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Introduction

Let M be an n-dimensional complex manifold. We write J for its natural
almost complex structure. Let V be an almost complex affine connection
without torsion on M. A curve ¢(¢) in M is called an H-planner curve with
respect to V if

(0.1) | Voo = ac’+bjc

for certain smooth functions @ and . Two almost complex affine connections
V and V’ without torsion are said to be H-projectively equivalent if they have
their H-planner curves in common. From the result of T. Otsuki and Y.
Tashiro, this is equivalent to existence of a 1-form p on M satisfying

(02)  ViY—V&Y = p(X)V+p(¥)X—p(JX)Y—p(JY)JX

for arbitrary vector fields X and Y ([5], [8]). By an H-projective transforma-
tion of V, we mean a biholomorphic transformation f : M—M such that f*Vv
and V are H-projectively equivalent. For example, let P*(C)=L[L, be the
n-dimensional complex projective space of lines in C"*! with the usual con-
nection, where

(0.3) L= SL@n+1,0),
L— {(g g)eSL(n—i—l,C)lBeGL(n, C)} .

Then L/(center) is the group of all H-projective transformations.

In the present paper, we shall study H-projective equivalence from the
view point of L-structure of second order, studied by N. Tanaka and T. Ochiai.
In fact, we shall show that H-projective equivalence of V and V’ is the same as.
P"(C)-equivalence in [6] and [4] (Theorem 1). Therefore, using their results,
the family {V} of almost complex affine connections without torsion which
are H-projectively equivalent to ¥ uniquely determines a Cartan connection o
of type P*(C). This enables us to show that the group of all H-projective
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transformations of V is a Lie group of finite dimension (Theorem 2). Then
we shall prove that a curve ¢(¢) is an H-planner curve with respect to Vv if and
only if the development of ¢(¢) into P*(C) by o is an H-planner curve in P*(C)
(Theorem 3).

An H-planner curve c(t) with respect to V is called an H-geodesic of V if
a=0 and b is a constant in (0.1). An almost complex affine connection ¥
without torsion is said to be H-complete if any H-geodesic ¢(t) of V can be
defined for all t& R. When V is the Kaehler connection of a Kaehler metric
ds?, H-completeness of V is equivalent to completeness of ds? (Theorem 4). An
almost complex affine connection without torsion is said to be of Kaehler type
if its Ricci tensor is hermitian (i.e., symmetric and J-invariant). In this case we
shall show that an H-planner curve ¢(f) with =0 in (0.1) is an H-geodesic if
the development of ¢(f) is an H-geodesic in P*(C) (Theorem 5). Finally we
shall prove

Theorem 6. Let V and V' be H-complete connections of Kaehler type with
parallel Ricci tensors S and S’ respectively. Suppose that either S=0 or S has
at least one negative eigenvalue at one point, and that V and V' are H-projectively
equivalent. Then we have V=V'.

When V and V’ are the Kaehler connections of complete Kaehler metrics
and both S and S’ are parallel and negative semi-definite, the above result has
been obtained by S. Ishihara and S. Tachibana [1].

Finally we remark that the present paper has been motivated by the paper
of N. Tanaka on real projective transformations [7].

I would like to express my gratitude to my thesis advisor, Professor T.
Ochiai for his valuable suggestions and encouragement.

NoTATION

Throughout this paper the following standard conventions will be adopted.
R (resp. C) denotes the real (resp. complex) number field. For z&C, Re(z) is
the real part of 2. We write R™ (resp. C™) for the m-dimensional standard real
(resp. complex) vector space. An element of R" (resp. C™) is considered as a
column vector. We denote by e, -:,e, the canonical basis of R™ or C™. For
xE R" or C™, 'x denotes the transpose of x. The general linear group acting on
R” (resp. C™) and its Lie algebla are denoted, respectively, by GL(m, R) (resp.
GL(m,C)) and gl(m, R) (resp. gl(m,C)). We write 1,, for the identity m X m matrix.
For an m X m matrix A, det A denotes the determinant of 4.

For a point p of manifold N, T',(NN) is the tangent space to NV at p. For a
differentiable mapping f, fx and f* are the differential and the codifferential of
f respectively. Fora Lie group G, its Lie algebla is written by the corresponding
German letter g. For a G-principal bundle Q—M, R, denotes the right tran-
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slation by an element a of G acting on Q. For an element 4 or g, A* denotes.
the fundamental vector field on Q corresponding to 4.

1. H-projective equivalence

Let M be an m-dimensional manifold. Let us denote by j7(f) the r-frame
at p=f(0) given by a diffeomorphism f of a neighborhood of the origin 0 of R™
onto an open subset of M. The set G’(m) of r-frames at 0= R™ is a Lie group:
with multiplication defined by the composition of jets. The set F7(M) of r-
frames of M is a principal bundle over M with natural projection n” satisfying-
7'(77(f))=/(0), and with structure group G’(m). F'(M) is nothing but the bundle
of linear frames.

We have a natural inclusion of GL(m, R) into G'(m), defined by g—j"(g) for
g€ GL(m, R). In particular GL(m, R) and G'(m) are isomorphic by this inclu-
sion. We shall identify GL(m, R) with G'(m) and consider GL(m, R) as a
subgroup of G"(m) by this inclusion.

Let f be a diffeomorphism of M onto a manifold N. Then f induces a
bundle isomorphism f®: F"(M)—F"(N) defined by

FOGh) =j°(f+h) for ji(R)yeF (M).

We have a natural projection v: FY(M)—FYM) defined by »(j*(f))=j*f)
(JAf)eFA(M)). A cross-section s: F{(M)—F*M) is said to be admissible if we-
have

s(xa) = s(x)a for xeFY (M) and acGL(m,R).

The R™ (resp. gl(m, R))-component of the canonical form ® on F¥M) (see [2]
for the meaning of terminology) is denoted by ©_; (resp. 8,).

Proposition 1 (S. Kobayashi [2]). For an admissble crosssection s: F(M)—
F*(M), s*@, is an affine connection on M without torsion. And this defines a one-to-
one correspondence between affine connections on M without torsion and admissible
cross-sections.

Let u},--,u™ be a local coordinate system in M, and let 3%,--+,y" be the
natural cooordinate system in R™. Each 2-frame u (resp. ac G¥m)) has a uni-
que polynomial respresentation #=j%(f) (resp. a=j*(f)) of the form

f)=v+2 ufy”r% > ujy’yt
(resp. f(y) = Saly'+ SNaly'y’),

where u},=uj}; (resp. aj,=ai;), and f(y) is the i-th coordinate of f(y) with respect
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to ul, -+, u” (resp. y',---,y™). We shall consider («, u}, ui,) (resp. (a}, ai,)) as a
local coordinate system in F*( M) (resp. a coordinate system in G*m)). In the
same way, a local coordinate system («/, «}) in F(M) and a coordinate system
(a%) in G'(m) are defined. The action of G*m) on F¥ M) is then given by

(11) (ui’ u;" u;:h) (a§: aj'k) = (ui: 2 u;a(il': 2 u;agk_*"z uf,aﬁ-ai) .

Let s be the cross-section corresponding by Proposition 1 to an affine connection
'V without torsion. Then the local expression of s is

(1.2) s(w', uj) = (&, uj, — 23 uiToui)

where T, are the Christoffel’s symbols of v with respect to u!,.--,u™ ([2]).

Let L and L, be as in (0.3). We shall consider L,/(center) as a subgroup of
‘G¥(n) as follows. Let z: C*"'— {0} —>P*(C) be the Hopf fibering. Identify-
ing the subset

{ n(DeP”(C) |z c"}

of P*(C) with C"=R?, acL, can be considered as a local diffeomorphism
of R?" leaving the origin 0 of R?* fixed. Here C” is identified with R?** by the
-correspondence (2%, +++,2*)E C"—> (&}, ++-, &", 3", +++, y") E R?", z‘:x‘—{—\/—_——ly", X'y
E€R, i=1,.--,n. It can be easily verified that j%(@)=id if and only if a is the
identity transformation of L/L,. Hence L,/(center) can be identified with the
group of 2-jets {j%(a)|lac Ly}. By a straightforward computation we have

Lemma 1.1. The expression of

a= (1 t, ) (mod center)< Lo/(center)

01,
.as an element of G¥(n) is given by (8}, a},) with
‘where

_{—v" if 1=sk=n ; _(0 _1”)
Pr= 'Uk l:f n+1.__<_k§2n, ((b{)_ 1” 0 ’

-o* being k-th component of ve C"= R™.

Let us denote the Lie algebras of L and L, by I and I, respectively.
Subalgebras g_;, g, and ¢, of | are defined, respectively, as follows:

o= (0 Detoce]
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g0 = { ¢ Netlae, C)}
04

g = {(g ’(7;>EIIZJEC”} .

In the following, g., and, g, are identified, respectively, with C* and its dual
space (C*)*. And g, is identified with gl(n, C) by the correspondence

20
(0 A)ego A—z1,e6l(n, C).

Therefore we can consider GL(n,C) as a subgroup of L,/(center) by the injection

(det B)~/++ 0

BeGL(n, C) - ( 0 (derB)y B

) (mod center)e L,/(center)

Put L,=exp g;. Then
(1.4) Lo/(center)=GL(n, C)-L, (semi-direct).

For the remainder of this section we suppose that M is a complex manifold
of complex dimension z. Let V be an almost complex affine connection without
torsion on M and let ¥ be its connection form on the bundle C(M) of complex
linear frames. By Proposition 1 there exists an admissible cross-section I: F}(M)
—F*(M) corresponding to V. Let ¢ denote the inclusion map C(M) into FY(M).
Then s=I.. is an imbedding of C(M) into F*M) such that s¥*@,= and s(xa)
=s(x)a for x& C(M) and acGL(n,C). Thus C(M) can be considered as a
GL(n, C)-subbundle of F%M). The group extension of C(M) to L,/(center)
with respect to (1.4) will be denoted by Q(V).

Theorem 1. Let vV, and V, be two almost complex affine connections without
torsion. Then ¥, and V, are H-projectively equivalent if and only if Q(V,)=

O(V2)

Proof. Let z4=x4++\/—1x4*" A=1,..-,n, be a complex local coordinate
system in an open subset U of M. We define the natural almost complex stuc-
ture J on M by

J(0/0x*) = 8[0x4*", J(0[oxA+") = —0[0x4, A =1,+,n.
It follows from (1.2) that the injections
si: C(M) = Q(v3) and s;: C(M) — O(V>)
corresponding respectively to v, and V, are expressed as follows:

R . 21 .
Sl(x" x;) == (x” x;', —mﬁv_,:lx;"(rl):n,x/ﬁ) Py
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. . . . 2n .
sz(x‘, x;) = (x’: x5, —mglx?(l-‘z);n,x;ﬁ) ’

where (T;)k; and (T;);, are respectively the Christoffel’s symbols of Vv, and v,
with respect to &', --,x",x"*%, ... *". Note that (x', §)e C(M).

Assume that Q(V;)=0Q(V.). Then there exists a C~-map a: U—L, such
that

(1.5) $i(#, 87) = s,(«', 87)a, @ = (aj, ajy)

By the above formulas for local expression of s, and s,, we see that a/=4§".
This means a(U)CL,.
By (1.1) we have

—(T)jut-aj = —(T0)s -
It follows from Lemma 1.1 that there exist real functions p,,---,p,, such that

Let J be the local expression of J with respect to &, «-+, &%, then Ji=¢’. Thus
we obtain

(1.6) (T2)in—(T0)is = 8iput-8ip;— X JipJi— 2D Jip.J; -

This shows that (p;) isa 1-form. Thus Vv, and Vv, are H-projectively equivalent
(cf. the definition in Introduction).

Conversely assume that v, and Vv, are H-projectively equivalent, i.e., Vv,
and Vv, are related by the formula (1.6). Define a=(8}, aj)eL, by (1.3).
Then (1.5) holds. Thus we see Q(V,)=0(V.). q.e.d.

Let v be an almost complex affine connection without torsion and let
s: C(M)—Q(V) be the cross-section corresponding to V. For a biholomorphic
transformation f: M—> M, define an admissible cross-section s': C(M)—F*(M) by
§'=(f®)tes. fO. Since f@ leaves © invariant, s’ is the admissible cross-sec-
tion corresponding to V'=f*v. Thus we have f®(Q(V"))=0(Vv). Therefore
O(v)=0(V’) if and only if f@(Q(V))=0(V). Applying Corollary 11-1 in [4]

to our case, we obtain

Theorem 2. Let V be an almost complex affine connection without torsion.
Then the group of all H-projective transformations of V is a Lie group of finite
dimension.

2. The development of an H-planner curve with respect to a Cartan
connection of type P"(C)

Let M be a manifold of dimension #, G a Lie group, K a closed subgroup
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of G with dim G/K=mn and Q a principal bundle over M with structure group
K. A G|K-Cartan connection in the bundle Q is a 1-form » on Q with values
in the Lie algebra g of G satisfying the following conditions:

i) RF*o=Adh ), heK

i) o(4*)=A4, Adet

iii) w(X)=0 for every nonzero vector X of Q.

A G/K-Cartan connection is said to be a P*(C)-Cartan connection when G=
L/(center) and K=L/(center), L and L, being as in (0.3).

Let P be the group extension of O to G, i.e., P=Q X xG. Then a Cartan
connection o in Q can be uniquely extended to a connection form on P, denoted
by &. Let¢(t) beacurvein M and let 2(¢)< P be a horizontal lift of ¢(¢) with
respect to & such that 2(0)= Q. Then there exists a curve a(¢)G such that
2(t)a(t)eQ. The development c*(¢) of ¢(#) at ¢(0) by w is defined by

*(t) = 2(0)-a(t)0=Ox x G/K,

where 0 denotes the origin of G/K ([3]). We shall often identify ¢*(¢) with
the curve a(t)0e G/K.

We shall consider the case when G=L/(center) and K=L/,center), L
and L, being as in (0.3). We call a curve ¢(¢) in P"(C) a projective line if there
exists a 2-dimensional complex subspace W of C**' such that ¢(t)e=n(W—
(0)). Let M be an n-dimensional complex manifold with an almost complex
affine connection V without torsion. Let us denote by @ the canonical form on
C(M) and by v the connection form on C(M) corresponding to V. We see
in Section 1 that v gives rise to a K-structure Q(V) of second order, i.e., K-
subbundle of F* (M), and the injection s: C(M)—Q(V). We know that there
exists a Cartan connection o on Q(V) satisfying

(2.1) s*w_; =0 and s*w,= v,

where w_; and w, are respectively g_,-component and g,-component of w.
We shall prove

Proposition 2.1. Let v be an almost complex affine connection on a complex
manifold M and let o be any Cartan connection on Q(V) satisfying (2.1). Then,
a curve in M is H-planner if and only if its development with respect to o is a
projective line. :

This follows directly from following Lemmas 2.2 and 2.3.

Lemma 2.1. Let ¢(t) be a curve in M and let x(t) be a horizontal lift of
c(t) in C(M). Define v(t)C" by

(2.2) (t) = x(t)o(t)
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Then

(2.3) voe = ac+-4]c

for certain smooth functions a and b if and only if

(24) o(t) = exp (S: (a(t)+ vV —1 b(2))dt)»(0) .

Proof. From the difinition of covariant derivative, we obtain
Vewe'(t) = x(2)0'(t) .
By (2.2),
a(t)c'(£)+b(t) Jc'(t) = x(t) (a(t)+V —1 b(2))v(Z) .
Therefore (2.3) holds if and only if
(2.5) V(t) = (a(t)+V —1 b(2))o(t) .
We have (2.4) if and only if (2.5) holds. q.e.d.

Let ¢(¢) be a regular curve in M and let x(z) (resp. 2(z) with 2(0)=s(x(0))) be
a horizontal lift of ¢(¢) in C(M) (resp. P) with respect to ¥ (resp. @). Choose
a curve a(t)e L satisfying

(2.6) 2(2) [a(®)] = s(x(2)), a(0) = 1,1,

where [a(?)] denotes the image of a(f) by the natural projection L—L/(center).
We may assume that a(t) is smooth since the center of L is discrete. We shall
denote the (4-+1)-th column vector of a(t) by a,(t) (0=A4=n).

Lemma 2.2. ayt), a/(t) and a,’'(t) are linearly dependent for each t if
and only if c(t) is H-planner.

Proof. Differentiating both sides of (2.6), we obtain
Riyor2 (8)1(a(2) '@ (£))* otan = s+(%'(2)) -
Hence we have
(2.7) a(t)'a'(t) = a(sx'(2)) .

Let &% (04, B<n) denote the (A4-+1, B+1)-component of &(s«(x'(2))).
From (2.7) we obtain

Hence
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"__ < d(l’o ,
a4y = 2 ap—— +BS‘.J agdy
d(l)o

—2( +E00).

Since x(t) is horizontal with respect to Vv, we have
&3 =0 and &/ =0 1=/, k=n.

Thus we obtain

(2.8) o = Yl a,ah,
(2.9) ay = kz a05250+2 ak

Now suppose that a(t), a,/(f) and a,”’(¢) are linearly dependent for each .
Then there exist functions f(t), g(¢) and A(z) such that

(2.10) fayt+ga/+ha =0
and | f1+1g1+ 1R 0.
Substituting (2.8) and (2.9) in (2.10), we have

(f(t)—|—h(t) ‘g (Bka')o)do+2 (g(t)m0+h(t)dmo> —0.

Since ay?),ay(t), -+, a,(t) are linearly independent, this is equivalent to the
following:

f@)+h(t) = 2 BhBG =

dﬂ)o

g+ =0 for 1=j<n.

Since ¢/(#)=+0, we have ®}=#0 for a certain integer j (1=7=<n). Hence A(t)%0
for each ¢z. Putting

F(t) = —g@®)/h(z),
we obtain
F(1)0(x'(2)) = dO(x'(2))/dt ,
which shows that F is a differentiable function. Hence
@.11) (1)) = exp(S'F(t)dt)vo, 2, C*
0

ie.,
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¢/(2) = x(2) exp (S:F(t)dt)vo .

Therefore if follows from Lemma 2.1 that ¢(¢) is H-planner. Taking the steps
backwards, it is now easy to prove the converse.

Lemma 2.3. ay(t), a)/(¢t) and a,”’(t) are linearly dependent for each t if and
only if there exists a 2-dimensional complex subspace W of C**' in which a(t) is
contained for every t.

Proof. First note that a, and 4, are linearly independent for each ¢. This
follows from formula (2.8), because @&;=+0 for a certain integer R(1=k=n)
and a(t), a(t), -, a,(t) are linearly independent for each t. Let b, (0<A4A=<n)
be the (4+1)-th component of 4, and define an (n-+1) X 3 matrix B by

bo bo’ bo”
bl bl/ b,

b, b, bl .

B:

We may assume that in an open interval U containing =t
by by
(2.12) det( ° °/)=i=0.

Now suppose that a,, a/ and a,” are linearly dependent. Since rank B=2,
b,(j=2,3,-++,n) are solutions of the following ordinary linear differential equation

of second order:
bo bo/ bo//
det <b1 b/’ b{’) =0.

X x/ x//
It follows that there exist constants ¢}, 8, (j=2, ---,n) such that
b’ = albo"}—ﬁjb]_ .

Thus we obtain

1 0

0 1
a, = b, a; + b, :8_2

a, 8. .

This shows that a,(t) (¢ U) is contained in the 2-dimensional complex sub-
space W of C"*! spanned by
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1. 0,
0 1
a; and | B,
a‘” 18.'1 .

We shall see that such a 2-dimensional subspace is independent of the choice of
%, In fact, suppose that there exists a 1-dimensional subspace ¥ of C**! such
that () V for every ¢ in a certain open interval ¥ contained in U. This
contradicts (2.12). The proof for the converse is trivial. q.e.d.

ExampLE 2.1. S=S8U(n+1,C)/(center) acts transitively on P*(C) in a
natural manner. Let H be the isotropy subgroup of S at

1
0
0
Since each f& S is a transformation of P*(C) and a neighborhood of 0 in P*(C)
is identified with a neighborhood of 0 in R? in a natural way, the 1-jet j5(f) can
be considered as a 1-frame of P*(C) at f(0). The set of all 1-frames thus obtained
defines an H-subbundle of the bundle C(P"(C)) of complex linear frames, which
may be identified with the bundle S over P*(C). L and L, being as in (0.3), let
G and K denote L/(center) and L/(center) respectively. Then the set of all
2-frames {j§(f)| G} defines a K-subbundle of F?(P*(C)), and this can be
identified with the bundle G over P*(C). The Maurer-Cartan form o of G
is a G/K-Cartan connection in G. Define an injection s: C(P*(C))—F*P*(C))
by s(xa)=ux)a for xS and a=GL(n, C), ¢ being the inclusion map of S
into G. Then the bundle G is the group extension of C(P*(C)) by s to the
group K. The 1-form s*w|g, on C(P*(C)), restriction of values of s*w to the
Lie algebra g, of GL(n,C), corresponds to the Kaehler connection V on the sym-
metric space P*(C)=S/H. Thus o is a Cartan connection corresponding to
Vv and, in fact, o is the normal Cartan connection (see section 4 for the meaning
of terminology) [4]. ® can be uniquely extended to a connection form & on
the bundle G X xG over P"(C). A horizontal lift of a curve ¢(¢)=a(t)0 P*(C)
(a(t)e G) with respect to & is 2(t)=a(t)-a(t)'a(0) G X ¢G. In fact, noting that
R, ) -1,»2(t) belongs to the subbundle G, we have by the definition of &

&(2'(t)) = B(Ratnr-1a0Rato) -1a1(¥'(2)))
= Ad(a(0)"'a(t))B(R ) -1a1»+2'(t)))
= Ad(a(0)a(?)) (w(a’(2))+Ad(a(t)*a(0)) (a(0)~"a(z) (a(2)'a(0))))
= Ad(a(0)a(t)) (a(2)a’(t)+(a(t) ") a(t)) = 0 .

Here we may assume a(t) is locally differentiable, since 2(¢) is independent of

O=n eP"(C).
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the choice of a(t)eG. Thus c*(t)=a(0) 'a(t)0= P"(C) is the development of
¢(t) with respect to .
Applying Proposition 2.1 to the case when M=P*C), we obtain

Corollary 2.1. A curve in P*(C) is H-planner if and only if it is a projective
line.
By Proposition 2.1 and Corollary 2.1 we have

Theorem 3. The assumptions and notation being as in Proposition 2.1, a
curve in M is H-planner if aud only if its development with respect to o is H-
planner.

3. H-completeness

We have defined an H-geodesic and H-completeness in Introduction. In
this section we shall prove the following:

Theorem 4. Let M be a connected Kaehler manifold with a Kaehler metric
g and let v be the Kaehler connection of g. Then H-completeness of V is equivalent
to completeness of g.

Proof. Completeness of g follows from H-completeness of V since
a geodesic of g is clearly an H-geodesic of V. Assume that g is complete.
Let ¢(¢) 0=¢<L be an H-geodesic, i.e.,

(3.1) Vo =bJc’ b constant.

We shall show that this H-geodesic can be extended beyond L. Let x(¢) be a
horizontal lift of ¢() in the unitary frame bundle with respect to g. We can
choose such a horizontal lift because Vv is the Kaeler connection of g. Then
¢/ (t)=x(t)o(t), where v(tf)=exp (V' —1 bt)v(0) by Lemma 2.1. Let {#} be an
infinite sequence such that ¢,—L (k—oc). Then

dclty), e(t)) < | g(e®), ¢(e)r
= |t,—t;] |2(0)] ,

where d denotes the distance function defined by g and |9(0)| denotes the
usual norm of ©(0) in C”. This shows that {¢(¢,)} is a Canchy sequence in
M with respect to d and hence converges to a point, say p. The limit point is
independent of the choice of a sequence {#,} converging to L. Let x!,&? «-, 2%
be a local coordinate system in a relatively compact coordinate neighborhood U
of p. The local expression of 3.1)in U is

2 J J
dx+ ndx ]de

(3.2) dr dt dt
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The exists a positive number & such that {¢(s)|L—8=<s<L}CU. Since the
length of ¢ is constant, {dx’/di(s)|L—8<s<L} are bounded. It follows
from (3.2) that {|d’’/d#(s)]|L—8<s<L} are also bounded, and less than a
constant N. Let {s;} be an infinite sequence such that s,—L (k—o0). Then
Sm dzxj
== dt
Ss, dr

dx’

'E éNlSm—SII .

(sm)w‘f;c{(s,)j =

This shows that {dx’/dt(s;)} is a Cauchy sequence in R, hence converges to a
real number. The limit is independent of the choice of a sequence {s;} con-
verging to L. Since ¢(¢) and dx’/dt converge when #—L, the solution of (3.2)
can be extended beyond L. This completes the proof of Theorem 3.

4. A connection of Kaehler type

In this section we shall prove a certain property of a connection of Kaehler
type defined in Introduction. The result will be used to prove Theorem 5
and Theorem 6 in the following sections.

Let v be an almost complex affine connection without torsion on a com-
plex manifold M of complex dimension z. And let Q and s: C(M)—Q be the
corresponding L,/(center)-structure and the injection. We know that there
exists a P"(C)-Cartan connection o satisfying (2.1) for any almost complex
affine connection without torsion which is H-projectively equivalent to V
([4]). Define a subspace H, of the tangent space T (Q) at g Q by

H, = {XeT(0)lo(X) = 0, a(X) = 0} .
Then w_,: H,~g_, is a linear isomorphism. Put
Q = do+[w, v]/2.

Decompose Q into Q=Q_,PQ,BQ, O, Q, and Q, being g_;-, g~ and g;-
components of Q respectively. Let {v;};—, ..., be a real basis of g_;, and let
{'} be its dual basis in g, with respect to the Killing-Cartan form B of & which
is non-singular on g_;Xg;. Choose X;=H, such that w_,(X;)=v;. We shall
call w a P*(C)-nomal Cartan connection if Q, satisfies

N2Q(X;,Y)=0 at each point g Q.

If n=2, there exists uniquely a P*(C)-normal Cartan connection ([4]).
For the P*(C)-normal Cartan connection, define E,: g_,—¢, (x& C(M)) by

(1) E0(Y) = *a(Y)  YeT(C(M)).

E, is well-defined. In fact, if 6,(Y)=0, there exists Aegl (»,C) such that
Y=(A4%*),. Hence
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(s%e) (¥) = @x(s4(4*),) = ox((A*)s0)) = 0.

Let us denote by C?¢ (—1=p=3) the set of all g, ,-valued g-skew-sym-
metric multilinear form on g_,, where g_,= {0} and q,={0}. Define d: C?"*—
Ct-batl by

g+ . .
dc(ylx "')_yq+1) - 12—1 (‘“1)'“[,’)", C(yly 5 Yi-nYitn '"’yq+l)] ’
Y5 Y1E6-1.  And define d*: C#—C?*+47 by

(@%) (5, ¥g-1) = 2[5 (0091 3001

Y1+ Y,-1E€8-1, where {9;} denotes a basis of g_; and {z} denotes the dual basis
of {v;} in g, with respect to the Killing-Cartan form B of &.

We shall denote by S the Ricci tensor field of V. Define S,: g_;Xg_,—R
and T,: g_,—g, for x& C(M) by

S.(u, v) = S(xu, xv) and

(4.2) B(T(u), v) = Si(u, v)
respectively. 'Then
4.3) T,= —d*dE, ([4]).

For z=gq, and veg., we shall denote by <z, v)> the real part of zv.

Lemma 4.1. Let vV be a connection of Kaehler type on an n-dimensional
complex manifold (n=2). Then
<E,(w), v> = —S(xu, xv)[2(n+1)
or equivalently
E (uw)yv=— {S(ou, x0)—~/—1 S(xu, Jxv)} [2(n+1).
In particular, E (v)v is real valued.

Proof. We write E for E, for simplicity. From the definition of the
Killing-Cartan form of &, we obtain

(4.4) B(X,Y)/4(n+1) = Re (the trace of XY),

for X, Ye®. Hence we consider & as a real Lie algebra. Since {’¢;/4(n+1),
—V —1'%;/4(n+1)} ;=1 5., is the dual basis of g, corresponding to a real basis
{e;s V=1 e}y .., of g_, with respect to B, we have

4.5)  d*dE(v)

— z Hn +1)[te,, dE(e;, v )]+2 [— V=1 e, dE(\/——l e, )]

14(n +1)
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=3 1 ‘e, [e;y E(v)]—[v ;
= ‘2;4(7!4_1){[ i [e: E(0)]—[2, E(e)]]

+[—V—1'e, [V —1e;, E@v)]—[v, E(V —1¢)]]} .

On the other hand, for veg_,, 2=g, and A=g,,

[v, 2] = vz+4(29)1,,

[z, 4] = z4.
Applying these formulas to (4.5), we obtain
(46)  dvdB(e) = g 31 QB2 E e (eE(e) +eEe)o)

(VT tewE(V =T e)+v/ =1 te,E(/ =T )0} .
By virtue of (4.2), (4.3), (4.4) and (4.6),
47 —Si(u,v) = An+1)E(w), vp— El euk(e;)+"e.E(e;)u, v)

+ 31V =T leuB(V =T e)+V =Tl E(NV —1eu, 0> .
Since S, is symmetric, we have by (4.7)
4.8) {E(u), vy = {E(v),u> for any u,veg.;.
Put u=e; and v=¢, in (4.7). Then we obtain
—S.(e;, &) = (2n+1) <E(e,), e>—<E(&s), ep+<NV —1E(NV —1e)), &>
FVTEN e e
Thus, by (4.8)
4.9) —8,(e;, &) = 2n<E(e;), e>+2{N —1 E(V —1e), e .
Analogously, we have
410)  —S(V—1e,V—1g) =2V —1E(V—T1e)), e +2{E(e,), e ,
411) =S (e;, V—1¢) =2nE(e;), V —1e>—24KE(N —1e), e,
(4.12) =S, (V—Te;e)=2iKE(N —1¢)), e>—2<E(e;), V—1 ¢ .
Since S(e;, &,)=S(vV —1 ¢,/ —1¢,), (4.9) and (4.10) give
2(n—1) V=1 E(N —T1e), e = 2(n—1)<E(e,), &> .

Since #=2 by assumption, we have

(4.13) <E(e;), &) = N—1EN—-1 e) e .
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In a similar fashion, (4.11) and (4.12) give
(4.14) <Be),V—1e> =/ —1EN—1e),V—1e>.
By virtue of (4.13) and (4.14),
E(e)) =+ —1 E(N—1e).
Applying this to (4.7), we obtain
—S.(u, v) = 2(n+1)<E(u), v> .
The second formula in Lemma 4.1 is now easy to show, because the imaginary

part of E(u)v is —(E(u),/—1 v>. This completes the proof of Lemma 4.1.

5. The development of an H-geodesic with respect to the P"(C)-
normal Cartan connection

Let v be a connection of Kaehler type on a complex manifold M. Let
us denote by {V} the family of almost complex affine connections without
torsion which are H-projectively equivalent to V. We see in Section 4 that
{v} determines uniquely a P*(C)-normal Cartan connection. We shall prove

Proposition 5.1. Assume that the development of a curve c(t) with respect
to the normal Cartan connection is contained in n=(W—{0}) for a 2-dimensional
real subspace W of C"*'. Then, under a certain change of parameter, c(t) is an
H-geodesic.

Proof. By Theorem 3 ¢(¢) is an H-planner curve. Hence ¢(t) satisfies
Vyoc'=ac’+b]Jc for cetrin real functions a and 4. Define a curve € by

(5.0) oT) = c(t), T = Stexp (Sta(t)dt))dt .
0 0
Then we have
vt = bJ¢', b: areal function.

Since &(t) satisfies the assumption of Proposition 5.1, we may assume V,/¢'=
bJc’. Let x(t) be a horizontal lift in C(M). Then by Lemma 2.1,

c(t) = «(t) (exp vV —1 St bdt)v ,
0
v being a certain vector in C”. This is equivalent to
do(x'(2))[dt = / —1 bO(x'(2)) .

Here 6 denotes the canonical form on C(M). The notation being as in Lemma
2.2, put
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ft) = — Z‘f Bt .
By the definition of E,(,): g_,—>g, given in (4.1), we see

(5.1) J(&) = —E.»(6(x'(2)))0(x(2)) -

It follows from Lemma 4.1 that f(#) is a real-valued function. Let a(t) be as in
(2.6). Then by (2.8) and (2.9) in Lemma 2.2, we have

(5.2) a’—/' —1 ba)/+fa, = 0.
Let ¢, and ¢, be the solutions of

(5.3) "=V —1be'+fc=0
with initial values, respectively,

{cl 0)=1 {cz 0)=0
a(0)=0 '0)=1.
Then

(51
a, =
L‘Zv .

Let W be a 2-dimensional real subspace of C**! such that
7t(c1 )Cn(W— {0}).
X
Since ¢,(0)=1 and ¢,(0)=0,
1
7r<0>E =(W—1{0}).
So there exists a constant s& C*=C— {0} such that
1 1
s(O) e W—{0},ie., (O)eer— {0} .
Therefore we may assume
! w—{0
(j)em-©.
Lemma 5.1. There exists a differentiable function h such that
(41
h(czv)e wW—{0} .

in an open interval U in which ¢,=+0 .
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Proof of Lemma 5.1. Let
o= ((1)) , & = (Zo> (a¢’eC, asC?)

be a basis of W. Putting

0= o),

we have d=z(u,e,+u,@) for certain real valued functions %, and w,, and a complex
valued non-zero function 2. #,7=0 follows from the assumption ¢,+0. We only
have to put A=1/zu, to complete the proof.

By Lemma 5.1 we see that k(t,)d(z,) and e, for t,c U is a basis of W. So

()= alg)ran (250 )

for certain real-valued functions 4 and B. Hence

c1fe; = A[Bh(ty)cy(to)+cr(to)/ca(2o) -

Put

(5.4) D = ¢,Jc;, G= A|B and K = 1/h(t,)c,(2,) -
Then

(5.5) D= G'K

Lemma 5.2. Let D be as in (5.4) and let U be an open interval in which
<(t)=*0. Then

r  D'(to) (o))’ —(
5.6 D = = m2\0)) VvV =1\ bdt) t,eU.
€ oy o /1] )

Proof of Lemma 5.2. Since ¢, is a solution of (5.3), i.e., ¢,"—V —1 bc/
+fe,=0, substituting ¢;=Dc, in this equation, we have D"c,+(2¢,/—\/ —1 be,)D’
=0. Hence

D"4(2¢)Je;—N —1 b)D’ = 0

Solving this equation on D’, we obtain (5.6). This completes the proof of
Lemma 5.2.
By (5.5) and (5.6) we have

D'(2,) ( z(to))z —(* —
(62;2 exp (\/—1&0 bdt) = G'K .

Put K/D'(t,) (c)(t,))*=1 exp (V' —1 ), c;=r, exp (V' —1 6,), where I, 4, 7, and
@, are real functions. Then
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exp {V—1 (—202+S: bdt—\)} = G'l(r) .

Since G’, [ and r, are continuous real functions, we have

(5.7) —202+S' bdt—y — 0 (mod ).
to

Differentiating (5.7), we obtain

(5.8) 0, = b/2.

Let

(5.9) o=rexp(V—180,)

be the expression by polar coordinates. Since ¢, is a solution of (5.3), i.e.,
&' —\/ —1 bey +fe,=0, putting (5.9) in this equation, we have

exp (\/ —1 0,) {(ry”" —rA0, )Y +-br,0, +fry)+ v—=1 (27,0, +1,0,"—br,))} =0.
Hence
(5.10) 2r)/0,/+r,0,"—br) = 0.

Substituting (5.8) in (5.10), we obtain 7,b,’=0. Since r,#0, we have &=0.
This holds in an open interval in which ¢,#=0. However, since ¢, is a solution of
an ordinary linear differential equation of second order, the zero points of ¢,
are discrete. Thus b is constant, namely ¢(¢) is an H-geodesic. This completes
the proof of Proposition 5.1.

Proposition 5.2. Let v be a connection of Kaehler type whose Ricci tensor
is parallel, and let ¢(t) be an H-geodesic with respect to  under a certain change
of parameter. Then there exists a 2-dimensional real subspace W of C™*' such
that the development of c(t) with respect to the normal Cartan connection is con-
tained in 7(W— {0}).

Proof. We may assume that ¢(¢) is an H-geodesic, since existence of such
a 2-dimensional real subspace W of C**! as above is independent of the choice of
a parameter. Let x(z) be a horizontal lift in C(M). Then, by Lemma 2.1,

c(t) = x(¢) exp (V —1 bt)v, velC”

Since ¢(¢) is an H-geodesic, b is a real constant. The notation being as in the
proof of Proposition 5.1, we have

a/’—V' —1 ba/+fa, = 0.

Lemma 4.1 shows that f is a real constant, because the Ricci tensor of Vv is
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parallel. We shall denote this constant by —k. Let ¢, and ¢, be the solutions of
&'~/ —1b’—kc=0
with initial values, respectively,

6@ =1 ((0)=0
{c,'(()) =0 {cz’(O) =1.

(41
ay =
v/ .

We only have to prove existence of a 2-dimensional real subspace W of C**!
satisfying 7(ay(t)) Cw(W—{0}). Since b and % are real constants, the solutions

¢, and ¢, can be obtained explicitly as follows:
i) If D=—b*+4k=0, then

o= 2_\% exp (V' =1 bt/2) {(—v/—1 b-+v/D) exp (VD #[2)

Then

+(V=1b+VD) exp (—V' D ¢[2)}
6= \/% exp (V=1 bt/2) {exp (VD #/2)—exp (—VD #2)} .
i) If —b*4jk=0 and k=0, then

e = (—V —1bt[2) exp (V' —1 bt[2)+exp (V —1 bt[2),

o =texp (V—15t2).
iii) If 5=0 and k=0, then

C1=1, C2=t.

Thus we can choose a real basis {a, B8} of W as follows:
i) If D>0, then

—V/—=1b+D vV —=1b+D
-[FE) (7

v \ — ,

because

m(ay(t)) = n'(exp (@ t)oc—l—exp (_ 5 D t)ﬁ) '
iy If DO, then
VD —V—1
a=( OD) '8=( Zvlb),

because
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n(ao(t)) = n(cos (\/?2:j t)a—}—x/ —1 sin (\/;—D t)B) .

i1) If D=0 and k=0, then

() -,

v
because

w(a|(t)) = n(ta+PB).
iii) If 5=0 and £=0, then

“=((1)> Bz(g). q.e.d.

From Propositions 5.1 and 5.2 follows

Corollary 5.1. Let v be a connection of Kaehler type whose Ricci tensor
is parallel. Then a curve ¢(t) is an H-geodesic with respect to V under a certain
change of parameter if and only if there exists a 2-dimensional real subspace W
of C"*' such that the development of c(t) with respect to the normal Cartan
connection is contained in z(W— {0}).

We have detailed the development of a curve in P*(C) in Example 2.1.
Applying Corollary 5.1 to M=P*(C), we obtain

Corollary 5.2. A curve ¢(t) in P*(C) is an H-geodesic under a certain
change of parameter if and only if there exists a 2-dimensional real subspace W
of C™** such that c(t) is contained in n(W— {0}).

By Proposition 5.1 and Corollary 5.2 we have

Theorem 5. Let v be a connection of Kaehler type. Then a curve c(t)
is an H-geodesic with respect to V under a certain change of parameter, if the
development of c(t) with respect to the normal Cartan connection is an H-
geodesic in P*(C).

6. Proof of Theorem 6

In this section we shall prove Theorem 6.

Lemma 6.1. Let ¢, and c, be the solutions of the following differential
equation

(6.1) ‘ wW—N—1bw'—ku=0
with initial conditions
(6.2) 6(0)=1, ¢/(0)=0 and ¢,(0)=0, ;/(0)=1,
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where b and k are real constants. Then we have the following:
a) If —b*-+4k>0, then |{im alal =1V k.

b) If —b44k<0, then %im ¢,[c, does not exist.
c) If —b*+4k=0 and k=0, then |lim ¢,fc,| =1/ k.
d) If b=0 and k=0, then lim ¢,/c,=0.

Proof. We have obtained the solutions ¢, and ¢, explicitly in the proof of
Proposition 5.2. Lemma 6.1 follows directly from these results. q.e.d.

For the remainder of this section, let Vv be an H-complete connection of
Kaehler type on a complex manifold M whose Ricci tensor S is parallel. Let
O(V) and s:C(M)—Q(V) be, as explained in Section 2, the L,/(center)-structure
and the injection corresponding to ¥ respectively. Let E,: g_;—g; (x& C(M))
be as in (4.1). Define a subset ®;_of P*(C) by

0
63) Dy — {n(:)EP”(C)l P E (o)p = 0, PEC, ve c"} .

Lemma 6.2. Let ¢(t) and x(t) be an H-geodesic of V and its horizontal
bft in C(M) respectively. Put x=x(0). And let a(t)&L be as in (2.6). If
lim a(2)0 exists, it belong to Dp,.

[Ead

Proof. By Lemma 2.1

¢(2) = x(t) epx (S'F(t)dt)@ ,
0
for a certain function F and a vector v&C". We see by the definition of an
H-geodesic F(f)=\/—1 b, b being a constant. Thus 8(x'(¢))=exp (v —1 bt)o.
On the ohter hand, by Lemma 4.1 and by the assumption that the Ricci tensor
field is parallel, we easily see that E,,(x)w is constant for any # and weg.;.
Thus f(t)=—E,(v)v in (5.1) is a constant, which we shall denote by —k.
Let a, denote the first column vector of a(t). Then by (5.2) a,is the solution

of

a"—'—1ba/—ka,= 0

with initial conditions

1
0 , 0
a0=|?] ao=(,)
0
Let ¢, and ¢, be the solutions of (6.1) with initial conditions (6.2), then

ay(t) = (C‘(t) )

o(t)v
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Thus
ci(2) ) ‘

a(t)0 = m(a(t)) = ”(cz(t)v

Lemma 6.2 now follows from Lemma 6.1 and the definition of ®, in (6.3). q.e.d.

Lemma 6.3. For any 9Py, there exists a geodesic c(t) with ¢(0)=n'(x)
such that

lim a(£)0 = ¥,

tpoo
a(t) being defined in (2.6).
Proof. By the difinition of @,

()

for some "€C and veC" with —|?°|’4+E (v)v=0. In the case when
E (v)v>0, take a geodesic with initial conditions ¢(0)=='(x), ¢/(0)=2x(v/?°).
Then by the same argument as in Lemma 6.2,
a(t)

6.4 )0 = ( ’
(6.4) 0= yer)
where ¢, and ¢, are the solutions of u”—ku=0 (k=E,(v[v")v[v’) with initial
conditions (6.2). By i) with 5=0 in the proof of Proposition 5.2,

lim gfe; = 1V k= || VE, (v)v = 1.

Thus we have

lim a(£)0 — n(j) .

tpoo

In the case when E (9)v=0, i.e., 2°=0, take a geodesic with initial conditions
¢(0)=n'(x), ¢(0)=xv. Then by the same argument as above

a(2)
cz(t)v) ’

where ¢; and ¢, are solutions of #/=0 with initial conditions (6.2). By d) in
Lemma 6.1,

(6.5) a(f)0 = n<

lim 51/32 == 0 .
t-ye

Hence

lim a(£)0 = 7:(2) .

tpoo
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‘This completes the proof of Lemma 6.3.

Define a subset ®(p) of O(V)X ;,P*(C) for pcM by ®(p)=s(x)P;, with
#(x)=p. This is independent of the cohice of x& C(M).

Let V be another H-complete connection of Kaehler type on M whose
Ricci tensor S is parallel. Then §: C(M)—>Q(V), E,: g_1—>g;, Bz, CP*(C)
and ®(p) can be defined in the same way as above. Assume that V is H-pro-
jectively equivalent to V. Then Q(V)=Q(V) by Theorem 1. Further we
obtain the following:

Lemma 6.4. P(p)=P(p).

Proof. Let ¢g* be an arbitrary element in ®(p). Then, by Lemma 6.3,
there exists a geodesic ¢(¢) with respect to V such that the limit point of its
development is ¢*. By Proposition 5.2 and Corollary 5.1 we see that ¢(¢#) is an
H-geodesic of V under a certain change of parameter. Taking into considera-
tion (5.0) which shows how to change parameter, we have ¢*=®(p) by lemma
6.2. Thus ®(p)C®(p). In a similar fashion we have B(p)CD(p), and the
proof is complete.

In view of (1.4) we can define F: C(M)—g, by 5(x)=s(x) exp (F(x)). Then

we have

Lemma 6.5. (2°, Y)eCX T (M) satisfies

(A) [2°]2+S (Y, Y)/2(n+1) =0
if and only if it satisfies
(B) |o*—F(y)o|*+S,(Y, ¥)/2(n+1) =0,

Jor ye C(M) and ve C* such that Y=yv.
Proof. Lemma 4.1 shows that (A) (resp. (B)) is equivalent to

(6.6) n(ZO)E ®s,
(6.7) (resp. 7r<v°—:‘(y)v> e <_I>Ey) .

‘We have by Lemma 6.4
(6.8) exp (—F(3))®z, = s,

Since
e (=Fo0(y) =y 3 ) () =" ),

(A) is equivalent to (B) by (6.6), (6.7) and (6.8). q.e.d.
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Proof of Theorem 6. Let p be an arbitrary point in M. In the case when
S=+0, S,Y,Y)<0 for some Y= T,(M). Choose 2" R such that

(6.9) (°P+S,Y,Y)/2(n+1)=0.
Then we have also
(6.10) (@°P+S,(—Y, —Y)/2(n+1)=0.

Applying Lemma 6.5 to (6.9) and (6.10), we obtain
| —Fly)ol*+5,(Y, V)/2(n+1) = 0
|+ F(y)|*+S(— Y, —Y)/2(n+1) = 0
for ye C(M) and v C” such that Y=yv. By these two formulas Re(F(y)v)=0.
On the other hand, the set
{veg1|Sy(yo, yv) <0}

is open in g_;. Thus the R-linear map L:g,—R defined by L(v)=Re(F(y)v)
is zero. Since F(y)v=Re(F(y)v)—V —1 Re(F(y)v/ —1v), the map N:g.,—~C
definedby N(v)=F(y)v is zero. Thus F=0, because p is an arbitrary point.
Also in the case when S=0, we obtain F=0 in a similar fashion. This completes.
the proof of Theorem 6.
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