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Introduction

Let M be a compact connected C°°-manifold and g be an Einstein metric OIL
M. By an Einstein deformation of g we mean a 1-parameter family g(t) of

Einstein metrics on M such that£(0)=£ and the volume of g(t) is constant for t.

If for each Einstein deformation g(t) of g there exists a 1-parameter family

<γ(t) of diffeomorphisms such that g(t)—<γ(ί)*g (resp. £'(0)=—| Oγ(ί)*£) then
dt

g is said to be non-deformable (resp. infinitesimally non-deformable). M.
Berger and D. Ebin [1, Lemma 7.4] show that the Einstein structure of the

standard sphere is infinitesimally non-deformable, by using the fact that the
operator L associated to the curvature tensor of the standard sphere is positive

definite. In this paper, the main theorem (Theorem 3.3) gives a criterion
for an Einstein structure to be non-deformable, improving their method of

estimating eigenvalues of the operator L. As an application we see, for example,,

that the Einstein structure of a compact irreducible locally symmetric space M
of non-compact type with dim M>2 is non-deformable. (Corollary 3.5)»

To prove the main theorem we have to relate infinitesimal non-deforma-

bility to non-deformability. For this purpose we need a smooth slice theorem.

The slice theorem (Theorem 2.1) in the J?s-situation (D. Ebin [5, Theorem

7.1], [6, Theorem 8.20]) being in continuous category, we shall improve this

continuous slice theorem to a smooth slice theorem (Theorem 2.2) in the ILH-

situation. Owing to this we get a theorem (Theorem 2.11) which relates infi-
nitesimal non-deformability to non-deformability.

The author would like to express his sincere gratitude to the referees for
their kind advices.

1. Preliminaries

First, we introduce notation which will be used throughout this paper.
Let M be an w-dimensional, connected and compact C°°-manifold without
boundary, and we always assume n>2. For a riemannian manifold (M,g)> we
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consider the riemannian connection and use the following notation;
S2; the symmetric covariant 2-tensor bundle over M,
C°°(T); the vector space of all C°°-sections of a tensor bundle T over M,

So] the space of all symmetric covariant 2-tensors whose trace is zero,
( , ) the inner product in fibers of a tensor bundle defined by the riemannian

structure,
< , >; the global inner product for sections of a tensor bundle over M, i.e.,

< , )>=/M( , )vgy vg being the volume element defined by g,
R the curvature teasor,
p the Ricci tensor,
T the scalar curvature,

V; the covariant derivation on C°°(Γ),
δ the formal adjoint of V with respect to < , >,
δ*; the formal adjoint of δ| C°°(52),
Δ=δdr; the Laplacian operating on the space C°°(M) of C°°-functions on M,
S=δV; the rough Laplacian operating on C°°(T),
Hess= W; the Hessian on C°°(M).
We shall use the Einstein's convention, although we use Σ if necessary. We

shall apply the following formulae throughout the paper.

Rijiξ1 = V, V,£*- V,V,£*, Rijkl = RTjkgml ,

Pij = — Riljy r = P*l >

Δ/= -v'd,f,

{For the standard sphere, -Rm2<0, Pn>0 and τ>0, with respect to orthonormal

frame.)
Let (Myg) be an Einstein manifold. If tr h=0 then

Hence we can define the operator L: Sl-^Sl by

= Rikjlhkl .

Next, we recall the following concepts defined by H. Omori [12, pp. 168-
169]. A topological vector space E is called an ILH-space, if E is an inverse

limit of Hubert spaces {-Ei}t =ιf2f such that if j"^i E^Ej and the inclusion is
a bounded linear operator. We denote Z?=lim E1,-.

A topological space X is called a Ck-ILH-manifold modeled on E} if X has the
following properties Cl and C2.

Cl) X is an inverse limit of C*-Hilbert manifolds {-XF

f }ί=1>2f». such that
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each Xi is modeled on E{ and Xί'DXj if j^i.

2) Let x be any point of X . For each / there are an open neighbourhood
Uf(x) of x in Xi and a homeomorphism ψ f from Ufa) onto an open subset V{

in JE1, which gives a C*-coordiante around x in Jf, and satisfies [/,-(#) Z) Uj(x) ifjί^i

and Th+iOO^ OO for every J<Ξ t/m(#).
Let JΓ be a C*-ILH-manifold (A^l). Let ΓJΓ,. be the tangent bundle of

Xif Then the inverse limit TX=\im TX{ is called the ILH-tangent bundle of X.

Let XyY be CMLH-manifolds. A mapping φ: X-*Y is said to be C7-

ILH-dίfferentίable (l^k)y if φ is an inverse limit of C7-defferentiable mappings,

that is, for every /, there are a positive integer j(i) and a C7-mapping φ, : X^-^ Y{

such that φ,(#)— φί+iO*) for every x^Xj(i+1) and φ=limφί.

If X is a CMLH-manifold for all Λ^O, we call JSΓ an ILH -manifold. For

ILH-manifolds J£,F, if φ is CMLH-defferentiable for all A^O, we say that φ

is ILH-differentίable. We denote by TXX{ the tangent space of Xi at x and
put TxX=\im TxXi. Also we denote by

the r-th derivative of φ, at x^X. Then, it is easy to check that {Γrφ,(Λ?)}ί=1 2>...
has an inverse limit

Um Ί+φfc): Wι^TxX^ TΦXY .

We call this inverse limit -the r-th derivative of φ and denote it by Trφ(x).

A topological group is called an ILH-Lie group, if it is an ILH-manifold

and the group operations are ILH-mappings.

We can easily see that the space M of all smooth riemannian metrics on M
is an ILH-manifold. (SeeD. Ebin [5, p. 15], [6, Proposition 5.8] and H. Omori

[12, p. 170].) We know that the group 3) of all diίfeomorphisms of M is an ILH-

Lie group, and the natural action A : 3) X <3A.-+<3A, is ILH-differentiable. (See [12,.
Lemma 2.5].)

Let£^c_3ί. By a deformation of g wemeana C°°-curve^(ί): I-+JM such that
£(())=£, where / is an open interval containning 0 in R. Since M is a positive

cone in the vector space of all symmetric covariant 2-tensors on M, we may
identify the differential ^(O) of a deformation g(t) with a symmetric covariant
2-tensor field on M. We call such a tensor field an infinitesimal deformatoiny

or simply an i-deformatίon.

When we consider a deformation g(f) of g, the covariant derivation, the cur-

vature tensor or the Ricci tensor with respect to each g(t) will be denoted by V^
R(t) or pg(t). Also, we always raise or lower indices of tensors with respect tσ
g(t), and we denote by ' the differentiation with respect to t. It is clear that the

differential at t=0 of the tensors R, p, r etc. depend only on the i-deformation

that^(ί) defines.
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2. Deformations and infinitesimal deformations

Let M be a compact connected C°°-manifold. We denote by JMS the space of

all ίΓ-metrics on M and by & the space of all ίΓ-diffeomorphisms of M, where

H5 means an object which has partial derivatives defined almost everywhere up

to order s and such that each partial derivative is square integrable. We know

that the space <5M? and the space 3)s are Hubert manifolds if s is sufficiently

large. Moreover, the usual action A: <Dx<3tt-*t3H extends to a continuous

mapping A5: &+1x3fίs-+3tts. (See D. Ebin [5,p.l8], [6, Proposition 4.24].)

D. Ebin gave the following

Theorem 2.1 (D. Ebin [5, Theorem 7.1], [6, Theorem 8.20]). For each

) there is a submanifold Ss

g of <3$ with the following properties.

(1)

(2)

(3) There are a neighbourhood Us+l of the coset Ig in the right coset space

and a local cross section %5+1: &+1/Ig-+3)s+l defined on Us+1 such that if
the mapping Fs: Us+1xSs

g->3Hs is defined by Fs(u,s)=Xs+l(u)*s, then Fs is a

homeomorphίsm onto a neighbourhood of g.

Outline of the proof. Canonically we can construct a riemannian metric on

which is invariant under the action A of 3). At any point £G <^f, ψ|: ̂ )s+1-»

is defined by tys

g(n}=As(n,g) for -η<=3)s+1. If g£Ξ M, ψs

g is smooth. Also for
1, we identify the tangent spaces T^^1) or TψgM(<3Hs) with the space of

/Γ-sections of some vector bundle over M. Then, T^l becomes a first order

linear differential operator. It turns out that this operator has an injective
symbol, and so its range is closed in T^^(^HS).

The right coset space £Ds+1/Ig has an induced manifold structure and admits

a smooth local cross section %ί+1: US+1-*<DS+1. -ψ J induces a mapping φs

g: S)s^\lg

-+<3tts. φg is an injective immersion and we see directly that it is a diίfeomor-

phism onto the closed orbit O|.

Using the riemannian metric on 3tts, we obtain a smooth normal bundle

πs: υs-*Og. Moreover, the exponential mapping exps on M is defined on

a neighbourhood Ws of the zero-section of vs and it is a difϊeomorphism. We

put S*g=expWj, where Ws

g is the fibre on#.

Also, we know that for any η^<Ds+1 a smooth mapping 77*: <3\ίs-^<3\{s is de-

fined by η*(g)=A(η,g) and ??* is an isometry. Therefore, if exps is defined for

a vector V in T(3tf\ exps is defined for Tη*(V) and we have ι?*expsF=exps

Trj*V.

Combining these informations, we can prove the slice theorem in the Hs-

:situation. Moreover, if we define the mapping Fs: Us+1xSs

g-+^Ms by Fs(u,s)

=As(Xs+1(u), s), for *eexpW we have
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We shall need the following slice theorem which improve Theorem 2.1 to
the C°°-situation.

Theorem 2.2. We denote by <3ά the ILH-manίf old formed by all ήemannίan
metrics on M, and by 3) the ILH-Lίe group of all diffeomrophίsms on M. The
group 3) acts on M in a canonical way. For each £GΞ Jtt, there is an ILH-submani-
fold Sg of <3tt with the following properties. Let Ig be the group of all isometrics of
the riemannίan manifold (M,g).

(51) // 7 belongs to Ig> then Ύ*(Sβ)=Sβ.
(52) Let γeΞ^λ If Ύ*(Sg) Π S^Φφ, then 7tΞlg.
(53) There are a neighbourhood U of the point Ig in the right coset space

3)11 g and a local cross section %: S)\Ig-+S) defined on U such that if the mapping
F: UxSg-*<3tt is defined by F(u,s)=X(u)*s9 then F is an ILH-diffeomorphίsm
onto a neighbourhood of g.

We need the following lemmas.

Lemma 2.3. S)\Ig is an ILH-manίfold.

Lemma 2.4. Put U=UsΓ\3)IIg. Then %S(C7) is contained in 3) and the
mapping %=%s| U is ILH-differentίable.

Lemma 2.5. Put W=WsΓίT3tt. Then txps(W) is contained in 3tt and
the mapping exp=exρs\W is an ILH-diffeomorphism. Hence Sg=Ss

gn^ί is
an ILH-submanifold of M.

These lemmas will be proved in below.

Lemma 2.6 [12, Lemma 2.5]. A\S) X ^H) is contained in 3tt and the mapping
A=AS \£)χ3His ILH-dίfferentίable.

Lemma 2.7 [12, Lemma 1.14]. If the mapping ι\ 3)^>S) is defined by
ϊ(η)= rι~ 1 for η^3), then i is ILH-dίfferentίable.

Proof of Theorem 2.2. Combining these lemmas and the proof of Theorem
2.1, the mappings F=F*\UxSg and JF"1=(JF

s)~1|exρPF are compositions of
ILH-mappings, and so F is an ILH-diffeomorphism, which proves Theorem
2.2.

Proof of Lemma 2.3. We know that S)*\Ig is a Hubert manifold. We shall
prove that the inclusion i$: 3)s+lllg-^3)slg is smooth. By [5, Corollary 5.11] or
[6, Corollary 7.16], f is smooth if and only if Fop'+1: 3)*+λ->S)s\Ig is smooth,
where ps+1: £)s+l-+3)s+lllg is the natural projection. We can easily see isops+l=
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psoi\ where is: ,2)5+1-».2)5 is the inclusion. Since is and ps are smooth, ΐ is
smooth.

Proof of Lemma 2.4. By [5, Proposition 5.10] or [6, Proposition 7.15],
3f\Ig admits a smooth local cross section around any coset. We denote by
%ί the local cross section around x^.3)s\Ig and put %s=Xjg. Let Us be the
domain of Xs and set Ur=Us^3)rIIg and %r=%s\Ur for r^s. If we C/r,
there is an element α^Dr such that u~Igα and %r(w)e/^C^)r. Hence we
have %r(Ur)c:3)r. To prove that %r is smooth, we shall show that if we define
a mapping v\ (ps)~\Us)-*Ig by v(η)=η(X>sopsη)~l, then v is smooth. By [5,
Lemma 5.5] or [6, Corollary 7.7], the composition: Igy.Sf-*S)s is smooth.
Hence, if we define a mapping i/r: Igχ Us-*3)s by iKf , #)=?%*(#), then -ψ is
smooth. On the other hand, we have ψ~\η)=(v(n)9p*(n)) and ps is smooth.
For z/, we fix a positive integer i such that the composition: Sfy^Sf-^SΫ and
the inverse: ffl-^ίD' are (^-mappings. ([12, Lemma 1.13 and Lemma 1.14].
Suppose that s is sufficiency large.) Then, we see directry that v is a C1-
mapping into 3)\ But Ig contains the image of v and Ig is a submanifold of
S)1 (see [5, Corollary 5.4] or [6, Theorem 7.1]). Hence, v is a (^-mapping
into Ig. Therefore, we know that Λ|Γ is smooth and Λjr"1 is a Catnapping. By
the inverse function theorem, ψ"1 is smooth and so v is smooth.

Now, we shall prove the smoothness of %r around any #e Ur. There is a
smooth local cross section %£ on a neighbourhood V of #. Therefore the
mapping vo "inclusion" o%£: V-*Ig is smooth and we have vo "inclusion" o%J(y)

=Xi(y)(Xr(y))'1. Since we know that %r(y)=((%ί(y))(%r

and the inverse: I8-+Ig and the composition: IgY.3f^>3f are
smooth, the mapping %r: V-^Qf is smooth.

Proof of Lemma 2.5. Let Ws be an open subset of T<3tt5 such that Ws=
vsnWs. Set Wr=WsnT3Hr, W=Wnυr

9 expr=exps\Wr and (exp"1)^
(exps|W^s)"1|exps(fFs)nc5}ίr. The mappings exps: Ws-*3tf and (exp"1)':
exps(ίFs)-»Γc^ίs are smooth and commute with the action of 3). Hence, by
the following Lemma 2.8, expr(T^r) and (exp~1)r(exρ(ίFs) Π JHr) are contained

in 3W and TJttr respectively, and the mappings exρr: Wr-*3ttr and (exp""1)"":
exps(Ws)Γl<3Hr-+T3Hr are smooth for r^s. But Wr is a submanifold of W

and (exp-l)r(exρs(Ws)n<3Hr) is contained in Wr, which implies that exρr: W-*
exps(Ws) Π c5Kr is a diffeomorphism. Thus we see that exp is an ILH-diffeomor-
phism onto exρs(W^s) Π <3A..

Lemma 2.8. Let E and F be vector bundles over M associated with the

frame bundle (e.g., T, Γ*, S2, Tx Γ*, the k-thjet bundle J\T) etc.}. Any η<=3)

defines a natural linear mapping 77*: H°(E)-*H°(E). Let A be an open subset of
HS(E) and let f: A-*H*(F) be a smooth mapping which commutes with the action of
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3). Put Ar=AΓ\Hr(E) for r^s. Then f(Ar) is contained in Hr(F) and
f\Ar-*H\F) is smooth.

Proof of Lemma 2.8. We shall prove that if this lemma holds for r=i}

then the same is true for r=ί-\-\. The induction will then complete the proof.
First, by induction, we shall prove that η*oTkf(ά)=Tkf(η*a)oη* for all positive
integer k. If ??*o Γ7/(β)= Tlf(η*a)oη*, then we have

vl9a

-f loΓ7β*β+ί'7*«0 (̂ βi,-,̂ /)
at

Let V be a vector field on M and let ηt be the 1 -parameter subgroup of di-
ffeomorphisms generated by V. For sufficiently small tjijfa&A* if
Hence we get

at

Next, we shall prove that f(Ai+1)cHi+1(F)t and /|^lm: AM-+H"\F) is
continuous and that if /|^4ί+1 is a C*-mapping and Γ*(/|^'
Hi+1(E)x-xHi+\E), then /Mί+1 is a C*+1-mapping and
Tk+1f I ̂ f+1 X ί/^1^) X X Hi+\E). Then, by the hypothesis of the induction,
/ 1 Ai+1 is smooth.

If a<=Ai+l, then -Cjκ=H'(E) for all FeC~(Γ). Hence X0f(ά)=Tf(a)
(X,a)^H'(F), which implies that f(Ai+1)czHί+1(F). If a sequence {αB}
converges to α in Ai+1, then {-£"„«„} converges to X,a in ίί'(̂ ) for all Fe C°°
(Γ). Hence {-£/(«„)= T/(«B) (JΓΛ)} converges to T,(a)(£jι)=£.f(a) in
H'(F), which implies that / 1 ̂ 4ί+1 is continuous. By the same calculation, we
check easily that T^'f(Ai+1xHi+1(E)x-xHi+1(E))cHi+1(F) and T'f\Ai+1χ
Hi+1(E)x xHi+\E) is continuous. We assume that f\Ai+1 is a C*-mapping
and Ί*(f \ Aί+l)= Tkf \Aί+1X Hί+\E) x x Hi+ί(E). Define a mapping

v. Aί+lxHί+1(E)x {Hi+\E)x -xHi+\E)}-*HM(F)
k-terms

by V(a, v,v) = T\f I A'^) (a+v) (v)-T\f \ Ai+>) (a) (v)
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Then, by the assumption,

v(a,v,υ) = Tkf(a+v) (v)-Tkf(ά) (v)-T*+1f(a) (V,Ό)

and v(a,tv,Ό) = Tkf(a+tv,υ)-Tkf(a) (v)-tTk+1f(a) (vyv) .

By differentiation with respect to the H* -topology, we get

v(a,v,v) = TMf(a+uv) (v,v,Ό)dudt .
J o J o

Since \Tk+2f\ is continuous with respect to the Hi+ ̂ topology, we have

\ v ( a , v 9 v ) \ / \ v \ ^ max | Tk+2f(b)\ \v\ \v\ , where 6 is sufficiently small and | | is
|6-β|<8

the Hi+l-norm. Therefore, Tk(f\Ai+1) is differentiable and Tk+1(f\Ai+1)

coincides with the continuous mapping Tk+1f\Ai+1xHi+1(E)x xHi+1(E).

Q.E.D.

A deformation g(t) contained in a .2)-orbit Og oίg is called trivial ', since each
(Myg(t)) is isometric to (M,g). On the other hand, a deformation contained in

Sg is said to be essential with respect to g. According to M. Berger and D. Ebin

[1,§3,(3.1)], we can identify the tangent spaces Tg(Og) and Tg(Sg) at g with

Im δ* and Ker δ. We call therefore an element of Im δ* a trivial i-deformation
and an element of Ker δ an essential i-deformation.

Tuet g(t) and g(t) be deformations of g. If there is a 1 -parameter family of

diίfeomorphisrris 7(t) satisfying g(t)=Ύ(t)*g(t), then g(t) is said to be equivalent
to g(t). Theorem 2.2 implies that every deformation is equivalent to an es-

sential deformation (by restricting the range of t to some open interval containing

0).

Lemma 2.9. If g'(t) is trivial with respect to g(t) (i.e., £'(ί)elm δj(f))
for each t, then g(t) is a trivial deformation.

Proof. D. Ebin [5, Theorem 8.1 or 6, Propsition 8.30] shows that for

given g^<3tt, and any neighbourhood V of the identity in .2), there is a neigh-
bourhood Hofg in Jlί such that if ψeίf there is γe ^satisfying γ'1/,/// dlg. So,

we find dim Ig(t) is upper semi-continuous. Let W be a connected component

of the set of all t such that dim Ig(t) is minimum. Then W is open in /. Fixing
*0e W, we shall apply Theorem 2.2 for g(tQ).

Let g(t) be a deformation equivalent to g(t) contained in Sg(t^. First we

prove g/(t1)=Q for all ^ for which gfa) is defined. If 7e/^ ), then 7* (̂̂ 1)=

g(tι)^Sg(to) and so 7e/^(/0), because of the property (S2) in Theorem 2.2.
This implies /^pd/^). Since t^W, it follows that any Killing vector
field with respect to g(tQ) is a Killing vector field with respect to g(tι). Now,

because iffa) is trivial with respect to £(£1), there is £eTId(.2)) such that
Γ-4(Idtϊ(/1))(f ,0), where A is the map ΪDx JM-*JH defined by the action of
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JZ) on 3M. and TA is the differential of A. Denote by π the natural projection from
3) to S)\Ig(^ and let % be as in Theorem 2.2. Put f = TXo Tπ(ξ). Then |— f
is a Killing vector field with respect to g(tQ)y and so with respect to gfa) also.
Therefore TA(Idtg(tι»(ξ—ξ,Q)=Q, gfa) being fixed under the action of I-g(tj.

Now, set F~1=pxq where ^>: 3ά-*3)\IM and #: M-*Sg(t^. Since
is tangent to ^(ίo), Tp(g/(t1))=0. On the other hand,

-f , 0)+ ΓAid tϊ(/ι))(f , 0)

hence Γί(|f/(ί1))=0. But TpxTq is an isomorphism, and therefore
We have thus proved that £(£) is constant on W, and so #(£) is trivial on W. By

[5, Proposition 6.13 or 6, Theorem 8.10], a ,2)-orbit is closed in M. Let # be
an end point of W. Since W is open, # <ί W. If #e/, then g(a)^Og(tj, and so
£(#) is isometric to g(t0}, which contradicts a& W. Hence W=L Q.E.D.

Let & be a subset of <3tt invariant under the action of 3). For £e£P, we
denote by 3?s the vector space which is spanned by all i -deformations ̂ (0) defined
by deformations g(t) contained in £P.

DEFINITION 2.10. If all deformations of g contained in 3? are trivial then
g is said to be non-deformable (in the sence of £P). If S^Clm δf then g is said
to be ίnfinitesίmally non-deformable (in the sence of £P).

Theorem 2.11. Let 3? be a S)-invariant subset of <3tt. If there is a 3)-
invariant open set W of £P such that all metrics in W are infinitesimally non-defor-
mable, then every g^W is non-deformable.

Proof. Let g(t): I -+3? be any deformation of g^ W contained in £P. Let
JΓ be the subset of / of all t such that g(t)^ W, and 7ι be the connected component
of/ containing 0. Then g(t) is infinitesimally non-deformable for each ίe/i,

and so, by Lemma 2.9, g(t)\Jι is trivial. If Jλ does not coincide with /, then
there is an end point t0 of Jλ in /. Since 5)-orbits in ^H are closed, g(t0) is isometric
to g, which contradicts g(t0)<£W. Thus Jι=L Q.E.D.

3. Einstein deformations

DEFINITION 3.1 We denote by 8 the space of all Einstein metrics on M

whose volume is some constant c. A deformation contained in 8 is called an
Einstein deformation. If all Enistein deformations of g^8 are trivial, then£ is
said to be non-deformable. (cf. Definition 2.10)

Lemma 3.2. Let g(t) be an Einstein deformation of g. Then the essential
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component h of the i-deformation g'(ϋ) (i.e., g'(Q)=h+δ*ξ and δλ=0) satisfies the
following equalities:

%h+2Lh = 0, tr h = 0 ,

where the operator L: SI-+SI is defined in 1; (Lh)ij=Ri

k

j

lhkl.

Proof. See M. Berger and D. Ebin [1, Lemma 7.1, (7.1)].

Theorem 3.3. Let (M,g) be a compact Einstein manifold with ρ=£g, p
being the Ricci tensor. Denote by <x0 the minimum eigenvalue on M of the operator

L. If α0>min J£, £ L then (M,g) is non-deformable.

Proof. Owing to Theorem 2.11 and Lemma 3.2, it is sufficient to prove
that if h is an i-deformation of g such that δΛ=0, SA+2LA=0 and tr λ=0

then h=0. First we define the operators @V: Cββ(5r2)->Cββ(71S) and SV: C°°(S2)

->C-(Γ8) by

,Y,Z) = a(Vxh)(Y,Z)+β(Vγh) (Z,X)+<y(Vzh) (X,Y)

where, a, β, Ύ e Λ, «2+/32+γ2= 1. Set u=aβ+β7+7a. Then the minimum

and the maximum of u are and 1 respectively. By simple computations,

we have

Now, (S5VA), . - - Vk(SVh)ki . = - V*Vf.A/ft

=

^

Therefore, we get

<£h-2uLk-2uSh+2uV8h, A>^

Here, we set δλ=0 and SA=— 2Lh. Then

Thus, if A Φ O then we have α0^£ and a0^ -- £, by setting u— -- , 1, re-

spectively. Q.E.D.

Let N be a riemannian manifold and Op=Xi be an orthonormal frame at

p^N. Then σί;.= —Rijij is tne sectional curvautre if / Φ j, and is zero if /==/. We
count the number of j such that σioj=0 for an index /0, and call the maximum
of such numbers the flat dimension fd(Λ^) of N when py Op, i0 run over respective

sets. For example, if N has negative curvature, then fd(N)=l.
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Proposition 3.4. If an Einstein manifold (M,g) has non-positive sectional
curvature, and if its universal riemannian covering (M,g) is the product of the
riemannian manifolds Ma(l^a^k) satisfying 2fd(Λίβ)<dim ΆΪay then g is non-

deformable. Especially, an Einstein manifold (M,g) is non-deformable, if all

irreducible component of (M,g) have negative sectional curvature and are of di-
mension>2.

Proof. (I) First, we consider the case that M itself is such that 2fd(M) <
dimM. Put r=fd(M). Fix a point m in f/l and let Lh=ah for a non-zero symme-

tric bilinear form h whose trace is zero. Using an orthnormal frame {X{} at m,

we diagonalize h with respect to £, and set hii=xi. Then, 2#ί=:0 and

RijkflW = Σ RWJX?X* = -Σ Vi^ .

Now, let (y, ) be an eigenvector of the matrix (σ, y) belonging to an eigenvalue
λ. By changing order of coordinates if necessary, we can assume that yr=

max I y. \ and σri < 0 for all i> r. Then,

—\yr = -2 σf>#^2 σiryr = £yr
1 I

So — \^8 and, if the equality holds, then we have yi=—yr for all z*>r, which
implies

ΣΛ = ΣΛ+ΣΛ^-(Λ-φr+ιyr = -(n-2r)yr<0 .
i i>r i&

Therefore, for (#,-) such that 2 ^t=0, we have

Hence, a(h,h}=-^σijx
ίxi>ε^Σί (xJ=B(h,h).

i.j i

Thus we get α>£. Our assertion follows then from Theorem 3.3.
(II) Now we consider the general case. Corresponding to the decom-

position (Άί9g)=ΐ[(ΛΪa9ga)y the curvature tensor decomposes. Hence, the

Ricci tensor p of M has the decompostion β=Σ Pa where ρa is the Ricci
a

tensor of Ma. Therefore pa=Bga Moreover, Sl(ΆΪ) and the operator L on

Sl(Λί) decomposes as follows;

S2

0(M) =

= Q for

where La is the operator of $la and

); h(TMc,TMc) = 0 for c = a,b} .
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Since the curvature of (M,g)^*Q, £ is negative. Then, combined with what
we have proved in (I), we get α0>£ and our assertion follows from Theorem
3.3 Q.E.D.

Corollary 3.5. Let (M,g) be a compact Einstein manifold. If M is a locally
symmetric space of non-compact type, and the dimension of every irreducible component
of the universal covering (fiϊ,g) of (M,g) is greater than 2, then (M,g) is non-defor-
mable.

Proof. Let G/K be a symmetric space which is the universal covering of
(M,g). Since the dimension of every irreducible component of G\K is greater
than 2, we may assume that G has no simple factor of dimension 3. On the
other hand A. Weil [13, §10] shows that if G has no simple factor of dimen-
sion 3, then o?0>£. Thus the proof reduces to Theorem 3.3.

REMARK 3.6. Theorem 24. V in G.D. Mostow [10] implies that if (M.g^
and (M,g2) are locally symmetric spaces of non-compact type without 2-dimen-
sional factors locally, then g1 and g2 are isometric up to normalizing constants.
(cf. E. Calabi [3, Theorem 1], A. Weil [13, Theorem 1])

Corollary 3.7. If the sectional curvature of a compact Eίnstίeίn manifold

(M,g) ranges in the interval ( — - , 1 , then (Myg) is non-deformable.
\2n — 1 J

Proof. We easily see that £= — Σσt > hence the condition implies £>
n i*ί

(n—2)(n—l)/(2n—ί). By virtue of Theorem 3.3, it is sufficient to prove

a0-\ -- £>0. In the same way as for the proof I of Proposition 3.4, we may

set hiί=xi with Σ#'— O We can assume that there is an integer c such that
yW^O for any i^cy and *f'==— *f>0 for any i>c. Set

Then, since Σ κ'^0,

(Lh,

2(2«-l)\ c ' n-c I 2n-l

4 Q 2 n+1 A2 = 0

n 2n-\
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REMARK 3.8. Y. Muto [11, Theorem] shows that every Einstein metric

near a metric with positive constant sectiona curvature is of positive constant

sectional curvature.

REMARK 3.9. Even if (M,g) is a non-deformable Einstein metric, M may

have an Einstein metric g which is not isometric to g. In fact, G.R. Jensen

[8, pp. 612-613] constructs a non-standard Einstein metric g on S4p+3. The

author does not know whether g is non-deformable or not.

Finally, by a direct computation, we may apply Theorem 3.3 to the mani-

fold M whose universal covering M" is an irreducible symmetric space G/K of
compact type.

I. the case where M is hermitian symmetric

In this case, the eigenvalue of the generalized operator L: S2-*S2 are

calculated by E. Calabi and E. Vesentini [4, p. 502, Table 2] and A. Borel [2,

Corollary 4.6, 4.7]. See Table 1. Here we omit 0 and — £, which are always

eigenvalues of L. The eigenspace corresponding to this eigenvalue —8 is

generated by g. Hence, this is not an eigenvalue of our operator L on SQ. We

conclude that the following three classes are non-deformable.

AIII (ί>=l),(9=l)
Dili

EVII

Table 1

type

AIII

Dili

CI

BDI

EIII

EVII

dimcM

pq

a)
(fίι)

P

16

27

G\M

SU(p+q)

S(UpXU«)

S0(2p)

U(p)

SP(P)
U(p)

SO(p+2)

SO(ρ) x T1

E*

SpinClOJ T1

E7

EβXT1

ctε ^multiplicity

^P+qΓ1

2(P + 1\(<1 + 1}2( 2 )( 2 )

(P-1Γ1

~P\P2-V

2(p + lΓ1

*m
2p~ι

(p-l)(P+2)

1
6

252

1
9

702

-20H-0Γ1

»«)(!)
-20.-1)-1

>«)

-(ί+i)-1

|-/>2(/>2-D

~(p-2)p'1

2

1
2

20

4
9

54

~P(P+lΓϊ -ίte+ίΓ1

β»-l p*-l

-y(ί-2)(ί>-l)-1

ί»-l

-y(ί>+2)(ί + l)-1

ί»-i

-2ί-»

ω
1
3

45

1
3

78
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II) Other cases
By easy but complicated computations we can compute a0. Let Q=ϊ-\-m

be the orthogonal decomposition with respect to the Killing form on g, where ϊ
is the Lie algebra of K. Then the tangent space TeK(]\ί) at the identity coset is
canonically identified with m, and we know that R(X,Y)Z= — [[X,Y],Z] for
X,Y,Z<=m. (See S. Kobayashi and K. Nomizu [9, p. 231 Theorem 3.2].)
We can compute the eigenvalue of the curvature operator L which is identified
with the linear endomorphism on ^(m), and we get Table 2 for the type BDI
and CII. Hence the following symmetric spaces are non-deformable, where
we assume/)^q\

BDI
CII

Table 2

type

BDI

CII

n

q

4pq

G/K

SO(p+q)
SO(p)xSO(q)

Sp(p+q)
Sp(p)xSp(q)

(*)

P>q = l

P^q^2

p=q = l

P>q = l

P^q>l

as'1

(P-1Γ1

±2(p+q-2Γ1, (2-p)(p+q-2Γ\ (2-q)(p+q~2Γ1

1
3

-(p+2Γl,(P+2Γl

±(P+q+lΓl, -te + iκp+ff + lΓ1,
-(9+l)(/>+g-f 1) -1

(*) condition
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