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Introduction

Let M be a compact connected C*-manifold and g be an Einstein metric on
M. By an Einstein deformation of g we mean a 1-parameter family g(¢) of
Einstein metrics on M such that g(0)=g and the volume of g(¢) is constant for 2.
If for each Einstein deformation g(f) of g there exists a 1-parameter family

7v(t) of diffeomorphisms such that g(#)=v(t)*g (resp. g’(0)=§t~|0'y(t)*g) then

g is said to be non-deformable (resp. infinitesimally non-deformable). M.
Berger and D. Ebin [1, Lemma 7.4] show that the Einstein structure of the-
standard sphere is infinitesimally non-deformable, by using the fact that the:
operator L associated to the curvature tensor of the standard sphere is positive:
definite. In this paper, the main theorem (Theorem 3.3) gives a criterion
for an Einstein structure to be non-deformable, improving their method of
estimating eigenvalues of the operator L. As an application we see, for example,
that the Einstein structure of a compact irreducible locally symmetric space M
of non-compact type with dim M>2 is non-deformable. (Corollary 3.5).

To prove the main theorem we have to relate infinitesimal non-deforma--
bility to non-deformability. For this purpose we need a smooth slice theorem.
The slice theorem (Theorem 2.1) in the H*-situation (D. Ebin [5, Theorem
7.1], [6, Theorem 8.20]) being in continuous category, we shall improve this.
continuous slice theorem to a smooth slice theorem (Theorem 2.2) in the ILH-
situation. Owing to this we get a theorem (Theorem 2.11) which relates infi-
nitesimal non-deformability to non-deformability.

The author would like to express his sincere gratitude to the referees for
their kind advices.

1. Preliminaries

First, we introduce notation which will be used throughout this paper.
Let M be an n-dimensional, connected and compact C=-manifold without
boundary, and we always assume #>2. For a riemannian manifold (3,g), we
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consider the riemannian connection and use the following notation;

S?; the symmetric covariant 2-tensor bundle over M,

C~(T); the vector space of all C™-sections of a tensor bundle T over M,

S3%; the space of all symmetric covariant 2-tensors whose trace is zero,

( , ); theinner product in fibers of a tensor bundle defined by the riemannian
structure,

<, >; the global inner product for sections of a tensor bundle over M, i.e.,
<, >=Su( » )7, v, being the volume element defined by g,

R; the curvature temsor,

p ; the Ricci tensor,

7 ; the scalar curvature,

V; the covariant derivation on C*(T),

3 ; the formal adjoint of V with respect to { , >,

8*; the formal adjoint of 8| C*=(S?),

A=4d; the Laplacian operating on the space C~(}{) of C=-functions on M,

A=4§V; the rough Laplacian operating on C*=(T),

Hess=Vd; the Hessian on C~(M).

We shall use the Einstein’s convention, although we use > if necessary. We
shall apply the following formulae throughout the paper.

Ri'zﬂgl = Vingk_vjvifk’ Ri,‘kl = R;'nikgml )
Pi; = '—Rflh T = Pf ’

(BS)3f = = VISR (B%E) = S (VEATED,

Af==Vidi], B ==V

(For the standard sphere, Ry;,<0, p;;>0 and 7>0, with respect to orthonormal

frame.)
Let (M,g) be an Einstein manifold. If tr A=0 then

&'R*j'hy = —p*hy = 0.
Hence we can define the operator L: S;— S5 by
(Lh); iT R*j'hy .

Next, we recall the following concepts defined by H. Omori [12, pp. 168-
169]. A topological vector space E is called an ILH-space, if E is an inverse
limit of Hilbert spaces {E};;,,.. such that if j=7 E;DE; and the inclusion is
a bounded linear operator. We denote E=lim E;.

A topological space X is called a C*-ILH-manifold modeled on E, if X has the

following properties C1 and C2.
C1) X is an inverse limit of C*-Hilbert manifolds {X;},-,, .. such that



NON-DEFORMABILITY OF EINSTEIN METRICS 421

each X; is modeled on E; and X;D X if j =i.

2) Let x be any point of X. For each 7 there are an open neighbourhood
Ui(x) of x in X; and a homeomorphism +; from U,(x) onto an open subset V;
in E; which gives a C*-coordiante around x in X; and satisfies U;(x) D U (x) if j =7
and Vr;.1(y)=":(y) for every yE U, ().

Let X be a C*-ILH-manifold (k=1). Let TX; be the tangent bundle of
X,;. Then the inverse limit TX =}irll TX; is called the ILH-tangent bundle of X.

Let X,Y be C*ILH-manifolds. A mapping ¢: X—Y is said to be C'-
ILH-differentiable (I=F), if ¢ is an inverse limit of C'-defferentiable mappings,
that is, for every 7, there are a positive integer j(7) and a C'-mapping ¢;: X ;»—>Y;
such that ¢;(x)=¢;,.(x) for every x& X ;1y) and ¢=<l_ir_n ;.

If X is a C*-ILH-manifold for all k>0, we call X an ILH-manifold. For
ILH-manifolds X,Y, if ¢ is C*-ILH-defferentiable for all £=0, we say that ¢
is ILH-differentiable. We denote by T,X; the tangent space of X; at x and
put T X =‘1i_m T.X;. Also we denote by

T7¢i(x): 1o\ T. X iy — T4, Y,

the r-th derivative of ¢; at x&X. Then, it is easy to check that {T7¢,(x)};,....
has an inverse limit

<l_i£1_l T'¢,‘(x): H?:lTxXﬁ T¢2Y M

We call this inverse limit.the 7-th derivative of ¢ and denote it by T7¢(x).

A topological group is called an ILH-Lie group, if it is an ILH-manifold
and the group operations are ILH-mappings.

We can easily see that the space ¥ of all smooth riemannian metrics on M
is an ILH-manifold. (See D. Ebin [5, p.15], [6, Proposition 5.8] and H. Omori
[12, p.170].) We know that the group 9 of all diffeomorphisms of M is an ILH-
Lie group, and the natural action 4: 9 X H— M is ILH-differentiable. (See [12,
Lemma 2.5].)

Let g Si. By adeformation of g we mean a C~-curve g(t): I— M such that
2(0)=g, where I is an open interval containning 0 in R. Since . is a positive
cone in the vector space of all symmetric covariant 2-tensors on M, we may
identify the differential g’(0) of a deformation g(¢) with a symmetric covariant
2-tensor field on M. We call such a tensor field an infinitesimal deformatoin,
or simply an 7-deformation.

When we consider a deformation g(z) of g, the covariant derivation, the cur-
vature tensor or the Ricci tensor with respect to each g(¢) will be denoted by V,,
R(2) or p,¢». Also, we always raise or lower indices of tensors with respect to
£(2), and we denote by’ the differentiation with respect to #. It is clear that the
differential at =0 of the tensors R, p, 7 etc. depend only on the i-deformation
that g(¢) defines.
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2. Deformations and infinitesimal deformations

Let M be a compact connected C~-manifold. We denote by i’ the space of
all H*-metrics on M and by 9° the space of all H*-diffeomorphisms of M, where
H® means an object which has partial derivatives defined almost everywhere up
to order s and such that each partial derivative is square integrable. We know
that the space M’ and the space 9° are Hilbert manifolds if s is sufficiently
large. Moreover, the usual action 4: 9P X H— M extends to a continuous
mapping A°: DX M — M. (See D. Ebin [5,p.18], [6, Proposition 4.24].)

D. Ebin gave the following

Theorem 2.1 (D. Ebin [5, Theorem 7.1], [6, Theorem 8.20]). For each
L£E M, there is a submanifold S of M’ with the following properties.

(1) Ifvel,, then v*(S;)=S;.

(2) Let yeD*. If v*(S;)NS;*o, then yel,.

(3) There are a neighbourhood U+ of the coset I, in the right coset space
D1, and a local cross section X+': DI ,— 3+ defined on U™ such that if
the mapping F*: U X Si—> M is defined by F(u,s)=X'(u)*s, then F° is a
homeomorphism onto a neighbourhood of g.

Outline of the proof. Canonically we can construct a riemannian metric on
M° which is invariant under the action 4 of 9. Atany point g& M, \ry: DH'—
M is defined by Yy(n)=A4°(n,g2) for ne D1 If g& M, \r; is smooth. Also for
ne P, we identify the tangent spaces T,(9D**) or Tygm(M’) with the space of
H’-sections of some vector bundle over M. Then, T, becomes a first order
linear differential operator. It turns out that this operator has an injective
symbol, and so its range is closed in Tyg¢)( ).

The right coset space 9**!/I, has an induced manifold structure and admits
a smooth local cross section X**!: Us*'— 1, )} induces a mapping ¢;: D*Y/I,
—M°. ¢; is an injective immersion and we see directly that it is a diffeomor-
phism onto the closed orbit Oj.

Using the riemannian metric on 4, we obtain a smooth normal bundle
#': v'=0;. Moreover, the exponential mapping exp’ on .’ is defined on
a neighbourhood W* of the zero-section of v° and it is a diffeomorphism. We
put S;=exp’W;, where W is the fibre on g.

Also, we know that for any 7€ 9**! a smooth mapping 7*: M — H° is de-
fined by 7*(g)=A(n,g) and »* is an isometry. Therefore, if exp’ is defined for
a vector V in T(H’), exp’ is defined for T7*(V) and we have n*exp'V=exp’
Tn*V.

Combining these informations, we can prove the slice theorem in the H*-
situation. Moreover, if we define the mapping F°: Us*'x S;— " by F'(u,s)
=A’(X**Y(u), 5), for sz exp*W* we have
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(F)7H(2) = ((¢2)"om"o(exp?) (2), A((X*o(¢3) " or*o(exp?) (2)) %)) -

We shall need the following slice theorem which improve Theorem 2.1 to
the C~-situation.

Theorem 2.2. We denote by M the ILH-manifold formed by all riemannian
metrics on M, and by 9D the ILH-Lie group of all diffeomrophisms on M. The
group D acts on M in a canonical way. For each g& M, there is an ILH-submani-
fold S, of M with the following properties. Let I, be the group of all isometries of
the riemannian manifold (M,g).

(S1) If v belongs to 1,, then v*(S,)=S,.

(S2) Let yeD. If v¥(S,)NS, =+, then vl1,.

(S3) There are a neighbourhood U of the point I, in the right coset space
D1, and a local cross section X: D[I1,—D defined on U such that if the mapping
F: UXS,—~M is defined by F(u,s)=X(u)*s, then F is an ILH-diffeomorphism
onto a neighbourhood of g.

We need the following lemmas.
Lemma 2.3. 9|1, is an ILH-manifold.

Lemma 24. Put U=U'ND[I,. Then X*(U) is contained in 9 and the
mapping X=X’ | U is ILH-differentiable.

Lemma 2.5. Put W=W’'NTM. Then exp’(W) is contained in M and
the mapping exp=exp’| W is an ILH-diffeomorphism. Hence S,=S;NM 1is
an ILH-submanifold of M.

These lemmas will be proved in below.

Lemma 2.6 [12, Lemma 2.5]. A°(D X M) is contained in M and the mapping
A=A DX M is ILH-differentiable.

Lemma 2.7 [12, Lemma 1.14]. If the mapping i: D—9D is defined by
i(n)=n"" for n€ D, then i is ILH-differentiable.

Proof of Theorem 2.2. Combining these lemmas and the proof of Theorem
2.1, the mappings F=F’|UX .S, and F™'=(F*)"!|expW are compositions of
ILH-mappings, and so F is an ILH-diffeomorphism, which proves Theorem
2.2.

Proof of Lemma 2.3. We know that 9°/I, is a Hilbert manifold. We shall
prove that the inclusion *: 9**/I,— 9’1, is smooth. By [5, Corollary 5.11] or
[6, Corollary 7.16], #* is smooth if and only if #°op**!: @P+'—>g¢[I, is smooth,
where p*+1: P+1— @11, is the natural projection. We can easily see #'op*+'=
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p'ot’, where ': P*+'—->J)* is the inclusion. Since 7° and p° are smooth, 7° is
smooth.

Proof of Lemma 2.4. By [5, Proposition 5.10] or [6, Proposition 7.15],
9°[I, admits a smooth local cross section around any coset. We denote by
X: the local cross section around xe 9°[I, and put X’=Xj,. Let U’ be the
domain of X’ and set U'=U'ND'[I, and X'=X°|U" for r=s. If uclU’,
there is an element ac D" such that u=I,a and X'(v)el,ac9d’. Hence we
have X(U")C 4. To prove that X is smooth, we shall show that if we define
a mapping v: (p°) (U*)—=I, by v(7)=n(X’op*n)~?, then » is smooth. By [5,
Lemma 5.5] or [6, Corollary 7.7], the composition: I, X 9°*~>9)° is smooth.
Hence, if we define a mapping +r: I, X U*—9’° by (&,x)=EX’(x), then + is
smooth. On the other hand, we have "' (7)=(v(n), p°(7)) and p° is smooth.
For v, we fix a positive integer 7 such that the composition: 9°x 9P'—9F and
the inverse: 9°*—>9' are C'-mappings. ([12, Lemma 1.13 and Lemma 1.14].
Suppose that s is sufficientry large.) Then, we see directry that » is a C'-
mapping into 9°. But I, contains the image of » and I, is a submanifold of
Dt (see [5, Corollary 5.4] or [6, Theorem 7.1]). Hence, v is a C'-mapping
into I,. Therefore, we know that +Jr is smooth and ! is a C'-mapping. By
the inverse function theorem, 4! is smooth and so v is smooth.

Now, we shall prove the smoothness of X" around any x U". Thereis a
smooth local cross section X on a neighbourhood V' of x. Therefore the
mapping vo“‘inclusion”oX}: V—I, is smooth and we have vo“inclusion” o X}(y)
—X(y) (C(9))=Xi(3) (C(5)).  Since we know that X'(y)=((ti(»)) (¥
()™)7Xi(y) and the inverse: I,—I, and the composition: I, X 9" —>9" are
smooth, the mapping X": V'—9)" is smooth.

Proof of Lemma 2.5. Let W* be an open subset of T'.%H° such that W*=
VNWS. Set W=W*NTH, W=W°'Nv, exp’=exp’| W and (exp™))'=
(exp’| W°) exp'(W*)N M. The mappings exp’: W'— M and (exp’!):
exp’(W*)—>T M’ are smooth and commute with the action of 9). Hence, by
the following Lemma 2.8, exp’(W”) and (exp~')(exp(W*)N M) are contained
in M and TH respectively, and the mappings exp’: W'— " and (exp~!)":
exp’ (W' )N M —T M are smooth for r=s. But W’ is a submanifold of W”
and (exp~!) (exp’(W*) N ") is contained in W’, which implies that exp”: W'—
exp’(W°)N M is a diffeomorphism. Thus we see that exp is an ILH-diffeomor-
phism onto exp’(W*) N M.

Lemma 2.8. Let E and F be vector bundles over M associated with the
frame bundle (e.g., T, T*, 8% T X T*, the k-th jet bundle J*(T) etc.). Any n€9
defines a natural linear mapping n*: HY(E)—H%E). Let A be an open subset of
HY(E) and let f: A—H’(F) be a smooth mapping which commutes with the action of
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9. Put A =ANH'(E) for r=s. Then f(4") is contained in H'(F) and
f1A"—H'(F) is smooth.

Proof of Lemma 2.8. We shall prove that if this lemma holds for r=i,
then the same is true for =i+ 1. The induction will then complete the proof.
First, by induction, we shall prove that 7*oT* f(a)=T* f(n*a)on* for all positive
integer k. If n*o T" f(a)=T" f(n*a)on*, then we have

T f(@) (0,01, ++,0) = 7% LT fla+10) (03 -+, 0)
= ;id; [o T f(n*a+-tn*v) (n*o,, -+, 7*0))
= T" f(n*a) (n*v,7*vy, -+, 7*0)) .

Let V be a vector field on M and let 7, be the 1-parameter subgroup of di-
ffeomorphisms generated by V. For sufficiently small ¢, n,*ac 4’ if ac A’
Hence we get :

L@ (@-0) = L 1* T (@) (01, -,03)
= dit I oka(ﬂt*a) (2*0vy, o+, m0y)

= T+ f(a) (L,a,v1,,v,)+ T*f(@) (Ly01,0z, +++, ;)
+ ...+ka(a) (7)1, "‘,‘Uk—l,-‘fvvk) .

Next, we shall prove that f(4A™")C H*Y(F), and f|A"': A —>H™YF) is
continuous and that if |4 is a C*mapping and T*(f|A™)=T*f|A"**x
H*YE)X -« x H*Y(E), then f|A"™' is a C*"'-mapping and T*(f|4A"*)=
THf| A HYE) X+« X H*YE). Then, by the hypothesis of the induction,
f1A4"*! is smooth.

If ac A, then LacH(E) for all VeC=(T). Hence _L,f(a)=Tf(a)
(L,a)e H(F), which implies that f(A"*)CH*YF). If a sequence {a,}
converges to a in A, then {L,a,} converges to L,a in H(E) for all VC*
(T). Hence {L,f(a,)=Tf(a,)(L,a,)} converges to T (a)(L,a)=-L,f(a) in
H(F), which implies that f|A4*! is continuous. By the same calculation, we
check easily that TVf(A""' X H*YE)X -+« X HYYE))CH*YF) and T/f|A"'x
HA*YE)X -+ X H*Y(E) is continuous. We assume that f| 4" is a C*-mapping
and THf| A" N)=T*f| A X H*Y(E)X -+ X H*Y(E). Define a mapping

v: Atlx Hi+1(E) X {HHI(E) X eee X H:‘-I-I(E)} _)Hi+1(F)

-terms
by v(a,0,0) = THf1 A7) (a-+0) (0)—THf1 4™*) (a) (v)
—T*f(a) (v,0) .
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Then, by the assumption,

W(@,0,8) = T* f(a-+v) (v)— T*f(a) (0)— T*"* /(@) (v,v)
and v(a,tv,v) = T*fla+tv,v)—T* f(a) (v)—tT*' f(a) (v,v) .

By differentiation with respect to the H'-topology, we get

10t
v(a,v,v) = S S T*? fla+uv) (v,v,v)dudt .
0J0
Since |T**2f| is continuous with respect to the H'*!-topology, we have
|v(a,v,0)|[|v]| = ma})ézl T¥2f(b)| |v| |v|, where € is sufficiently small and || is
b-a

the H*'-norm. Therefore, T*(f|A™") is differentiable and T**'(f|A"Y)
coincides with the continuous mapping T**'f|A*'x H*YE)X -« x H*YE).
Q.E.D.

A deformation g(t) contained in a 9-orbit O, of g is called trivial, since each
(M, g(2)) is isometric to (M,g). On the other hand, a deformation contained in
S, is said to be essential with respect to g. According to M. Berger and D. Ebin
[1,83,(3.1)], we can identify the tangent spaces T',(O,) and T,(S,) at g with
Im 8* and Ker 8. We call therefore an element of Im 8* a trivial i-deformation
and an element of Ker 8 an essential i-deformation.

Let g(¢) and #(¢) be deformations of g. If there is a 1-parameter family of
diffeomorphisms (t) satisfying g(t)="(£)*#(t), then g(z) is said to be equivalent
to §(t). Theorem 2.2 implies that every deformation is equivalent to an es-
sential deformation (by restricting the range of ¢ to some open interval containing

0).

Lemma 2.9. If g'(t) is trivial with respect to g(t) (i.e., g'(t)Im 8¥,)
for each t, then g(t) is a trivial deformation.

Proof. D. Ebin [5, Theorem 8.1 or 6, Propsition 8.30] shows that for
given g& M and any neighbourhood ¥ of the identity in 9), there is a neigh-
bourhood H of g in i such that if v H there is ¥ & V satisfying v 'Iyy C1,. So,
we find dim I, is upper semi-continuous. Let I# be a connected component
of the set of all ¢ such that dim 7, is minimum. Then W is open in I. Fixing
t,€ W, we shall apply Theorem 2.2 for g(z,).

Let g(t) be a deformation equivalent to g(t) contained in S,(,. First we
prove £'(t;)=0 for all #, for which £(#,) is defined. If y&lz,), then v*§(t)=
8(t)e S,y and so yel,,, because of the property (S2) in Theorem 2.2.
This implies I3,)C1,q,. Since {,&W, it follows that any Killing vector
field with respect to g(¢,) is a Killing vector field with respect to g(#,). Now,
because g'(#;) is trivial with respect to Z(#;), there is £& T'4(9D) such that
&' (t)=TAqa,3:(&,0), where A is the map 9 X H—H defined by the action of
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9D on Mand T4 is the differential of 4. Denote by # the natural projection from
D to D[I,, and let X be as in Theorem 2.2. Put E=TXoTx(E). Then E—£
is a Killing vector field with respect to g(%,), and so with respect to g(#,) also.
"Therefore TAqq 3¢:)(E—E,0)=0, §(t,) being fixed under the action of I).

Now, set F'=pxq where p: H—D[I,,y and ¢q: H—S,,,. Since
F(t,) is tangent to S, Tp(g'(4))=0. On the other hand,

gt) = TA(Id,E(tl))(gs 0)
= TAqaz0(E—E 0)+ TAqa 50,0, 0)
= TA(Id,'g'(tl))(Tx° T'=(£),0)
= TF 1,90, 50)(T7(£),0) ,

hence Tq(#(t,))=0. But Tpx Tq is an isomorphism, and therefore g(¢)=0.
‘We have thus proved that g(¢) is constant on W, and so g(¢) is trivial on W. By
[5, Proposition 6.13 or 6, Theorem 8.10], a 9-orbit is closed in M. Let a be
an end point of W. Since Wis open, acc W. If a1, then g(a)=O,(,, and so
g(a) is isometric to g(t,), which contradicts aec W. Hence W=1I. Q.E.D.

Let & be a subset of %} invariant under the action of 4. For g& P, we
.denote by &P, the vector space which is spanned by all i-deformations g’(0) defined
by deformations g(t) contained in .

DeriNITION 2.10. If all deformations of g contained in & are trivial then
£ is said to be non-deformable (in the sence of ). If P, CIm 8* then g is said
to be infinitesimally non-deformable (in the sence of £P).

Theorem 2.11. Let P be a D-invariant subset of M. If there is a D-
invariant open set W of P such that all metrics in W are infinitesimally non-defor-
mable, then every g W is non-deformable

Proof. Let g(t): I—< be any deformation of g& W contained in . Let
_J be the subset of I of all ¢ such that g(¢)e W, and J; be the connected component
of J containing 0. Then g(¢) is infinitesimally non-deformable for each t& J,,
and so, by Lemma 2.9, g(¢)| ] is trivial. If J; does not coincide with I, then
thereisan end point#,0f J;in I. Since 9-orbits in (¥ are closed, g(Z,) is isometric
to g, which contradicts g(¢,)eeW. Thus J,=1I. Q.E.D.

3. Einstein deformations

DEerINITION 3.1 We denote by £ the space of all Einstein metrics on M
whose volume is some constant ¢. A deformation contained in & is called an

Einstein deformation. If all Enistein deformations of g & are trivial, then g is
said to be non-deformable. (cf. Definition 2.10)

Lemma 3.2. Let g(t) be an Einstein deformation of g. Then the essential
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component h of the i-deformation g'(0) (i.e., g'(0)=h+8*E and Sh=0) satisfies the
Sfollowing equalities:

Ah+2Lh =0, trh=0,
where the operator L: St—S% is defined in 1; (Lh);=R*;'hy,.

Proof. See M. Berger and D. Ebin [1, Lemma 7.1, (7.1)].

Theorem 3.3. Let (M,g) be a compact Einstein manifold with p=E&g, p
being the Ricci tensor. Denote by o, the minimum eigenvalue on M of the operator
L. If a,>min {8, —%8}, then (M, g) is non-deformable.

Proof. Owing to Theorem 2.11 and Lemma 3.2, it is sufficient to prove
that if 4 is an i-deformation of g such that 84=0, Ah+2LA=0 and tr A=0
then 2=0. First we define the operators &V: C=(S?%)—>C*=(T%) and SV: C(S?)
—C=(T3%) by

(8Vh) (X,Y,Z) = a(Vxh) (Y,2)+B(Vyh) (Z, X)+(Vh) (X,Y)
(SVh) (X,Y,Z) = (Vyh) (Z,X)
where, a, B, YE R, &?+B*+v*=1. Set u=aB+Bv+va. Then the minimum

and the maximum of u are —-;— and 1 respectively. By simple computations,

we have
{&Vh, 8Vh> = {Vh, VE>+2ul{SVh, V>
= {Ah, >+2ul8SVh, k> .
Now, (8SVh);; = —V¥SVh),; ;= —V*Vh

= g"Rpi ihy+g" Rouish y—V,V*h
= —(Lh);;—pih;+(V8h);; .
Therefore, we get
{Bh—2uLh—2uEh—+2uV&h, k>=0 .
Here, we set 82=0 and Ah=—2Lh. Then
uelh, by < —(14u) Lh, k) .

Thus, if 2730 then we have o, <& and aoé—%é, by setting u=-—%, 1, re-

spectively. Q.E.D.

Let N be a riemannian manifold and O,=X; be an orthonormal frame at
pEN. Theno;;=—R,;,is the sectional curvautre if /= j, and is zero if i=j. We
count the number of j such that o; ;=0 for an index 7;,, and call the maximum
of such numbers the flat dimension fd(N) of N when p, O,, i, run over respective

sets. For example, if NV has negative curvature, then fd(NV)=1.
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Proposition 3.4. If an Einstein manifold (M,g) has non-positive sectional
curvature, and if its universal riemannian covering (M,7) is the product of the
riemannian manifolds M,(1=<a=<Fk) satisfying 2fd(M,)<dim M,, then g is non-
deformable.  Especially, an Einstein manifold (M,g) is non-deformable, if all
irreducible component of (M,g) have negative sectional curvature and are of di-
mension>>2.

Proof. (I) First, we consider the case that M itself is such that 2fd(M) <
dimM. Putr=fd(M). Fixapointm in M and let Lh=cth for a non-zero symme-
tric bilinear form % whose trace is zero. Using an orthnormal frame {X;} at m,

we diagonalize & with respect to g, and set A%=x‘. 'Then, 3x'=0 and
R,'jklhikh‘“ = E .R { xixj = ‘—2 a‘ijxixi .
$,j 5

151§

Now, let (y;) be an eigenvector of the matrix (o;;) belonging to an eigenvalue
M. By changing order of coordinates if necessary, we can assume that y,=
max|y;| and ¢,,<0 for all i>7. Then,

i

=AY, = _’2 U:fyi?;'z: iy =&Y, .
So —\ =€ and, if the equality holds, then we have y,=—y, for all 7>, which

implies

Byi= Dyt 2 0s—O—ry, 1y, = —(n—2r)y,<0.
Therefore, for (x;) such that 2' x'=0, we have

—Zj} aijx‘xf>82i} (%) .
Hence, a(h, h)=—‘zj} o xx >SZ (x'y=&(h, h).

Thus we get a>€. Our assertion follows then from Theorem 3.3.
(II) Now we consider the general case. Corresponding to the decom-
position (M,$)=TI(M,,§,), the curvature tensor decomposes. Hence, the

Ricci tensor § of M has the decompostion p=31p, where p, is the Ricci

tensor of M,. Therefore p,=&g,. Moreover, S%(]VI) and the operator L on
3(M) decomposes as follows;

SYM) = (DSHM)D(DRE) N SHM) & P SYM,, M) ,
L|siat,) = L.,
L|(®(Rg.)NSH) = —¢,
L\ S M,M,)=0 for a=b,
where L, is the operator of M, and
SYNL, BT, — {he S*(WL, x ML,); W(TM.,, TH) = O for ¢ = a,b} .
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Since the curvature of (M,g)=<0, € is negative. Then, combined with what

we have proved in (I), we get o> € and our assertion follows from Theorem
3.3 Q.E.D.

Corollary 3.5. Let (M,g) be a compact Einstein manifold. If M is a locally
symmetric space of non-compact type, and the dimension of every irreducible component
of the universal covering (M, g) of (M, g) is greater than 2, then (M, g) is non-defor-
mable.

Proof. Let G/K be a symmetric space which is the universal covering of
(M,g).  Since the dimension of every irreducible component of G/K is greater
than 2, we may assume that G has no simple factor of dimension 3. On the
other hand A. Weil [13, §10] shows that if G has no simple factor of dimen-
sion 3, then @,>€. Thus the proof reduces to Theorem 3.3.

ReEMARK 3.6. Theorem 24.1’ in G.D. Mostow [10] implies that if (M,g;)
and (M, g,) are locally symmetric spaces of non-compact type without 2-dimen-
sional factors locally, then g, and g, are isometric up to normalizing constants.

(cf. E. Calabi [3, Theorem 1], A. Weil [13, Theorem 1])
Corollary 3.7. If the sectional curvature of a compact Einstiein manifold

(M, g) ranges in the interval <§d, 1:,, then (M, g) is non-deformable.

n—1
Proof. We easily see that e=1 230, hence the condition implies £€>

n i
(n—2) (n—1)/(2n—1). By virtue of Theorem 3.3, it is sufficient to prove

ot %8> 0. In the same way as for the proof I of Proposition 3.4, we may

set hi=x' with 33a’=0. We can assume that there is an integer ¢ such that
y'=x'=0 for any i=Zc¢, and 2'=—x'>0 for any i>¢. Set X)y'=>)z'=4

isc i>c
Then, since > x"—~

(Lhh)++- () = o, R MDD 3

- <1 +78){2¢ (y')z+s>2‘ (2‘)2—{— t‘=t:i.21'-1'5‘(1—_a-ij)yiyj
+, 2 (—0)ss=2 5} (1—0c,)y'y’

itj, i,5>¢

> 2t S o+ -2

2(2n—1) i
> ”(”""1) L g 1 2 n+1 2
- 2(2n—1)( 4 +n cA > 2n—1 4

- n(nr+1) 4A2 n+1 ntl g
= 2(2n 1) n 2n——1 0.
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RemMark 3.8. Y. Muto [11, Theorem] shows that every Einstein metric
near a metric with positive constant sectiona curvature is of positive constant
sectional curvature.

RemARK 3.9. Even if (M,g) is a non-deformable Einstein metric, M may
have an Einstein metric § which is not isometric to g. In fact, G.R. Jensen
[8, pp. 612-613] constructs a non-standard Einstein metric § on S**3 The
author does not know whether § is non-deformable or not.

Finally, by a direct computation, we may apply Theorem 3.3 to the mani-
fold M whose universal covering M is an irreducible symmetric space G/K of
compact type.

I. the case where M is hermitian symmetric

In this case, the eigenvalue of the generalized operator L: S?—S? are
calculated by E. Calabi and E. Vesentini [4, p. 502, Table 2] and A. Borel [2,
Corollary 4.6, 4.7]. See Table 1. Here we omit 0 and —&, which are always
eigenvalues of L. The eigenspace corresponding to this eigenvalue —¢& is
generated by g. Hence, this is not an eigenvalue of our operator L on S§. We
conclude that the following three classes are non-deformable.

AT (p=1), (¢=1)

DII (p=6)
EVII
Table 1
type dimcM GIM ae” multiplicity
AIII by | SUGTD | 2040t | —20497 | —p(p+0)t | —alb+0)”
swpcvs PN 2(3)(1) | ot |
1 -
SO(2 1)1 —2p—1)"1 | —-(p—2)(p—1)"!
(® 20 =1 | 2(4 -
_ _ 1 -1
1 Sp(p) 20p+1)7 -+t | —5(+)(p+1)
Cl (P-{ ) p+3 1 a0p2_ 2_21
U(p) 2(?] £ | p
SO 2 2p~1 —(p—2)p"1 | —2p-1
BDI , (p+2) » (6—2)p 2
SO X T* | (p=1)p+2) | 2 (%)
1 i 1
Es - -1 -1
11 16 6 2 3
B Spin (10)-T*| 252 20 45
1 % i
Es o -3 -1
EVII | 27 9 9 3
M Esx T 702 54 78
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IT) Other cases

By easy but complicated computations we can compute «, Let g=f+m
be the orthogonal decomposition with respect to the Killing form on g, where £
is the Lie algebra of K. 'Then the tangent space T,,(M) at the identity coset is
canonically identified with m, and we know that R(X,Y)Z=—[[X,Y],Z] for
X,Y,Zem. (See S. Kobayashi and K. Nomizu [9, p. 231 Theorem 3.2].)
We can compute the eigenvalue of the curvature operator L which is identified
with the linear endomorphism on S§(m), and we get Table 2 for the type BDI
and CII. Hence the following symmetric spaces are non-deformable, where
we assume p=gq;

BDI (p23,¢=1), (g2p—1, p+427)
CII  (p=q=1), (p=3, ¢=1).

Table 2
type | n G/K *) ae”1
—_ —1)-1
pp1| o |SO@+e |P2¢=1 @D
SO@)X80W) | pzgzal +2(p+9-2), @—p)p+a—2)", R—a)p+a—2)
Sp(p+4) 1l _ - N
CIL | 4pg | FETA o [2>9=1 —042)7% (0427

ETaF D), —(pFD+e+D
P2a>1 T 1) (ptat1) -t

(*) condition
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