega_{-1} \oplus \Omega_0 \oplus \Omega_1$, Ω_{-1} , Ω_0 and Ω_1 being \mathfrak{g}_{-1} , \mathfrak{g}_0 - and \mathfrak{g}_1 components of Ω respectively. Let $\{v_i\}_{i=1,2,\cdots,2n}$ be a real basis of \mathfrak{g}_{-1} and let $\{z^i\}$ be its dual basis in \mathfrak{g}_1 with respect to the Killing-Cartan form B of \mathfrak{L} which is non-singular on $\mathfrak{g}_{-1} \times \mathfrak{g}_1$. Choose $X_i \in H_q$ such that $\omega_{-1}(X_i) = v_i$. We shall call ω a $P^n(C)$ -nomal Cartan connection if Ω_0 satisfies

$$\sum z^i \Omega_0(X_i, Y) = 0$$
 at each point $q \in Q$.

If $n \ge 2$, there exists uniquely a $P^n(C)$ -normal Cartan connection ([4]).

For the $P^n(C)$ -normal Cartan connection, define $E_x: \mathfrak{g}_{-1} \rightarrow \mathfrak{g}_1 (x \in C(M))$ by

(4.1)
$$E_{\mathfrak{s}}(\theta(Y)) = \mathfrak{s}^*\omega_1(Y) \qquad Y \in T_{\mathfrak{s}}(C(M)).$$

 E_x is well-defined. In fact, if $\theta_x(Y)=0$, there exists $A \in \mathfrak{gl}(n, \mathbb{C})$ such that $Y=(A^*)_x$. Hence

$$(s^*\omega_1)(Y) = \omega_1(s_*(A^*)_x) = \omega_1((A^*)_{s(x)}) = 0.$$

Let us denote by $C^{p,q}$ $(-1 \le p \le 3)$ the set of all \mathfrak{g}_{p-1} -valued q-skew-symmetric multilinear form on \mathfrak{g}_{-1} , where $\mathfrak{g}_{-2} = \{0\}$ and $\mathfrak{g}_2 = \{0\}$. Define d: $C^{p,q} \rightarrow C^{p-1,q+1}$ by

$$dc(y_1, \dots, y_{q+1}) = \sum_{i=1}^{q+1} (-1)^{i+1} [y^i, C(y_1, \dots, y_{i-1}, y_{i+1}, \dots, y_{q+1})],$$

 $y_1, \cdots, y_{q+1} \in \mathfrak{g}_{-1}$. And define $d^* \colon C^{p,q} \to C^{p+1,q-1}$ by

$$(d^*c)(y_1,\cdots,y_{q-1}) = \sum_{i=1}^{2\pi} [z^i, c(v_i,y_1,\cdots,y_{q-1})],$$

 $y_1, \dots, y_{q-1} \in \mathfrak{g}_{-1}$, where $\{v_i\}$ denotes a basis of \mathfrak{g}_{-1} and $\{z^i\}$ denotes the dual basis of $\{v_i\}$ in \mathfrak{g}_1 with respect to the Killing-Cartan form B of \mathfrak{L} .

We shall denote by S the Ricci tensor field of ∇ . Define $S_x: \mathfrak{g}_{-1} \times \mathfrak{g}_{-1} \rightarrow \mathbb{R}$ and $T_x: \mathfrak{g}_{-1} \rightarrow \mathfrak{g}_1$ for $x \in C(M)$ by

(4.2)
$$S_x(u, v) = S(xu, xv) \text{ and}$$
$$B(T_x(u), v) = S_x(u, v)$$

respectively. Then

(4.3)
$$T_{x} = -d^{*}dE_{x} ([4]).$$

For $z \in g_1$ and $v \in g_{-1}$ we shall denote by $\langle z, v \rangle$ the real part of zv.

Lemma 4.1. Let ∇ be a connection of Kaehler type on an n-dimensional complex manifold $(n \ge 2)$. Then

$$\langle E_x(u), v \rangle = -S(xu, xv)/2(n+1)$$

or equivalently

$$E_x(u)v = -\{S(xu, xv) - \sqrt{-1} S(xu, Jxv)\}/2(n+1).$$

In particular, $E_x(v)v$ is real valued.

Proof. We write E for E_x for simplicity. From the definition of the Killing-Cartan form of \mathfrak{A} , we obtain

$$(4.4) B(X, Y)/4(n+1) = \operatorname{Re}(\text{the trace of } XY),$$

for X, $Y \in \mathfrak{A}$. Hence we consider \mathfrak{A} as a real Lie algebra. Since $\{{}^{i}e_{i}/4(n+1), -\sqrt{-1}{}^{i}e_{i}/4(n+1)\}_{i=1,2,\cdots,n}$ is the dual basis of \mathfrak{g}_{1} corresponding to a real basis $\{e_{i}, \sqrt{-1} e_{i}\}_{i=1,\cdots,n}$ of \mathfrak{g}_{-1} with respect to B, we have

(4.5)
$$d^*dE(v) = \sum_{i=1}^n \frac{1}{4(n+1)} [{}^{i}e_i, dE(e_i, v)] + \sum_{i=1}^n \frac{1}{4(n+1)} [-\sqrt{-1} {}^{i}e_i, dE(\sqrt{-1} e_i, v)]$$

H-projective Connections and H-projective Transformations

$$=\sum_{i=1}^{n}\frac{1}{4(n+1)}\left\{\left[{}^{i}e_{i},\left[e_{i},E(v)\right]-\left[v,E(e_{i})\right]\right]\right.\\\left.+\left[-\sqrt{-1}{}^{i}e_{i},\left[\sqrt{-1}{}^{i}e_{i},E(v)\right]-\left[v,E(\sqrt{-1}{}^{i}e_{i})\right]\right\}\right\}.$$

On the other hand, for $v \in \mathfrak{g}_{-1}$, $z \in \mathfrak{g}_1$ and $A \in \mathfrak{g}_0$,

$$[v, z] = vz + (zv)1_n,$$

$$[z, A] = zA.$$

Applying these formulas to (4.5), we obtain

(4.6)
$$d^*dE(v) = \frac{1}{4(n+1)} \sum_{i=1}^n \left\{ 2E(v) + 2^i e_i E(v) e_i - ({}^t e_i v E(e_i) + {}^t e_i E(e_i) v) + (\sqrt{-1} {}^t e_i v E(\sqrt{-1} {}^e_i) + \sqrt{-1} {}^t e_i E(\sqrt{-1} {}^e_i) v \right\} .$$

By virtue of (4.2), (4.3), (4.4) and (4.6),

$$(4.7) \qquad -S_{x}(u,v) = 2(n+1)\langle E(u),v\rangle - \sum_{i=1}^{n} \langle e_{i}uE(e_{i}) + e_{i}E(e_{i})u,v\rangle \\ + \sum_{i=1}^{n} \langle \sqrt{-1} e_{i}uE(\sqrt{-1} e_{i}) + \sqrt{-1} e_{i}E(\sqrt{-1} e_{i})u,v\rangle.$$

Since S_x is symmetric, we have by (4.7)

(4.8)
$$\langle E(u), v \rangle = \langle E(v), u \rangle$$
 for any $u, v \in g_{-1}$.

Put $u=e_j$ and $v=e_k$ in (4.7). Then we obtain

$$-S_{\mathbf{x}}(e_{j}, e_{k}) = (2n+1) \langle E(e_{j}), e_{k} \rangle - \langle E \langle (e_{k}), e_{j} \rangle + \langle \sqrt{-1} E(\sqrt{-1} e_{j}), e_{k} \rangle + \langle \sqrt{-1} E(\sqrt{-1} e_{k}), e_{j} \rangle.$$

Thus, by (4.8)

(4.9)
$$-S_{x}(e_{j},e_{k}) = 2n\langle E(e_{j}),e_{k}\rangle + 2\langle \sqrt{-1} E(\sqrt{-1} e_{j}),e_{k}\rangle.$$

Analogously, we have

$$(4.10) \qquad -S_x(\sqrt{-1}\,e_j,\sqrt{-1}\,e_k) = 2n\langle\sqrt{-1}\,E(\sqrt{-1}\,e_j),e_k\rangle + 2\langle E(e_j),e_k\rangle,$$

$$(4.11) \qquad -S_{\mathbf{x}}(e_{j}, \sqrt{-1} e_{k}) = 2n\langle E(e_{j}), \sqrt{-1} e_{k} \rangle - 2\langle E(\sqrt{-1} e_{j}), e_{k} \rangle$$

$$(4.12) \quad -S_x(\sqrt{-1}\,e_j,e_k) = 2n\langle E(\sqrt{-1}\,e_j),e_k\rangle - 2\langle E(e_j),\sqrt{-1}\,e_k\rangle.$$

Since $S(e_j, e_k) = S(\sqrt{-1} e_j, \sqrt{-1} e_k)$, (4.9) and (4.10) give

$$2(n-1)\langle \sqrt{-1} E(\sqrt{-1} e_j), e_k \rangle = 2(n-1)\langle E(e_j), e_k \rangle.$$

Since $n \ge 2$ by assumption, we have

(4.13)
$$\langle E(e_j), e_k \rangle = \langle \sqrt{-1} E(\sqrt{-1} e_j), e_k \rangle.$$

In a similar fashion, (4.11) and (4.12) give

(4.14)
$$\langle E(e_j), \sqrt{-1} e_k \rangle = \langle \sqrt{-1} E(\sqrt{-1} e_j), \sqrt{-1} e_k \rangle.$$

By virtue of (4.13) and (4.14),

$$E(e_j) = \sqrt{-1} E(\sqrt{-1} e_j) \, .$$

Applying this to (4.7), we obtain

$$-S_x(u, v) = 2(n+1)\langle E(u), v \rangle$$
.

The second formula in Lemma 4.1 is now easy to show, because the imaginary part of E(u)v is $-\langle E(u), \sqrt{-1}v \rangle$. This completes the proof of Lemma 4.1.

5. The development of an *H*-geodesic with respect to the $P^{n}(C)$ -normal Cartan connection

Let ∇ be a connection of Kaehler type on a complex manifold M. Let us denote by $\{\nabla\}$ the family of almost complex affine connections without torsion which are *H*-projectively equivalent to ∇ . We see in Section 4 that $\{\nabla\}$ determines uniquely a $P^n(C)$ -normal Cartan connection. We shall prove

Proposition 5.1. Assume that the development of a curve c(t) with respect to the normal Cartan connection is contained in $\pi(W-\{0\})$ for a 2-dimensional real subspace W of C^{n+1} . Then, under a certain change of parameter, c(t) is an H-geodesic.

Proof. By Theorem 3 c(t) is an *H*-planner curve. Hence c(t) satisfies $\nabla_{c'}c' = ac' + bJc'$ for cetrin real functions a and b. Define a curve \tilde{c} by

(5.0)
$$\tilde{c}(T) = c(t), \quad T = \int_0^t \exp\left(\int_0^t a(t)dt\right) dt \, .$$

Then we have

 $abla \widetilde{c}'\widetilde{c}' = \widetilde{b}J\widetilde{c}'$, \widetilde{b} : a real function.

Since $\tilde{c}(t)$ satisfies the assumption of Proposition 5.1, we may assume $\nabla_{c'}c' = bJc'$. Let x(t) be a horizontal lift in C(M). Then by Lemma 2.1,

$$c'(t) = x(t) (\exp \sqrt{-1} \int_0^t b dt) v$$
,

v being a certain vector in C^n . This is equivalent to

$$d\theta(x'(t))/dt = \sqrt{-1} b\theta(x'(t)).$$

Here θ denotes the canonical form on C(M). The notation being as in Lemma 2.2, put

H-PROJECTIVE CONNECTIONS AND H-PROJECTIVE TRANSFORMATIONS

$$f(t) = -\sum_{k=1}^{n} \widetilde{\omega}_{k}^{0} \widetilde{\omega}_{0}^{k}$$
.

By the definition of $E_{x(t)}$: $g_{-1} \rightarrow g_1$ given in (4.1), we see

(5.1)
$$f(t) = -E_{x(t)}(\theta(x'(t)))\theta(x'(t)).$$

It follows from Lemma 4.1 that f(t) is a real-valued function. Let a(t) be as in (2.6). Then by (2.8) and (2.9) in Lemma 2.2, we have

(5.2)
$$a_0'' - \sqrt{-1} b a_0' + f a_0 = 0$$
.

Let c_1 and c_2 be the solutions of

(5.3)
$$c'' - \sqrt{-1} bc' + fc = 0$$

with initial values, respectively,

$$\begin{cases} c_1(0) = 1 \\ c_1'(0) = 0 \end{cases} \begin{cases} c_2(0) = 0 \\ c_2'(0) = 1 \end{cases}.$$

Then

$$a_0 = \begin{pmatrix} c_1 \\ c_2 v \end{pmatrix}.$$

Let W be a 2-dimensional real subspace of C^{n+1} such that

$$\pi\binom{c_1}{c_2 v} \subset \pi(W - \{0\}).$$

Since $c_1(0) = 1$ and $c_2(0) = 0$,

$$\pi\binom{1}{0} \in \pi(W - \{0\}).$$

So there exists a constant $s \in C^* = C - \{0\}$ such that

$$s\binom{1}{0} \in W - \{0\}, i.e., \binom{1}{0} \in s^{-1}W - \{0\}$$
.

Therefore we may assume

$$\binom{1}{0} \in W - \{0\} .$$

Lemma 5.1. There exists a differentiable function h such that

$$h\binom{c_1}{c_2v} \in W - \{0\} .$$

in an open interval U in which $c_2 \neq 0$.

Proof of Lemma 5.1. Let

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \tilde{\alpha} = \begin{pmatrix} \alpha^0 \\ \alpha \end{pmatrix} \quad (\alpha^0 \in \boldsymbol{C}, \, \alpha \in \boldsymbol{C}^n)$$

be a basis of W. Putting

$$d(t) = \begin{pmatrix} c_1(t) \\ c_2(t)v \end{pmatrix},$$

we have $d=z(u_1e_1+u_2\tilde{\alpha})$ for certain real valued functions u_1 and u_2 , and a complex valued non-zero function z. $u_2 \neq 0$ follows from the assumption $c_2 \neq 0$. We only have to put $h=1/zu_2$ to complete the proof.

By Lemma 5.1 we see that $h(t_0)d(t_0)$ and e_1 for $t_0 \in U$ is a basis of W. So

$$h\binom{c_1}{c_2v} = A\binom{1}{0} + Bh(t_0)\binom{c_1(t_0)}{c_2(t_0)v}$$

for certain real-valued functions A and B. Hence

$$c_1/c_2 = A/Bh(t_0)c_2(t_0) + c_1(t_0)/c_2(t_0)$$

Put

(5.4)
$$D = c_1/c_2, G = A/B \text{ and } K = 1/h(t_0)c_2(t_0)$$
.

Then

$$(5.5) D' = G'K$$

Lemma 5.2. Let D be as in (5.4) and let U be an open interval in which $c_2(t) \neq 0$. Then

(5.6)
$$D' = \frac{D'(t_0) (c_2(t_0))^2}{(c_2(t))^2} \exp(\sqrt{-1} \int_{t_0}^t b dt) \quad t_0 \in U.$$

Proof of Lemma 5.2. Since c_1 is a solution of (5.3), i.e., $c_1'' - \sqrt{-1} bc_1' + fc_1 = 0$, substituting $c_1 = Dc_2$ in this equation, we have $D''c_2 + (2c_2' - \sqrt{-1} bc_2)D' = 0$. Hence

$$D'' + (2c_2'/c_2 - \sqrt{-1} b)D' = 0$$

Solving this equation on D', we obtain (5.6). This completes the proof of Lemma 5.2.

By (5.5) and (5.6) we have

$$\frac{D'(t_0)(c_2(t_0))^2}{(c_2)^2}\exp(\sqrt{-1}\int_{t_0}^t bdt) = G'K.$$

Put $K/D'(t_0) (c_2(t_0))^2 = l \exp(\sqrt{-1} \psi)$, $c_2 = r_2 \exp(\sqrt{-1} \theta_2)$, where l, ψ, r_2 and θ_2 are real functions. Then

$$\exp \{\sqrt{-1} (-2\theta_2 + \int_{t_0}^t b dt - \psi)\} = G' l(r_2)^2.$$

Since G', l and r_2 are continuous real functions, we have

(5.7)
$$-2\theta_2 + \int_{t_0}^t bdt - \psi = 0 \pmod{\pi}.$$

Differentiating (5.7), we obtain

$$(5.8) \qquad \qquad \theta_2' = b/2$$

Let

$$(5.9) c_2 = r_2 \exp(\sqrt{-1} \theta_2)$$

be the expression by polar coordinates. Since c_2 is a solution of (5.3), i.e., $c_2'' - \sqrt{-1} bc_2' + fc_2 = 0$, putting (5.9) in this equation, we have

$$\exp(\sqrt{-1}\,\theta_2)\,\{(r_2''-r_2(\theta_2')^2+br_2\theta_2'+fr_2)+\sqrt{-1}\,(2r_2'\theta_2'+r_2\theta_2''-br_2')\}=0\,.$$

Hence

(5.10)
$$2r_2'\theta_2' + r_2\theta_2'' - br_2' = 0.$$

Substituting (5.8) in (5.10), we obtain $r_2b_2'=0$. Since $r_2 \neq 0$, we have b'=0. This holds in an open interval in which $c_2 \neq 0$. However, since c_2 is a solution of an ordinary linear differential equation of second order, the zero points of c_2 are discrete. Thus b is constant, namely c(t) is an H-geodesic. This completes the proof of Proposition 5.1.

Proposition 5.2. Let ∇ be a connection of Kaehler type whose Ricci tensor is parallel, and let c(t) be an H-geodesic with respect to ∇ under a certain change of parameter. Then there exists a 2-dimensional real subspace W of C^{n+1} such that the development of c(t) with respect to the normal Cartan connection is contained in $\pi(W - \{0\})$.

Proof. We may assume that c(t) is an *H*-geodesic, since existence of such a 2-dimensional real subspace W of C^{n+1} as above is independent of the choice of a parameter. Let x(t) be a horizontal lift in C(M). Then, by Lemma 2.1,

$$c'(t) = x(t) \exp(\sqrt{-1} bt)v, \qquad v \in C'$$

Since c(t) is an *H*-geodesic, b is a real constant. The notation being as in the proof of Proposition 5.1, we have

$$a_0'' - \sqrt{-1} b a_0' + f a_0 = 0$$
.

Lemma 4.1 shows that f is a real constant, because the Ricci tensor of ∇ is

parallel. We shall denote this constant by -k. Let c_1 and c_2 be the solutions of

$$c'' - \sqrt{-1} bc' - kc = 0$$

with initial values, respectively,

$$\begin{cases} c_1(0) = 1 \\ c_1'(0) = 0 \end{cases} \begin{cases} c_2(0) = 0 \\ c_2'(0) = 1 \end{cases}.$$

Then

$$a_0 = \begin{pmatrix} c_1 \\ c_2 v \end{pmatrix}.$$

We only have to prove existence of a 2-dimensional real subspace W of C^{n+1} satisfying $\pi(a_0(t)) \subset \pi(W - \{0\})$. Since b and k are real constants, the solutions c_1 and c_2 can be obtained explicitly as follows:

i) If
$$D = -b^2 + 4k \neq 0$$
, then

$$c_{1} = \frac{1}{2\sqrt{D}} \exp(\sqrt{-1} bt/2) \left\{ (-\sqrt{-1} b + \sqrt{D}) \exp(\sqrt{D} t/2) + (\sqrt{-1} b + \sqrt{D}) \exp(-\sqrt{D} t/2) \right\},$$

$$c_{2} = \frac{1}{\sqrt{D}} \exp(\sqrt{-1} bt/2) \left\{ \exp(\sqrt{D} t/2) - \exp(-\sqrt{D} t/2) \right\}.$$

- ii) If $-b^2 + 4jk = 0$ and $k \neq 0$, then $c_1 = (-\sqrt{-1} bt/2) \exp(\sqrt{-1} bt/2) + \exp(\sqrt{-1} bt/2)$, $c_2 = t \exp(\sqrt{-1} bt/2)$.
- iii) If b=0 and k=0, then

 $c_1=1, \qquad c_2=t.$

Thus we can choose a real basis $\{\alpha, \beta\}$ of W as follows:

i) If D > 0, then

$$lpha = egin{pmatrix} -\sqrt{-1} \ b+D \ 2 \ v \end{pmatrix} \quad eta = egin{pmatrix} \sqrt{-1} \ b+D \ 2 \ -v \end{pmatrix},$$

because

$$\pi(a_0(t)) = \pi\left(\exp\left(\frac{\sqrt{D}}{2}t\right)\alpha + \exp\left(\frac{-\sqrt{D}}{2}t\right)\beta\right).$$

i)' If
$$D < 0$$
, then

$$\alpha = \binom{\sqrt{D}}{0} \qquad \beta = \binom{-\sqrt{-1} b}{2v},$$

because

H-PROJECTIVE CONNECTIONS AND H-PROJECTIVE TRANSFORMATIONS

$$\pi(a_0(t)) = \pi\left(\cos\left(\frac{\sqrt{-D}}{2}t\right)\alpha + \sqrt{-1}\sin\left(\frac{\sqrt{-D}}{2}t\right)\beta\right).$$

ii) If D=0 and $k\neq 0$, then

$$\alpha = \begin{pmatrix} \frac{-\sqrt{-1}}{2} b \\ v \end{pmatrix} \qquad \beta = \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$

because

$$\pi(a_0(t))=\pi(t\alpha+\beta).$$

iii) If b=0 and k=0, then

$$\alpha = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \beta = \begin{pmatrix} 0 \\ v \end{pmatrix}. \qquad \text{q.e.d.}$$

From Propositions 5.1 and 5.2 follows

Corollary 5.1. Let ∇ be a connection of Kaehler type whose Ricci tensor is parallel. Then a curve c(t) is an H-geodesic with respect to ∇ under a certain change of parameter if and only if there exists a 2-dimensional real subspace W of C^{n+1} such that the development of c(t) with respect to the normal Cartan connection is contained in $\pi(W - \{0\})$.

We have detailed the development of a curve in $P^n(C)$ in Example 2.1. Applying Corollary 5.1 to $M=P^n(C)$, we obtain

Corollary 5.2. A curve c(t) in $P^n(C)$ is an H-geodesic under a certain change of parameter if and only if there exists a 2-dimensional real subspace W of C^{n+1} such that c(t) is contained in $\pi(W-\{0\})$.

By Proposition 5.1 and Corollary 5.2 we have

Theorem 5. Let ∇ be a connection of Kaehler type. Then a curve c(t) is an H-geodesic with respect to ∇ under a certain change of parameter, if the development of c(t) with respect to the normal Cartan connection is an H-geodesic in $P^n(C)$.

6. Proof of Theorem 6

In this section we shall prove Theorem 6.

Lemma 6.1. Let c_1 and c_2 be the solutions of the following differential equation

(6.1)
$$u'' - \sqrt{-1} bu' - ku = 0$$

with initial conditions

(6.2)
$$c_1(0) = 1, c_1'(0) = 0 \text{ and } c_2(0) = 0, c_2'(0) = 1,$$

where b and k are real constants. Then we have the following:

- a) If $-b^2+4k>0$, then $\lim_{t\to\infty} c_2/c_1 = 1/\sqrt{k}$.
- b) If $-b^2+4k < 0$, then $\lim_{t \to \infty} c_2/c_1$ does not exist.
- c) If $-b^2+4k=0$ and $k \neq 0$, then $\lim_{t \to \infty} c_2/c_1 = 1/\sqrt{k}$. d) If b=0 and k=0, then $\lim_{t \to \infty} c_1/c_2 = 0$.

Proof. We have obtained the solutions c_1 and c_2 explicitly in the proof of Proposition 5.2. Lemma 6.1 follows directly from these results. q.e.d.

For the remainder of this section, let ∇ be an *H*-complete connection of Kaehler type on a complex manifold M whose Ricci tensor S is parallel. Let $Q(\nabla)$ and $s:C(M) \rightarrow Q(\nabla)$ be, as explained in Section 2, the $L_0/(\text{center})$ -structure and the injection corresponding to ∇ respectively. Let $E_x: \mathfrak{g}_{-1} \rightarrow \mathfrak{g}_1 (x \in C(M))$ be as in (4.1). Define a subset Φ_{E_x} of $P^n(C)$ by

(6.3)
$$\Phi_{E_x} = \left\{ \pi \begin{pmatrix} v^0 \\ v \end{pmatrix} \in \boldsymbol{P}^n(\boldsymbol{C}) | - |v^0|^2 + E_x(v)v = 0, v^0 \in \boldsymbol{C}, v \in \boldsymbol{C}^n \right\}.$$

Lemma 6.2. Let c(t) and x(t) be an H-geodesic of ∇ and its horizontal lift in C(M) respectively. Put x=x(0). And let $a(t)\in L$ be as in (2.6). If lim a(t)0 exists, it belong to Φ_{E_x} .

Proof. By Lemma 2.1

$$c'(t) = x(t) \exp \left(\int_0^t F(t)dt\right)v$$
,

for a certain function F and a vector $v \in C^n$. We see by the definition of an *H*-geodesic $F(t) = \sqrt{-1} b$, b being a constant. Thus $\theta(x'(t)) = \exp((\sqrt{-1} bt)v)$. On the ohter hand, by Lemma 4.1 and by the assumption that the Ricci tensor field is parallel, we easily see that $E_{x(t)}(u)w$ is constant for any u and $w \in g_{-1}$. Thus $f(t) = -E_{x(t)}(v)v$ in (5.1) is a constant, which we shall denote by -k.

Let a_0 denote the first column vector of a(t). Then by (5.2) a_0 is the solution of

$$a_0'' - \sqrt{-1} \ b \ a_0' - ka_0 = 0$$

with initial conditions

$$a_0(0) = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad a_0'(0) = \begin{pmatrix} 0 \\ v \end{pmatrix}.$$

Let c_1 and c_2 be the solutions of (6.1) with initial conditions (6.2), then

$$a_0(t) = \begin{pmatrix} c_1(t) \\ c_2(t)v \end{pmatrix}.$$

Thus

$$a(t)0 = \pi(a_0(t)) = \pi \begin{pmatrix} c_1(t) \\ c_2(t)v \end{pmatrix}$$

Lemma 6.2 now follows from Lemma 6.1 and the definition of Φ_{E_x} in (6.3). q.e.d.

Lemma 6.3. For any $\tilde{v} \in \Phi_{E_x}$, there exists a geodesic c(t) with $c(0) = \pi^1(x)$ such that

$$\lim_{t\to\infty}a(t)0=\tilde{v},$$

a(t) being defined in (2.6).

Proof. By the difinition of Φ_{E_x} ,

$$ilde{v}=\pi{v^0\choose v}$$

for some $v^0 \in C$ and $v \in C^n$ with $-|v^0|^2 + E_x(v)v = 0$. In the case when $E_x(v)v > 0$, take a geodesic with initial conditions $c(0) = \pi^1(x)$, $c'(0) = x(v/v^0)$. Then by the same argument as in Lemma 6.2,

(6.4)
$$a(t)0 = \pi \binom{c_1(t)}{c_2(t)v/v^0},$$

where c_1 and c_2 are the solutions of u''-ku=0 $(k=E_x(v/v^0)v/v^0)$ with initial conditions (6.2). By i) with b=0 in the proof of Proposition 5.2,

$$\lim_{t \to \infty} c_2/c_1 = 1/\sqrt{k} = |v^0|/\sqrt{E_s(v)v} = 1.$$

Thus we have

$$\lim_{t\to\infty}a(t)0=\pi\binom{v^0}{v}.$$

In the case when $E_x(v)v=0$, i.e., $v^0=0$, take a geodesic with initial conditions $c(0)=\pi^1(x)$, c'(0)=xv. Then by the same argument as above

(6.5)
$$a(t)0 = \pi \binom{c_1(t)}{c_2(t)v},$$

where c_1 and c_2 are solutions of u''=0 with initial conditions (6.2). By d) in Lemma 6.1,

$$\lim_{t\to\infty}c_1/c_2=0$$

Hence

$$\lim_{t\to\infty}a(t)0=\pi\binom{0}{v}.$$

This completes the proof of Lemma 6.3.

Define a subset $\Phi(p)$ of $Q(\nabla) \times_{L_0} P^n(C)$ for $p \in M$ by $\Phi(p) = s(x) \Phi_{E_x}$ with $\pi^1(x) = p$. This is independent of the cohice of $x \in C(M)$.

Let $\overline{\nabla}$ be another *H*-complete connection of Kaehler type on *M* whose Ricci tensor \overline{S} is parallel. Then $\overline{s}: C(M) \to Q(\overline{\nabla}), \ \overline{E}_x: \mathfrak{g}_{-1} \to \mathfrak{g}_1, \ \overline{\Phi}_{\overline{E}_x} \subset \mathbf{P}^n(\mathbf{C})$ and $\overline{\Phi}(p)$ can be defined in the same way as above. Assume that $\overline{\nabla}$ is *H*-projectively equivalent to ∇ . Then $Q(\nabla) = Q(\overline{\nabla})$ by Theorem 1. Further we obtain the following:

Lemma 6.4. $\Phi(p) = \overline{\Phi}(p)$.

Proof. Let q^* be an arbitrary element in $\Phi(p)$. Then, by Lemma 6.3, there exists a geodesic c(t) with respect to ∇ such that the limit point of its development is q^* . By Proposition 5.2 and Corollary 5.1 we see that c(t) is an *H*-geodesic of ∇ under a certain change of parameter. Taking into consideration (5.0) which shows how to change parameter, we have $q^* \in \overline{\Phi}(p)$ by lemma 6.2. Thus $\Phi(p) \subset \overline{\Phi}(p)$. In a similar fashion we have $\overline{\Phi}(p) \subset \Phi(p)$, and the proof is complete.

In view of (1.4) we can define $F: C(M) \rightarrow \mathfrak{g}_1$ by $\overline{\mathfrak{s}}(x) = \mathfrak{s}(x) \exp(F(x))$. Then we have

Lemma 6.5. $(v^0, Y) \in C \times T_p(M)$ satisfies

(A)
$$|v^0|^2 + S_p(Y, Y)/2(n+1) = 0$$

if and only if it satisfies

(B)
$$|v^0 - F(y)v|^2 + \bar{S}_p(Y, Y)/2(n+1) = 0$$
,

for $y \in C(M)$ and $v \in C^n$ such that Y = yv.

Proof. Lemma 4.1 shows that (A) (resp. (B)) is equivalent to

(6.6)
$$\pi \binom{v^0}{v} \in \Phi_{E_y}$$

(6.7)
$$\left(\operatorname{resp.} \pi \left(\begin{array}{c} v^0 - F(y)v \\ v \end{array} \right) \in \overline{\Phi}_{\overline{E}_y} \right).$$

We have by Lemma 6.4

(6.8)
$$\exp(-F(y))\Phi_{E_y} = \overline{\Phi}_{\overline{E}_y}$$

Since

$$\exp\left(-F(y)\right)\pi\binom{v^{0}}{v} = \pi\binom{1 \ -F(y)}{0 \ 1}\binom{v^{0}}{v} = \pi\binom{v^{0} \ -F(y)v}{v}$$

(A) is equivalent to (B) by (6.6), (6.7) and (6.8).

458

q.e.d.

Proof of Theorem 6. Let p be an arbitrary point in M. In the case when $S \neq 0$, $S_p(Y, Y) < 0$ for some $Y \in T_p(M)$. Choose $v^0 \in \mathbf{R}$ such that

(6.9)
$$(v^0)^2 + S_p(Y, Y)/2(n+1) = 0.$$

Then we have also

(6.10)
$$(v^0)^2 + S_p(-Y, -Y)/2(n+1) = 0.$$

Applying Lemma 6.5 to (6.9) and (6.10), we obtain

$$|v^{0} - F(y)v|^{2} + \bar{S}_{p}(Y, Y)/2(n+1) = 0$$

$$|v^{0} + F(y)v|^{2} + \bar{S}_{p}(-Y, -Y)/2(n+1) = 0$$

for $y \in C(M)$ and $v \in C^n$ such that Y = yv. By these two formulas Re(F(y)v) = 0. On the other hand, the set

$$\{v \in g_{-1} | S_p(yv, yv) < 0\}$$

is open in \mathfrak{g}_{-1} . Thus the **R**-linear map $L:\mathfrak{g}_1 \to \mathbf{R}$ defined by $L(v) = \operatorname{Re}(F(y)v)$ is zero. Since $F(y)v = \operatorname{Re}(F(y)v) - \sqrt{-1} \operatorname{Re}(F(y)\sqrt{-1}v)$, the map $N:\mathfrak{g}_{+1} \to \mathbf{C}$ defined by N(v) = F(y)v is zero. Thus F=0, because p is an arbitrary point. Also in the case when S=0, we obtain F=0 in a similar fashion. This completes the proof of Theorem 6.

MITSUBISHI ELECTRIC CORPORATION

References

- [1] S. Ishihara and S. Tachibana: A note on holomorphic projective transformations of a Kaehlerian space with parallel Ricci tensor, Tohoku Math. J. 13 (1961), 193-200.
- [2] S. Kobayashi: Canonical forms on frame bundles of higher order contact, Proc. Symp. Pure Math. Vol. 3, Amer. Math. Soc. (1961), 186–193.
- [3] S. Kobayashi: Theory of connections, Ann. Math. Pura Appl. 43 (1957), 119-194.
- [4] T. Ochiai: Geometry associated with semi-simple flat homogeneous spaces, Trans. Amer. Math. Soc. 152 (1970), 159-193.
- [5] T. Otsuki and Y. Tashiro: On curves in Kaehlerian spaces, Math. J. Okayama Univ. 4 (1954), 57–78.
- [6] N. Tanaka: On the equivalence problems associated with a certain class of homogeneous spaces, J. Math. Soc. Japan 17 (1965), 103–139.
- [7] N. Tanaka: Projective connections and projective transformations, Nagoya Math. J. 12 (1957), 1-24.
- [8] Y. Tashiro: On a holomorphically projective correspondence in an almost complex space, Math. J. Okayama Univ. 6 (1957), 147–152.