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Introduction

For a double fibering X 2B, ¥ of differential manifolds, an integral
transformation Lg: C5(Y)— C=(X) is defined by Lz=(m),(n,)* (see Section 1
for the precise definition). This class of integral transformations, introduced
in [2], includes many classical ones such as the Radon transformation, the spher-
ical mean operators ([7]), the mean value operators on symmetric spaces ([4]),
etc.. In each particular case deep investigations have been carried out (see [2],
[5] for example).

In this paper, using the fact that L is a Fourier integral operator in the
sense of [6], we study the question how much L, improves the regularity of func-
tions. An answer is described by an integer k; geometrically associated with
the double fibering X <~ B— Y (Theorem 2.4).

Section 1 gives the precise definition and examples of L. Section 2 defines
kp, states the main theorem (Theorem 2.4) and applies it to the examples. Sec-
tion 3 proves Theorem 2.4. Section 4 gives a sufficient condition for Ly to
have a parametrix. Section 5 and 6 study the mean value operators on symmet-
ric spaces of non-compact and compact type respectively.

This paper includes the results of [9], although the proof is somewhat
different.

The author would like to express his hearty thanks to T. Sunada, whose
suggestion that the theory of Fourier integral operators might be used to study
the spherical mean operator was the motivation of this paper, and who suggested
also that k; might be expressed in terms of the root systems in the case of the
mean value operators on symmetric spaces. The author would like to thank
also Professor H. Ozeki who suggested the possibility of describing the number
v,,(¢) of Section 2 in terms of the Schubert varieties.

1. Definitions and examples
1.1. Let X and Y be manifolds® and B a submanifold of X X Y such that

*)  In this paper the word manifold will always be used for a connected, paracompact, Haus-
dorff smooth manifold of finite dimension.
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m=mny|p: B—X and m,=my|z: B— Y make B locally trivial fiber spaces over
X and Y respectively. Here 7zy: XX Y —X and ny: XX Y—Y are natural
projections. The obtained object X< B—Y will be called a double fibering.
Throughout this paper we will use the following notations:

ny =dim X, ny =dimY,
N, = mni'xCY xeX),
M,=mnr'ycX (yey),
p=dimN,, ¢g=dmM,,
d=ny—q=ny—p.
Obviously
d = codimy N, = codimy M, = codimyxy B,

xeM,=(x, y)eBeyeN,, xeX, yeY.

Suppose that a smooth positive density du, is given on each z7'x=N,
(x€X) which depends on x smoothly. Define L;: C5(Y)— C=(X) by

(Lof)) = fludus,  2€X, FECH(Y).

Here C=(X) is the set of all smooth functions on X and
C3(Y)={feC~=(Y); supp f is compact} .

Note that L is well defined since it is obvious that Lyfe C=(X) for feCF(Y).
Ly is called the integral transformation associated with the double fibering X <— B
— Y and the densities {du.}.

1.2. Examples of Lj.

ExampLE 1.1 (Radon transformation). Let X=(R"\0)XR, Y=R". Denote
the coordinates of the points of X and Y by (%, p)=(m, -**, 7, p) and (y)=
(31, **+, y,) respectively. Put

B={(,0,9);my)—-p=0CcXxXY,

where (7, ¥)=my+ - +7,¥,. In this case ny=mn-+1, ny=mn, N, »={(»);
(0, y)=p}, My={(n, p); (2, ¥)=p}, p=n—1, g=n, d=1. Letdpu,, be the
smooth positive density on N, , defined by the condition that

d”’('ﬂ.ﬁ)'d(n! y) = dyl"'dyn on N(n,p) .
Then the associated Ly is the classical Radon transformation (cf. [3]).

ExampLE 1.2. Let X=Y=R". Let S be a compact submanifold of
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codimension d. Put Bs={(x, y); x—y=S}. Then X< Bg—Y is obviously
a double fibering. Since N,=x—S=S, we can define du, as the smooth
positive density corresponding to the volume element w; of the induced Rieman-
nian metric on S. Then Lg=Lj is defined by

L@ =] _fa—sos,  feCi®).

ExampLE 1.3 (Spherical mean operator). Let X=Y be a compact Rie-
mannian manifold, SX= {(», ) TX; ||€|]|=1} its unit sphere bundle, and
n: SX — X the natural projection. Let G,: TX — TX (tR) be the geodesic
flow. Since G(SX)CSX, we can define g,=G,|sx: SX—SX. Put

elf) = (, gE)e XXX  (¢eSX),
T = {t=R; ¢, is an embedding} .

Note that 7'U {0} contains a neighbourhood of 0. Put B,=Ime,C XXX
(teT). For t with sufficiently small |z],

B, = {(x’y); d(x,y): ltl} ’

d being the metric defined by the Riemannian structure. For this double
fibering X< B,— X, ny=ny=n, p=¢g=n—1, d=1. M,=N, (»€X) is the
geodesic sphere of radius |#| with center x.

Let du, , be the smooth positive density on IV, corresponding to the natural
one w, on 7 'xC T,X under the diffeomorphism zg,: z~'x—N,. The associated
operator L,=Lp, is then defined by

LH® =, S, reX, feCX).

L, is the spherical mean operator with radius |t| on X (cf. [9]).

ExampLE 1.4 (Mean value operator [4]). Let G be a connected Lie
group, K a compact subgroup of G, and X=Y=G/K. Fix an a=G, put
H,=KNaKa"' and B,=G|[H,. Define =, m: G/[H,—~X by m(gH,)=gK,
7 (gH ,)=gaK respectively. Since H,-aK CaKK=aKk, r,is well-defined. Itis

easy to see that z; X m,: B,—~ XX X is an embedding and that X A—Ba—m—)X
is a double fibering. Obviously M,x=gKa 'K/K, N x=gKaK|K.

Define {du,; x= X} as follows: There is a natural isomorphism between
K/H, and z7'x (x€ X), which is unique up to the action of K on K/H,. So the
K-invariant density dpuy/y, on K/H,, normalized as

d =1
SK 1a, MK/, ’
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gives rise to a uniquely determined density du, on each zi'x which is clearly
smooth with respectto x& X. The obtained operator L, will be called the mean
value operator determined by a< G and denoted simply by M*. By definition

M @K) = fgkaK)usm,

K/H,2kH,

=, _ flgraK)ak,

where f € C~(X) and dk is the invariant density on K such that S dk=1.
K

1.3. We introduce here a notation which will be used throughout this
paper.
Let 9'(X) be the space of all distributions on X and
E'(X) = {us P'(X); supp u is compact} .
We put for s€R

H@Z™(X) = {ue&'(X); Pu is square integrable for all PE ¥ (X)},
HIS(X) = {ue 9(X); pue HE(X) for all pe C5(X)} .

Here ¥*(X) is the set of all properly supported pseudo-differential operators
of order s.

Let L: C5(Y)—C=(X) be a continuous linear mapping. If there is an
rR such that, for every s&R, L extends to a continuous linear mapping

L: HG™(Y) = Hg5n(X),
then we write

regL=r.

2. Regularity of Lp

2.1. Let V be an n-dimensional real vector space and X a manifold. Let
0<I<n and suppose a smooth mapping ¢: X — Gr(l, V) is given, where Gr(l, V)
denotes the Grassmann manifold of /-dimensional subspaces of V. Fix x,&X
and put W=¢(x,)C V. The differential of ¢ at x, gives a linear mapping
®: T—Hom(W, V|W), where T=T, X and TyGr(l, V) is identified with
Hom (W, V/W) in a natural way (cf. Remark 2.1 below). For us(V/W)*,
define uo®: T— W* by

(wo®@)(t)(w) = u(P(t)(w)), teT,weW.
We put then
v,,($) = min rank(uod).

“ECV /W H*\0
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RemARk 2.1. Recall that & is obtained as follows. For a sufficiently
small neighbourhood U of x,, there is a smooth mapping +»: U—Hom(W, 1)
such that Jr(x,)=1idy and ¢(x)=+(x)W (x U). Then

D =d, (7)),
where z: V— V[W is the natural projection.

ExampLE 2.2. Let X=R"\0, V=R". Define ¢: X—Gr(n—1, V) by
d(x)={E€V; (v, E)=0}, where (x, &) =x,E,+ - +x,E,, (x=(x, -+, %,), E=
(Es -, E)). Let xy=(1, 0, -, 00cX. Then W=d(x)=1{0} xR*. Define
Y(x)eHom (W, V)=Hom(R"!, R") by the (n, n—1)-matrix

— xz ------ —_— x”
Xyeeeeeenee 0
Qeeeoreren X,

It is obvious that yr(%)=1idy and ¢(x)=(x)W (x,#0). We can identify
V|W with R so that z: V— VW is given by (&, :++, £,)—&,. Then zn¢(x)E
Hom (W, V/W)=Hom(R"™*, R) is given by the (1, n—1)-matrix (—a,, +*+, —&,).
Hence, T, X being identified with X=R", ®(x)eHom(W, V/W) is given by
(—%y, -+, —x,). Thus
0, (P) = n’ll{ir\l rank (£o®)
= rank(1.®)
= rank(R"Dx— (—a, -+, —x,)ER"Y)

=n—1,
where 1&R* is the identity mapping R—R.

2.2, We give here a geometric description of the number v,(¢). It
will not be used later.
Put E=Im®. Let S be the set of all the Schubert varieties of type
(n—I1—1, ---,n—I—1) which contain ¥ as an interior point. Thus S&S is
/
given by
S={0cV;dim(QNV;)=i,i=1,-, 1},

where V,C--CV, is a flag in V such that dim V;=n—I4i—1 and
dim(WNV)=i (1=:i<]).

Proposition 2.3. v, (¢)=dim E—max dim(E N TyS).
SESs
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Proof. Let Y be a complementary subspace of W in V: V=W@®Y.
VIW will be identified with Y. Let S&S be defined by a flag V,C---CV,.
Since W &S, there are a uniquely determined subspace Z of Y of codimension
one and a y»€Hom(Z, W) such that

V,=(WNV)®ry (1<i<l),

where T'y={y(y)+y; y=Z}. Extend v to a yHom(Y, W). Then V=
WeTy.

First we determine TyS. Let A: (—¢, €)—>Hom(W, Y) (6€>0) be a
smooth mapping such that 4(0)=0 and T',hES (te(—F¢, €)), where T 4=
{w+A(t)w; weW}. We may assume 1—A(¢) (t(—6, €)) is invertible.
Since

w+ Aty = (1—PA@E))w+(A@)+FAE)w ,
we have T' 4= {w+B(t)w; we W}, where

B(t) = (A(2)+¥A(2))(1—FA(2)) '€ Hom(W, Ty) .
T,n< S implies dim T,mN(WPTy)=1, that is, Ty, CWNTy, whence
B(t)WcTy. Thisin turn is equivalent to A()(1—JA4(¢))'WCZ. Taking the
differential at =0, we get A(0)e Hom(W, Z). Thus

TwS cHom(W, Z) .
Since dim Ty S=(n—I[—1)/=dim Hom (W, Z), we get
TwS = Hom (W, Z)

Put Z={ZCY; codimy Z=1}. It is easily verified that for each Z & Z there
is an S€ S such that T, S=Hom (W, S). Thus

{TwS; S8} = {Hom(W, Z); Zc Z} .
It remains to show

0,,(¢) = dim E—?ggdim(E NHom (W, Z)).

For Z € £, take a u Y*\0 such that u|,=0. Consider the following com-
mutative diagram of linear mappings.

Uu-d

T - W*
o .

Ec ‘ >Hom (W, Y)

lx w

04
E/JE f\Hom (W, Z)=— Hom (W, Y|Z)
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Here ) is the quotient mapping, p is induced from the quotient mapping
Y—>Y|Z, and a, B, 7 are defined respectively by the following conditions:

onN = e,
Bp=17,
Y(A)w) = u(A(w)), AeHom(W, V), we W.
Note that @, A are surjective and «, B3 are injective, whence
rank #o® = dim E/E NHom (W, Z)
= dim E—dim ENHom(W, Z).
In view of the definition of v, (¢), this completes the proof. Q.E.D.
2.3. Now we go back to the situation of Section 1. Let X LBL Y
be a double fibering and smooth positive densities {du,} are given. Let

Ly: C5(Y)—C=(X) be the associated integral transformation. For each yeY,
define a smooth mapping ¢,: M ,—Gr(p; T,Y) by

¢,(x)=T,N.CT,Y.
Put
kB =(x1,l;)123 vz(d)y) .
We can state now the main theorem of this paper.
Theorem 2.4. reg L, g%ks .
The proof will be given in the next section.

2.4. Applications of Theorem 2.4 to the examples of Section 1.

ExampLE 1.1 (continued). By virtue of the homogenity of the situation,
kp=2,,(y,), where y,=0, x,=(1, 0, ---, 0)x(0). We have

M,, = {(&, 0); EER"\0} =R™"\0,
ToN¢ o = {(%); (x, E) = O} CR*,
T,Y and R" being identified. By Example 2.2,

vxo(d)yo) =n—1 .
Thus

reg Ly g%(n—l).

ExampLE 1.2 (continued). Suppose d=1. Then
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v(¢,) =rank I],_, (%, y)eBs,

where II, (s S) stands for the second fundamental form of S ats. In fact ¢,
is essentially the Guass map of S and, in the case d=1, v,(¢,) is just the rank
of its Jacobian at x—y, which coincides with the rank of II,_,. Hence

ks = minrank II, .
se8

ExampLE 1.3 (continued). We can verify easily

kBg = ‘v(l,o,--.,o)(¢) =n—1,
where ¢: S""'— Gr(n—1, R") is defined by

¢(x) = {(E)eR"; (x, £) = 0} .

Hence

Proposition 2.5. reg L,g%(n—— 1), teT.

ReEMARK. Another proof of this fact is given in [9].

Note that it can be easily verified without the use of Proposition 2.5 that
L, can be extended to an operator L,: H)(X)—H(X), where H ) (X)=
Hg(X)=H%™(X). By virtue of the Sobolev’s lemma, Proposition 2.5 implies

Corollary 2.6. If n=2 and t=T, then the eigenfunctions of L, with non-
zero eigenvalues are smooth.

Corollary 2.7. Ifn=2 and t< T, then the elements of H )(X) that are fixed
by L, are constant functions.

ReMARK (i). This fact was conjectured by T. Sunada in [8]. There it is
shown that the above fact is equivalent to the mixing property of an abstract
dynamical system on the space of certain random walks over X.

(i) Define g;: TX\0—TX\0 by £,(§)=I|&llg«(&/I|€]l), which is a diffeomor-
phism. Let k,: T*X\0— T*X\0 correspond to g, under the natural diffeomor-
phism TX\0=T*X\0 defined by the Riemannian metric. LetT',C(T*X\0)X
(T*X\0) be the graph of #,. 'Then it turns out T'},(X X X)\0=TI'} UT'Z, where
T%,(X x X) is the dual of the normal bundle of B, in X X X and T'{={(x, £, «/, £');
(%, &, &/, —E)ET} (cf. [9]). Since T',NT_,=0 for ¢ with small |¢|, this shows
that the Lagrangean manifold of the Fourier integral operator L, is composed
of graphs of two canonical transformations on T*X\0 (cf. Proposition 3.1).

ExampLE 1.4. (continued). We will express k5, in terms of Lie algebras.
By virtue of the homogenity of the situation, kz =v,(¢,,) (3=K, xy=a"'K).
Let g and £ be the Lie algebras of G and K respectively. Let p be a complemen-
tary subspace of f: g=t@p. Identify g and f respectively with 7,G and
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Tx(G|K) so that the projection p: g—P corresponds to the differential at e of
the projection z: G—GJK, e being the unit element of G. For x=ka' KM, ,
we have

N, = ka'KaK|K = n(ka~'Kak'K)  (x = ka"'K),
whence
by,(x) = TxN, = p(Ad(ka™))E).

Identify K/H,-: with M,, by the diffeomorphism: K/H,-1—M,, sending kH,-:
to ka”'K. Then ¢,, is given by

bso(kH,-1) = p(Ad(ka™)E)C P .

Fix a complementary subspace W+ of W=p(Ad(a™"))t in p and let I1: p W+
be the projection. Since

p(Ad(ka™)t) = Y(R)W
where Jr(k)=p(A4d(k)|w)=Hom (W, p), we have
d,($30) = d([I¥r): TEN Ad(a™)t — Hom (W, W)

in view of Remark 2.1 (0=H,-1€K/[H,-1). It is easy to verify
GIy)[X])(Y) =T1Ip(X, Y]), Xet, YeW.

Hence we have

Proposition 2.8. Let ®: tXW—> W< be the bilinear mapping defined by
DX, V)=IIp([X, Y]) (Xet, YEW). Then

kp,= min rank (uP).
us(WL)H\0

In Sections 5, 6, we will compute &, in the case G/K is a symmetric space.

3. Proof of Theorem 2.4

3.1. First we shall show that Ly is essentially a Fourier integral operator
in the sense of [6].

Let Q,;, be the line bundle of the densities of order 1/2 over X(cf. [6]). Let
C=(X, Q) be the space of all the smooth cross-sections of €,,, and

C3(X, Q) = {usC=(X, Q,,); supp u is compact} .

Fix smooth positive densities wy, wy of X, Y respectively. Define Ly by the
following commutative diagram:
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L
C5(Y)—> C=(X)
|2 ﬁj 2
C(Y, Qi) —> C=(X, Q) ,

where a(f)=fvox, B(g)=gVv oy (fECF(Y), g C=(X)). Put Az=
THXX Y)\0CT*XxY), where T5(X X Y) is the dual of the normal bundle
of Bin XX Y and 0 is the zero section. The distribution kernel of L, will be

denoted also by Lj.
Proposition 3.1. L, I"V4+9(X X Y, Ay).
As to the notation I"(XX Y, Ap)=IN(XXY, A;), see [6].
Proof. Let wp be the smooth positive density of B defined by
wp(®, ¥) = dp(y)-0x(x), (x,y)EB.
Then the distribution L, is given by
Lo dazay =| @ler,  eCiEXT).
In fact, for fe CF(X), g C5(Y),
Ls, fo/azor> = | S {_glmduo,

=, (505

It suffices to show that for each pe X X Y, there is a neighbourhood U of p
such that

Lyly I (U, Agly),

where Agp|y=n"'UNAj 7: T*(X X Y)—>X X Y being the natural projection.
Since supp L;=B, we may assume pcB. Let (U; 2, -+, 2", @', -+, w?) (N=
ny—+ny—d) be a local chart of X X Y around p such that

UNB = {(z w); 0 = - = uf =0} .
Let

wplynp = fdz

wyoy |y = gdzdw ,
where dz=dz'-:- dz", dw=dw'---du?, feC~(UNB), gC~(U), f>0, g>0.
For = C7(U),

<Ly, ¢V dzdw>

= <z3, (¢/\/ ?)\/ wx Oy
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={ @ E)ls0s
— [, 6z, OV 2 (s, 0)) f(z)ds
= @ev =1 &(z, w)a(z, w, 0)e*eroDdzdundd ,
where 0=(6%, -+, 0¢)ER,, a(z, w, 0)=F(I1/ g(z, w)= S(UX (R\0)), (2, w, 6)

=w'0'+ --- +w?0? and the last expression is the oscillatory integral. (As to
S%U x (R?\0)), see [6].) Thus

Ly |,eI™(U, A)

R xR4x R4

with
A = {(2, 0; =0'dw’); zeR”, R} = Agly,
m+%(nx+ny—2d) —0.
Hence
Ly|yeI"V4e+ (U, Agly). Q.E.D.

Since the symbol of Lj is homogeneous and non-zero at each point of A,
we have

Corollary 3.2. L is non-characteristic everywhere on Aj.
3.2. We quote a theorem from [6]. Let
HES(X, Qup) = HES(X) ® C=(X, Qup),
BP(X, Qi) = HE™(X) @ Ci(X, Qup),  seR.
0
Theorem 3.3 (Hormander [6]). Let C be a homogeneous canonical relation
from T*Y to T*X such that
(i) the restrictions to C of the natural projections T*( XX Y)—X, =Y are

submersions ;
(ii) there is a non-negative integer k such that

rank, (px)=nx+k,
rank, (py)=ny+k,

fJor all ceC, py: C—T*X and py: C— T*Y being the restrictions of the natural
projections T*( XX Y)—>T*X and T*( XX Y)—>T*Y respectively.

Then, if mé%(Zk—nX—nY), every AcI"(X X Y, C’) can be extended to a

continuous mapping from HG (Y, Q) to HE5(X, Q).
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Recall that C'={(x, &, y, 7); (x, &, 3, —m)€C}.
Corollary 3.4. Under the conditions (i) and (ii) of Theorem 3.3,

reg A= —m—%(nx—]—ny——Zk)
for every A T"(X X Y, C"), that is, A can be extended to a continuous linear mapping
of HEPP(Y, Qup,) into
HE o rtatnging-20(Xs Qup),  for each s, meR.
ReMark 3.5. By Proposition 4.1.4 of [6],

raf}kc(Px)"”x = rank,(py)—ny .

Hence the condition (ii) of Theorem 3.3 can be weakened:
(il rank,(py)=ny+k (ceC).

3.3. We prove now the key lemma of the proof of Theorem 2.4. Fix
Po=(%, o)E B and put A, =z""p,\ {0}, where z: T}(X X ¥Y)— B is the natural
projection.

Lemma 3.6. min rank, (py)=ny+d+v.(dy,)-
PCTVN

Proof. Consider the following commutative diagram of smooth mappings:

TEXXY) x50 > M, X{y,}

N N

K ¢
T$(XXY),c__ ,THXXY) 1 B

(1) g by 7,
T3 Y= T’:‘ Y . 1'/—

Y
T%,N,,

v being the restriction of linear forms on T, Y to T, N,,. We note that 8 s an
isomorphism onto the subspace (T%, Y),,of T% Y:

(2) B: THXX V)py——(Th,, Ve

In fact, let (£, 7)€ THX X Y),,CT¥ XX THY. From {x} XN, ,CB, it follows
7| 7y,n,,=0, that is, py((&, 7))=(T%.,Y)y,, Thus Im B(T¥,,Y),. Since
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dim(T%,,Y)y, = d = dim THX X V),, ,

it suffices to show that B is injective. Let (&, 0)& THX X Y),,. This means
that z¥£=0, where nf: T#X— T#B is induced by z,: B—~X. Since z, is a
submersion, this implies £=0.

Taking the differentials of the mappings in (1), we get the following com-~
mutative diagram of linear mappings.

0
|
0 T, M,
d.
0—— T%(XXY),, > T\A > T, B >0 (iii)
©) R dpy dnm,
0———>T3:0Y——>T,Y<A>T* Y > T;f,y >0 (iv)
Y
TN, ;
0
(i) (ii)

Here A€ A,, is fixed and we have made " he following natural identifications:

T\THXX YY)y, = THXXY),,,
TyynTHEY =THY,
T, T¥N, =T%N,,.

The sequence of the column (i) is exact by (2) and the following obvious exact
sequence:

0 (T4, Y),, > THY — TEN, — 0.

The sequences of the column (ii) and the rows (iii), (iv) are clearly exact. Let
di: T, M, —T\A be a lifting of di. Then Im(dpyd)C T*Y, whence v,—=
')/dpytz: : T,,M,,—>T%N, is defined. Obviously », is independent of the choice
of the lifting de. Ttis easy to verify that
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rank, dpy = dim THX X Y),,+dim T, Y- rank v,
= d+ny+rankv,.

Computation of rank »,. Define ¢, : M, — Gr(d, THY) by by (%)= (%)°
=(T%.Y),(x&M,;). Denote its differential at x, by ®,,: T— Hom(W"®, T} N,),
where T= T, M,, W°=g,(x). Since BA)EW°(AEA,), we can define
D, 2t T>THN, (NEA,,) by

(P, (&) = P (E)BON)),  EE€T.
Sublemma. »,=®, ..
Proof. There are a neighbourhood U of x, in M,, and a smooth mapping
¢: U— Hom(W°, T}Y)

such that ¢(x,)=id and ¢(x)W°=d,(x). Then @, =d, (v¢$), whence @, ,=
d.(7(¢poN)), where pon: U—T3%Y is defined by

($on)(x) = () BA)Edy(x), x€U.

In view of the natural isomorphism

x| rexrrie sy THEX V) pp —> (TH.¥)y,  (cf. (2)),

¢on defines a smooth cross-section ;[;i of the vector bundle TH(X X Y)|yx(yy—
UX {y0}. 4::7: is a local lifting of ¢ in the diagram (1): n'é)\o-;\.—:L on UX {y.}.
Hence d;;;\,: T—T,A is a lifting of d¢ in the diagram (3). Thus

vs = V(dapr)(drobo)
= 7d(prdpor)
= Vd($oN)
= d,(7($>1)
= Dy xs Q.E.D.

‘We have now

min rank, (py) = ny-+d+ min rank v,
)‘EAPO )\EA,O

= ny—{—d—}—}\mli\n rank (®,, »)
Eh8p,

= ny+d+ min rank (D, ou),

wewNo

where @, cucHom (T, T} N, ) is defined by (@p,ou)(E)==,,(&)(v) (€ T). It
remains to show the following
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Sublemma. mlrt rank @, cu=v,(¢,,).
usWo\o

Proof. Put V=T, Y, W=T,N,,, ¢=¢,, d=d,, for brevity. Thereis a

natural isomorphism
«: Hom (W, VW) — Hom(W*, V*|W°),

since W° and W can be naturally identified with (V/W)* and (V*/W°)* re-
specively. Note that V*/W°=T¥N,. Then it is easily verified that ®,=
—a®, where @: T— Hom (W, V/W) is the differential of ¢ at x,, We have

Dy ou = —uo®c=Hom (T, W*) = Hom(T, V*/W"),
for ue W'=(V|W)*. Infact, forteT, wesW,
A D@syou)(2), w) = <Dpy(t)u, w)
—La(D(t))u, wp
= —u, D(t)w)
= —(uc®)(2), w) .

Thus
V,(¢) = min rank (uod)

«ECV/WI*\o
= min rank @, ou . Q.E.D.

uewo\o
This completes the proof of Lemma 3.6.

3.4. Proof of Theorem 2.4. We apply Corollary 3.4. The condition (i)
is evidently satisfied. Taking k=£kpz+d, the condition (ii)’ is also satisfied by
virtue of Lemma 3.6. Thus

reg ng—m—%(nx—}—ny—Zk) ,
where m=——%( p+9) by Propesition 3.1. Hence
reg ZB = iks ’
2
which is clearly equivalent to

reg Ly = %kg. Q.E.D.

ReMARk 3.7. By Lemma 3.6 and Remark 3.5, we have

ky =(‘I'T"1)1élb ‘vy('\!"x) ’
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where r,: N,— Gr(g, T,X) is defined by
V(y)=T.M,.

4. Parametrices for L

In this section the projections m,, n, will be assumed proper. Then Ly
-extends to an operator C=(Y)— C*=(X), which will also be denoted by Lj.

An operator P: C=(X)—C=(Y) is called a parametrix for Ly if I—LyzP and
JI—PL; have smooth kernels.

Theorem 4.1. Ly has a parametrix if the following conditions are satisfied :
(i) kptd=ny=ny=2;
(ii) for each (x, £)e T*X\0 and (y, 1) T*Y\0,

’{yENz; EIT,M, = 0}§1 ’
Hre M, iy, = O} <1.

Proof. By Theorem 5.1.2 of [1] and Corollary 3.2, we have only to show
‘that Cz=T%(Xx Y)\Ois the graph of a diffeomorphism of T*Y\0 to T*X\0.

Lemma 4.2. Suppose ny=ny. Then Cjy is the graph of a diffeomorphism
if and only if the following conditions hold :

(iy the natural projection Cz—T*X\0 is a submersion ;

(i)’  the correspondence given by Cp between T*X\0 and T* Y \O is one-to-one.

Proof. It is trivial that the conditions are necessary. Assume that (i)’
:and (ii) hold. Let Cj be one of the connected components of Cp. The image
.of C3— T*X\O0 is open by (i)’ and connected. On the other hand, since =,
is proper, the mapping Cz/R*— (T*X\0)/R* induced by Cz— T*X\0 is also
proper, whence it follows immediately that the image of C§—T*X\0 is closed.
Since ny=2, T*X\0 is connected. Thus C3—T*X\0 is surjective. As for
‘Cg—>T*Y\0, it is a submersion by Remark 3.5. Hence the same argument
shows that C3—T*Y\0 is surjective. (i)’ implies then Cj is the graph of a
-diffeomorphism. But (ii)’ forces Cj to be C5. Q.E.D.

Lemma 4.3. i) Let (x, £)eT*X\0. Then the mapping $¢.0: {(3, &);
(%, &, 3, 0)€C}>{yEN,; E|7,1,=0} defined by ¢ p(y, 1)=y is bijective.

ii) Let (y,n)eT*Y\0. Then the mapping r,n: {(%, &); (%, &, 3, n)E
Cgt— {xeM,; 1|1,5,=0} defined by i, (%, E)=ux is bijective.

Proof. i) We note that ¢,y is well defined. In fact (x, &, y, 7)=C;
implies that (£, —n)eTE, (XX Y) vanishes on T, ,B which includes
T,M,x (0), whence &| 7,,,=0.

Let (x) & Vs ’7)1 (x; g, Y 7]’)6 Cgs. Then
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nin =¥t =nfnveTE )B.

Since 7,: B—Y is a submersion, we have n=2%". Hence ¢, ¢ is injective.
Let yeN, with £|7,,,=0. Then ¥t T ,)B is zero on the tangent
space of the fiber of z,. Hence there is an 7€ TFY with z¥¢=n¥n. Then
(x, &, v, 71)eCs. Hence ¢,y is surjective.
(ii) can be proved in the same way. Q.E.D.

By Lemma 3.6, (i) implies (i)’. By Lemma 4.3, (ii) implies (ii)’. Hence by
Lemma 4.2, Cj is the graph of a diffeomorphism. This completes the proof
of Theorem 4.1.

Remarg. It is probable that the conditions (i) and (ii) are also necessary
for L to have a parametrix.

ExampLE. Let Y=RP" be the real projective space and X=(RP")* the dual
projective space. Put

B = {(x,y)e XX Y;yea},

and fix smooth positive densities {du,; x&X}. Then it is easily seen that
kz+d=n, and the condition (ii) of Theorem 4.1 is satisfied. Hence, if #=2,
Ly has a parametrix.

RemARk. It is known that if we choose appropriate densities then Ly is an
isomorphism (cf. [5]).

5. Mean value operators on symmetric spaces of non-compact type

In Section 5 and Section 6, we shall study the mean value operator of
example 1.3 more closely when G/K is a symmetric space. In this section we
consider the case G/K is of non-compact type.

5.1. Let @ be the Cartan involution of g for G/K and p the (—1)-eigen-
space of §. Put

X,Y)=—B(X,0Y7) (X, Yegq),

where B( , ) is the Killing form of g. (, ) gives a positive definite inner
product on g. Let §, be a maximal abelian subspace in p and extend §, to a
maximal abelian subalgebra §) of g containing §,. Put h=HNE. Then h=
He+b,. H°=HRC is a Cartan subalgebra of g°=g®C. Define a real vector
space hr by

br =/ —1hr+5,CgC

and introduce in Dg the inner product corresponding to ( , ) under the natural
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isomorphism: hr==f. Denote the orthogonal projection hr—¥, by ar—>a&. We
identify Hr naturally with its dual space using the inner product. Let ACHhg

be the root system of g€ with respect to §C. Let
A, = {acA; a£0},
A= {2, acA;}Ch,.
For ae A, v€A4, put
g = {Xeg% [H, X] = a(H)X for all HE}} ,
§Y==;§;ga:

where a(H)=(a, H). Fix linear orderings in hr and B, which are compatible,
that is, @>0 implies >0 (a€hr). Let A*, Ay, A* denote the sets of positive

roots of A, A,, A respectively. Then

At = {a; ac A} .
For yeA™* we put .
P =tN@+57),
pPr=prn@+37").

We define also
P={Xet;[Xh] =0}
P = hp-
Then we get orthogonal decompositions:
t=043310,
Yeit
(5) b=+ 2 pr.
YeAt

Obviously we have

Lemma 5.1. Let HeY, YEA*. Then
(i) ad(H)|p=0if v(H)=0;
(i) ad(H)|gy ts an isomorphism of ¥ onto " if v(H)=*0.

By virtue of the identity
(ad (H) )’ = Y(HYidpy, v

(H €by, e A*), Lemma 5.1 implies immediately the following

Lemma 5.2. Let Heby, yeA"U {0}. Put Ay=Ad(exp H)|y,y.

() Ng=idy.p i VH)=0;
(i1) of vy(H)=*0, Ay is given by

Then
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x| [coshy@) SRYHE)aqcmy \(x
= Y(H)
sinh v(H) ad(H) cosh
— y(H
v M @ || ¥
for Xeb, Yep

Thus for yEA™* and H €Y, with v(H)=+0, p(Axlp) is an isomorphism of £
onto p’, p: g—p being the orthogonal projection.

Put my=3Yp" (H €Yy), where v runs over the set A*\Af, Af={vyeA*;
v(H)=0}. We have p Ad(a')f=my, where a=exp(H) (H},). In fact,
Lemma 5.2 implies
P yeAN\AL

pAd(@ ={ 0 yeliU {0}.

Fix now an aeG. Since there is an He), such that ac K exp (H)K, we
may assume a=exp (H). By Proposition 2.8 we have

kzp,= min rank(u-®),
uE (mg)*\0

where myz=>Y"p?, ¥ ranging over the set AU {0} and &®: Exmy—myz is
defined by ®(X, Y)=p([X, Y]) (Xt, Y €my), p,: p— mjy being the orthogo-
nal projection.

Lemma 5.3. k= min dimad(Z)(X) ), where v ranges over the set
AN\AZ. Zemp\0

Proof. Obviously

kzp,= min rank®,,
Zemp\0

where @,: ExXmy—R (Z€my) is defined by
DX, Y)=(X, Y], 2) Xet, Yem,.

The equality ([X, Y], Z)=(Y, ad(Z)X) (X t) implies rank ®,=dim p, ad (Z)E,
where p;: p—my is the natural projection. Since

[mill-) Z/ r'Y]C:n'[H ’

[mz, 2 Plcmy,
where in the summation >}”, v runs over the set A% U {0}, we have

pad(Z)t = ad(Z) (2 P). QE.D.



410 T. TSUJISHITA

5.2. Now we assume a is regular, that is, dim KaK/K=ma;( dim KgK|K.
ge

It is easily verified that exp (H) (H &Y)) is regular if and only if A7=@. Then
mz=Y,. Lemma 5.1 and 5.3 imply immediately

kp, = 2} dimp'—s,
Yei+

where s= max 3] dimp”. Let €V be the set of hyperplanes V" of §, such
H/Ef)p\o 'YEZI-;

that A,=V NA spans V. Then obviously

§ = max §y,,

vecy
where sy= >3 dimp? (Ay=A*NV). It is obvious that for each V&<V’ there
veiy
are such compatible orderings in hgr and Y, that {aj, -, a;}, {&, -+, &} and

{@,, -+, @} are the sets of the simple positive roots of A, A and A, respectively.
Here /=dim b, r=dim ), and the ordering in V" is induced from that of §,.
We may assume that the compatible orderings in hr and b, chosen before have
the above property, since the number s, is independent of the choice of them.
Thus

ry = 2 dimp’
VEK;

= E: dhncgy

yehy

= E] diII‘ngm

LN
+

= g{aEA-i‘; a= m2a2+"°+mrar:‘:0} ’
where Aj={acsAt; acAJ}. Put

§ = max H{acsA"; @ = ma,+---+m,a,+0, m, =0},
1sj<r

which is clearly independent of the choice of the orderings and satisfies s<35,
since sy<§ (V'€<V/). On the other hand, putting V= {Z'] a,d,; a, =R,
k=1

a;=0} €V, we have § = max sy, <s. Hence §=s. Therefore
15isr

kp, = >3 dim p'—s
Yea+

= min H{ac A*; @ = m@++-+ma,, m+0} .

1sj<r

In conclusion we have proved
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Theorem 5.4. Suppose a is regular. Then ks =k(G|K), where
KGIK) = min H{ac AY; @ = md++ma,, m,+0}
which is independent of a.

5.3. Next we consider the case @ is no longer regular but non-degenerate.
a=G is called non-degenerate if the following condition holds:

4) Let X ~Z» X be the universal covering of X and X=X, X --- X X, the
decomposition into the irreducible factors. Then % KaK/K) is not included
in any subsets of the form X, X+ X X, | XF;X X; ;X X Xy (1=Z{=N) with
Fi<oo.

Theorem 5.5. Suppose X=G|K is a symmetric space of non-compact type
and ac G is non-degenerate. Then

reg M*>0.
We prepare three lemmas.

Lemma 5.6. If a=exp(H) (H&WY,) is non-degenerate, then A\Ay spans
br, where Ay={a; a(H)=0}.

Proof. Let W be the subspace of g spanned by A\A,. Assume W #Dhg.
Put V={H’cbgr; (H’, H)=0}. Since ACW UV, we have hr=V+W. Put
U=V nwW, Ay=ANU=4A,NU, Apy=ANW. Then (a, B8)=0 for all
acsAN\Ay, BEAy\Ay. In fact we have +a+B &V U W, otherwise o= W or
BeV, a contradiction. Hence the a-series of B consists of B alone. Thus
we have (a, 8)=0.

It follows then that Ay\A,;C W, since Ayp\Ay=A\Ay spans W. Hence
we have a non-trivial orthogonal decomposition: A=A’U A", where A’=Ay,
A" =Ap\Ay. Let g=g’+g” be the corresponding decomposition. Then
Lemma 5.1 implies p Ad(a™')t”=0 (¥’=EtNg"”), where p: g’ —p” (p”"=pNg”)
is the natural projection.

Let X;=G,/K; and g; be the Lie algebra of G;. Then g=g,®- Pay.
Since X; is of non-compact type, g; is simple. Hence g” contains some g;.
Note that the tangent space at K; of the projection of 7 (KaK/K) on the i-th
factor X; is isomorphic to p Ad(a™")f,(f,=¥%” Ngq;), which is zero. Thus

7 (KaK|K)C XX+ X X; (X F;xX; XXXy
with #F;< oo, whence a is not non-degenerate. Q.E.D.

Lemma 5.7. For Z =mg, the condition :
(6) [Z,t]=0, yelA*\Rj
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implies
[Z,6"] =0, a€A\Ay.

Proof. For o= A\Ap,we have non-zero elements X,, X_, respectively of
g% g% such that

(8°+g™)NE=R-(X,+X_,).
Obviously (6) is equivalent to
[z X,+X_,]=0, asA\Ay .
Put Z=Zo—|—ﬂ M Zs (Z,YC, Zg=gPf). We have

EAm

[Zﬂs Xa_i_X—m] 5g¢+5+g~m+5 .

Here g°=1C, g"=0 if ye£A. Note that for B, S/'eA,U {0} with B+B' we
have a+B+a+p’, —a+B’. In fact a+B=—a-+/B" would imply a(H)=0,
which contradicts a= A\A,. Thus

[Ze, X,] =0, BeAzU{0}, acA\Ay.
In particular
[Z,¢*1=0, aEA\Ay . Q.E.D.
Lemma 5.8. For Z ¢S, the condition :
[Z,8"]1=0, acsA\Ay,
implies Zef),,—i—ﬂE%ng", where
by = {H'€br; a(H') =0 forall ac A\Ag} .
Proof. For any subspace V' Cg® we put
C(V)={Xeg% [V, X]=0}.
Let b,={H €b°; a(H)=0} (¢cbhr). Then
C(g") = h,+2 9°,
where 3 runs over the set {B€A; a+BEAU {0}}. In factlet Z=2Z,+ 3 Z;
(Zs=gP), g"=C.X,. Evidently [Z, g*]=0 implies pes
[Zs, X,]=0, BeAU{0}.

If B0 and ZP=0, then we must have a+BAU {0}. If 8=0, then [Z,, X,]
=a(Z,)X,, whence Z°c),. Thus
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o
C(g*)Ch,+>V ¢°
The other inclusion is obvious
Thus

C 323 ¢9)= N bht2"g.
aEA\Ar

asA\Arg

where B runs over the set {B€A; +a+ BEAU {0}, acA\A,}. But
+a-+Be&EAU {0} implies that ithe a-series of B consists of B alone, whence
(a, B)=0. Thus XV g*C

6" QE.D.
BEANDE
Proof of Theorem 5.5. We may assume a=exp(H) (H€b,). By Lemma
5.3, it suffices to show that Zemy is zero if it satisfies (6). By Lemmas 5.7
and 5.8, (6) implies Z€h,+ >3 g°.

But by virtue of Lemma 5.6 we have
Beanyy
Hx=0, whence Z=0.

Q.E.D.
6. Mean value operators on symmetric spaces of compact type

In this section we assume X=G’/K’ is a symmetric space of compact type
6.1.

Let G/K be the symmetric space of non-compact type dual to X.
We retain the previous notations for G/K. Let ¢’ and ¥ be the Lie algebras
of G’ and K’ respectively. There are identifications:

: g/=t+ipcCqC, t=¥
(t=+/—1). (5) gives an orthogonal decomposition

b= 3 .
reatc{0}

As before we have the following

Lemma 6.1. Let HeY,, yeA*U{0}. Put

Nig = Ad(exp(iH)) gy 4 ;pr-  Then
() Ma=idpyyipm if YEH)=0;
(i) of v(H)=*O0, Ny s given by

x| (cosyEy SYHaq6m)(x

v(H)
s1ng§§1)ad(zH) cos Y(H) || v |,
Xeb, Yeip.

Hence, for yeA* and H E[)p with y(H)&E#Z, PNiglyy is an isomorphism
of ¥ onto b, p: g’ —ib being the orthogonal projection
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Put ,;=V#p” where v runs over the set A*\A{,), A= {veit;
v(H)erZ}. We have

PAd(a™ )t = Ty,
where a=exp(¢H). In fact, Lemma 6.1 implies
Y A-ﬂ- At
ﬁAd(a")fY:{ poTET Ve
0 e 5(1{) U {O} .

By Proposition 2.8, we have

kzp,= min ranko®,
ue (mz)*\0

where =3/ ip", ¥ running over the set A{y U {0} and &: txm,—my is
defined by

B(X,Y)=75(X, Y], Xet, Yenmy,
P,: ip — Ty being the orthogonal projection.

Lemma 6.2. kz;= min dimad(Z)(X "), where v runs over the set
AN\A . Zew\0

Proof. Obviously

kg,= min rank ®,,
Zewmp\0

where ®,: £ x M, — R(Z €my) is defined by
P,(X,Y)= (X, Y], 2) Xet, Yeny.
Just as in the case of Lemma 5.3, we have
rank &, = dim p, ad (2)¥,
P.: ip— Ty being the natural projection. Since
g, 2 P]Cmy,
[mz, 27 Plcmy,
where, in the summation 3)”, v runs over the set Ay, U {0}, we have
Prad (2 =ad( )XV YD). Q.E.D.

6.2. Suppose a=exp(iH)e G’ (HEWY,) is regular, that is dim K’aK'|K'=
max dim K’gK’[K’. It is easily verified that a is regular if and only if Aly,=0.
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Then my=im, and Tz=ih,=imz. Since Af=A(s=0, it follows from Lemma
6.2, Lemma 5.3 and Theorem 5.4 that

ks, — min dimad(iZ)(2¥)
zZ Ebp\o

— min dimad(Z)(2 )
ZEbp\O
= K(G/K).

Hence we obtain

Theorem 6.3. Suppose X=G'|K’ is a symmetric space of compact type and
acs G’ isregular. Let G/K be the symmetric space dual to X. Then ky; =k(G/K).

6.3. Finally we consider the case where a is non-degenerate, that is, the
condition (4) holds for a.

Theorem 6.4. Suppose X=G’|K’ is a symmetric space of compact type and
ac G’ is non-degenerate. Then

reg M°>0.
The proof proceeds just as before.

Lemma 6.5. If a=exp(iH) (H €Yy) is non-degenerate, then A\A ) spans
br, where A= {acsA; a(H)EnZ}.

Proof. Let W be the subspace of Hgr spanned by A\A( and assume
W=£br. Put Ay=ANW, T'ypy= {H'EYr; (H, H)zZ}. Then (a, B)=0
for all aeAp\(Ay NTuw)=A\Aw), BEAM\(Ay NT ). In fact we must
have +a+B&A, since a&ly), BET Yy imply +a+B&Ay and acs W,
P& W guarantee - a+B&EA\A CW. Hence the a-series of 3 consists of 3
alone. Thus (a, 8)=0.

We have then Au)\(Ay NT(p)C WL and get a nontrivial orthogonal
decomposition A=A;UA;; where A=Ay, A, =Ap\(Ay NTy). Let ¢'=
g;Pg;; be the corresponding decomposition of ¢’. Let X;=G//K! and g/ be
the Lie algebra of G!. Then ¢'=qiP---Pgy. Let A=A,U---UAy be the
corresponding decomposition. We claim A;CTy) for some 7. In fact there
is a g} such that g/Ng,;==(0). If g/ is simple, g/Cg;; and then A, CTy.
Suppose g/ is not simple and g/d-qg;;. Then g/ can be identified with ucu,
where u=g/Ng,;, is simple and the g/-component of \/—1H 1is of type
vV —1(H;D(—H;)). Since (a, H)=(a, H)erZ for ac AN (ud(0)), we have
(a, HYyenZ also for ac AN((0)Pu). Thus A;CT .

Lemma 6.1 implies then p Ad(a™')t =0 (t/=¥Ng!), where p: g/ —p!
(P!=pNg!) is the natural projection. Since the tangent space at K& X; of the
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projection of #7/(K’aK’|K") on the i-th factor X is isomorphic to p Ad(a™)¥/,
we have

7 Y (K'aK’|K)CX; X X X;  XF; X X X oo X Xy
with #F;<Cco, whence a is not non-degenerate. Q.E.D.
From now on we fix a=exp (:H) (H €g,) which is non-degenerate.
Lemma 6.6. For Z =wmy, the condition :
(7) [Z,¥]1=0, YyeAN\Af ,
implies
[Z,8"]1=0, acsA\Ay) .

Proof. Let {X,; acA} be a Weyl basis of g¢mod §C, that is, X,=g”
and the following hold:
[X., X_J]=a, acA,
[Xa) Xp] = NoypXois, @, BEA, a+BEA,
where N, ;#+0. Then
Nep=—N-u-p=—Nga, a,BEA.

Let o and 7 be the conjugations of g€ with respect to g=f-+p and g'=I++/—=1p
respectively. Then we can take {X,} so that 7X,=—X_, for acA (cf. [4]).
Since ¥=(1+0o+7407)a¢, we have for yeA*

=2 EN(g"+g7"+og"+og7™")
=2I(R.(XyF+oX,—X_,—c X _)H+Ri(X,—0cX,—X_,+0X_,)).
d=y
Hence
Cl =V (C.(Xy—X_o)+C.(c Xy—aX_,)).
G-y
Thus (7) implies
[Z, Xa—X_ 4] =0, acsA\Ay, .
Put Z=2Z,+ 3} =X, (Z,e¥’ 2,C). We have

AEAmD
[Zo, Xa] =0 ’ asA\Aw) ,
since the g®-component of [Z, X,— X _,] is [Z,, X,)-

Let €A, acA\Ay). We will show [2,X,, X,]=0. We may assume
AaeA.



INTEGRAL TRANSFORMATIONS ASSOCIATED WITH DoUBLE FIBERINGS 417

First we consider the easier case: A+2aeEAy). Then A+a+puta for
any uEA. Then the g***-component of [Z, X,—X_,] is [3,X,, X,], whence
[2: X, X,]=0.

We assume now A+2a=p& A¢y. Then pd+-+A, +or. Otherwise
2a(H)=u(H)—NH)=5(H)—X(H)e27Z, whence a=T 4, which contradicts
acA\Aqy. Since the a-series of A contains A and A+2a, we have B=\+a
=u—acA. Note that a=B—A=p—B. The g°-, g"P-components of
[Z, X, —X_,] are respectively

[2: X0 X o] —[2uXu X 4],
_[z-AX—M X—a]"_[z—!‘X—ﬂ-: Xa] ’

and the g°-, g~“-components of [Z, Xpg—X _g] are respectively

[2-2 X Xp]—[2Xu, X g],
—[ZAXA: X—ﬁ]‘f‘[z-nX—ﬂ-: Xﬁ] .

Hence NY=0, where Y="(2,, 2, 2-2, 2_u) and

Nyy —Nyoa 0 0
Ne 0 0 —N_-4 N_pa
0 ‘_Nu-,—ﬂ N-x,ﬁ 0
_NA,—B 0 0 N—F.ﬂ
Since det N=(N, 4Ny, -p)’+(N,oNy, -s)’+0, we have z,=0. In particular
[2:X 5 X,]=0.
Thus we have shown [Z, X,]=0, a=A\A ). Q.E.D.

Proof of Theorem 6.4. We may assume a=exp (iH) (H €§,). By Lemma
6.2 it suffices to show that Z&my is zero if it satisfies (7). By Lemma 6.6, we
have

[Z,9"]=0, acA\Aw.
Then the same arguments as in the proof of Lemma 5.8 show

Zebpm+ 2 g,
BEANm

where Y= {H'€br; a(H")=0 for all a=A\Ayp}. By Lemma 6.5, §,y=0.
Hence Z=0. Q.E.D.
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