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Introduction

For a double fibering X< B—2-+ Y of differential manifolds, an integral
transformation LB: C%(Y)-+C°°(X) is defined by LB=(πι)ι(π2)* (see Section 1
for the precise definition). This class of integral transformations, introduced
in [2], includes many classical ones such as the Radon transformation, the spher-
ical mean operators ([7]), the mean value operators on symmetric spaces ([4]),
etc.. In each particular case deep investigations have been carried out (see [2],
[5] for example).

In this paper, using the fact that LB is a Fourier integral operator in the
sense of [6], we study the question how much LB improves the regularity of func-
tions. An answer is described by an integer kB geometrically associated with
the double fibering X<-B-> Y (Theorem 2.4).

Section 1 gives the precise definition and examples of LB. Section 2 defines
kB, states the main theorem (Theorem 2.4) and applies it to the examples. Sec-
tion 3 proves Theorem 2.4. Section 4 gives a sufficient condition for LB to
have a parametrix. Section 5 and 6 study the mean value operators on symmet-
ric spaces of non-compact and compact type respectively.

This paper includes the results of [9], although the proof is somewhat
different.

The author would like to express his hearty thanks to T. Sunada, whose
suggestion that the theory of Fourier integral operators might be used to study
the spherical mean operator was the motivation of this paper, and who suggested
also that kB might be expressed in terms of the root systems in the case of the
mean value operators on symmetric spaces. The author would like to thank
also Professor H. Ozeki who suggested the possibility of describing the number
vXQ(φ) of Section 2 in terms of the Schubert varieties.

1. Definitions and examples

1.1. Let X and Y be manifolds*) and B a sub manifold of Xx Y such that

In this paper the word manifold will always be used for a connected, paracompact, Haus-
dorff smooth manifold of finite dimension.
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7fι=τrx\B: B-^X and π2= πγ \B: B->Y make B locally trivial fiber spaces over
X and F respectively. Here πx: Xx Y->X and πγι. Xx F->F are natural
projections. The obtained object X«^B->Y will be called a double fibering.
Throughout this paper we will use the following notations:

nx = dim X, nγ — dim Y ,

Nx=π2πT1xdY (x<=X) ,

M, = π&^ydX (ytΞ F) ,

p = dim Nx y q — dim My y

d = nx—q = nγ—p .

Obviously

d = codimγNx = codim^M^ = codim^xr B ,

x<=X, y<=Y.

Suppose that a smooth positive density dμx is given on each π
which depends on x smoothly. Define LB: C%(Y)->C°°(X) by

(LBf)(x) = f\Nχdμx,
NX

Here C°°(X) is the set of all smooth functions on X and

C7(F)={/CΞC°°(F); supp/is compact} .

Note that LB is well defined since it is obvious that LBf<=C°°(X) for
LB is called the integral transformation associated with the double fibering X-^-B
— » F and the densities {dμx} .

1.2. Examples of LB.

EXAMPLE 1.1 (Radon transformation). Let ^f=(RM\0)xR, Y=Rn. Denote
the coordinates of the points of X and F by (17, ρ)=(ηly •••, ηn, p) and (y)=
(yι> "•>%) respectively. Put

B = i(*ι,p,y)\ (ι,y)-ρ = 0} c:Xx F,

where (17, y) = ^iJiH ----- h^^ In this case nx = w+ 1, % = //, Λ^(ί7> ̂  = {(y)
(77, y)=/)}, Λf(3p)={(97, p)\ (n, y)=p}> p=n—l, q=n, d=l. Let dμ^ be the
smooth positive density on N^tP) defined by the condition that

dμ^tPrd(η, y) = dy!—dyn on

Then the associated LB is the classical Radon transformation (cf. [3]).

EXAMPLE 1.2. Let X=Y=Rn. Let S be a compact submanifold of
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codimension d. Put Bs={(x, y)\ x—y^S}. Then X<-BS-+Y is obviously
a double fibering. Since Nx=x—S^S, we can define dμx as the smooth
positive density corresponding to the volume element ωs of the induced Rieman-
nian metric on S. Then Ls=LBs is defined by

(Lsf)(x)=\ f(x-s)ωs,
ΛeS

EXAMPLE 1.3 (Spherical mean operator). Let X=Y be a compact Rie-
mannian manifold, SX={(x, ξ)^TX] ||?|| = 1} its unit sphere bundle, and
π: SX-+X the natural projection. Let Gt: TX-+TX (*eR) be the geodesic
flow. Since Gt(SX)c.SX, we can define gt=Gt\sx: SX-+SX. Put

et(ξ) = (*ξ, πg

T= {ίeR; ̂  is an embedding} .

Note that ΓU{0} contains a neighbourhood of 0. Put Bt=lmetdXxX
(ίe Γ). For ί with sufficiently small | ί | ,

d being the metric defined by the Riemannian structure. For this double
fibering X*-Bt-*X, nx=nγ=n, p=q=n—l, d=l. MX=NX (x&X) is the
geodesic sphere of radius 1 1 \ with center x.

Let dμt x be the smooth positive density on Nx corresponding to the natural
one ωx on π~lxc:TxX under the diίfeomorphism πgt: π~lx-+Nx. The associated
operator Lt=LBt is then defined by

(Ltf)(x) = \ ι /(exp(φK, x^ X, /e C~(X) .
Jξe Λ~1x

Lt is the spherical mean operator with radius \t\ on X (cf. [9]).

EXAMPLE 1.4 (Mean value operator [4]). Let G be a connected Lie
group, K a compact subgroup of G, and X=Y=G/K. Fix an #eG, put
H^KΠaKa"1 and Ba=G/Ha. Define πlt π2: G\Ha-*X by ^(gHa)=gK,
π2(gHa)=gaK respectively. Since Ha aKCLaKK=aK, π2 is well-defined. It is

easy to see that πιXτr2: Ba-+XxX is an embedding and that X< - Ba - >X
is a double fibering. Obviously MgK=gKa"lK/Ky NgK=gKaK/K.

Define {dμx\ x^X} as follows: There is a natural isomorphism between
K\Ha and πϊlx (x^X), which is unique up to the action of K on K/Ha. So the
jf£-invariant density dμκ/Ha on K/Hay normalized as

JK/Ha
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gives rise to a uniquely determined density dμx on each πϊlx which is clearly
smooth with respect to x& X. The obtained operator LBa will be called the mean
value operator determined by a^G and denoted simply by Ma. By definition

(M f) (gK) = ( f(gkaK)dμκlHa
JK/Ha^kHa

= \ f(gkaK)dk ,
JK=3k

where /eC°°(JΠ and dk is the invariant density on K such that I dk=l.
JK

1.3. We introduce here a notation which will be used throughout this
paper.

Let 3)\X) be the space of all distributions on X and

G'(X) = {utΞ3)'(X)\ supp u is compact} .

Weput forseR

Hcάmp(X) = {u^e\X)\ Pu is square integrable for all P<=ΨS(X)} ,

for all

Here ΨS(X) is the set of all properly supported pseudo-differential operators
of order s.

Let L: C%(Y)->C°°(X) be a continuous linear mapping. If there is an
such that, for every seR, L extends to a continuous linear mapping

L:

then we write

2. Regularity of LB

2.1. Let V be an w-dimensional real vector space and X a manifold. Let
0</<τί and suppose a smooth mapping φ: X-*Gr(l, V) is given, where Gr(l, V)
denotes the Grassmann manifold of /-dimensional subspaces of V. Fix x0^X
and put W=φ(x0)ciV. The differential of φ at XQ gives a linear mapping
Φ: Γ->Hom(H^, V\W\ where T=TXQX and TwGr(ly V) is identified with
Hom(W, V/W) in a natural way (cf. Remark 2.1 below). For
define uoφ: T-> W* by

= u(Φ(f)(w)) , /e Γ, ̂ e W .

We put then

rank(woφ) .
7
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REMARK 2.1. Recall that Φ is obtained as follows. For a sufficiently
small neighbourhood U of #0, there is a smooth mapping ψ: U-+Hom(W, V)

such that ψ(x0)=idw and φ(x)=ψ(x)W (x^U). Then

Φ =

where π: V-> V\W is the natural projection.

EXAMPLE 2.2. Let Jί=Rn\0, V=ΈC. Define φ: X->Gr(n-l, V) by

φ(*)=:{£<ΞΞF; (*, f) = 0}, where (*, f) = a^fH ----- \-χnξn, (x = (xι, — ,#„), 1 =

<5ι, -> W) Let *b==(l, 0, -, 0)e JΓ. Then PF=φ(*0) = {0} xR"'1. Define
, F)=Hόm(R"-1, Rn) by the (n, w-l)-matrix

It is obvious that yJrQcQ) = idw and 0(^) = ̂ (^)iF (^ΦO). We can identify

y/FF with R feo that #: Γ-> Γ/ίΓ is given by (ξly — , |M)^^. Then>φ(Λ?)e
Hom(ΪF, VIW)=ΐlom(ΈCl-\ R) is given by the (1, n— Ί)-matrίx'(— ̂ , •-, — Λ?Λ).
Hence, Γ^ being identified with X=Rn, Φ(x)<=ΐiom(Wy VjW) is given by

(— *2, -,— Λ:Λ). Thus

ϊ; (φ) == min rank(ίoφ)
/eR*\o

= rank(loφ)

where leR* is the identity mapping R->R.

2.2. We give here a geometric description of the number vxo(φ). It

will not be used later.

Put Z?=ImΦ. Let cS be the set of all the Schubert varieties of type

(n— /— 1, •••, n— I— 1) which contain W as an interior point. Thus 5e<5 is

/
given by

S = {Qd V dim(ρn Vt)>i, ί=l, •", /} ,

where ^C CF, is a flag in V such that dim "F, ==w— /+*'—! and

Proposition 2.3. ^0(φ)=dim £"— max dim^ n TWS) .
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Proof. Let Y be a complementary subspace of W in V: V= W® Y.
F/FFwill be identified with Y. Let Se <S be defined by a flag Fid — CF,.
Since ίFeS, there are a uniquely determined subspace Z of Y of codimension
one and a ψ eHom(Z, IF) such that

where Γψ=={ψ(;y)+j;;;yeZ}. Extend ψ to a ψ eHom(F, W). Then F=

First we determine TWS. Let ^4: (— 8, £)-»Hom(FF, Y) (£>0) be a
smooth mapping such that A(0)=0 and Γ^(ί)^*S(ίe(— £, £)), where Γ^(ί)=
{α;+ (̂*)20; w eϊF}. We may assume l—ψA(t)(t^(—ε,ε)) is invertible.
Since

w+A(ϊ)w = (l-

we have Γ^(,)= {w+B(t)w; w& W} , where

B(t) =

S implies dimΓ^ωn(Π^ΘΓψ) = 7, that is, Γκ(ί)cFFnΓψ, whence
j?(f)FFcΓV This in turn is equivalent to A(t)(l—tyA(t)Y WcZ. Taking the
differential at *=0, we get A(0)^ Hom(PF, Z). Thus

TWS cHom(W, Z) .

Since dim 7^5= (w —/—!)/= dim Hom(PF, Z), we get

, Z)

Put 55= {Zc F; codimr Z=l} . It is easily verified that for each Ze 2 there
is an St=S such that 7VS= Horn (W, S). Thus

{TVS; SecS} - {Hom(PF, Z);

It remains to show

v (φ) = dim £*— max dim (E (Ί Horn (FF, Z)) .

For ZeS, take a we F*\0 such that u\z=0. Consider the following com-
mutative diagram of linear mappings.

Φ

1"
Έ\E Π Horn (W, Z)<^U Horn (W, YfZ)
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Here λ is the quotient mapping, μ is induced from the quotient mapping

Y-> Y/Z, and ay β, 7 are defined respectively by the following conditions:

= n(Λ(«0), ΛeHom(PF, 7),

Note that Φ, λ are surjective and <x, /3 are injective, whence

rank uoφ = dim /?//? Π Hom(PF, Z)

= dim jE-dim £ (Ί Hom(PF, Z) .

In view of the definition of vxo(φ), this completes the proof. Q.E.D.

2.3. Now we go back to the situation of Section 1. Let X +-^—B - > Y

be a double fibering and smooth positive densities {dμx} are given. Let

LB: Co(Y)^>C°°(X) be the associated integral transformation. For each je F,
define a smooth mapping φ^: My-^Gr(p\ TyY) by

Put

kβ = min vx(φy) .
=

We can state now the main theorem of this paper.

Theorem 2.4. reg LB ̂  — kβ .
Zl

The proof will be given in the next section.

2.4. Applications of Theorem 2.4 to the examples of Section 1.

EXAMPLE 1.1 (continued). By virtue of the homogenity of the situation,

kB=vXo(φyo), where ̂ =0, *b=(l, 0, -, O)x(O). We have

T0F and Rw being identified. By Example 2.2,

Thus

EXAMPLE 1.2 (continued). Suppose d=l. Then
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where II s (s^S) stands for the second fundamental form of S at s. In fact φy

is essentially the Guass map of S and, in the case rf=l, vx(φy) is just the rank
of its Jacobian at x— y, which coincides with the rank of //,_ y. Hence

kB~ = min rank //. .
*<ΞS

EXAMPLE 1.3 (continued). We can verify easily

kβt = ^(1,0,-,0)(Φ) = Λ— '1 9

where φ: S*-l->Gr(n—l9 R") is;defined by

*(*)={(5)eR';(*,5) = 0}.

Hence

Proposition 2.5. reg L, S — (w— 1 ), * <Ξ Γ.

REMARK. Another proof of this fact is given in [9].

Note that it can be easily verified without the use of Proposition 2.5 that
Lt can be extended to an operator Lt: H(0)(X)^>H(Q)(X)y where H(0)(X) =
H\of(X)=Hlo)Λp(X). By virtue of the Sobolev's lemma, Proposition 2.5 implies

Corollary 2.6. If n^2 and t^T, then the eίgenfunctions of Lt with non-
zero eigenvalues are smooth.

Corollary 2.7. Ifn^2 and Z<Ξ T, then the elements ofH(^(X) that are fixed
by Lt are constant functions.

REMARK (i). This fact was conjectured by T. Sunada in [8]. There it is
shown that the above fact is equivalent to the mixing property of an abstract
dynamical system on the space of certain random walks over X.

(ii) Define gt: TX\Q-+TX\Q bygt(ξ)=\\ξ\\gt(ξlM), which is a diίfeomor-
phism. Let ht: T*X\Q-*T*X\Q correspond to gt under the natural diffeomor-
phism jΉΓ\0^ T*X\Q defined by the Riemannian metric. Let Γt C(Γ*^\0) X

(Γ*XΛO) be the graph of ht. Then it turns out T^t(XxX)\Q=T't U ΓLt where
T$,(Xx X) is the dual of the normal bundle ofBtmXχX and Γί = {(x, ξ, x'9 ξ')

(Λ?, ξ', x'y — f OeΓί} (cf t9])- Since Γί Π Γ.^^O for t with small 1 1 1 , this shows
that the Lagrangean manifold of the Fourier integral operator Lt is composed
of graphs of two canonical transformations on T*X\Q (cf. Proposition 3.1).

EXAMPLE 1.4. (continued). We will express kΰa in terms of Lie algebras.
By virtue of the homogenity of the situation, kBa=vXQ(φyo) (yQ=K, xQ=a~lK).
Let g and ϊ be the Lie algebras of G and K respectively. Let p be a complemen-
tary subspace of ϊ: g=!θt>. Identify g and ϊ respectively with TeG and
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TK(G/K) so that the projection p: g-^p corresponds to the differential at e of
the projection π: G-+G/K, e being the unit element of G. For x=k
we have

Nx = ka-ΉaK/K = π(kaΓlKakΓlK) (x = ka~lK) ,

whence

Identify K/Ha-ι with Myo by the diffeomorphism: KIHa-ι-+Myo sending kHa-ι
to ka~lK. Then φyo is given by

Fix a complementary subspace W^ of W=p(Ad(a~l))l in p and let Π:
be the projection. Since

p(Ad(ka~l)t) =

where ^/0=X^^) WeHom(ίF, p), we have

40(Φ,o) = 4>(Πψ): !/fn Ad(O! -

in view of Remark 2.1 (Q=Ha-
1^KIHa-ι). It is easy to verify

4,(mjr)([J£])( Y) = πχ[̂ , F]) ,

Hence we have

Proposition 2.8. L ί̂ Φ : ϊ X WΓ-> PF-1- ό^ the bilinear mapping defined by

Φ(X, Y)=Πp([X, Y])(Xel, Y(ΞW). Then

kB = min rank (uΦ) .
a z/e(PΓJ-)*\0

In Sections 5, 6, we will compute kBa in the case G/K is a symmetric space.

3. Proof of Theorem 2.4

3.1. First we shall show that LB is essentially a Fourier integral operator
in the sense of [6].

Let Ωj/2 be the line bundle of the densities of order 1/2 over X(cί. [6]). Let

C°°(X, Ωiβ) be the space of all the smooth cross-sections of Ωι/2 and

Co(X9 Ω1/2) = {u^C°°(X, Ωι/2); supp u is compact} .

Fix smooth positive densities ωx, ωγ of Xy Y respectively. Define LB by the
following commutative diagram:
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" " r,

where a(f)=fV^> β(g)=gV^ (/eC7(F), g(Ξ C~(X)). Put AB =
T$(Xx F)\OcΓ%3Γχ F), where T$(Xx Y) is the dual of the normal bundle
of B in Xx Y and 0 is the zero section. The distribution kernel of LB will be
denoted also by LB.

Proposition 3.1. LB^Γl^^\Xx F, AB).

As to the notation Im(Xx Y, AB)=If(Xχ F, Λ5), see [6].

Proof. Let ωB be the smooth positive density of B defined by

<*B(X, y) = dμx(y) ωx(x) , (x,y) e B .

Then the distribution LB is given by

<Iβ, φ\/ωxωr> = f (φ 1 5)ω5 , φ€Ξ
JB

In fact, for/eC^J?), ^eC?(F),

= I /(*)( \ £U,<*μ,)
w JL J JVx

It suffices to show that for each p&XxY, there is a neighbourhood U of p

such that

where ΛB |^=w" 1C/nΛ s, ΛT: T*(X X F)->Jί X F being the natural projection.
Since supp LB=B, we may assume />e B. Let (£7; s1, ••-, ̂ , w1, •••, wd) (N=
nx+nγ—d) be a local chart of Jί X F around p such that

= {(*, w); w1 = ••• = wd = 0}

Let

ωxωγ\u = gdzdw ,

where dz = d& — dz», dw = dwl~ dwd, f^C°°(U f } B ) , g€ΞC~(U)9 />0,
For φtΞ



INTEGRAL TRANSFORMATIONS ASSOCIATED WITH DOUBLE FIBERINGS 401

ur\ B

~=l)-' \
J

d , z, w,
R x K x R

where θ=(θ\ -)^)eR</, a(z,w, 0)=/(z)v/i^7^eS0(E/x(Ri\0)), φ(z,w,θ)

=ΐΰϊθϊ-\ ----- \-v^θd and the last expression is the oscillatory integral. (As to
SP(Ux(Έtf\Q)), see [6].) Thus

LΛ\aeΓ(U,A)

with

Λ = {(z, 0; Ί.θ'dw^ z<=RN, Θ^Rd} = AB\a ,

m+~-(nx+nr-2d) = 0 .

Hence

B|σ) . Q.E.D.

Since the symbol of LB is homogeneous and non-zero at each point of Λ#,
we have

Corollary 3.2. LB is non-characteristic everywhere on KB.

3.2. We quote a theorem from [6]. Let

Hltf(X, Ω1/2) = Hl&

Theorem 3.3 (Hϋrmander [6]). Lei C be a homogeneous canonical relation
from T* F to T*X such that

(i) the restrictions to C of the natural projections T*(Xx Y)-+X, ->Y are
submersions \

(ii) there is a non-negative integer k such that

rank, (pγ)^nγ+k ,

for allc^C, px: C-*T*X and pγ: C-+T*Y being the restrictions of the natural
projections T*(Xx Y)-*T*X and T*(Xx Y)-*T*Y respectively.

Then, if m^ — (2k—nx—nγ), every A^lm(Xx Y, C') can be extended to a

continuous mapping from HC™P(Y, Ω1/2) to H^(X9 Ω1/2).
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Recall that C'= {(*, ξ, y, 77) (x, ξ, y, -η) e C} .

Corollary 3.4. Under the conditions (i) and (ii) of Theorem 3.3,

regA^—m -- (nx-\-nγ—2k)

for every A^lm(Xx F, C"), that is, A can be extended to a continuous linear mapping

*, we R .

REMARK 3.5. By Proposition 4.1.4 of [6],

)— nx = rankc(/>r)— % .

Hence the condition (ii) of Theorem 3.3 can be weakened:
& C).

3.3. We prove now the key lemma of the proof of Theorem 2.4. Fix
pQ=(xQ, y^B and put ^pQ-=7t^pQ\{0}, where π:T$(Xx Y)-+B is the natural
projection.

Lemma 3.6. min rankλ(pγ)=nγ-\-d-{-vXo(φy0).
λeΛ*

Proof. Consider the following commutative diagram of smooth mappings:

n (xx Y) \ Myn x w

(1) 0 Py

-*T*Y-

7

T*0NXO

Ύ being the restriction of linear forms on Ty<s Y to Ty^N^, We note that β is an
isomorphism onto the subspace (T$,o Y)y0of T\Y:

In fact, let (ξ, η)^T*B(Xx Y)Po C T*0X X Γ* F. From {*„} X JV,0 C S, it follows
Y),.. Since
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dimCnΛ = d= dim TΪ(Xx F),0,

it suffices to show that β is infective. Let (£, Ό)eΓf(^Γx Y)Po. This means-
that ;rί£=0, where πf: Tf^-^Tfβ is induced by πλ\ B-*X. Since ̂  is a
submersion, this implies ξ=Q.

Taking the differentials of the mappings in (1), we get the following com-
mutative diagram of linear mappings.

0

dl

(3)

~'± .>o j

r

TΪ.ΛL

(iii)

>0 (iv)

Here

0

(i) (ϋ)

is fixed and we have made he following natural identifications:

T,Tί(XxY)to=n(XxY)Pί>,

TPrMT*J=T*aY,

The sequence of the column (i) is exact by (2) and the following obvious exact
sequence :

0v * γ\ _> T* vNXQ* Jy0^ -L y0* XQ
0U .

The sequences of the column (ii) and the rows (iii), (iv) are clearly exact. Let

dt: TxoMyo-*TλA be a lifting of dι. Then Im(dργch)c:T*0Y, whence vx=

jdpγdί: TXQMyQ-*TfQNXo is defined. Obviously vλ is independent of the choice
s*^

of the lifting di. It is easy to verify that
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= dim T$(Xx Y)Po+dim T^

Computation of rank vλ. Define <j>yo: M^-^Gr^d, Tf0Y) by ΦyQ(x)=φyQ(x)°
=(T$xY)yo(x<ΞMyo). Denote its differential at XQ by Φ,0: T-*Hom(W>, Γ*ΛrJ,
where T=TXQMyo, W° = φyQ(x0). Since /3(X)ePP (λeΛ,0), we can define

Sublemma. z>λ=Φ/,0 >λ.

Proof. There are a neighbourhood £7 of x0 in My0 and a smooth mapping

φ: C7

such that φ(xo)=id and Φ(Λ?)^°==^O(Λ;). Then Φp0=dXQ(γφ)9 whence Φ^0,λ=
)), where φoλ: U^>TfQY is defined by

(φoλ)(*) = φ(Λ)(^(λ))e40W > *G U

In view of the natural isomorphism

dpx I r;<zχr)(,.,β, :

defines a smooth cross-section φoχ of the vector bundle T$(Xx Y) \ ux [y^-*

{y<>} Φ°λ is a local lifting of i in the diagram (1): πφo\=ι on Ux {y0}

Hence dφo\: T->TλA is a lifting of di in the diagram (3). Thus

= Ύdxo(φo\)

))
Q.E.D.

We have now

min rankλ(^>r) = nγ-\-d-{- min rank z^λ
λeΛίo

— %+ J+ min rank(Φίθfλ)λeΛ^0

min

where Φ>0 one Horn (Γ, T*^0) is defined by (ΦPooU)(ξ)=ΦPo(ξ)(u) (ξ e Γ). It
remains to show the following
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Sublemma. min rank ΦPoou=vXQ(φy()).

Proof. Put V=TyoY, W=TyQNXQ, φ=φyo, Φ=φy. for brevity. There is a
natural isomorphism

a: Hom(W, V/W)-^-+Hom(W°, V*IW°) ,

since W° and W can be naturally identified with (V\W)* and (F*/PF°)* re-

specively. Note that V*IW°^T*0NXQ. Then it is easily verified that Φ 0̂=

— aΦy where Φ: T-+ Horn (W, V\W} is the differential of φ at #0. We have

= Hom(Γ,

for UΪΞ W°=(VIW)*. In fact, for *e Γ, we ̂ ,

= -<ιι,

= -<(tt

Thus

vXQ(φ)= min rank (wo φ)
MeCF/τΓ)*\o

= min rank Φ/»0ow . Q.E.D.
«eτro\o

This completes the proof of Lemma 3.6.

3.4. Proof of Theorem 2.4. We apply Corollary 3.4. The condition (i>

is evidently satisfied. Taking k=kB+d> the condition (ii/ is also satisfied by

virtue of Lemma 3.6. Thus

regLB^—m — -(nx+nγ— 2k) ,
4

where m— -- (P+9) by Proposition 3.1. Hence

—-B,

which is clearly equivalent to

-kB. Q.EJX

REMARK 3.7. By Lemma 3.6 and Remark 3.5, we have

kB = m i n v x ,
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where ψx: Nx-*Gr(q, TXX) is defined by

γx(y)=TxMy.

4. Parametrices for LB

In this section the projections πί9 π2 will be assumed proper. Then LB

•extends to an operator C°°(Y)-*C00(X), which will also be denoted by LB.
An operator P: C°°(X)-*C00( Y) is called a parametric for LB if I—LBP and

I—PLB have smooth kernels.

Theorem 4.1. LB has a parametrize if the following conditions are satisfied:
(i) kB+d=nx=nγ^2;

(ii) for each (x, f )e T*X \0 and (y, 17) e= T * F\0,

Proof. By Theorem 5.1.2 of [1] and Corollary 3.2, we have only to show
that CB=T$(Xx yy\0 is the graph of a diffeomorphism of Γ*F\0 to T*X\Q.

Lemma 4.2. Suppose nx=nγ. Then CB is the graph of a diffeomorphism
if and only if the following conditions hold :

(i)' the natural projection CB-*T*X\Q is a submersion;
(ii)7 the correspondence given by CB between T*X\Q and Γ* F\0 is one-to-one.

Proof. It is trivial that the conditions are necessary. Assume that (i)7

:and (ii)7 hold. Let CB be one of the connected components of CB. The image
of.C £-*+T*X\Q is open by (i)7 and connected. On the other hand, since πλ

is proper, the mapping CB/R+-+(T*X\Q)/R+ induced by Cβ->Γ*JS:\0 is also
proper, whence it follows immediately that the image of CB-*T*X\Q is closed.
Since nx^2, T*X\Q is connected. Thus CB-*T*X\Q is surjective. As for
CB— *Γ*F\0, it is a submersion by Remark 3.5. Hence the same argument
shows that Cj-»T*F\0 is surjective. (ii)7 implies then CB is the graph of a
diίfeomorphism. But (ii)7 forces CB to be CB. Q.E.D.

Lemma 4.3. i) Let (x, ξ)(=T*X\Q. Then the mapping φ(x^: {(y, ξ);
<Λ?, ?, y, -η)£ΞCB}->{y<=ΞNx\ ξ\TχMy=0} defined by φ(x#(y, v)=y is bijective.

ii) Let (y, ?7)eT*y\0. Then the mapping ψ(,§ll): {(x, ζ); (x9 ξ, y, v)(Ξ
*€]}}-* {x&My , η\TyNχ=Q} defined by ψ(y, η)(x, ξ)=x is bijective.

Proof, i) We note that φ(Xf& is well defined. In fact (#, ξ, yy rj)^CB

implies that (ξ, — η)^TfXfy)(Xχ Y) vanishes on T(xy)B which includes
TxMy X (0), whence £ | T#=Q.

Let (x, ξ, y, η\ (x, ξ, y, v')(=CB. Then
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Since π2: B— > Y is a submersion, we have η=η'. Hence φ(Xt& is injective.

Let y^Nx with ξ\TχMy— 0. Then πfξ^TfXty)B is zero on the tangent
space of the fiber of τr2. Hence there is an η^TfY with πfξ=π*η. Then

{#> ?, y, y}^CB. Hence φ ( j C f f i ) is surjective.
(ii) can be proved in the same way. Q.E.D.

By Lemma 3.6, (i) implies (i)'. By Lemma 4.3, (ii) implies (ii)'. Hence by
Lemma 4.2, CB is the graph of a diffeomorphism. This completes the proof

of Theorem 4.1.

REMARK. It is probable that the conditions (i) and (ii) are also necessary
for LB to have a parametrix.

EXAMPLE. Let Y=RPn be the real projective space and -X==(RP*)* the dual

projective space. Put

5 = {(x,y)GXxY;yt=x}9

and fix smooth positive densities {dμx\ x^X}. Then it is easily seen that

kB+d=n, and the condition (ii) of Theorem 4.1 is satisfied. Hence, if »^>2,

LB has a parametrix.

REMARK. It is known that if we choose appropriate densities then LB is an

isomorphism (cf. [5]).

5. Mean value operators on symmetric spaces of non-compact type

In Section 5 and Section 6, we shall study the mean value operator of

example 1.3 more closely when G/K is a symmetric space. In this section we
consider the case GjK is of non-compact type.

5.1. Let θ be the Cartan involution of g for G/K and £ the (— l)-eigen-

space of θ. Put

(X,Y)=-B(X,ΘY) (X,Yf=Q),

where B( , ) is the Killing form of g. ( , ) gives a positive definite inner

product on g. Let fy, be a maximal abelian subspace in p and extend fy, to a

maximal abelian subalgebra ξ) of g containing t)p. Put ^=ήnϊ. Then §=
ΐ)ϊ+fyρ §c=ϊj(g)C is a Cartan subalgebra of gc=g®C. Define a real vector

space §R by

and introduce in ήR the inner product corresponding to ( , ) under the natural
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isomorphism: §R=§. Denote the orthogonal projection ίte—^p by α>->#. We
identify Ϊ)R naturally with its dual space using the inner product. Let
be the root system of gc with respect to fyc. Let

For αeΔ, γeΛ, put

g» = {*egc; [#, *] - a(H)X for all

where a(H)=(a> H). Fix linear orderings in §R and fy, which are compatible,
that is, #>0 implies α>0 (αette). Let Δ+, Δ^, A+ denote the sets of positive

roots of Δ, Δp, Δ respectively. Then

For 7^A+ we put

We define also

Then we get orthogonal decompositions:

(5) £ = P°
YeΔ+

Obviously we have

Lemma 5.1. Let ίfeϊjp, τeΛ+. Then
(i) ad(#)|ίγ=0if<y(tf)=0;

(ii) ad^) I ΪY is an isomorphism of Γ onto pγ z

By virtue of the identity

+), Lemma 5.1 implies immediately the following

Lemma 5.2. L*tf # e \, 7 £Ξ A+ U {0} . Put \H=Ad (exp H) \

(i) \a=idv^if7(H)=0;

(ii) z/ γ(ίί) Φ 0, λ^ is given by
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x coA7(H) X

forX<=P,

Thus for γe A+ and He^ with γ(ίZ)Φθ, p(\H \ n) is an isomorphism of ϊv

onto t>v, p: g-»t> being the orthogonal projection.
Putm#=Σ'ϊ>γ (#efy,), where 7 runs over the set A+\AJ, Aέ={γeΞA+;

γ(#)=0}. We have p Ad(fl-
1)ϊ = mΛ where α = exp(#) (iϊe^). In fact,

Lemma 5.2 implies

Fix now an α&G. Since there is an if eϊx, such that αeίΓ exp (H)K, we
may assume 0=exp(#). By Proposition 2.8 we have

β^ = min rank(woφ) ,

where mjy=2// 15^ 7 ranging over the set AέU{0} and Φ:ϊxm^->mέ is
defined by Φ(X, Y)=p<*([X, Y]) (X<=1, Y^WH), PO $-+™H being the orthogo-
nal projection.

Lemma 5.3. kBα= min

Proof. Obviously

, where 7 ranges over the set

kBa = min rank Φz ,

where Φz: f χmff-+R (Zemέ) is defined by

Φ2(X, Y) = ([X, Y], Z)

The equality ([X, Y], Z)=(Y, ad(Z)^Γ) (Jfel) implies rank Φz= dim />! ad(Z)ϊ,
where pλι $->τnff is the natural projection. Since

where in the summation Σ"> T runs over the set A# U {0} , we have

fr ad(Z)ϊ = ad(Z)(Σ' ϊv) . Q.E.D.
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5.2. Now we assume a is regular, that is, dim KaK/K=max dim KgK/K.
g^Gr

It is easily verified that exp(#) (/feϊ^) is regular if and only if AJ=0. Then

mH=\ Lemma 5.1 and 5.3 imply immediately

** = Σ dimp-s,

where s= max Σ dim t>γ. Let ̂  be the set of hyperplanes V of ΪL such
H'e^XOγeSέ

that A7= F Π Δ spans V. Then obviously

s = max sv yFec^

where sv= Σ dimj)γ (Δy=Λ+ Π F). It is obvious that for each V ^^V there

are such compatible orderings in ^R and ξ)p that {#1, •••, α/}, { î, •••, &r} and
{̂ 2, •••, &r} are the sets of the simple positive roots of Δ, Λ and AF respectively.

Here /=dimϊ}R, r=dim^ and the ordering in V is induced from that of E)^.
We may assume that the compatible orderings in §R and fyp chosen before have
the above property, since the number sv is independent of the choice of them.
Thus

= Σ dί

•VeΔ^

= Σ dimcg
v

where Δf={αeΔ+; ^eΔy}. Put

5 = max*{αeΔ+; ^ = iWi^H ----- h^r^ΦOj w, = 0} >
ι^y^r

which is clearly independent of the choice of the orderings and satisfies

since sv^s (V ^c(7). On the other hand, putting Vj= {Σ akak\ «

^ =0} e^V, we have 5 = max sv . ̂ s. Hence S=s. Therefore
r

+; α =
ι^y^r

In conclusion we have proved
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Theorem 5.4. Suppose a is regular. Then kBa=k(GIK), where

k(G/K) = min*{αeΔ+; a = m^ ]

which is independent of a.

5.3. Next we consider the case a is no longer regular but non-degenerate.
a£ΞG is called non-degenerate if the following condition holds:

(4) Let J? - >X be the universal covering of X and X=Xl X ••• X XN the
decomposition into the irreducible factors. Then π~\KaK/K) is not included
in any subsets of the form Xλχ ••• x^Γ^x^x Xi+1X ••• xXN (l^i^ΛΓ) with

Theorem 5.5. Suppose X=GIK is a symmetric space of non-compact type
and a^G is non-degenerate. Then

regΛΓ>0.

We prepare three lemmas.

Lemma 5.6. 7fα=exp(if) (/fefjp) is non-degenerate, then Δ\Δ# spans
f)κ, where ΔH={a\ α(//)— 0}.

Proof. Let W be the subspace of Ϊ)R spanned by Δ\ΔH. Assume
Put F={#'EΞΪ)R; (tf7, H)=0}. Since ΔcH^U V, we have fa=V+W. Put
U=VΓ\W, Δu = ΔΓ(U=AHnU, ΔW = ΔΓ}W. Then (α, β) = Q for all
αeΔjΛΔc/, β<=Δw\Δu. In fact we have ±a+/3&V(J W\ otherwise a^Wor
β^Vy a contradiction. Hence the α-series of β consists of β alone. Thus
we have (α, /3)=0.

It follows then that Δ^XΔί/cW7-1, since Δ^XΔ^^ΔXΔ^ spans W. Hence
we have a non-trivial orthogonal decomposition: Δ=Δ /UΔ / /, where Δ7— Δw,
Δ" = ΔH\Δu. Let g = g/+fl// be the corresponding decomposition. Then
Lemma 5.1 implies p AdίέΓ1)!"^ (Γ^lΠa77), where p: β77-*?77 ($"=$ Π g/x)
is the natural projection.

Let Xi=Gi/Ki and g, be the Lie algebra of Gt. Then 8=fli0--0fljv.
Since Jf,- is of non-compact type, gt is simple. Hence g" contains some gz .
Note that the tangent space at K{ of the projection of π~\KaK/K) on the ί-th
factor jff. is isomorphic to p Ad(α~1)!ί(ll =ϊ 7 / nfl f )> which is zero. Thus

with ^Fi<ooy whence a is not non-degenerate. Q.E.D.

Lemma 5.7. For Z e /wέ, ̂  condition :

(6) [Z,f] = 0
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implies

[Z,g*] = 0,

Proof. For #G:Δ\Δ#,we have non-zero elements Xay X-Λ respectively of
g*, g~Λ such that

Obviously (6) is equivalent to

[Z, XΛ+X-Λ] = 0 , αeΔ\Δ* .

PutZ=Z0+ Σ Zβ(Z0<Ξ^c, Zβeg^). We have

Here g°=ϊ)c, gv=0 if γ$Δ. Note that for /?, /3xeΔ^U {0} with /8Φ/37 we
have α+^φα+yδ7, -a+βf. In fact α+/3=-α+)S/ would imply a(H)=Q,
which contradicts α^Δ\Δ^. Thus

[Zβ, -3ΓJ = 0 , /3eΔ^U {0},

In particular

[Z,gΛ] = 0, αeΔW. Q.E.D.

Lemma 5.8. For Z e gc, the condition :

[Z,gΛ] = 0, αeΔ\Διr,

implies Z e ήjy + 2 9P> wAertf
^eΔΠ^ff

^ = {TΪ^^R; a(H') = 0 for all

Proof. For any subspace Fcgc we put

Let f)a= {H<=f)c; a(H)=0} (αe W) Then

where /S runs over the set {β e Δ α+ /3 φ Δ U {0} } . In fact let Z=Z0+

), g"=C.̂ :α. Evidently [Z, gβ]=0 implies

If /SΦO and Z^ΦO, then we must have α+/3eΔ U {0}. If β=0, then [Z0,
=a(Z0)Xa, whence Z°e^Λ. Thus
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The other inclusion is obvious.
Thus

c( Σ 9α)= n

where β runs over the set {β<Ξ Δ ± a + βφ Δ U {0}, ae Δ\Δ#}. But
{0} implies that ithe α-series of β consists of β alone, whence

lϋ'Vc: Σ ββ Q.E.D.

Proof of Theorem 5.5. We may assume a=exρ(H) (//eϊjj,). By Lemma

5.3, it suffices to show that Zem# is zero if it satisfies (6). By Lemmas 5.7
and 5.8, (6) implies Zeϊfo+ Σ 9β But by virtue of Lemma 5.6 we have

^=0, whence Z=0. Q.E.D.

6. Mean value operators on symmetric spaces of compact type

In this section we assume X=G'/K' is a symmetric space of compact type.

6.1. Let G/K be the symmetric space of non-compact type dual to X.
We retain the previous notations for G/K. Let g' and V be the Lie algebras
of G' and Kf respectively. There are identifications: g' = ϊ-
(/=Y/IT|). (5) gives an orthogonal decomposition:

As before we have the following

Lemma 6.1. Let H <Ξ fy, γ e A+ U {0}.

(i) \ia=

(ii) z fry

cos
sn

X

Hence, for τeA+ and //eί)p with <γ(H)$πZ, f\iff\lv is an isomorphism
of F onto φγ, ̂ : fl'-»φ being the orthogonal projection.



414 T. TSUJISHITA

Put m^ = Σ/φ'y where 7 runs over the set Λ+\&Jo, Δ

γ(#)€Ξ7rZ}. We have
Jo

where a=exp(iH). In fact, Lemma 6.1 implies

By Proposition 2.8, we have

kβ = min

where mέ=Σ"Φγ, T running over the set Sfoll {0} and Φ:
defined by

•r v^ 7i(\Y V~\\ Ύ<=L¥ Vczr fΫL, JL ) = PovL^' •* J/ » -Λ. Eϊl , J: t ΓΠjy ,

?p-^πϊέ being the orthogonal projection.

Lemma 6.2. kBa— min dimad(Z)(Σ/ϊγ)> wA^r^ 7 runs over the set

Proof. Obviously

kB — min rank Φz ,

where Φz : ϊ X TΠjy -> R(Z e mέ) is defined by

ΦZ(X, Y) = ([*, F], Z)

Just as in the case of Lemma 5.3, we have

rank Φz = dim^ ad(Z)ϊ _,

Pi φ ^ πtfl being the natural projection. Since

where, in the summation 2x/> */ Γuns over the set ^c^) U {0}, we have

& ad (Z)ϊ = ad(Z)(Σx ϊγ) . Q.E.D.

6.2. Suppose a=exp(iH)t=G' (H^fy) is rέgtώir, that is dim K'aK'\K'=
max dim K1 gK'\Kr. It is easily verified that # is regular if and only if 2^=0.
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Then ϊήH=iτnH and mέ=ί^p=/mέ. Since AJ=AJy)=0, it follows from Lemma
6.2, Lemma 5.3 and Theorem 5.4 that

kB = min dimad(ίZ)(ΣF)
* Ze%\0

- min dim ad (Z) (2 P)

Hence we obtain

Theorem 6.3. Suppose X=G'/K' is a symmetric space of compact type and
f is regular. Let G/K be the symmetric space dual to X. Then kBa=k(G/K).

6.3. Finally we consider the case where a is non-degenerate, that is, the
condition (4) holds for a.

Theorem 6.4. Suppose X=G'/K' is a symmetric space of compact type and
a^G' is non-degenerate. Then

regΛΓX).

The proof proceeds just as before.

Lemma 6.5. Ifa=exp(iH) (#ei)p) is non-degenerate, then Δ\Δ(#) spans
ΪJR, where Δ(J5r)={αeΔ; α(fl)eτrZ}.

Proof. Let W be the subspace of §R spanned by Δ\Δ(#> and assume
ΪFΦfjR. Put Δ^ = ΔΠ W, Γ(jr)= {ff'efo; (H, #')G7rZ}. Then (α, £) = 0
for all αeΔWr\(ΔWrnΓ(J5r))=Δ\Δ(^), yβeΔ^^Δ^nΓ^)). In fact we must
have ±<2+/3<$Δ, since αφΓ(^), /5eΓ(^) imply ±Λ+/S$'Δ(jy) and a^W,
/8φ ΓF guarantee iα+ /SφΔXΔ^C PF. Hence the α-series of /3 consists of β
alone. Thus (α, /S)=0.

We have then Δ(^)\(ΔίΓnΓ(^))cPF-L and get a nontrivial orthogonal
decomposition Δ=Δ/UΔ// where Δ/^Δ^, ;Δ//=Δ(JΓ)\(ΔI|rnΓ(ir)). Let g' =
0/®9/7 be the corresponding decomposition of Q'. Let X^G'/Kf and g£ be
the Lie algebra of Gl Then β7— gίθ θgΛΓ. Let Δ=Δ1U UΔ J V be the
corresponding decomposition. We claim Δ. CΓoy) for some ί. In fact there
is a g/ such that fl/n0//Φ(0). If g£ is simple, giCg / 7 and then Δt cΓ(#).
Suppose gί is not simple and βίφg//. Then g can be identified with itφu,
where u = gίΠg// is simple and the gf-component of \/— 1 H is of type

Since (α, ίί)=(α, H^tΞπZ for αeΔΠ(uθ(0)), we have
(α, H)tΞπZ also for αeΔ Π ((0)0u). Thus

Lemma 6.1 implies then p A.d(a~l)lί = 0 (l^ΓΠgO* where :̂ gi-^pj
(Pi =P Π gί) is the natural projection. Since the tangent space at Ki^Xt of the
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projection of π~\K' aK' \K'} on the i-th factor X{ is isomorphic to
we have

X- xXN

with IF^oo,, whence <z is not non-degenerate. Q.E.D.

From now on we fix a=exp(iH) (if eg^) which is non-degenerate.

Lemma 6.6. For Zem#, the condition:

(7) [Z,Γ] = 0, yeA + \Aδn,

implies

[Z, gΛ] = 0, αeΔ\Δ ( j r ).

Proof. Let {̂  αeΔ} be a Weyl basis of gcmod^c, that is,
and the following hold:

α,

where JV^ΦO. Then

JV^ = -N-a,-β = -Nβ>a ,

Let σ and T be the conjugations of gc with respect to g=ϊ+t> and gx=i+\/
respectively. Then we can take {-3Γβ} so that τXΛ=—X_Λ for αeΔ (cf. [4]).
Since ϊ=(l+<r+τ-f στ)gc, we have for

δ=γ

= Σ
δ=γ

Hence

Thus (7) implies

[Z, -X^-JΓ.J = 0 , αeΔ\Δ ( j r ).

PutZ=Z0+ Σ 0λ^λ(Z0eί0^'λeC). We have
^eΔcH)

[Z0,*J = 0, αeΔ\Δ(1Γ) f

since the gΛ-component of [Z, JΓΛ—-X"_J is [Z0, JSΓJ.
Let λeΔ(jy), ojeΔ\Δ(^). We will show [%χX\, Xa]=Q. We may assume
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First we consider the easier case: X+2#φΔ(#). Then λ+αφμ±α for
). Then the gλ+Λ-component of [Z, XΛ—X_Λ] is [zλXλ, X#], whenceany

We assume now \ + 2a = μ e Δ(#). Then μφ±λ, ±σλ. Otherwise
2a(H)=μ(H)—\(H)=μ(H)—λ(H)<=2πZ, whence αeΓ(JΓ), which contradicts
αeΔ\Δ(#). Since the α-series of λ contains λ and λ+2α, we have /3=X+#
= μ— a^Δ. Note that a = β—\ = μ—β. The gβ-, g~β-components of
[Z, XΛ — Jϊ"_ J are respectively

and the g*-, g~Λ-components of [Z, -XΓβ— -Y_β] are respectively

Hence NY=Q, where F^^x, z^ 5r_λ, .s'.μ) and

^Vλ,Λ -Λ^..α 0 0

0 0 -ΛLλ,_Λ ΛΓTV-
0 0

. -N*.-β 0 0 ΛLM .

Since detΛ/r=(Λ7'λfrtΛ/rμ>_β)2+(Λ^>αΛ/'λf_β)2Φθ, we have *λ = 0. In particular

Thus we have shown [Z, XΛ]=Q, αeΔ\Δ(#). Q.E.D.

Proof of Theorem 6.4. We may assume #=exp (iH) (H e §p). By Lemma

6.2 it suffices to show that Zentέ is zero if it satisfies (7). By Lemma 6.6, we
have

[Z, g*] = 0,

Then the same arguments as in the proof of Lemma 5.8 show

where ̂ )={
Hence Z=0.

; α(ΐί/)==0 for a11 «eΔ\Δ(jy)}. By Lemma 6.5, §<*)=().
Q.E.D.
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