5-FOLD TRANSITIVE PERMUTATION GROUPS IN WHICH THE STABILIZER OF FIVE POINTS HAS A NORMAL SYLOW 2-SUBGROUP

Mitsuo YOSHIZAWA

(Received March 9, 1977)

1. Introduction

In this paper we shall prove the following theorem.
Theorem. Let G be a 5 -fold transitive permutation group on a set $\Omega=\{1,2$, $\cdots, n\}$. Let P be a Sylow 2-subgroup of G_{12345}. If P is a nonidentity normal subgroup of G_{12345}, then G is one of the following groups: S_{7}, A_{9} or M_{24}.

The idea of the proof of the theorem is derived from Oyama [7].
In order to prove the theorem, we shall use the following two lemmas, which will be proved in Sections 3 and 4.

Lemma 1. Let G be a permutation group on $\Omega=\{1,2, \cdots, n\}$ satisfying the following three conditions.
(i) For any five points $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ and α_{5} in Ω, the order of $G_{\alpha_{1} \cdots \omega_{5}}$ is even.
(ii) For any five points $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ and α_{5} in Ω, a Sylow 2-subgroup of $G_{a_{1} \cdots \omega_{5}}$ is normal in $G_{a_{1} \cdots \omega_{5}}$.
(iii) Any involution in G fixes at most seven points.

Then G is S_{7} or A_{9}.
Lemma 2. Let G be a permutation group on $\Omega=\{1,2, \cdots, n\}$ satisfying the following four conditions.
(i) For any five points $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ and α_{5} in Ω, the order of $G_{\alpha_{1} \cdots \alpha_{5}}$ is even.
(ii) For any five points $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ and α_{5} in Ω, a Sylow 2-subgroup of $G_{a_{1} \cdots \omega_{5}}$ is normal in $G_{a_{1} \cdots \omega_{5}}$.
(iii) Any involution in G fixes at most nine points.
(iv) For any 2-subgroup X fixing exactly nine points, $N(X)^{I(X)} \leqq A_{9}$. Then G is S_{7} or A_{9}.

The author thanks Professor Eiichi Bannai for his kind advice.
We shall use the same notation as in [3].

2. Proof of the Theorem

Let G be a group satisfying the assumption of the theorem.
Let P be the unique Sylow 2-subgroup of G_{12345}. If P is semiregular on $\Omega-I(P)$ or $|I(P)|>6$, then G is S_{7}, A_{9} or M_{24} by [2], [3], [4] and [5]. Hence from now on we assume that P is not semiregular on $\Omega-I(P)$ and that $|I(P)| \leqq$ 6 , and we prove that this case does not arise. If $|I(P)|=6$, then $\left|I\left(G_{12345}\right)\right|$ $=6$, a contradiction to [1]. Hence $|I(P)|=5$.

Let r be $\operatorname{Max}|I(a)|$, where a ranges over all involutions in G. Since P is not semiregular on $\Omega-I(P)$, we have $r \geqq 7$.

Suppose $r=7$. Let t be a point of a minimal orbit of P in $\Omega-I(P)$. It is easily seen that $N\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{7}$. By [6], we have a contradiction.

Suppose $r=9$. Let Q be a subgroup of P such that the order of Q is maximal among all subgroups of P fixing exactly nine points. By Lemma 1, $N(Q)^{I(Q)}=$ A_{9}. Again by [6], we have a contradiction. Thus we have $r \geqq 11$.

Let Q be a subgroup of P such that the order of Q is maximal among all subgroups of P fixing more than nine points. Set $N=N(Q)^{I(Q)}$. Then N satisfies the following conditions.
(i) N is a permutation group on $I(Q)$, and its degree is not less than eleven.
(ii) For any five points $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ and α_{5} in $I(Q)$, the order of $N_{\omega_{1} \cdots \alpha_{5}}$ is even.
(iii) For any five points $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ and α_{5} in $I(Q)$, a Sylow 2-subgroup of $N_{a_{1} \cdots \omega_{5}}$ is normal in $N_{a_{1} \cdots \omega_{5}}$.
(iv) Any imvolution fixes at most nine points.

By Lemma 1, N has an involution fixing exactly nine points. Let X be any 2 -subgroup of N fixing exactly nine points. Set $\Delta=I(X)$. Let S be the Sylow 2-subgroup of G_{Δ}. Since $I(S)=\Delta$, we have $N_{G}(S)^{I(S)}=A_{9}$ by Lemma 1. Since S is a characteristic subgroup of G_{Δ}, N satisfies the following condition.
(v) For any 2-subgroup X fixing exactly nine points, $N_{N}(X)^{I(X)} \leqq A_{9}$.

Considering the permutation group N, we have a final contradiction by Lemma 2.

3. Proof of Lemma 1

Let G be a permutation group satisfying the assumptions of Lemma 1. If G has no involution fixing seven points, then G is S_{7} or A_{9} by [8, Lemma 6] and [2]. Hence from now on we assume that G has an involution fixing exactly seven points, and we prove Lemma 1 by way of contradiction. We may assume that G has an involution a fixing exactly $1,2, \cdots, 7$ and

$$
a=(1)(2) \cdots(7)(89) \cdots
$$

Set $T=C(a)_{89}$.
(1) For any three points i, j and k in $I(a)$, there is an involution in $T_{i j k}$. Any involution in T is not the identity on $I(a)$.

Proof. Since a normalizes $G_{89 i j k}$ and $G_{89 i j k}$ is of even order, $G_{89 i j k}$ has an involution x commuting with a. Then $x \in T_{i j k}$. Since $|I(a)|=7$ and $I(x) \supseteqq\{8,9\}$, any involution in T is not the identity on $I(a)$ by (iii).
(2) For any three points i, j and k in $I(a)$, a Sylow 2-subgroup of $T_{i j k}$ is normal in $T_{i j k}$, and so a Sylow 2-subgroup of $T_{i j k}^{I(a)}$ is normal in $T_{i j k}^{I(a)}$.

Proof. Let S be a Sylow 2-subgroup of $T_{i j k}$. Since S is a Sylow 2-subgroup of $C(a)_{89 i j k}, S$ is a normal subgroup of $C(a)_{89 i j k}$ by (ii).

We have the following property from (2).
(3) If $x_{1}^{I(a)}$ and $x_{2}^{I(a)}$ are involutions in $T^{I(a)}$ with $\left|I\left(x_{1}^{I(a)}\right) \cap I\left(x_{2}^{I(a)}\right)\right| \geqq 3$, then $x_{1}^{I(a)} x_{2}^{I(a)}$ is a 2-element of $T^{I(a)}$.
(4) Since $|I(a)|=7, T^{I(a)}$ is one of the following groups.
(a) $T^{I(a)}$ is intransitive and has an orbit of length one or two.
(b) $T^{1(a)}$ is intransitive and has an orbit of length three.
(c) $T^{I(a)}$ is primitive.
(5) The case (a) does not hold.

Proof. Suppose $T^{I(a)}$ has an orbit of length one or two. We may assume that either $\{1\}$ or $\{1,2\}$ is such an orbit. By (1), T_{234} has an involution x_{1}. We may assume that

$$
x_{1}=(1)(2)(3)(4)(56)(7) \cdots
$$

Similarly T_{235} has an involution x_{2} of the form

$$
\begin{aligned}
x_{2}= & (1)(2)(3)(4)(5)(67) \cdots,(1)(2)(3)(5)(46)(7) \cdots \text { or } \\
& (1)(2)(3)(5)(47)(6) \cdots .
\end{aligned}
$$

If the first or the second alternative holds, then $\left|I\left(x_{1}^{I(a)}\right) \cap I\left(x_{2}^{I(a)}\right)\right|=4$, and $x_{1}^{I(a)} x_{2}^{I(a)}$ is not a 2-element, a contradiction to (3). Thus $x_{2}=(1)(2)(3)(5)(47)$ (6) \cdots. Again by (1), T_{245} has an involution x_{3} of the form

$$
\begin{aligned}
x_{3}= & (1)(2)(4)(5)(3)(67) \cdots,(1)(2)(4)(5)(36)(7) \cdots \text { or } \\
& (1)(2)(4)(5)(37)(6) \cdots .
\end{aligned}
$$

In every case, we get a contradiction to (3) by considering either $x_{1}^{I(a)} x_{3}^{I(a)}$ or $x_{2}^{I(a)} x_{3}^{I(a)}$.
(6) The case (b) does not hold.

Proof. Suppose $T^{I(a)}$ has an orbit of length three. We may assume that $\{1,2,3\}$ is such an orbit of length three. By (5), $\{4,5,6,7\}$ is a $T^{I(a)}$-orbit. By (1), T_{456} has an involution x_{1}. We may assume that

$$
x_{1}=(12)(3)(4)(5)(6)(7) \cdots
$$

Since $\{1,2,3\}$ is a $T^{I(a)}$-orbit, T has an element y of the form

$$
y=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \cdots
$$

Set $x_{2}=x_{1}^{y}$, then $x_{2}=(23)(1)(4)(5)(6)(7) \cdots$. So, $\left|I\left(x_{1}^{I(\alpha)}\right) \cap I\left(x_{2}^{I(a)}\right)\right|=4$, and $x_{1} x_{2}=\left(\begin{array}{ll}1 & 3\end{array} 2\right)(4)(5)(6)(7) \cdots$, which is a contradiction. Hence $T^{I(a)}$ has no orbit of length three.
(7) We show that the case (c) does not hold, and complete the proof of Lemma 1.

Proof. Suppose $T^{I(a)}$ is primitive. By (1), we have $T^{I(a)} \geqq A_{7}$ (cf.e.g.[10]). Therefore for any involution x in G fixing exactly seven points, $C(x)^{I(x)} \geqq A_{7}$.

Let Γ be any subset of Ω with $|\Gamma|=5$. Set $\Gamma=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\}$. By (i), $G_{a_{1} \cdots \omega_{5}}$ has an involution. If $G_{a_{1} \cdots \omega_{5}}$ has an involution x_{1} fixing exactly seven points, then $C\left(x_{1}\right)^{I\left(x_{1}\right)} \geqq A_{7}$. Hence $G\left\{\alpha_{1}, \ldots, \alpha_{5}\right\}=S_{5}$. Suppose that $G_{\alpha_{1} \cdots \alpha_{5}}$ has no involution fixing seven points. Let x_{2} be an involution in $G_{\alpha_{1} \cdots \alpha_{5}}$. Let $x_{2}=\left(\alpha_{1}\right) \cdots\left(\alpha_{5}\right)\left(\beta_{1} \beta_{2}\right) \cdots$. It is easily seen that $C\left(x_{2}\right)_{\beta_{1} \beta_{2}}^{I\left(x_{2}\right)}=S_{5}$. Hence $G_{\left\{\alpha_{1}, \ldots, \alpha_{5}\right\}}^{\left(\alpha_{1}, \cdots, \alpha_{5}\right\}}$ $=S_{5}$. Thus we have $G\left[\left\{\alpha_{1}, \ldots, \alpha_{5}\right]=S_{5}\right.$ in either case. Therefore by [9, Lemma 3], G is 4-fold transitive on Ω.

Let x be an involution in G fixing seven points. Let S be the Sylow 2subgroup of $G_{I(x)}$. Since $C(x)^{I(x)} \geqq A_{7}$, we have $N(S)^{I(S)} \geqq A_{7}$. By [6], we get a contradiction.

Thus we complete the proof of Lemma 1.

4. Proof of Lemma 2

Let G be a permutation group satisfying the assumptions of Lemma 2. If G has no involution fixing nine points, then G is S_{7} or A_{9} by Lemma 1. Hence from now on we assume that G has an involution fixing exactly nine points, and we prove Lemma 2 by way of contradiction. We may assume that G has an involution a fixing 1,2, $\cdots, 9$ and

$$
a=(1)(2) \cdots(9)(1011) \cdots .
$$

Set $T=C(a)_{1011}$.
(1) For any three points i, j and k in $I(a)$, there is an involution in $T_{i j k}$. Any involution in T is not the identity on $I(a)$.
(2) For any three points i, j and k in $I(a)$, a Sylow 2-subgroup of $T_{i j k}$ is normal in $T_{i j k}$, and so a Sylow 2-subgroup of $T_{i j k}^{I(a)}$ is normal in $T_{i j k}^{I(a)}$.
(3) If $x_{1}^{I(a)}$ and $x_{2}^{I(a)}$ are involutions in $T^{I(a)}$ with $\left|I\left(x_{1}^{I(a)}\right) \cap I\left(x_{2}^{I(a)}\right)\right| \geqq 3$, then $x_{1}^{I(a)} x_{2}^{I(a)}$ is a 2-element of $T^{I(a)}$.

The proofs of (1), (2) and (3) are similar to the proofs of (1), (2) and (3) in Section 3 respectively.
(4) Since $|I(a)|=9, T^{I(a)}$ is one of the following groups.
(a) $T^{1(a)}$ is intransitive and has an orbit of length one or two.
(b) $T^{1(a)}$ is either an intransitive group with an orbit of length three, or a transitive but imprimitive group with three blocks of length three.
(c) $T^{1(a)}$ is intransitive and has an orbit of length four.
(d) $T^{I(a)}$ is primitive.
(5) The case (a) does not hold.

Proof. Suppose $T^{I(a)}$ has an orbit of length one or two. We may assume that either $\{1\}$ or $\{1,2\}$ is such an orbit. By (1), T_{234} has an involution x_{1}. By the assumption (iv), we may assume that

$$
x_{1}=(1)(2)(3)(4)(5)(67)(89) \cdots
$$

Similarly T_{236} has an involution x_{2}. We may assume without loss of generality that

$$
\begin{aligned}
x_{2}^{I(\alpha)}= & (1)(2)(3)(6)(7)(45)(89) \cdots \alpha, \\
& (1)(2)(3)(6)(7)(48)(59) \cdots \beta, \\
& (1)(2)(3)(6)(8)(79)(45) \cdots \gamma, \\
& (1)(2)(3)(6)(8)(74)(59) \cdots \delta, \\
& (1)(2)(3)(6)(4)(57)(89) \cdots \varepsilon \text { or } \\
& (1)(2)(3)(6)(4)(78)(59) \cdots \zeta .
\end{aligned}
$$

If $x_{2}^{I(a)}$ is of the form δ, ε or ζ, then $\left|I\left(x_{1}^{I(\alpha)}\right) \cap I\left(x_{2}^{I(a)}\right)\right| \geqq 3$, and $x_{1}^{I(a)} x_{2}^{I(a)}$ is not a 2-element, a contradiction to (3). Hence $x_{2}^{I(a)}$ is of the form α, β or γ. T_{269} has an involution $x_{3} . \quad x_{3}^{I(a)}$ is of the form

$$
\begin{aligned}
x_{3}^{I(a)}= & (1)(2)(6)(9)(3)(45)(78) \cdots(1), \\
& (1)(2)(6)(9)(3)(47)(58) \cdots(2), \\
& (1)(2)(6)(9)(3)(48)(57) \cdots \text { (3) }, \\
& (1)(2)(6)(9)(4)(35)(78) \cdots(4), \\
& (1)(2)(6)(9)(4)(37)(58) \cdots(5), \\
& (1)(2)(6)(9)(4)(38)(57) \cdots(6),
\end{aligned}
$$

(1) (2) (6) (9) (5) (34) (78) \cdots (7) ,
(1) (2) (6) (9) (5) (37) (48)‥ (8),
(1) (2) (6) (9) (5) (38) (47) \cdots (9),
(1) (2) (6) (9) (7) (34) (58)…(10),
(1) (2) (6) (9) (7) (35) (48)… (11) .
(1) (2) (6) (9) (7) (38) (45) \cdots (12),
(1) (2) (6) (9) (8) (34) (57) \cdots (13) ,
(1) $(2)(6)(9)(8)(35)(47) \cdots$ (14) or
(1) (2) (6) (9) (8) (37) (45) \cdots (15) .

If $x^{I(a)}$ is of the form (2), (3), (5), (6), (8) or (9), then $\left|I\left(x_{1}^{I(a)}\right) \cap I\left(x_{3}^{I(a)}\right)\right|=3$, and $x_{1}^{I(a)} x_{3}^{I(a)}$ is not a 2 -element, which is a contradiction. Suppose $x_{3}^{I(a)}$ is of the form (10. Then $x_{1} x_{3}=(1)(2)(34)(589)(67) \cdots$, and $\left(x_{1} x_{3}\right)^{2}=(1)(2)(3)(4)(598)$ (6) (7) \cdots. Set $y=\left(x_{1} x_{3}\right)^{2}$ and $x_{4}=x_{1}^{y}$. Then $x_{4}=(1)(2)(3)(4)(9)(67)(58) \cdots$. So, $\left|I\left(x_{1}^{I(a)}\right) \cap I\left(x_{4}^{I(a)}\right)\right|=4$, and $x_{1} x_{4}=(1)(2)(3)(4)(589)(6)(7) \cdots$, which is a contradiction. If $x_{3}^{I(a)}$ is of the form (111), (12), (13), (14) or (15), we have a contradiction by the same argument as in the case (10). Hence $x_{3}^{I(a)}$ is of the form (1), (4) or (7).

Suppose $x_{2}^{I(a)}$ is of the form α or γ. Since $x_{3}^{I(a)}$ is of the form (1), (4) or (7), we get a contradiction by considering $x_{2}^{I(\alpha)} x_{3}^{I(a)}$.

Suppose $x_{2}^{I(a)}$ is of the form β. If $x_{3}^{I(a)}$ is of the form (1) or (4), we get a contradiction by considering $x_{2}^{I(a)} x_{3}^{I(a)}$. Suppose $x_{3}^{I(a)}$ is of the form (7). Then $x_{2} x_{3}=(1)(2)(6)(59)(3478) \cdots$. Set $x_{5}=\left(x_{2} x_{3}\right)^{2}$, then $x_{5}=(1)(2)(6)(5)(9)(37)$ (4 8) \cdots. So, $\left|I\left(x_{1}^{I(a)}\right) \cap I\left(x_{5}^{I(a)}\right)\right|=3$, and $x_{1} x_{5}=(1)(2)(5)(376)(489) \cdots$, which is a contradiction. Thus $T^{I(a)}$ has neither orbit of length one nor orbit of length two.
(6) The case (b) does not hold.

Proof. Suppose $T^{1(a)}$ has an orbit of length three or three blocks of length three. We may assume that $\{1,2,3\}$ is such an orbit or a blcok.

Assume that $T^{I(a)}$ has three orbits of length three or three blocks of length three. We may assume that $\{1,2,3\},\{4,5,6\}$ and $\{7,8,9\}$ are the orbits or the blocks. $\quad T_{124}$ has an involution x_{1}. By the assumption (iv),

$$
x_{1}=(1)(2)(3)(4)(56) \cdots
$$

Similarly T_{125} has an involution x_{2} of the form

$$
x_{2}=(1)(2)(3)(5)(46) \cdots
$$

So, $\left|I\left(x_{1}^{I(a)}\right) \cap I\left(x_{2}^{I(a)}\right)\right| \geqq 3$, and $x_{1} x_{2}=(1)(2)(3)(465) \cdots$, which is a contradiction.

By (5) and the above, we have that $\{1,2,3\}$ and $\{4,5,6,7,8,9\}$ are the
$T^{I(a)}$-orbits. Since $3||\{4,5, \cdots, 9\}|$, we may assume that T has an element y of the form

$$
y=(456) \cdots
$$

T_{789} has an involution x_{1}. We may assume that

$$
x_{1}=(12)(3)(45)(6)(7)(8)(9) \cdots
$$

Set $x_{2}=x_{1}^{y}$, then $x_{2}=(56)(4)(7)(8)(9) \cdots$. So, $\left|I\left(x_{1}^{I(a)}\right) \cap I\left(x_{2}^{I(a)}\right)\right| \geqq 3$, and $x_{1} x_{2}$ $=(465)(7)(8)(9) \cdots$, which is a contradiction. Thus $T^{I(a)}$ has neither orbit of length three nor block of length three.

(7) The case (c) does not hold.

Proof. Suppose $T^{I(a)}$ has an orbit of length four. We may assume that $\{1,2,3,4\}$ is a $T^{I(a)}$-orbit. By (5) and (6), $\{5,6,7,8,9\}$ is a $T^{I(a)}$-orbit. Since $5||\{5,6,7,8,9\}|$, we may assume that T has an element y of the form

$$
y=(1)(2)(3)(4)(56789) \cdots
$$

T_{123} has an involution x_{1}. We may assume that x_{1} is of the form

$$
\begin{aligned}
x_{1}= & (1)(2)(3)(4)(5)(67)(89) \cdots, \\
& (1)(2)(3)(4)(5)(68)(79) \cdots \text { or } \\
& (1)(2)(3)(4)(5)(69)(78) \cdots
\end{aligned}
$$

Set $x_{2}=x_{1}^{y}$. Then x_{2} is of the following form respectively:

$$
\begin{aligned}
x_{2}= & (1)(2)(3)(4)(6)(78)(59) \cdots, \\
& (1)(2)(3)(4)(6)(79)(58) \cdots \text { or } \\
& (1)(2)(3)(4)(6)(57)(89) \cdots
\end{aligned}
$$

In any case, we get a contradiction by considering $x_{1}^{I(a)} x_{2}^{I(a)}$.
(8) We show that the case (d) does not hold, and complete the proof of Lemma 2.

Proof. If $T^{I(a)}$ is primitive, then by (1) and the assumption (iv), we have $T^{I(a)}=A_{9}$ (cf.e.g.[10]). But this contradicts (2). Thus $T^{I(a)}$ is not primitive.

Thus we complete the proof of Lemma 2.

Gakushuin University

References

[1] H. Nagao: On multiply transitive groups IV, Osaka J. Math. 2 (1965), 327-341.
[2] T. Oyama: On multiply transitive groups VII, Osaka J. Math. 5 (1968), 155-164.
[3] T. Oyama: On multiply transitive groups VIII, Osaka J. Math. 6 (1969), 315-319.
[4] T. Oyama: On multiply transitive groups IX, Osaka J. Math. 7 (1970), 41-56.
[5] T. Oyama: On multiply transitive groups XI, Osaka J. Math. 10 (1973), 379-439.
[6] T. Oyama: On multiply transitive groups XII. Osaka J. Math. 11 (1974), 595636.
[7] T. Oyama: On multiply transitive groups XIII, Osaka J. Math. 13 (1976), 367383.
[8] D. Livingstone and A. Wagner: Transitivity of finite permutation groups on unordered sets, Math. Z. 90 (1965), 393-403.
[9] A. Wagner: Normal subgroups of triply-transitive permutation groups of odd degree, Math. Z. 94 (1966), 219-222.
[10] C.C. Sims: Computational methods in the study of permutation groups, (in Computational Problems in Abstract Algebra), Pergamon Press, London, 1970, 169-183.

