H-PROJECTIVE CONNECTIONS AND H-PROJECTIVE TRANSFORMATIONS

Yashiro YOSHIMATSU

(Received May 16, 1977)

Introduction

Let M be an n-dimensional complex manifold. We write J for its natural almost complex structure. Let ∇ be an almost complex affine connection without torsion on M. A curve $c(t)$ in M is called an H-planner curve with respect to ∇ if

$$
\begin{equation*}
\nabla_{c} c^{\prime}=a c^{\prime}+b J c^{\prime} \tag{0.1}
\end{equation*}
$$

for certain smooth functions a and b. Two almost complex affine connections ∇ and ∇^{\prime} without torsion are said to be H-projectively equivalent if they have their H-planner curves in common. From the result of T. Otsuki and Y. Tashiro, this is equivalent to existence of a 1-form ρ on M satisfying

$$
\begin{equation*}
\nabla_{X} Y-\nabla_{X}^{\prime} Y=\rho(X) Y+\rho(Y) X-\rho(J X) J Y-\rho(J Y) J X \tag{0.2}
\end{equation*}
$$

for arbitrary vector fields X and Y ([5], [8]). By an H-projective transformation of ∇, we mean a biholomorphic transformation $f: M \rightarrow M$ such that $f^{*} \nabla$ and ∇ are H-projectively equivalent. For example, let $\boldsymbol{P}^{n}(\boldsymbol{C})=L / L_{0}$ be the n-dimensional complex projective space of lines in \boldsymbol{C}^{n+1} with the usual connection, where

$$
\begin{align*}
& L=S L(n+1, C), \tag{0.3}\\
& L_{0}=\left\{\left.\left(\begin{array}{ll}
a & u \\
0 & B
\end{array}\right) \in S L(n+1, C) \right\rvert\, B \in G L(n, C)\right\}
\end{align*}
$$

Then $L /($ center) is the group of all H-projective transformations.
In the present paper, we shall study H-projective equivalence from the view point of L_{0}-structure of second order, studied by N. Tanaka and T. Ochiai. In fact, we shall show that H-projective equivalence of ∇ and ∇^{\prime} is the same as $\boldsymbol{P}^{n}(\boldsymbol{C})$-equivalence in [6] and [4] (Theorem 1). Therefore, using their results, the family $\{\nabla\}$ of almost complex affine connections without torsion which are H-projectively equivalent to ∇ uniquely determines a Cartan connection ω of type $\boldsymbol{P}^{n}(\boldsymbol{C})$. This enables us to show that the group of all H-projective
transformations of ∇ is a Lie group of finite dimension (Theorem 2). Then we shall prove that a curve $c(t)$ is an H-planner curve with respect to ∇ if and only if the development of $c(t)$ into $\boldsymbol{P}^{n}(\boldsymbol{C})$ by ω is an H-planner curve in $\boldsymbol{P}^{n}(\boldsymbol{C})$ (Theorem 3).

An H-planner curve $c(t)$ with respect to ∇ is called an H-geodesic of ∇ if $a=0$ and b is a constant in (0.1). An almost complex affine connection ∇ without torsion is said to be H-complete if any H-geodesic $c(t)$ of ∇ can be defined for all $t \in \boldsymbol{R}$. When ∇ is the Kaehler connection of a Kaehler metric $d s^{2}, H$-completeness of ∇ is equivalent to completeness of $d s^{2}$ (Theorem 4). An almost complex affine connection without torsion is said to be of Kaehler type if its Ricci tensor is hermitian (i.e., symmetric and J-invariant). In this case we shall show that an H-planner curve $c(t)$ with $a=0$ in (0.1) is an H-geodesic if the development of $c(t)$ is an H-geodesic in $\boldsymbol{P}^{n}(\boldsymbol{C})$ (Theorem 5). Finally we shall prove

Theorem 6. Let ∇ and ∇^{\prime} be H-complete connections of Kaehler type with parallel Ricci tensors S and S^{\prime} respectively. Suppose that either $S=0$ or S has at least one negative eigenvalue at one point, and that ∇ and ∇^{\prime} are H-projectively equivalent. Then we have $\nabla=\nabla^{\prime}$.

When ∇ and ∇^{\prime} are the Kaehler connections of complete Kaehler metrics and both S and S^{\prime} are parallel and negative semi-definite, the above result has been obtained by S. Ishihara and S. Tachibana [1].

Finally we remark that the present paper has been motivated by the paper of N. Tanaka on real projective transformations [7].

I would like to express my gratitude to my thesis advisor, Professor T. Ochiai for his valuable suggestions and encouragement.

Notation

Throughout this paper the following standard conventions will be adopted. \boldsymbol{R} (resp. \boldsymbol{C}) denotes the real (resp. complex) number field. For $z \in \boldsymbol{C}, \operatorname{Re}(z)$ is the real part of \boldsymbol{z}. We write \boldsymbol{R}^{m} (resp. \boldsymbol{C}^{m}) for the \boldsymbol{m}-dimensional standard real (resp. complex) vector space. An element of \boldsymbol{R}^{m} (resp. \boldsymbol{C}^{m}) is considered as a column vector. We denote by e_{1}, \cdots, e_{m} the canonical basis of \boldsymbol{R}^{m} or \boldsymbol{C}^{m}. For $x \in \boldsymbol{R}^{m}$ or $\boldsymbol{C}^{m},{ }^{t} x$ denotes the transpose of x. The general linear group acting on $\boldsymbol{R}^{m}\left(\right.$ resp. $\left.\boldsymbol{C}^{m}\right)$ and its Lie algebla are denoted, respectively, by $G L(m, \boldsymbol{R})$ (resp. $G L(m, \boldsymbol{C}))$ and $\mathfrak{g l}(m, \boldsymbol{R})(\operatorname{resp} . \mathfrak{g l}(m, \boldsymbol{C}))$. We write 1_{m} for the identity $m \times m$ matrix. For an $m \times m$ matrix A, $\operatorname{det} A$ denotes the determinant of A.

For a point p of manifold $N, T_{p}(N)$ is the tangent space to N at p. For a differentiable mapping f, f_{*} and f^{*} are the differential and the codifferential of f respectively. For a Lie group G, its Lie algebla is written by the corresponding German letter \mathfrak{g}. For a G-principal bundle $Q \rightarrow M, R_{a}$ denotes the right tran-
slation by an element a of G acting on Q. For an element A or \mathfrak{g}, A^{*} denotes. the fundamental vector field on Q corresponding to A.

1. H-projective equivalence

Let M be an m-dimensional manifold. Let us denote by $j^{r}(f)$ the r-frame at $p=f(0)$ given by a diffeomorphism f of a neighborhood of the origin 0 of \boldsymbol{R}^{m} onto an open subset of M. The set $G^{r}(m)$ of r-frames at $0 \in \boldsymbol{R}^{m}$ is a Lie group with multiplication defined by the composition of jets. The set $F^{r}(M)$ of r frames of M is a principal bundle over M with natural projection π^{r} satisfying $\pi^{r}\left(j^{\gamma}(f)\right)=f(0)$, and with structure group $G^{\gamma}(m) . \quad F^{1}(M)$ is nothing but the bundle of linear frames.

We have a natural inclusion of $G L(m, \boldsymbol{R})$ into $G^{r}(m)$, defined by $g \rightarrow j^{r}(g)$ for $g \in G L(m, \boldsymbol{R})$. In particular $G L(m, \boldsymbol{R})$ and $G^{1}(m)$ are isomorphic by this inclusion. We shall identify $G L(m, \boldsymbol{R})$ with $G^{1}(m)$ and consider $G L(m, \boldsymbol{R})$ as a subgroup of $G^{r}(m)$ by this inclusion.

Let f be a diffeomorphism of M onto a manifold N. Then f induces a bundle isomorphism $f^{(r)}: F^{r}(M) \rightarrow F^{r}(N)$ defined by

$$
f^{(r)}\left(j^{r}(h)\right)=j^{r}(f \cdot h) \text { for } j^{r}(h) \in F^{r}(M) .
$$

We have a natural projection $\nu: F^{2}(M) \rightarrow F^{1}(M)$ defined by $\nu\left(j^{2}(f)\right)=j^{1}(f)$, $\left(j^{2}(f) \in F^{2}(M)\right.$). A cross-section $s: F^{1}(M) \rightarrow F^{2}(M)$ is said to be admissible if wehave

$$
s(x a)=s(x) a \text { for } x \in F^{1}(M) \text { and } a \in G L(m, \boldsymbol{R}) .
$$

The \boldsymbol{R}^{m} (resp. $\mathfrak{g l}(m, \boldsymbol{R})$)-component of the canonical form Θ on $F^{2}(M)$ (see [2] for the meaning of terminology) is denoted by Θ_{-1} (resp. Θ_{0}).

Proposition 1 (S. Kobayashi [2]). For an admissble crosssection s: $F^{1}(M) \rightarrow$ $F^{2}(M), s^{*} \Theta_{0}$ is an affine connection on M without torsion. And this defines a one-toone correspondence between affine connections on M without torsion and admissible-cross-sections.

Let u^{1}, \cdots, u^{m} be a local coordinate system in M, and let y^{1}, \cdots, y^{m} be the natural cooordinate system in \boldsymbol{R}^{m}. Each 2-frame u (resp. $a \in G^{2}(m)$) has a unique polynomial respresentation $\grave{u}=j^{2}(f)$ (resp. $a=j^{2}(f)$) of the form

$$
\begin{aligned}
& f^{i}(y)=u^{i}+\sum u_{j}^{i} y^{j}+\frac{1}{2} \sum u_{j k}^{i} y^{j} y^{k} \\
& \text { (resp. } \left.f^{i}(y)=\sum a_{j}^{i} y^{j}+\frac{1}{2} \sum a_{j k}^{i} y^{j} y^{k}\right),
\end{aligned}
$$

where $u_{j k}^{i}=u_{k j}^{i}\left(\right.$ resp. $\left.a_{j k}^{i}=a_{k j}^{i}\right)$, and $f^{i}(y)$ is the i-th coordinate of $f(y)$ with respect
to u^{1}, \cdots, u^{m} (resp. y^{1}, \cdots, y^{m}). We shall consider $\left(u^{i}, u_{j}^{i}, u_{j k}^{i}\right)\left(\operatorname{resp} .\left(a_{j}^{i}, a_{j k}^{i}\right)\right)$ as a local coordinate system in $F^{2}(M)$ (resp. a coordinate system in $G^{2}(m)$). In the same way, a local coordinate system (u^{i}, u_{j}^{i}) in $F^{1}(M)$ and a coordinate system $\left(a_{j}^{i}\right)$ in $G^{1}(m)$ are defined. The action of $G^{2}(m)$ on $F^{2}(M)$ is then given by

$$
\begin{equation*}
\left(u^{i}, u_{j}^{i}, u_{j k}^{i}\right)\left(a_{j}^{i}, a_{j k}^{i}\right)=\left(u^{i}, \sum u_{q}^{i} a_{j}^{q}, \sum u_{q}^{i} a_{j k}^{q}+\sum u_{l r}^{i} a_{j}^{l} a_{k}^{r}\right) \tag{1.1}
\end{equation*}
$$

Let s be the cross-section corresponding by Proposition 1 to an affine connection ∇ without torsion. Then the local expression of s is

$$
\begin{equation*}
s\left(u^{i}, u_{j}^{i}\right)=\left(u^{i}, u_{j}^{i},-\sum u_{j}^{q} \Gamma_{q}^{i} u_{k}^{i}\right), \tag{1.2}
\end{equation*}
$$

where $\Gamma_{q l}^{i}$ are the Christoffel's symbols of ∇ with respect to u^{1}, \cdots, u^{m} ([2]).
Let L and L_{0} be as in (0.3). We shall consider $L_{0} /($ center) as a subgroup of $G^{2}(n)$ as follows. Let $\pi: \boldsymbol{C}^{n+1}-\{0\} \rightarrow \boldsymbol{P}^{n}(\boldsymbol{C})$ be the Hopf fibering. Identifying the subset

$$
\left\{\left.\pi\binom{1}{z} \in P^{n}(\boldsymbol{C}) \right\rvert\, z \in \boldsymbol{C}^{n}\right\}
$$

of $\boldsymbol{P}^{n}(\boldsymbol{C})$ with $\boldsymbol{C}^{n}=\boldsymbol{R}^{2 n}, a \in L_{0}$ can be considered as a local diffeomorphism of $\boldsymbol{R}^{2 n}$ leaving the origin 0 of $\boldsymbol{R}^{2 n}$ fixed. Here \boldsymbol{C}^{n} is identified with $\boldsymbol{R}^{2 n}$ by the correspondence $\left(z^{1}, \cdots, z^{n}\right) \in \boldsymbol{C}^{n} \rightarrow\left(x^{1}, \cdots, x^{n}, y^{1}, \cdots, y^{n}\right) \in \boldsymbol{R}^{2 n}, z^{i}=x^{i}+\sqrt{-1} y^{i}, x^{i}, y^{i}$ $\in \boldsymbol{R}, i=1, \cdots, n$. It can be easily verified that $j^{2}(a)=\mathrm{id}$ if and only if a is the identity transformation of L / L_{0}. Hence $L_{0} /$ (center) can be identified with the group of 2-jets $\left\{j^{2}(a) \mid a \in L_{0}\right\}$. By a straightforward computation we have

Lemma 1.1. The expression of

$$
a=\left(\begin{array}{ll}
1 & t_{n} \\
0 & 1_{n}
\end{array}\right)(\text { mod center }) \in L_{0} /(\text { center })
$$

as an element of $G^{2}(n)$ is given by $\left(\delta_{j}^{i}, a_{j k}^{i}\right)$ with

$$
\begin{equation*}
a_{j k}^{i}=\delta_{j}^{i} \rho_{k}+\delta_{k}^{z} \rho_{j}-\phi_{j}^{i} \rho_{s} \phi_{k}^{s}-\phi_{k}^{i} \rho_{s} \phi_{j}^{s}, \tag{1.3}
\end{equation*}
$$

where

$$
\rho_{k}=\left\{\begin{array}{cl}
-v^{k} & \text { if } 1 \leqq k \leqq n \\
v^{k} & \text { if } n+1 \leqq k \leqq 2 n,
\end{array} \quad\left(\phi_{j}^{i}\right)=\left(\begin{array}{cc}
0 & -1_{n} \\
1_{n} & 0
\end{array}\right)\right.
$$

$\cdot v^{k}$ being k-th component of $v \in \boldsymbol{C}^{n}=\boldsymbol{R}^{2 n}$.
Let us denote the Lie algebras of L and L_{0} by \mathfrak{l} and \mathfrak{Y}_{0} respectively. Subalgebras $\mathfrak{g}_{-1}, \mathfrak{g}_{0}$ and \mathfrak{g}_{1} of \mathfrak{l} are defined, respectively, as follows:

$$
\mathfrak{g}_{-1}=\left\{\left.\left(\begin{array}{ll}
0 & 0 \\
u & 0
\end{array}\right) \in \mathfrak{l} \right\rvert\, u \in C^{n}\right\}
$$

$$
\begin{aligned}
& \mathfrak{g}_{0}=\left\{\left.\left(\begin{array}{ll}
z & 0 \\
0 & A
\end{array}\right) \in \mathfrak{l} \right\rvert\, A \in \mathfrak{g} \mathfrak{l}(n, \boldsymbol{C})\right\} \\
& \mathfrak{g}_{1}=\left\{\left.\left(\begin{array}{ll}
0 & { }^{t} v \\
0 & 0
\end{array}\right) \in \mathfrak{l} \right\rvert\, v \in \boldsymbol{C}^{n}\right\} .
\end{aligned}
$$

In the following, \mathfrak{g}_{-1} and, \mathfrak{g}_{1} are identified, respectively, with \boldsymbol{C}^{n} and its dual space $\left(\boldsymbol{C}^{n}\right)^{*}$. And \mathfrak{g}_{0} is identified with $\mathfrak{g l}(n, \boldsymbol{C})$ by the correspondence

$$
\left(\begin{array}{cc}
z & 0 \\
0 & A
\end{array}\right) \in \mathrm{g}_{0} \rightarrow A-z 1_{n} \in \mathfrak{g l}(n, \boldsymbol{C})
$$

Therefore we can consider $G L(n, \boldsymbol{C})$ as a subgroup of $L_{0} /($ center $)$ by the injection

$$
B \in G L(n, C) \rightarrow\left(\begin{array}{cc}
(\operatorname{det} B)^{-1 / n+1} & 0 \\
0 & (\operatorname{det} B)^{-1 / n+1} B
\end{array}\right)(\bmod \text { center }) \in L_{0} /(\text { center })
$$

Put $L_{1}=\exp \mathrm{g}_{1}$. Then

$$
\begin{equation*}
L_{0} /(\text { center })=G L(n, C) \cdot L_{1} \quad(\text { semi-direct }) . \tag{1.4}
\end{equation*}
$$

For the remainder of this section we suppose that M is a complex manifold of complex dimension n. Let ∇ be an almost complex affine connection without torsion on M and let γ be its connection form on the bundle $C(M)$ of complex linear frames. By Proposition 1 there exists an admissible cross-section $l: F^{1}(M)$ $\rightarrow F^{2}(M)$ corresponding to ∇. Let ι denote the inclusion map $C(M)$ into $F^{1}(M)$. Then $s=l \cdot \iota$ is an imbedding of $C(M)$ into $F^{2}(M)$ such that $s^{*} \Theta_{0}=\gamma$ and $s(x a)$ $=s(x) a$ for $x \in C(M)$ and $a \in G L(n, C)$. Thus $C(M)$ can be considered as a $G L(n, C)$-subbundle of $F^{2}(M)$. The group extension of $C(M)$ to $L_{0} /$ (center) with respect to (1.4) will be denoted by $Q(\nabla)$.

Theorem 1. Let ∇_{1} and ∇_{2} be two almost complex affine connections without torsion. Then ∇_{1} and ∇_{2} are H-projectively equivalent if and only if $Q\left(\nabla_{1}\right)=$ $Q\left(\nabla_{2}\right)$.

Proof. Let $z^{A}=x^{A}+\sqrt{-1} x^{A+n}, A=1, \cdots, n$, be a complex local coordinate system in an open subset U of M. We define the natural almost complex stucture J on M by

$$
J\left(\partial / \partial x^{A}\right)=\partial / \partial x^{A+n}, J\left(\partial / \partial x^{A+n}\right)=-\partial / \partial x^{A}, A=1, \cdots, n
$$

It follows from (1.2) that the injections

$$
s_{1}: C(M) \rightarrow Q\left(\nabla_{1}\right) \text { and } s_{2}: C(M) \rightarrow Q\left(\nabla_{2}\right)
$$

corresponding respectively to ∇_{1} and ∇_{2} are expressed as follows:

$$
s_{1}\left(x^{i}, x_{j}^{i}\right)=\left(x^{i}, x_{j}^{i},-\sum_{m, l=1}^{2 n} x_{j}^{m}\left(\Gamma_{1}\right)_{m l}^{i} x_{k}^{l}\right),
$$

$$
s_{2}\left(x^{i}, x_{j}^{i}\right)=\left(x^{i}, x_{j}^{i},-\sum_{m, l=1}^{2 n} x_{j}^{m}\left(\Gamma_{2}\right)_{m l}^{i} x_{k}^{l}\right),
$$

where $\left(\Gamma_{1}\right)_{m l}^{i}$ and $\left(\Gamma_{2}\right)_{m l}^{i}$ are respectively the Christoffel's symbols of ∇_{1} and ∇_{2} with respect to $x^{1}, \cdots, x^{n}, x^{n+1}, \cdots, x^{2 n}$. Note that $\left(x^{i}, \delta_{j}^{i}\right) \in C(M)$.

Assume that $Q\left(\nabla_{1}\right)=Q\left(\nabla_{2}\right)$. Then there exists a C^{∞}-map $a: U \rightarrow L_{0}$ such that

$$
\begin{equation*}
s_{1}\left(x^{i}, \delta_{j}^{i}\right)=s_{2}\left(x^{i}, \delta_{j}^{i}\right) a, a=\left(a_{j}^{i}, a_{j k}^{i}\right) \tag{1.5}
\end{equation*}
$$

By the above formulas for local expression of s_{1} and s_{2}, we see that $a_{j}^{i}=\delta_{j}^{i}$. This means $a(U) \subset L_{1}$.
By (1.1) we have

$$
-\left(\Gamma_{2}\right)_{j k}^{i}+a_{j k}^{i}=-\left(\Gamma_{1}\right)_{j k}^{i} .
$$

It follows from Lemma 1.1 that there exist real functions $\rho_{1}, \cdots, \rho_{2 n}$ such that

$$
\left(\Gamma_{2}\right)_{j k}^{i}-\left(\Gamma_{1}\right)_{j k}^{i}=\delta_{j}^{i} \rho_{k}+\delta_{k}^{i} \rho_{j}-\sum_{s} \phi_{j}^{i} \rho_{s} \phi_{k}^{s}-\sum_{s} \phi_{k}^{i} \rho_{s} \phi_{j}^{s}
$$

Let J_{j}^{i} be the local expression of J with respect to $x^{1}, \cdots, x^{2 n}$, then $J_{j}^{i}=\phi_{j}^{i}$. Thus we obtain

$$
\begin{equation*}
\left(\Gamma_{2}\right)_{j k}^{i}-\left(\Gamma_{1}\right)_{j k}^{i}=\delta_{j}^{i} \rho_{k}+\delta_{k}^{i} \rho_{j}-\sum_{s} J_{j}^{i} \rho_{s} J_{k}^{s}-\sum_{s} J_{k}^{i} \rho_{s} J_{j}^{s} . \tag{1.6}
\end{equation*}
$$

This shows that $\left(\rho_{i}\right)$ is a 1 -form. Thus ∇_{1} and ∇_{2} are H-projectively equivalent (cf. the definition in Introduction).

Conversely assume that ∇_{1} and ∇_{2} are H-projectively equivalent, i.e., ∇_{1} and ∇_{2} are related by the formula (1.6). Define $a=\left(\delta_{j}^{i}, a_{j k}^{i}\right) \in L_{1}$ by (1.3). Then (1.5) holds. Thus we see $Q\left(\nabla_{1}\right)=Q\left(\nabla_{2}\right)$.
q.e.d.

Let ∇ be an almost complex affine connection without torsion and let $s: C(M) \rightarrow Q(\nabla)$ be the cross-section corresponding to ∇. For a biholomorphic transformation $f: M \rightarrow M$, define an admissible cross-section $s^{\prime}: C(M) \rightarrow F^{2}(M)$ by $s^{\prime}=\left(f^{(2)}\right)^{-1} \cdot s \cdot f^{(1)}$. Since $f^{(2)}$ leaves Θ invariant, s^{\prime} is the admissible cross-section corresponding to $\nabla^{\prime}=f^{*} \nabla$. Thus we have $f^{(2)}\left(Q\left(\nabla^{\prime}\right)\right)=Q(\nabla)$. Therefore $Q(\nabla)=Q\left(\nabla^{\prime}\right)$ if and only if $f^{(2)}(Q(\nabla))=Q(\nabla)$. Applying Corollary 11-1 in [4] to our case, we obtain

Theorem 2. Let ∇ be an almost complex affine connection without torsion. Then the group of all H-projective transformations of ∇ is a Lie group of finite dimension.

2. The development of an \boldsymbol{H}-planner curve with respect to a Cartan connection of type $P^{n}(C)$

Let M be a manifold of dimension n, G a Lie group, K a closed subgroup
of G with $\operatorname{dim} G / K=n$ and Q a principal bundle over M with structure group K. A G / K-Cartan connection in the bundle Q is a 1 -form ω on Q with values in the Lie algebra g of G satisfying the following conditions:
i) $\quad R_{h}{ }^{*} \omega=A d\left(h^{-1}\right) \omega, \quad h \in K$
ii) $\omega\left(A^{*}\right)=A, \quad A \in \mathfrak{A}$
iii) $\omega(X) \neq 0$ for every nonzero vector X of Q.

A G / K-Cartan connection is said to be a $P^{n}(C)$-Cartan connection when $G=$ $L /($ center $)$ and $K=L_{0} /($ center $), L$ and L_{0} being as in (0.3).

Let P be the group extension of Q to G, i.e., $P=Q \times{ }_{K} G$. Then a Cartan connection ω in Q can be uniquely extended to a connection form on P, denoted by $\tilde{\omega}$. Let $c(t)$ be a curve in M and let $z(t) \in P$ be a horizontal lift of $c(t)$ with respect to $\tilde{\omega}$ such that $z(0) \in Q$. Then there exists a curve $a(t) \in G$ such that $z(t) a(t) \in Q$. The development $c^{*}(t)$ of $c(t)$ at $c(0)$ by ω is defined by

$$
c^{*}(t)=z(0) \cdot a(t) 0 \in Q \times_{K} G / K,
$$

where 0 denotes the origin of G / K ([3]). We shall often identify $c^{*}(t)$ with the curve $a(t) 0 \in G / K$.

We shall consider the case when $G=L /($ center) and $K=L / 0$ (center), L and L_{0} being as in (0.3). We call a curve $c(t)$ in $\boldsymbol{P}^{n}(\boldsymbol{C})$ a projective line if there exists a 2-dimensional complex subspace W of \boldsymbol{C}^{n+1} such that $c(t) \in \pi(W-$ (0)). Let M be an n-dimensional complex manifold with an almost complex affine connection ∇ without torsion. Let us denote by θ the canonical form on $C(M)$ and by γ the connection form on $C(M)$ corresponding to ∇. We see in Section 1 that ∇ gives rise to a K-structure $Q(\nabla)$ of second order, i.e., K subbundle of $F^{2}(M)$, and the injection $s: C(M) \rightarrow Q(\nabla)$. We know that there exists a Cartan connection ω on $Q(\nabla)$ satisfying

$$
\begin{equation*}
s^{*} \omega_{-1}=\theta \text { and } s^{*} \omega_{0}=\gamma \tag{2.1}
\end{equation*}
$$

where ω_{-1} and ω_{0} are respectively g_{-1}-component and g_{0}-component of ω.
We shall prove
Proposition 2.1. Let ∇ be an almost complex affine connection on a complex manifold M and let ω be any Cartan connection on $Q(\nabla)$ satisfying (2.1). Then, a curve in M is H-planner if and only if its development with respect to ω is a projective line.

This follows directly from following Lemmas 2.2 and 2.3.
Lemma 2.1. Let $c(t)$ be a curve in M and let $x(t)$ be a horizontal lift of $c(t)$ in $C(M)$. Define $v(t) \in \boldsymbol{C}^{n}$ by

$$
\begin{equation*}
c^{\prime}(t)=x(t) v(t) \tag{2.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\nabla_{c} c^{\prime}=a c^{\prime}+b J c^{\prime} \tag{2.3}
\end{equation*}
$$

for certain smooth functions a and b if and only if

$$
\begin{equation*}
v(t)=\exp \left(\int_{0}^{t}(a(t)+\sqrt{-1} b(t)) d t\right) v(0) . \tag{2.4}
\end{equation*}
$$

Proof. From the difinition of covariant derivative, we obtain

$$
\nabla_{c^{\prime}(t)} c^{\prime}(t)=x(t) v^{\prime}(t)
$$

By (2.2),

$$
a(t) c^{\prime}(t)+b(t) J c^{\prime}(t)=x(t)(a(t)+\sqrt{-1} b(t)) v(t)
$$

Therefore (2.3) holds if and only if

$$
\begin{equation*}
v^{\prime}(t)=(a(t)+\sqrt{-1} b(t)) v(t) \tag{2.5}
\end{equation*}
$$

We have (2.4) if and only if (2.5) holds.
q.e.d.

Let $c(t)$ be a regular curve in M and let $x(t)$ (resp. $z(t)$ with $z(0)=s(x(0)))$ be a horizontal lift of $c(t)$ in $C(M)$ (resp. P) with respect to ∇ (resp. $\tilde{\omega})$. Choose a curve $a(t) \in L$ satisfying

$$
\begin{equation*}
z(t)[a(t)]=s(x(t)), a(0)=1_{n+1} \tag{2.6}
\end{equation*}
$$

where $[a(t)]$ denotes the image of $a(t)$ by the natural projection $L \rightarrow L /($ center $)$. We may assume that $a(t)$ is smooth since the center of L is discrete. We shall denote the $(A+1)$-th column vector of $a(t)$ by $a_{A}(t)(0 \leqq A \leqq n)$.

Lemma 2.2. $a_{0}(t), a_{0}{ }^{\prime}(t)$ and $a_{0}{ }^{\prime \prime}(t)$ are linearly dependent for each t if and only if $c(t)$ is H-planner.

Proof. Differentiating both sides of (2.6), we obtain

$$
R_{[a(t)]]^{*} z^{\prime}(t)+\left(a(t)^{-1} a^{\prime}(t)\right)^{*}{ }_{z}(t)[a(t)]}=s_{*}\left(x^{\prime}(t)\right) .
$$

Hence we have

$$
\begin{equation*}
a(t)^{-1} a^{\prime}(t)=\tilde{\omega}\left(s_{*} x^{\prime}(t)\right) \tag{2.7}
\end{equation*}
$$

Let $\tilde{\omega}_{B}^{A}(0 \leqq A, B \leqq n)$ denote the $(A+1, B+1)$-component of $\tilde{\omega}\left(s_{*}\left(x^{\prime}(t)\right)\right)$. From (2.7) we obtain

$$
a_{B^{\prime}}=\sum_{A=0}^{n} a_{A} \tilde{\omega}_{B}^{A} \quad 0 \leqq B \leqq n .
$$

Hence

$$
\begin{aligned}
a_{0}^{\prime \prime} & =\sum_{A=0}^{n} a_{A} \frac{d \tilde{\omega}_{0}^{A}}{d t}+\sum_{B=0}^{n} a_{B^{\prime}} \tilde{\omega}_{0}^{B} \\
& =\sum_{A=0}^{n} a_{A}\left(\frac{d \tilde{\omega}_{0}^{A}}{d t}+\sum_{B=0}^{n} \tilde{\omega}_{B}^{A} \tilde{\omega}_{0}^{B}\right) .
\end{aligned}
$$

Since $x(t)$ is horizontal with respect to ∇, we have

$$
\tilde{\omega}_{0}^{0}=0 \text { and } \tilde{\omega}_{k}^{j}=0 \quad 1 \leqq j, k \leqq n
$$

Thus we obtain

$$
\begin{gather*}
a_{0}^{\prime}=\sum_{k=1}^{n} a_{k} \tilde{\omega}_{0}^{k} \tag{2.8}\\
a_{0}^{\prime \prime}=\sum_{k=1}^{n} a_{0} \tilde{\omega}_{k}^{0} \tilde{\omega}_{0}^{k}+\sum_{k=1}^{n} a_{k} \frac{d \tilde{\omega}_{0}^{k}}{d t} \tag{2.9}
\end{gather*}
$$

Now suppose that $a_{0}(t), a_{0}{ }^{\prime}(t)$ and $a_{0}{ }^{\prime \prime}(t)$ are linearly dependent for each t. Then there exist functions $f(t), g(t)$ and $h(t)$ such that

$$
\begin{equation*}
f a_{0}+g a_{0}^{\prime}+h a_{0}^{\prime \prime}=0 \tag{2.10}
\end{equation*}
$$

and

$$
|f|+|g|+|h| \neq 0
$$

Substituting (2.8) and (2.9) in (2.10), we have

$$
\left(f(t)+h(t) \sum_{k=1}^{n} \tilde{\omega}_{k}^{0} \tilde{\omega}_{0}^{k}\right) a_{0}+\sum_{j=1}^{n}\left(g(t) \tilde{\omega}_{0}^{j}+h(t) \frac{d \tilde{\omega}_{0}^{j}}{d t}\right) a_{j}=0
$$

Since $a_{0}(t), a_{1}(t), \cdots, a_{n}(t)$ are linearly independent, this is equivalent to the following:

$$
\begin{gathered}
f(t)+h(t)=\sum_{k=1}^{n} \tilde{\omega}_{k}^{0} \tilde{\omega}_{0}^{k}=0, \\
g(t) \tilde{\omega}_{0}^{j}+h(t) \frac{d \tilde{\omega}_{0}^{j}}{d t}=0 \text { for } 1 \leqq j \leqq n .
\end{gathered}
$$

Since $c^{\prime}(t) \neq 0$, we have $\tilde{\omega}_{0}^{j} \neq 0$ for a certain integer $j(1 \leqq i \leqq n)$. Hence $h(t) \neq 0$ for each t. Putting

$$
F(t)=-g(t) / h(t),
$$

we obtain

$$
F(t) \theta\left(x^{\prime}(t)\right)=d \theta\left(x^{\prime}(t)\right) / d t
$$

which shows that F is a differentiable function. Hence

$$
\begin{equation*}
\theta\left(x^{\prime}(t)\right)=\exp \left(\int_{0}^{t} F(t) d t\right) v_{0}, \quad v_{0} \in \boldsymbol{C}^{n} \tag{2.11}
\end{equation*}
$$

i.e.,

$$
c^{\prime}(t)=x(t) \exp \left(\int_{0}^{t} F(t) d t\right) v_{0}
$$

Therefore if follows from Lemma 2.1 that $c(t)$ is H-planner. Taking the steps backwards, it is now easy to prove the converse.

Lemma 2.3. $a_{0}(t), a_{0}{ }^{\prime}(t)$ and $a_{0}{ }^{\prime \prime}(t)$ are linearly dependent for each t if and only if there exists a 2-dimensional complex subspace W of \boldsymbol{C}^{n+1} in which $a_{0}(t)$ is contained for every t.

Proof. First note that a_{0} and $a_{0}{ }^{\prime}$ are linearly independent for each t. This follows from formula (2.8), because $\tilde{\omega}_{0}^{k} \neq 0$ for a certain integer $k(1 \leqq k \leqq n)$ and $a_{0}(t), a_{1}(t), \cdots, a_{n}(t)$ are linearly independent for each t. Let $b_{A}(0 \leqq A \leqq n)$ be the ($A+1$)-th component of a_{0} and define an $(n+1) \times 3$ matrix B by

$$
B=\left(\begin{array}{ccc}
b_{0} & b_{0}{ }^{\prime} & b_{0}{ }^{\prime \prime} \\
b_{1} & b_{1}^{\prime} & b_{1}^{\prime \prime} \\
\vdots & \vdots & \vdots \\
b_{n} & b_{n}^{\prime} & b_{n}^{\prime \prime \prime}
\end{array}\right)
$$

We may assume that in an open interval U containing $t=t_{0}$

$$
\operatorname{det}\left(\begin{array}{ll}
b_{0} & b_{0}^{\prime} \tag{2.12}\\
b_{1} & b_{1}^{\prime}
\end{array}\right) \neq 0
$$

Now suppose that $a_{0}, a_{0}{ }^{\prime}$ and $a_{0}{ }^{\prime \prime}$ are linearly dependent. Since rank $B=2$, $b_{j}(j=2,3, \cdots, n)$ are solutions of the following ordinary linear differential equation of second order:

$$
\operatorname{det}\left(\begin{array}{lll}
b_{0} & b_{0} & b_{0}{ }^{\prime \prime} \\
b_{1} & b_{1}^{\prime} & b_{1}^{\prime \prime} \\
x & x^{\prime} & x^{\prime \prime}
\end{array}\right)=0 .
$$

It follows that there exist constants $\alpha_{j}, \beta_{j}(j=2, \cdots, n)$ such that

$$
b_{j}=\alpha_{j} b_{0}+\beta_{j} b_{1}
$$

Thus we obtain

$$
a_{0}=b_{0}\left(\begin{array}{c}
1 \\
0 \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right)+b_{1}\left(\begin{array}{c}
0 \\
1 \\
\beta_{2} \\
\vdots \\
\dot{\beta}_{n}
\end{array}\right)
$$

This shows that $a_{0}(t)(t \in U)$ is contained in the 2-dimensional complex subspace W of \boldsymbol{C}^{n+1} spanned by

$$
\left(\begin{array}{c}
1 \\
0 \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right) \text { and }\left(\begin{array}{c}
0 \\
1 \\
\beta_{2} \\
\vdots \\
\beta_{n}
\end{array}\right)
$$

We shall see that such a 2-dimensional subspace is independent of the choice of t_{0}. In fact, suppose that there exists a 1-dimensional subspace V of \boldsymbol{C}^{n+1} such that $a_{0}(t) \in V$ for every t in a certain open interval V contained in U. This contradicts (2.12). The proof for the converse is trivial. q.e.d.

Example 2.1. $S=S U(n+1, \boldsymbol{C}) /($ center $)$ acts transitively on $P^{n}(\boldsymbol{C})$ in a natural manner. Let H be the isotropy subgroup of S at

$$
0=\pi\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right) \in \boldsymbol{P}^{n}(\boldsymbol{C})
$$

Since each $f \in S$ is a transformation of $P^{n}(\boldsymbol{C})$ and a neighborhood of 0 in $P^{n}(\boldsymbol{C})$ is identified with a neighborhood of 0 in $\boldsymbol{R}^{2 n}$ in a natural way, the 1 -jet $j_{0}^{1}(f)$ can be considered as a 1 -frame of $P^{n}(C)$ at $f(0)$. The set of all 1-frames thus obtained defines an H-subbundle of the bundle $C\left(P^{n}(\boldsymbol{C})\right)$ of complex linear frames, which may be identified with the bundle S over $P^{n}(\boldsymbol{C}) . \quad L$ and L_{0} being as in (0.3), let G and K denote $L /\left(\right.$ center) and $L_{0} /($ center $)$ respectively. Then the set of all 2-frames $\left\{j_{0}^{2}(f) \mid \in G\right\}$ defines a K-subbundle of $F^{2}\left(P^{n}(C)\right)$, and this can be identified with the bundle G over $P^{n}(\boldsymbol{C})$. The Maurer-Cartan form ω of G is a G / K-Cartan connection in G. Define an injection $s: C\left(P^{n}(C)\right) \rightarrow F^{2}\left(P^{n}(C)\right)$ by $s(x a)=\iota(x) a$ for $x \in S$ and $a \in G L(n, C), \iota$ being the inclusion map of S into G. Then the bundle G is the group extension of $C\left(P^{n}(\boldsymbol{C})\right)$ by s to the group K. The 1-form $\left.s^{*} \omega\right|_{g_{0}}$ on $C\left(P^{n}(\boldsymbol{C})\right)$, restriction of values of $s^{*} \omega$ to the Lie algebra g_{0} of $G L(n, C)$, corresponds to the Kaehler connection ∇ on the symmetric space $P^{n}(\boldsymbol{C})=S / H$. Thus ω is a Cartan connection corresponding to ∇ and, in fact, ω is the normal Cartan connection (see section 4 for the meaning of terminology) [4]. ω can be uniquely extended to a connection form $\tilde{\omega}$ on the bundle $G \times{ }_{K} G$ over $P^{n}(\boldsymbol{C})$. A horizontal lift of a curve $c(t)=a(t) 0 \in P^{n}(\boldsymbol{C})$ $(a(t) \in G)$ with respect to $\tilde{\omega}$ is $z(t)=a(t) \cdot a(t)^{-1} a(0) \in G \times{ }_{K} G$. In fact, noting that $\left.R_{a(0)-1}{ }_{a(t)}\right)(t)$ belongs to the subbundle G, we have by the definition of $\tilde{\omega}$

$$
\begin{aligned}
\tilde{\omega}\left(z^{\prime}(t)\right) & =\tilde{\omega}\left(R_{a(t)-1}{ }^{-1}(0) * R_{a(0)^{-1} a(t)^{*}}\left(z^{\prime}(t)\right)\right) \\
& =\operatorname{Ad}\left(a(0)^{-1} a(t)\right) \tilde{\omega}\left(R_{\left.\left.a(0)^{-1} a(t) * z^{\prime}(t)\right)\right)}\right. \\
& =\operatorname{Ad}\left(a(0)^{-1} a(t)\right)\left(\omega\left(a^{\prime}(t)\right)+A d\left(a(t)^{-1} a(0)\right)\left(a(0)^{-1} a(t)\left(a(t)^{-1} a(0)\right)^{\prime}\right)\right) \\
& =A d\left(a(0)^{-1} a(t)\right)\left(a(t)^{-1} a^{\prime}(t)+\left(a(t)^{-1}\right)^{\prime} a(t)\right)=0 .
\end{aligned}
$$

Here we may assume $a(t)$ is locally differentiable, since $z(t)$ is independent of
the choice of $a(t) \in G$. Thus $c^{*}(t)=a(0)^{-1} a(t) 0 \in P^{n}(\boldsymbol{C})$ is the development of $c(t)$ with respect to ω.

Applying Proposition 2.1 to the case when $M=P^{n}(C)$, we obtain
Corollary 2.1. A curve in $P^{n}(\boldsymbol{C})$ is H-planner if and only if it is a projective line.

By Proposition 2.1 and Corollary 2.1 we have
Theorem 3. The assumptions and notation being as in Proposition 2.1, a curve in M is H-planner if aud only if its development with respect to ω is H planner.

3. \boldsymbol{H}-completeness

We have defined an H-geodesic and H-completeness in Introduction. In this section we shall prove the following:

Theorem 4. Let M be a connected Kaehler manifold with a Kaehler metric g and let ∇ be the Kaehler connection of g. Then H-completeness of ∇ is equivalent to completeness of g.

Proof. Completeness of g follows from H-completeness of ∇ since a geodesic of g is clearly an H-geodesic of ∇. Assume that g is complete. Let $c(t) 0 \leqq t<L$ be an H-geodesic, i.e.,

$$
\begin{equation*}
\nabla_{c} c^{\prime}=b J c^{\prime} \quad b: \text { constant } \tag{3.1}
\end{equation*}
$$

We shall show that this H-geodesic can be extended beyond L. Let $x(t)$ be a horizontal lift of $c(t)$ in the unitary frame bundle with respect to g. We can choose such a horizontal lift because ∇ is the Kaeler connection of g. Then $c^{\prime}(t)=x(t) v(t)$, where $v(t)=\exp (\sqrt{-1} b t) v(0)$ by Lemma 2.1. Let $\left\{t_{k}\right\}$ be an infinite sequence such that $t_{k} \rightarrow L(k \rightarrow \infty)$. Then

$$
\begin{aligned}
d\left(c\left(t_{k}\right), c\left(t_{l}\right)\right) & \leq \mid \int_{t_{k}}^{t_{l}} g\left(c^{\prime}(t), c^{\prime}(t) d t \mid\right. \\
& =\left|t_{k}-t_{l}\right||v(0)|
\end{aligned}
$$

where d denotes the distance function defined by g and $|v(0)|$ denotes the usual norm of $v(0)$ in \boldsymbol{C}^{n}. This shows that $\left\{c\left(t_{k}\right)\right\}$ is a Canchy sequence in M with respect to d and hence converges to a point, say p. The limit point is independent of the choice of a sequence $\left\{t_{k}\right\}$ converging to L. Let $x^{1}, x^{2}, \cdots, x^{2 n}$ be a local coordinate system in a relatively compact coordinate neighborhood U of p. The local expression of (3.1) in U is

$$
\begin{equation*}
\frac{d^{2} x^{i}}{d t^{2}}+\Gamma_{j k}^{i} \frac{d x^{j}}{d t} \frac{d x^{k}}{d t}=b J_{j}^{i} \frac{d x^{j}}{d t} \tag{3.2}
\end{equation*}
$$

The exists a positive number δ such that $\{c(s) \mid L-\delta \leqq s<L\} \subset U$. Since the length of c^{\prime} is constant, $\left\{d x^{j} / d t(s) \mid L-\delta<s<L\right\}$ are bounded. It follows from (3.2) that $\left\{\left|d^{2} x^{j}\right| d t^{2}(s)| | L-\delta<s<L\right\}$ are also bounded, and less than a constant N. Let $\left\{s_{k}\right\}$ be an infinite sequence such that $s_{k} \rightarrow L(k \rightarrow \infty)$. Then

$$
\left|\frac{d x^{j}}{d t}\left(s_{m}\right)-\frac{d x^{j}}{d t}\left(s_{l}\right)\right|=\left|\int_{s_{l}}^{s_{m}} \frac{d^{2} x^{j}}{d t^{2}} d t\right| \leqq N\left|s_{m}-s_{l}\right|
$$

This shows that $\left\{d x^{j} / d t\left(s_{k}\right)\right\}$ is a Cauchy sequence in \boldsymbol{R}, hence converges to a real number. The limit is independent of the choice of a sequence $\left\{s_{k}\right\}$ converging to L. Since $c(t)$ and $d x^{i} / d t$ converge when $t \rightarrow L$, the solution of (3.2) can be extended beyond L. This completes the proof of Theorem 3.

4. A connection of Kaehler type

In this section we shall prove a certain property of a connection of Kaehler type defined in Introduction. The result will be used to prove Theorem 5 and Theorem 6 in the following sections.

Let ∇ be an almost complex affine connection without torsion on a complex manifold M of complex dimension n. And let Q and $s: C(M) \rightarrow Q$ be the corresponding $L_{0} /($ center $)$-structure and the injection. We know that there exists a $\boldsymbol{P}^{n}(\boldsymbol{C})$-Cartan connection ω satisfying (2.1) for any almost complex affine connection without torsion which is H-projectively equivalent to ∇ ([4]). Define a subspace H_{q} of the tangent space $T_{q}(Q)$ at $q \in Q$ by

$$
H_{q}=\left\{X \in T_{q}(Q) \mid \omega_{0}(X)=0, \omega_{1}(X)=0\right\}
$$

Then $\omega_{-1}: H_{q} \rightarrow \mathrm{~g}_{-1}$ is a linear isomorphism. Put

$$
\Omega=d \omega+[\omega, \omega] / 2
$$

Decompose Ω into $\Omega=\Omega_{-1} \oplus \Omega_{0} \oplus \Omega_{1}, \Omega_{-1}, \Omega_{0}$ and Ω_{1} being $g_{-1^{-}}, g_{0^{-}}$and $g_{1^{-}}$ components of Ω respectively. Let $\left\{v_{i}\right\}_{i=1,2, \cdots, 2 n}$ be a real basis of g_{-1} and let $\left\{z^{i}\right\}$ be its dual basis in g_{1} with respect to the Killing-Cartan form B of \mathbb{Z} which is non-singular on $\mathfrak{g}_{-1} \times \mathfrak{g}_{1}$. Choose $X_{i} \in H_{q}$ such that $\omega_{-1}\left(X_{i}\right)=v_{i}$. We shall call ω a $\boldsymbol{P}^{n}(\boldsymbol{C})$-nomal Cartan connection if Ω_{0} satisfies

$$
\sum z^{i} \Omega_{0}\left(X_{i}, Y\right)=0 \quad \text { at each point } q \in Q
$$

If $n \geqq 2$, there exists uniquely a $\boldsymbol{P}^{n}(\boldsymbol{C})$-normal Cartan connection ([4]).
For the $\boldsymbol{P}^{n}(\boldsymbol{C})$-normal Cartan connection, define $E_{x}: \mathrm{g}_{-1} \rightarrow \mathrm{~g}_{1}(x \in C(M))$ by

$$
\begin{equation*}
E_{x}(\theta(Y))=s^{*} \omega_{1}(Y) \quad Y \in T_{x}(C(M)) \tag{4.1}
\end{equation*}
$$

E_{x} is well-defined. In fact, if $\theta_{x}(Y)=0$, there exists $A \in \mathfrak{g l}(n, \boldsymbol{C})$ such that $Y=\left(A^{*}\right)_{x}$. Hence

$$
\left(s^{*} \omega_{1}\right)(Y)=\omega_{1}\left(s_{*}\left(A^{*}\right)_{x}\right)=\omega_{1}\left(\left(A^{*}\right)_{s(x)}\right)=0
$$

Let us denote by $C^{p, q}(-1 \leqq p \leqq 3)$ the set of all \mathfrak{g}_{p-1}-valued q-skew-symmetric multilinear form on \mathfrak{g}_{-1}, where $\mathfrak{g}_{-2}=\{0\}$ and $\mathfrak{g}_{2}=\{0\}$. Define $d: C^{p, q} \rightarrow$ $C^{p-1, q+1}$ by

$$
d c\left(y_{1}, \cdots, y_{q+1}\right)=\sum_{i=1}^{q+1}(-1)^{i+1}\left[y^{i}, C\left(y_{1}, \cdots, y_{i-1}, y_{i+1}, \cdots, y_{q+1}\right)\right]
$$

$y_{1}, \cdots, y_{q+1} \in \mathrm{~g}_{-1}$. And define $d^{*}: C^{p, q} \rightarrow C^{p+1, q-1}$ by

$$
\left(d^{*} c\right)\left(y_{1}, \cdots, y_{q-1}\right)=\sum_{i=1}^{2 n}\left[z^{i}, c\left(v_{i}, y_{1}, \cdots, y_{q-1}\right)\right]
$$

$y_{1}, \cdots, y_{q-1} \in \mathfrak{g}_{-1}$, where $\left\{v_{i}\right\}$ denotes a basis of \mathfrak{g}_{-1} and $\left\{z^{i}\right\}$ denotes the dual basis of $\left\{v_{i}\right\}$ in \mathfrak{g}_{1} with respect to the Killing-Cartan form B of \mathbb{R}.

We shall denote by S the Ricci tensor field of ∇. Define $S_{x}: \mathfrak{g}_{-1} \times \mathfrak{g}_{-1} \rightarrow \boldsymbol{R}$ and $T_{x}: \mathrm{g}_{-1} \rightarrow \mathrm{~g}_{1}$ for $x \in C(M)$ by

$$
\begin{align*}
& S_{x}(u, v)=S(x u, x v) \text { and } \\
& B\left(T_{x}(u), v\right)=S_{x}(u, v) \tag{4.2}
\end{align*}
$$

respectively. Then

$$
\begin{equation*}
T_{x}=-d^{*} d E_{x}([4]) \tag{4.3}
\end{equation*}
$$

For $z \in \mathfrak{g}_{1}$ and $v \in \mathfrak{g}_{-1}$ we shall denote by $\langle z, v\rangle$ the real part of $z v$.
Lemma 4.1. Let ∇ be a connection of Kaehler type on an n-dimensional complex manifold ($n \geqq 2$). Then

$$
\left\langle E_{x}(u), v\right\rangle=-S(x u, x v) / 2(n+1)
$$

or equivalently

$$
E_{x}(u) v=-\{S(x u, x v)-\sqrt{-1} S(x u, J x v)\} / 2(n+1) .
$$

In particular, $E_{x}(v) v$ is real valued.
Proof. We write E for E_{x} for simplicity. From the definition of the Killing-Cartan form of \mathbb{B}, we obtain

$$
\begin{equation*}
B(X, Y) / 4(n+1)=\operatorname{Re}(\text { the trace of } X Y) \tag{4.4}
\end{equation*}
$$

for $X, Y \in \mathbb{R}$. Hence we consider \mathbb{Z} as a real Lie algebra. Since $\left\{{ }^{t} e_{i} / 4(n+1)\right.$, $\left.-\sqrt{-1}{ }^{t} e_{i} / 4(n+1)\right\}_{i=1,2, \cdots, n}$ is the dual basis of g_{1} corresponding to a real basis $\left\{e_{i}, \sqrt{-1} e_{i}\right\}_{i=1, \cdots, n}$ of g_{-1} with respect to B, we have

$$
\begin{align*}
& d^{*} d E(v) \tag{4.5}\\
& =\sum_{i=1}^{n} \frac{1}{4(n+1)}\left[{ }^{t} e_{i}, d E\left(e_{i}, v\right)\right]+\sum_{i=1}^{n} \frac{1}{4(n+1)}\left[-\sqrt{-1} t e_{i}, d E\left(\sqrt{-1} e_{i}, v\right)\right]
\end{align*}
$$

$$
\begin{aligned}
= & \sum_{i=1}^{n} \frac{1}{4(n+1)}\left\{\left[{ }^{t} e_{i},\left[e_{i}, E(v)\right]-\left[v, E\left(e_{i}\right)\right]\right]\right. \\
& \left.+\left[-\sqrt{-1}{ }^{t} e_{i},\left[\sqrt{-1} e_{i}, E(v)\right]-\left[v, E\left(\sqrt{-1} e_{i}\right)\right]\right]\right\} .
\end{aligned}
$$

On the other hand, for $v \in \mathfrak{g}_{-1}, z \in \mathfrak{g}_{1}$ and $A \in \mathfrak{g}_{0}$,

$$
\begin{aligned}
& {[v, z]=v z+(z v) 1_{n}} \\
& {[z, A]=z A}
\end{aligned}
$$

Applying these formulas to (4.5), we obtain

$$
\begin{align*}
d^{*} d E(v)= & \frac{1}{4(n+1} \sum_{i=1}^{n}\left\{2 E(v)+2^{t} e_{i} E(v) e_{i}-{ }^{t} e_{i} v E\left(e_{i}\right)+{ }^{t} e_{i} E\left(e_{i}\right) v\right) \tag{4.6}\\
& +\left(\sqrt{-1}{ }^{t} e_{i} v E\left(\sqrt{-1} e_{i}\right)+\sqrt{-1}{ }^{t} e_{i} E\left(\sqrt{-1} e_{i}\right) v\right\}
\end{align*}
$$

By virtue of (4.2), (4.3), (4.4) and (4.6),

$$
\begin{align*}
-S_{x}(u, v)= & 2(n+1)\langle E(u), v\rangle-\sum_{i=1}^{n}\left\langle^{t} e_{i} u E\left(e_{i}\right)+^{t} e_{i} E\left(e_{i}\right) u, v\right\rangle \tag{4.7}\\
& +\sum_{i=1}^{n}\left\langle\sqrt{-1}{ }^{t} e_{i} u E\left(\sqrt{-1} e_{i}\right)+\sqrt{-1}{ }^{t} e_{i} E\left(\sqrt{-1} e_{i}\right) u, v\right\rangle
\end{align*}
$$

Since S_{x} is symmetric, we have by (4.7)

$$
\begin{equation*}
\langle E(u), v\rangle=\langle E(v), u\rangle \text { for any } u, v \in \mathfrak{g}_{-1} . \tag{4.8}
\end{equation*}
$$

Put $u=e_{j}$ and $v=e_{k}$ in (4.7). Then we obtain

$$
\begin{aligned}
-S_{x}\left(e_{j}, e_{k}\right)= & (2 n+1)\left\langle E\left(e_{j}\right), e_{k}\right\rangle-\left\langle E\left\langle\left(e_{k}\right), e_{j}\right\rangle+\left\langle\sqrt{-1} E\left(\sqrt{-1} e_{j}\right), e_{k}\right\rangle\right. \\
& +\left\langle\sqrt{-1} E\left(\sqrt{-1} e_{k}\right), e_{j}\right\rangle .
\end{aligned}
$$

Thus, by (4.8)

$$
\begin{equation*}
-S_{x}\left(e_{j}, e_{k}\right)=2 n\left\langle E\left(e_{j}\right), e_{k}\right\rangle+2\left\langle\sqrt{-1} E\left(\sqrt{-1} e_{j}\right), e_{k}\right\rangle . \tag{4.9}
\end{equation*}
$$

Analogously, we have
(4.10) $\quad-S_{x}\left(\sqrt{-1} e_{j}, \sqrt{-1} e_{k}\right)=2 n\left\langle\sqrt{-1} E\left(\sqrt{-1} e_{j}\right), e_{k}\right\rangle+2\left\langle E\left(e_{j}\right), e_{k}\right\rangle$,

$$
\begin{align*}
& -S_{x}\left(e_{j}, \sqrt{-1} e_{k}\right)=2 n\left\langle E\left(e_{j}\right), \sqrt{-1} e_{k}\right\rangle-2\left\langle E\left(\sqrt{-1} e_{j}\right), e_{k}\right\rangle \tag{4.11}\\
& -S_{x}\left(\sqrt{-1} e_{j}, e_{k}\right)=2 n\left\langle E\left(\sqrt{-1} e_{j}\right), e_{k}\right\rangle-2\left\langle E\left(e_{j}\right), \sqrt{-1} e_{k}\right\rangle \tag{4.12}
\end{align*}
$$

Since $S\left(e_{j}, e_{k}\right)=S\left(\sqrt{-1} e_{j}, \sqrt{-1} e_{k}\right)$, (4.9) and (4.10) give

$$
2(n-1)\left\langle\sqrt{-1} E\left(\sqrt{-1} e_{j}\right), e_{k}\right\rangle=2(n-1)\left\langle E\left(e_{j}\right), e_{k}\right\rangle .
$$

Since $n \geqq 2$ by assumption, we have

$$
\begin{equation*}
\left\langle E\left(e_{j}\right), e_{k}\right\rangle=\left\langle\sqrt{-1} E\left(\sqrt{-1} e_{j}\right), e_{k}\right\rangle . \tag{4.13}
\end{equation*}
$$

In a similar fashion, (4.11) and (4.12) give

$$
\begin{equation*}
\left\langle E\left(e_{j}\right), \sqrt{-1} e_{k}\right\rangle=\left\langle\sqrt{-1} E\left(\sqrt{-1} e_{j}\right), \sqrt{-1} e_{k}\right\rangle \tag{4.14}
\end{equation*}
$$

By virtue of (4.13) and (4.14),

$$
E\left(e_{j}\right)=\sqrt{-1} E\left(\sqrt{-1} e_{j}\right)
$$

Applying this to (4.7), we obtain

$$
-S_{x}(u, v)=2(n+1)\langle E(u), v\rangle
$$

The second formula in Lemma 4.1 is now easy to show, because the imaginary part of $E(u) v$ is $-\langle E(u), \sqrt{-1} v\rangle$. This completes the proof of Lemma 4.1.
5. The development of an H-geodesic with respect to the $P^{n}(C)$ normal Cartan connection

Let ∇ be a connection of Kaehler type on a complex manifold M. Let us denote by $\{\nabla\}$ the family of almost complex affine connections without torsion which are H-projectively equivalent to ∇. We see in Section 4 that $\{\nabla\}$ determines uniquely a $\boldsymbol{P}^{n}(\boldsymbol{C})$-normal Cartan connection. We shall prove

Proposition 5.1. Assume that the development of a curve $c(t)$ with respect to the normal Cartan connection is contained in $\pi(W-\{0\})$ for a 2-dimensional real subspace W of \boldsymbol{C}^{n+1}. Then, under a certain change of parameter, $c(t)$ is an H-geodesic.

Proof. By Theorem $3 c(t)$ is an H-planner curve. Hence $c(t)$ satisfies $\nabla_{c}^{\prime} c^{\prime}=a c^{\prime}+b J c^{\prime}$ for cetrin real functions a and b. Define a curve \tilde{c} by

$$
\begin{equation*}
\left.\widetilde{c}(T)=c(t), \quad T=\int_{0}^{t} \exp \left(\int_{0}^{t} a(t) d t\right)\right) d t \tag{5.0}
\end{equation*}
$$

Then we have

$$
\nabla \tilde{c}^{\prime} \tilde{c}^{\prime}=\tilde{b} J \tilde{c}^{\prime}, \quad \tilde{b}: \text { a real function. }
$$

Since $\widetilde{c}(t)$ satisfies the assumption of Proposition 5.1, we may assume $\nabla_{c}{ }^{\prime} c^{\prime}=$ $b J c^{\prime}$. Let $x(t)$ be a horizontal lift in $C(M)$. Then by Lemma 2.1,

$$
c^{\prime}(t)=x(t)\left(\exp \sqrt{-1} \int_{0}^{t} b d t\right) v
$$

v being a certain vector in \boldsymbol{C}^{n}. This is equivalent to

$$
d \theta\left(x^{\prime}(t)\right) / d t=\sqrt{-1} b \theta\left(x^{\prime}(t)\right)
$$

Here θ denotes the canonical form on $C(M)$. The notation being as in Lemma 2.2, put

$$
f(t)=-\sum_{k=1}^{n} \tilde{\omega}_{k}^{0} \tilde{\omega}_{0}^{k} .
$$

By the definition of $E_{x(t)}: \mathrm{g}_{-1} \rightarrow \mathrm{~g}_{1}$ given in (4.1), we see

$$
\begin{equation*}
f(t)=-E_{x(t)}\left(\theta\left(x^{\prime}(t)\right)\right) \theta\left(x^{\prime}(t)\right) \tag{5.1}
\end{equation*}
$$

It follows from Lemma 4.1 that $f(t)$ is a real-valued function. Let $a(t)$ be as in (2.6). Then by (2.8) and (2.9) in Lemma 2.2, we have

$$
\begin{equation*}
a_{0}{ }^{\prime \prime}-\sqrt{-1} b a_{0}{ }^{\prime}+f a_{0}=0 \tag{5.2}
\end{equation*}
$$

Let c_{1} and c_{2} be the solutions of

$$
\begin{equation*}
c^{\prime \prime}-\sqrt{-1} b c^{\prime}+f c=0 \tag{5.3}
\end{equation*}
$$

with initial values, respectively,

$$
\left\{\begin{array} { l }
{ c _ { 1 } (0) = 1 } \\
{ c _ { 1 } ^ { \prime } (0) = 0 }
\end{array} \quad \left\{\begin{array}{l}
c_{2}(0)=0 \\
c_{2}^{\prime}(0)=1
\end{array}\right.\right.
$$

Then

$$
a_{0}=\binom{c_{1}}{c_{2} v}
$$

Let W be a 2-dimensional real subspace of \boldsymbol{C}^{n+1} such that

$$
\pi\binom{c_{1}}{c_{2} v} \subset \pi(W-\{0\})
$$

Since $c_{1}(0)=1$ and $c_{2}(0)=0$,

$$
\pi\binom{1}{0} \in \pi(W-\{0\})
$$

So there exists a constant $s \in \boldsymbol{C}^{*}=\boldsymbol{C}-\{0\}$ such that

$$
s\binom{1}{0} \in W-\{0\}, i, e .,\binom{1}{0} \in s^{-1} W-\{0\} .
$$

Therefore we may assume

$$
\binom{1}{0} \in W-\{0\} .
$$

Lemma 5.1. There exists a differentiable function h such that

$$
h\binom{c_{1}}{c_{2} v} \in W-\{0\} .
$$

in an open interval U in which $c_{2} \neq 0$.

Proof of Lemma 5.1. Let

$$
e_{1}=\binom{1}{0}, \tilde{\alpha}=\binom{\alpha^{0}}{\alpha} \quad\left(\alpha^{0} \in \boldsymbol{C}, \alpha \in \boldsymbol{C}^{n}\right)
$$

be a basis of W. Putting

$$
d(t)=\binom{c_{1}(t)}{c_{2}(t) v}
$$

we have $d=z\left(u_{1} e_{1}+u_{2} \tilde{\alpha}\right)$ for certain real valued functions u_{1} and u_{2}, and a complex valued non-zero function $z . u_{2} \neq 0$ follows from the assumption $c_{2} \neq 0$. We only have to put $h=1 / z u_{2}$ to complete the proof.

By Lemma 5.1 we see that $h\left(t_{0}\right) d\left(t_{0}\right)$ and e_{1} for $t_{0} \in U$ is a basis of W. So

$$
h\binom{c_{1}}{c_{2} v}=A\binom{1}{0}+B h\left(t_{0}\right)\binom{c_{1}\left(t_{0}\right)}{c_{2}\left(t_{0}\right) v}
$$

for certain real-valued functions A and B. Hence

$$
c_{1} / c_{2}=A / B h\left(t_{0}\right) c_{2}\left(t_{0}\right)+c_{1}\left(t_{0}\right) / c_{2}\left(t_{0}\right)
$$

Put

$$
\begin{equation*}
D=c_{1} / c_{2}, \quad G=A / B \text { and } K=1 / h\left(t_{0}\right) c_{2}\left(t_{0}\right) \tag{5.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
D^{\prime}=G^{\prime} K \tag{5.5}
\end{equation*}
$$

Lemma 5.2. Let D be as in (5.4) and let U be an open interval in which $c_{2}(t) \neq 0$. Then

$$
\begin{equation*}
D^{\prime}=\frac{D^{\prime}\left(t_{0}\right)\left(c_{2}\left(t_{0}\right)\right)^{2}}{\left(c_{2}(t)\right)^{2}} \exp \left(\sqrt{-1} \int_{t_{0}}^{t} b d t\right) \quad t_{0} \in U \tag{5.6}
\end{equation*}
$$

Proof of Lemma 5.2. Since c_{1} is a solution of (5.3), i.e., $c_{1}{ }^{\prime \prime}-\sqrt{-1} b c_{1}{ }^{\prime}$ $+f c_{1}=0$, substituting $c_{1}=D c_{2}$ in this equation, we have $D^{\prime \prime} c_{2}+\left(2 c_{2}^{\prime}-\sqrt{-1} b c_{2}\right) D^{\prime}$ $=0$. Hence

$$
D^{\prime \prime}+\left(2 c_{2}^{\prime} / c_{2}-\sqrt{-1} b\right) D^{\prime}=0
$$

Solving this equation on D^{\prime}, we obtain (5.6). This completes the proof of Lemma 5.2.

By (5.5) and (5.6) we have

$$
\frac{D^{\prime}\left(t_{0}\right)\left(c_{2}\left(t_{0}\right)\right)^{2}}{\left(c_{2}\right)^{2}} \exp \left(\sqrt{-1} \int_{t_{0}}^{t} b d t\right)=G^{\prime} K .
$$

Put $K / D^{\prime}\left(t_{0}\right)\left(c_{2}\left(t_{0}\right)\right)^{2}=l \exp (\sqrt{-1} \psi), c_{2}=r_{2} \exp \left(\sqrt{-1} \theta_{2}\right)$, where l, ψ, r_{2} and θ_{2} are real functions. Then

$$
\exp \left\{\sqrt{-1}\left(-2 \theta_{2}+\int_{t_{0}}^{t} b d t-\psi\right)\right\}=G^{\prime} l\left(r_{2}\right)^{2}
$$

Since G^{\prime}, l and r_{2} are continuous real functions, we have

$$
\begin{equation*}
-2 \theta_{2}+\int_{t_{0}}^{t} b d t-\psi=0 \quad(\bmod \pi) \tag{5.7}
\end{equation*}
$$

Differentiating (5.7), we obtain

$$
\begin{equation*}
\theta_{2}{ }^{\prime}=b / 2 \tag{5.8}
\end{equation*}
$$

Let

$$
\begin{equation*}
c_{2}=r_{2} \exp \left(\sqrt{-1} \theta_{2}\right) \tag{5.9}
\end{equation*}
$$

be the expression by polar coordinates. Since \dot{c}_{2} is a solution of (5.3), i.e., $c_{2}{ }^{\prime \prime}-\sqrt{-1} b c_{2}{ }^{\prime}+f c_{2}=0$, putting (5.9) in this equation, we have

$$
\exp \left(\sqrt{-1} \theta_{2}\right)\left\{\left(r_{2}^{\prime \prime}-r_{2}\left(\theta_{2}^{\prime}\right)^{2}+b r_{2} \theta_{2}^{\prime}+f r_{2}\right)+\sqrt{-1}\left(2 r_{2}^{\prime} \theta_{2}^{\prime}+r_{2} \theta_{2}^{\prime \prime}-b r_{2}^{\prime}\right)\right\}=0
$$

Hence

$$
\begin{equation*}
2 r_{2}^{\prime} \theta_{2}^{\prime}+r_{2} \theta_{2}^{\prime \prime}-b r_{2}^{\prime}=0 \tag{5.10}
\end{equation*}
$$

Substituting (5.8) in (5.10), we obtain $r_{2} b_{2}{ }^{\prime}=0$. Since $r_{2} \neq 0$, we have $b^{\prime}=0$. This holds in an open interval in which $c_{2} \neq 0$. However, since c_{2} is a solution of an ordinary linear differential equation of second order, the zero points of c_{2} are discrete. Thus b is constant, namely $c(t)$ is an H-geodesic. This completes the proof of Proposition 5.1.

Proposition 5.2. Let ∇ be a connection of Kaehler type whose Ricci tensor is parallel, and let $c(t)$ be an H-geodesic with respect to ∇ under a certain change of parameter. Then there exists a 2-dimensional real subspace W of \boldsymbol{C}^{n+1} such that the development of $c(t)$ with respect to the normal Cartan connection is contained in $\pi(W-\{0\})$.

Proof. We may assume that $c(t)$ is an H-geodesic, since existence of such a 2-dimensional real subspace W of \boldsymbol{C}^{n+1} as above is independent of the choice of a parameter. Let $x(t)$ be a horizontal lift in $C(M)$. Then, by Lemma 2.1,

$$
c^{\prime}(t)=x(t) \exp (\sqrt{-1} b t) v, \quad v \in C^{n}
$$

Since $c(t)$ is an H-geodesic, b is a real constant. The notation being as in the proof of Proposition 5.1, we have

$$
a_{0}^{\prime \prime}-\sqrt{-1} b a_{0}^{\prime}+f a_{0}=0
$$

Lemma 4.1 shows that f is a real constant, because the Ricci tensor of ∇ is
parallel. We shall denote this constant by $-k$. Let c_{1} and c_{2} be the solutions of

$$
c^{\prime \prime}-\sqrt{-1} b c^{\prime}-k c=0
$$

with initial values, respectively,

$$
\left\{\begin{array} { l }
{ c _ { 1 } (0) = 1 } \\
{ c _ { 1 } ^ { \prime } (0) = 0 }
\end{array} \quad \left\{\begin{array}{l}
c_{2}(0)=0 \\
c_{2}^{\prime}(0)=1
\end{array}\right.\right.
$$

Then

$$
a_{0}=\binom{c_{1}}{c_{2} v}
$$

We only have to prove existence of a 2-dimensional real subspace W of C^{n+1} satisfying $\pi\left(a_{0}(t)\right) \subset \pi(W-\{0\})$. Since b and k are real constants, the solutions c_{1} and c_{2} can be obtained explicitly as follows:
i) If $D=-b^{2}+4 k \neq 0$, then

$$
\begin{aligned}
c_{1}= & \frac{1}{2 \sqrt{\bar{D}}} \exp (\sqrt{-1} b t / 2)\{(-\sqrt{-1} b+\sqrt{\bar{D})} \exp (\sqrt{\bar{D}} t / 2) \\
& +(\sqrt{-1} b+\sqrt{\bar{D}}) \exp (-\sqrt{\bar{D}} t / 2)\} \\
c_{2}= & \frac{1}{\sqrt{\bar{D}}} \exp (\sqrt{-1} b t / 2)\{\exp (\sqrt{\bar{D}} t / 2)-\exp (-\sqrt{D} t / 2)\}
\end{aligned}
$$

ii) If $-b^{2}+4 j k=0$ and $k \neq 0$, then

$$
\begin{aligned}
& c_{1}=(-\sqrt{-1} b t / 2) \exp (\sqrt{-1} b t / 2)+\exp (\sqrt{-1} b t / 2) \\
& c_{2}=t \exp (\sqrt{-1} b t / 2)
\end{aligned}
$$

iii) If $b=0$ and $k=0$, then

$$
c_{1}=1, \quad c_{2}=t
$$

Thus we can choose a real basis $\{\alpha, \beta\}$ of W as follows:
i) If $D>0$, then

$$
\alpha=\binom{\frac{-\sqrt{-1} b+D}{2}}{v} \quad \beta=\binom{\frac{\sqrt{-1} b+D}{2}}{-v}
$$

because

$$
\pi\left(a_{0}(t)\right)=\pi\left(\exp \left(\frac{\sqrt{D}}{2} t\right) \alpha+\exp \left(\frac{-\sqrt{D}}{2} t\right) \beta\right)
$$

i)' If $D<0$, then

$$
\alpha=\binom{\sqrt{D}}{0} \quad \beta=\binom{-\sqrt{-1} b}{2 v}
$$

because

$$
\pi\left(a_{0}(t)\right)=\pi\left(\cos \left(\frac{\sqrt{-D}}{2} t\right) \alpha+\sqrt{-1} \sin \left(\frac{\sqrt{-D}}{2} t\right) \beta\right)
$$

ii) If $D=0$ and $k \neq 0$, then

$$
\alpha=\binom{\frac{-\sqrt{-1}}{2} b}{v} \quad \beta=\binom{1}{0}
$$

because

$$
\pi\left(a_{0}(t)\right)=\pi(t \alpha+\beta)
$$

iii) If $b=0$ and $k=0$, then

$$
\alpha=\binom{1}{0} \quad \beta=\binom{0}{v}
$$

From Propositions 5.1 and 5.2 follows
Corollary 5.1. Let ∇ be a connection of Kaehler type whose Ricci tensor is parallel. Then a curve $c(t)$ is an H-geodesic with respect to ∇ under a certain change of parameter if and only if there exists a 2-dimensional real subspace W of C^{n+1} such that the development of $c(t)$ with respect to the normal Cartan connection is contained in $\pi(W-\{0\})$.

We have detailed the development of a curve in $P^{n}(\boldsymbol{C})$ in Example 2.1. Applying Corollary 5.1 to $M=P^{n}(C)$, we obtain

Corollary 5.2. A curve $c(t)$ in $P^{n}(C)$ is an H-geodesic under a certain change of parameter if and only if there exists a 2-dimensional real subspace W of \boldsymbol{C}^{n+1} such that $c(t)$ is contained in $\pi(W-\{0\})$.

By Proposition 5.1 and Corollary 5.2 we have
Theorem 5. Let ∇ be a connection of Kaehler type. Then a curve $c(t)$ is an H-geodesic with respect to ∇ under a certain change of parameter, if the development of $c(t)$ with respect to the normal Cartan connection is an H geodesic in $P^{n}(C)$.

6. Proof of Theorem 6

In this section we shall prove Theorem 6.
Lemma 6.1. Let c_{1} and c_{2} be the solutions of the following differential equation

$$
\begin{equation*}
u^{\prime \prime}-\sqrt{-1} b u^{\prime}-k u=0 \tag{6.1}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
c_{1}(0)=1, c_{1}^{\prime}(0)=0 \text { and } c_{2}(0)=0, \quad c_{2}^{\prime}(0)=1 \tag{6.2}
\end{equation*}
$$

where b and k are real constants. Then we have the following:
a) If $-b^{2}+4 k>0$, then $\left|\lim _{t \rightarrow \infty} c_{2}\right| c_{1} \mid=1 / \sqrt{k}$.
b) If $-b^{2}+4 k<0$, then $\lim _{t \rightarrow \infty} c_{2} / c_{1}$ does not exist.
c) If $-b^{2}+4 k=0$ and $k \neq 0$, then $\left|\lim _{t \rightarrow \infty} c_{2} / c_{1}\right|=1 / \sqrt{k}$.
d) If $b=0$ and $k=0$, then $\lim _{t \rightarrow \infty} c_{1} / c_{2}=0$.

Proof. We have obtained the solutions c_{1} and c_{2} explicitly in the proof of Proposition 5.2. Lemma 6.1 follows directly from these results. q.e.d.

For the remainder of this section, let ∇ be an H-complete connection of Kaehler type on a complex manifold M whose Ricci tensor S is parallel. Let $Q(\nabla)$ and $s: C(M) \rightarrow Q(\nabla)$ be, as explained in Section 2, the $L_{0} /($ center $)$-structure and the injection corresponding to ∇ respectively. Let $E_{x}: \mathrm{g}_{-1} \rightarrow \mathrm{~g}_{1}(x \in C(M))$ be as in (4.1). Define a subset $\Phi_{E_{x}}$ of $\boldsymbol{P}^{n}(\boldsymbol{C})$ by

$$
\begin{equation*}
\Phi_{E_{x}}=\left\{\pi\binom{v^{0}}{v} \in \boldsymbol{P}^{n}(\boldsymbol{C})\left|-\left|v^{0}\right|^{2}+E_{x}(v) v=0, v^{0} \in \boldsymbol{C}, v \in \boldsymbol{C}^{n}\right\} .\right. \tag{6.3}
\end{equation*}
$$

Lemma 6.2. Let $c(t)$ and $x(t)$ be an H-geodesic of ∇ and its horizontal lift in $C(M)$ respectively. Put $x=x(0)$. And let $a(t) \in L$ be as in (2.6). If $\lim _{t \rightarrow \infty} a(t) 0$ exists, it belong to $\Phi_{E_{x}}$.

Proof. By Lemma 2.1

$$
c^{\prime}(t)=x(t) \operatorname{epx}\left(\int_{0}^{t} F(t) d t\right) v,
$$

for a certain function F and a vector $v \in \boldsymbol{C}^{n}$. We see by the definition of an H-geodesic $F(t)=\sqrt{-1} b, b$ being a constant. Thus $\theta\left(x^{\prime}(t)\right)=\exp (\sqrt{-1} b t) v$. On the ohter hand, by Lemma 4.1 and by the assumption that the Ricci tensor field is parallel, we easily see that $E_{x(t)}(u) w$ is constant for any u and $w \in g_{-1}$. Thus $f(t)=-E_{x(t)}(v) v$ in (5.1) is a constant, which we shall denote by $-k$.

Let a_{0} denote the first column vector of $a(t)$. Then by (5.2) a_{0} is the solution of

$$
a_{0}^{\prime \prime}-\sqrt{-1} b a_{0}^{\prime}-k a_{0}=0
$$

with initial conditions

$$
a_{0}(0)=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), \quad a_{0}^{\prime}(0)=\binom{0}{v}
$$

Let c_{1} and c_{2} be the solutions of (6.1) with initial conditions (6.2), then

$$
a_{0}(t)=\binom{c_{1}(t)}{c_{2}(t) v}
$$

Thus

$$
a(t) 0=\pi\left(a_{0}(t)\right)=\pi\binom{c_{1}(t)}{c_{2}(t) v}
$$

Lemma 6.2 now follows from Lemma 6.1 and the definition of $\Phi_{E_{x}}$ in (6.3). q.e.d.
Lemma 6.3. For any $\tilde{v} \in \Phi_{E_{x}}$, there exists a geodesic $c(t)$ with $c(0)=\pi^{1}(x)$ such that

$$
\lim _{t \rightarrow \infty} a(t) 0=\tilde{v}
$$

$a(t)$ being defined in (2.6).
Proof. By the difinition of $\Phi_{E_{x}}$,

$$
\tilde{v}=\pi\binom{v^{0}}{v}
$$

for some $v^{0} \in \boldsymbol{C}$ and $v \in \boldsymbol{C}^{n}$ with $-\left|v^{0}\right|^{2}+E_{x}(v) v=0$. In the case when $E_{x}(v) v>0$, take a geodesic with initial conditions $c(0)=\pi^{1}(x), c^{\prime}(0)=x\left(v / v^{0}\right)$. Then by the same argument as in Lemma 6.2,

$$
\begin{equation*}
a(t) 0=\pi\binom{c_{1}(t)}{c_{2}(t) v / v^{0}} \tag{6.4}
\end{equation*}
$$

where c_{1} and c_{2} are the solutions of $u^{\prime \prime}-k u=0\left(k=E_{x}\left(v / v^{0}\right) v / v^{0}\right)$ with initial conditions (6.2). By i) with $b=0$ in the proof of Proposition 5.2,

$$
\lim _{t \rightarrow \infty} c_{2} / c_{1}=1 / \sqrt{k}=\left|v^{0}\right| / \sqrt{E_{x}(v) v}=1
$$

Thus we have

$$
\lim _{t \rightarrow \infty} a(t) 0=\pi\binom{v^{0}}{v}
$$

In the case when $E_{x}(v) v=0$, i.e., $v^{0}=0$, take a geodesic with initial conditions $c(0)=\pi^{1}(x), c^{\prime}(0)=x v$. Then by the same argument as above

$$
\begin{equation*}
a(t) 0=\pi\binom{c_{1}(t)}{c_{2}(t) v} \tag{6.5}
\end{equation*}
$$

where c_{1} and c_{2} are solutions of $u^{\prime \prime}=0$ with initial conditions (6.2). By d) in Lemma 6.1,

$$
\lim _{t \rightarrow \infty} c_{1} / c_{2}=0
$$

Hence

$$
\lim _{t \rightarrow \infty} a(t) 0=\pi\binom{0}{v} .
$$

This completes the proof of Lemma 6.3.
Define a subset $\Phi(p)$ of $Q(\nabla) \times_{L_{0}} \boldsymbol{P}^{n}(\boldsymbol{C})$ for $p \in M$ by $\Phi(p)=s(x) \Phi_{E_{x}}$ with $\pi^{1}(x)=p$. This is independent of the cohice of $x \in C(M)$.

Let $\bar{\nabla}$ be another H-complete connection of Kaehler type on M whose Ricci tensor \bar{S} is parallel. Then $\bar{s}: C(M) \rightarrow Q(\bar{\nabla}), \bar{E}_{x}: \mathrm{g}_{-1} \rightarrow \mathrm{~g}_{1}, \bar{\Phi}_{\bar{E}_{x}} \subset \boldsymbol{P}^{n}(\boldsymbol{C})$ and $\bar{\Phi}(p)$ can be defined in the same way as above. Assume that $\bar{\nabla}$ is H-projectively equivalent to ∇. Then $Q(\nabla)=Q(\bar{\nabla})$ by Theorem 1. Further we obtain the following:

Lemma 6.4. $\Phi(p)=\bar{\Phi}(p)$.
Proof. Let q^{*} be an arbitrary element in $\Phi(p)$. Then, by Lemma 6.3, there exists a geodesic $c(t)$ with respect to ∇ such that the limit point of its development is q^{*}. By Proposition 5.2 and Corollary 5.1 we see that $c(t)$ is an H-geodesic of $\bar{\nabla}$ under a certain change of parameter. Taking into consideration (5.0) which shows how to change parameter, we have $q^{*} \in \bar{\Phi}(p)$ by lemma 6.2. Thus $\Phi(p) \subset \Phi(p)$. In a similar fashion we have $\Phi(p) \subset \Phi(p)$, and the proof is complete.

In view of (1.4) we can define $F: C(M) \rightarrow \mathrm{g}_{1}$ by $\bar{s}(x)=s(x) \exp (F(x))$. Then we have

Lemma 6.5. $\quad\left(v^{0}, Y\right) \in C \times T_{p}(M)$ satisfies
(A)

$$
\left|v^{0}\right|^{2}+S_{p}(Y, Y) / 2(n+1)=0
$$

if and only if it satisfies

$$
\begin{equation*}
\left|v^{0}-F(y) v\right|^{2}+\bar{S}_{p}(Y, Y) / 2(n+1)=0, \tag{B}
\end{equation*}
$$

for $y \in C(M)$ and $v \in \boldsymbol{C}^{n}$ such that $Y=y v$.
Proof. Lemma 4.1 shows that (A) (resp. (B)) is equivalent to

$$
\begin{gather*}
\pi\binom{v^{0}}{v} \in \Phi_{E_{y}} \tag{6.6}\\
\left(\operatorname{resp} . \pi\binom{v^{0}-F(y) v}{v} \in \bar{\Phi}_{\bar{E}_{y}}\right) \tag{6.7}
\end{gather*}
$$

We have by Lemma 6.4

$$
\begin{equation*}
\exp (-F(y)) \Phi_{E_{y}}=\Phi_{\bar{E}_{y}} \tag{6.8}
\end{equation*}
$$

Since

$$
\exp (-F(y)) \pi\binom{v^{0}}{v}=\pi\left(\begin{array}{cc}
1 & -F(y) \\
0 & 1
\end{array}\right)\binom{v^{0}}{v}=\pi\binom{v^{0}-F(y) v}{v}
$$

(A) is equivalent to (B) by (6.6), (6.7) and (6.8).
q.e.d.

Proof of Theorem 6. Let p be an arbitrary point in M. In the case when $S \neq 0, S_{p}(Y, Y)<0$ for some $Y \in T_{p}(M)$. Choose $v^{0} \in \boldsymbol{R}$ such that

$$
\begin{equation*}
\left(v^{0}\right)^{2}+S_{p}(Y, Y) / 2(n+1)=0 . \tag{6.9}
\end{equation*}
$$

Then we have also

$$
\begin{equation*}
\left(v^{0}\right)^{2}+S_{p}(-Y,-Y) / 2(n+1)=0 . \tag{6.10}
\end{equation*}
$$

Applying Lemma 6.5 to (6.9) and (6.10), we obtain

$$
\begin{aligned}
& \left|v^{0}-F(y) v\right|^{2}+\bar{S}_{p}(Y, Y) / 2(n+1)=0 \\
& \left|v^{0}+F(y) v\right|^{2}+\bar{S}_{p}(-Y,-Y) / 2(n+1)=0
\end{aligned}
$$

for $y \in C(M)$ and $v \in C^{n}$ such that $Y=y v$. By these two formulas $\operatorname{Re}(F(y) v)=0$. On the other hand, the set

$$
\left\{v \in \mathfrak{g}_{-1} \mid S_{p}(y v, y v)<0\right\}
$$

is open in $\mathfrak{g}_{-\mathfrak{r}}$. Thus the \boldsymbol{R}-linear map $L: \mathfrak{g}_{1} \rightarrow \boldsymbol{R}$ defined by $L(v)=\operatorname{Re}(F(y) v)$ is zero. Since $F(y) v=\operatorname{Re}(F(y) v)-\sqrt{-1} \operatorname{Re}(F(y) \sqrt{-1} v)$, the map $N: \mathrm{g}_{-1} \rightarrow C$ definedby $N(v)=F(y) v$ is zero. Thus $F=0$, because p is an arbitrary point. Also in the case when $S=0$, we obtain $F=0$ in a similar fashion. This completes. the proof of Theorem 6 .

Mitsubishi Electric Corporation

References

[1] S. Ishihara and S. Tachibana: A note on holomorphic projective transformations of a Kaehlerian space with parallel Ricci tensor, Tohoku Math. J. 13 (1961), 193-200.
[2] S. Kobayashi: Canonical forms on frame bundles of higher order contact, Proc. Symp. Pure Math. Vol. 3, Amer. Math. Soc. (1961), 186-193.
[3] S. Kobayashi: Theory of connections, Ann. Math. Pura Appl. 43 (1957), 119-194.
[4] T. Ochiai: Geometry associated with semi-simple flat homogeneous spaces, Trans. Amer. Math. Soc. 152 (1970), 159-193.
[5] T. Ōtsuki and Y. Tashiro: On curves in Kaehlerian spaces, Math. J. Okayama Univ. 4 (1954), 57-78.
[6] N. Tanaka: On the equivalence problems associated with a certain class of homogeneous spaces, J. Math. Soc. Japan 17 (1965), 103-139.
[7] N. Tanaka: Projective connections and projective transformations, Nagoya Math. J. 12 (1957), 1-24.
[8] Y. Tashiro: On a holomorphically projective correspondence in an almost complex: space, Math. J. Okayama Univ. 6 (1957), 147-152.

