Yoshizawa, M. Osaka J. Math. 15 (1978), 343-350

5-FOLD TRANSITIVE PERMUTATION GROUPS IN WHICH THE STABILIZER OF FIVE POINTS HAS A NORMAL SYLOW 2-SUBGROUP

MITSUO YOSHIZAWA

(Received March 9, 1977)

1. Introduction

In this paper we shall prove the following theorem.

Theorem. Let G be a 5-fold transitive permutation group on a set $\Omega = \{1, 2, ..., n\}$. Let P be a Sylow 2-subgroup of G_{12345} . If P is a nonidentity normal subgroup of G_{12345} , then G is one of the following groups: S_7 , A_9 or M_{24} .

The idea of the proof of the theorem is derived from Oyama [7].

In order to prove the theorem, we shall use the following two lemmas, which will be proved in Sections 3 and 4.

Lemma 1. Let G be a permutation group on $\Omega = \{1, 2, \dots, n\}$ satisfying the following three conditions.

- (i) For any five points $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ and α_5 in Ω , the order of $G_{\alpha_1 \cdots \alpha_5}$ is even.
- (ii) For any five points α₁, α₂, α₃, α₄ and α₅ in Ω, a Sylow 2-subgroup of G_{α1...α5} is normal in G_{α1...α5}.
- (iii) Any involution in G fixes at most seven points. Then G is S_7 or A_9 .

Lemma 2. Let G be a permutation group on $\Omega = \{1, 2, \dots, n\}$ satisfying the following four conditions.

- (i) For any five points $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ and α_5 in Ω , the order of $G_{\alpha_1,\dots,\alpha_5}$ is even.
- (ii) For any five points α₁, α₂, α₃, α₄ and α₅ in Ω, a Sylow 2-subgroup of G_{α1}...α₅ is normal in G_{α1}...α₅.
- (iii) Any involution in G fixes at most nine points.

(iv) For any 2-subgroup X fixing exactly nine points, $N(X)^{I(X)} \leq A_9$. Then G is S_7 or A_9 .

The author thanks Professor Eiichi Bannai for his kind advice. We shall use the same notation as in [3].

2. Proof of the Theorem

Let G be a group satisfying the assumption of the theorem.

Let P be the unique Sylow 2-subgroup of G_{12345} . If P is semiregular on Ω -I(P) or |I(P)| > 6, then G is S_7 , A_9 or M_{24} by [2], [3], [4] and [5]. Hence from now on we assume that P is not semiregular on Ω -I(P) and that $|I(P)| \le 6$, and we prove that this case does not arise. If |I(P)| = 6, then $|I(G_{12345})| = 6$, a contradiction to [1]. Hence |I(P)| = 5.

Let r be Max |I(a)|, where a ranges over all involutions in G. Since P is not semiregular on Ω -I(P), we have $r \ge 7$.

Suppose r=7. Let t be a point of a minimal orbit of P in Ω -I(P). It is easily seen that $N(P_t)^{I(P_t)}=S_7$. By [6], we have a contradiction.

Suppose r=9. Let Q be a subgroup of P such that the order of Q is maximal among all subgroups of P fixing exactly nine points. By Lemma 1, $N(Q)^{I(Q)} = A_9$. Again by [6], we have a contradiction. Thus we have $r \ge 11$.

Let Q be a subgroup of P such that the order of Q is maximal among all subgroups of P fixing more than nine points. Set $N=N(Q)^{I(Q)}$. Then N satisfies the following conditions.

- (i) N is a permutation group on I(Q), and its degree is not less than eleven.
- (ii) For any five points $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ and α_5 in I(Q), the order of $N_{\alpha_1,\dots,\alpha_5}$ is even.
- (iii) For any five points α_1 , α_2 , α_3 , α_4 and α_5 in I(Q), a Sylow 2-subgroup of $N_{\alpha_1\cdots\alpha_5}$ is normal in $N_{\alpha_1\cdots\alpha_5}$.
- (iv) Any involution fixes at most nine points.

By Lemma 1, N has an involution fixing exactly nine points. Let X be any 2-subgroup of N fixing exactly nine points. Set $\Delta = I(X)$. Let S be the Sylow 2-subgroup of G_{Δ} . Since $I(S) = \Delta$, we have $N_G(S)^{I(S)} = A_9$ by Lemma 1. Since S is a characteristic subgroup of G_{Δ} , N satisfies the following condition.

(v) For any 2-subgroup X fixing exactly nine points, $N_N(X)^{I(X)} \leq A_9$.

Considering the permutation group N, we have a final contradiction by Lemma 2.

3. Proof of Lemma 1

Let G be a permutation group satisfying the assumptions of Lemma 1. If G has no involution fixing seven points, then G is S_7 or A_9 by [8, Lemma 6] and [2]. Hence from now on we assume that G has an involution fixing exactly seven points, and we prove Lemma 1 by way of contradiction. We may assume that G has an involution a fixing exactly 1,2,...,7 and

$$a = (1) (2) \cdots (7) (8 9) \cdots$$
.

Set $T = C(a)_{89}$.

(1) For any three points i, j and k in I(a), there is an involution in T_{ijk} . Any involution in T is not the identity on I(a).

Proof. Since a normalizes G_{89ijk} and G_{89ijk} is of even order, G_{89ijk} has an involution x commuting with a. Then $x \in T_{ijk}$. Since |I(a)| = 7 and $I(x) \supseteq \{8,9\}$, any involution in T is not the identity on I(a) by (iii).

(2) For any three points *i*, *j* and *k* in I(a), a Sylow 2-subgroup of T_{ijk} is normal in T_{ijk} , and so a Sylow 2-subgroup of $T_{ijk}^{I(a)}$ is normal in $T_{ijk}^{I(a)}$.

Proof. Let S be a Sylow 2-subgroup of T_{ijk} . Since S is a Sylow 2-subgroup of $C(a)_{\otimes ijk}$, S is a normal subgroup of $C(a)_{\otimes ijk}$ by (ii).

We have the following property from (2).

(3) If $x_1^{I(a)}$ and $x_2^{I(a)}$ are involutions in $T^{I(a)}$ with $|I(x_1^{I(a)}) \cap I(x_2^{I(a)})| \ge 3$, then $x_1^{I(a)}x_2^{I(a)}$ is a 2-element of $T^{I(a)}$.

- (4) Since |I(a)| = 7, $T^{I(a)}$ is one of the following groups.
- (a) $T^{I(a)}$ is intransitive and has an orbit of length one or two.
- (b) $T^{I(a)}$ is intransitive and has an orbit of length three.
- (c) $T^{I(a)}$ is primitive.
- (5) The case (a) does not hold.

Proof. Suppose $T^{I(a)}$ has an orbit of length one or two. We may assume that either {1} or {1, 2} is such an orbit. By (1), T_{234} has an involution x_1 . We may assume that

$$x_1 = (1)(2)(3)(4)(5 6)(7) \cdots$$

Similarly T_{235} has an involution x_2 of the form

$$x_2 = (1) (2) (3) (4) (5) (6 7) \cdots, (1) (2) (3) (5) (4 6) (7) \cdots \text{ or}$$

(1) (2) (3) (5) (4 7) (6) \dots .

If the first or the second alternative holds, then $|I(x_1^{I(a)}) \cap I(x_2^{I(a)})| = 4$, and $x_1^{I(a)}x_2^{I(a)}$ is not a 2-element, a contradiction to (3). Thus $x_2=(1)(2)(3)(5)(47)$ (6).... Again by (1), T_{245} has an involution x_3 of the form

$$x_3 = (1) (2) (4) (5) (3) (6 7) \cdots, (1) (2) (4) (5) (3 6) (7) \cdots \text{ or}$$

(1) (2) (4) (5) (3 7) (6) \dots .

In every case, we get a contradiction to (3) by considering either $x_1^{I(a)}x_3^{I(a)}$ or $x_2^{I(a)}x_3^{I(a)}$.

(6) The case (b) does not hold.

Proof. Suppose $T^{I(a)}$ has an orbit of length three. We may assume that $\{1,2,3\}$ is such an orbit of length three. By (5), $\{4,5,6,7\}$ is a $T^{I(a)}$ -orbit. By (1), T_{456} has an involution x_1 . We may assume that

$$x_1 = (1 \ 2) (3) (4) (5) (6) (7) \cdots$$

Since $\{1, 2, 3\}$ is a $T^{I(a)}$ -orbit, T has an element y of the form

$$y = (1 \ 2 \ 3) \cdots$$

Set $x_2 = x_1^y$, then $x_2 = (2 \ 3) (1) (4) (5) (6) (7) \cdots$. So, $|I(x_1^{I(a)}) \cap I(x_2^{I(a)})| = 4$, and $x_1x_2 = (1 \ 3 \ 2) (4) (5) (6) (7) \cdots$, which is a contradiction. Hence $T^{I(a)}$ has no orbit of length three.

(7) We show that the case (c) does not hold, and complete the proof of Lemma 1.

Proof. Suppose $T^{I(a)}$ is primitive. By (1), we have $T^{I(a)} \ge A_7$ (cf.e.g.[10]). Therefore for any involution x in G fixing exactly seven points, $C(x)^{I(x)} \ge A_7$.

Let Γ be any subset of Ω with $|\Gamma| = 5$. Set $\Gamma = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5\}$. By (i), $G_{\alpha_1 \cdots \alpha_5}$ has an involution. If $G_{\alpha_1 \cdots \alpha_5}$ has an involution x_1 fixing exactly seven points, then $C(x_1)^{I(x_1)} \ge A_7$. Hence $G_{\{\alpha_1, \dots, \alpha_5\}}^{[\alpha_1, \dots, \alpha_5]} = S_5$. Suppose that $G_{\alpha_1 \cdots \alpha_5}$ has no involution fixing seven points. Let x_2 be an involution in $G_{\alpha_1 \cdots \alpha_5}$. Let $x_2 = (\alpha_1) \cdots (\alpha_5) (\beta_1 \beta_2) \cdots$. It is easily seen that $C(x_2)_{\beta_1 \beta_2}^{I(x_2)} = S_5$. Hence $G_{[\alpha_1, \dots, \alpha_5]}^{[\alpha_1, \dots, \alpha_5]} = S_5$. Thus we have $G_{[\alpha_1, \dots, \alpha_5]}^{[\alpha_1, \dots, \alpha_5]} = S_5$ in either case. Therefore by [9, Lemma 3], G is 4-fold transitive on Ω .

Let x be an involution in G fixing seven points. Let S be the Sylow 2-subgroup of $G_{I(x)}$. Since $C(x)^{I(x)} \ge A_7$, we have $N(S)^{I(S)} \ge A_7$. By [6], we get a contradiction.

Thus we complete the proof of Lemma 1.

4. Proof of Lemma 2

Let G be a permutation group satisfying the assumptions of Lemma 2. If G has no involution fixing nine points, then G is S_7 or A_9 by Lemma 1. Hence from now on we assume that G has an involution fixing exactly nine points, and we prove Lemma 2 by way of contradiction. We may assume that G has an involution a fixing $1, 2, \dots, 9$ and

$$a = (1) (2) \cdots (9) (10 \ 11) \cdots$$
.

Set $T = C(a)_{10 11}$.

(1) For any three points i, j and k in I(a), there is an involution in T_{ijk} . Any involution in T is not the identity on I(a).

346

(2) For any three points *i*, *j* and *k* in I(a), a Sylow 2-subgroup of T_{ijk} is normal in T_{ijk} , and so a Sylow 2-subgroup of $T_{ijk}^{I(a)}$ is normal in $T_{ijk}^{I(a)}$.

(3) If $x_1^{I(a)}$ and $x_2^{I(a)}$ are involutions in $T^{I(a)}$ with $|I(x_1^{I(a)}) \cap I(x_2^{I(a)})| \ge 3$, then $x_1^{I(a)}x_2^{I(a)}$ is a 2-element of $T^{I(a)}$.

The proofs of (1), (2) and (3) are similar to the proofs of (1), (2) and (3) in Section 3 respectively.

- (4) Since |I(a)| = 9, $T^{I(a)}$ is one of the following groups.
- (a) $T^{I(a)}$ is intransitive and has an orbit of length one or two.
- (b) $T^{I(a)}$ is either an intransitive group with an orbit of length three, or a transitive but imprimitive group with three blocks of length three.
- (c) $T^{I(a)}$ is intransitive and has an orbit of length four.
- (d) $T^{I(a)}$ is primitive.
- (5) The case (a) does not hold.

Proof. Suppose $T^{I(a)}$ has an orbit of length one or two. We may assume that either {1} or {1,2} is such an orbit. By (1), T_{234} has an involution x_1 . By the assumption (iv), we may assume that

$$x_1 = (1) (2) (3) (4) (5) (67) (89) \cdots$$

Similarly T_{236} has an involution x_2 . We may assume without loss of generality that

$$\begin{aligned} x_2^{I(a)} &= (1) (2) (3) (6) (7) (4 5) (8 9) \cdots \alpha ,\\ &(1) (2) (3) (6) (7) (4 8) (5 9) \cdots \beta ,\\ &(1) (2) (3) (6) (8) (7 9) (4 5) \cdots \gamma ,\\ &(1) (2) (3) (6) (8) (7 4) (5 9) \cdots \delta ,\\ &(1) (2) (3) (6) (4) (5 7) (8 9) \cdots \varepsilon \\ &(1) (2) (3) (6) (4) (7 8) (5 9) \cdots \zeta . \end{aligned}$$

If $x_2^{I(a)}$ is of the form δ , ε or ζ , then $|I(x_1^{I(a)}) \cap I(x_2^{I(a)})| \ge 3$, and $x_1^{I(a)}x_2^{I(a)}$ is not a 2-element, a contradiction to (3). Hence $x_2^{I(a)}$ is of the form α . β or γ . T_{269} has an involution x_3 . $x_3^{I(a)}$ is of the form

$$\begin{aligned} x_3^{I(a)} &= (1) (2) (6) (9) (3) (4 5) (7 8) \cdots (1), \\ &(1) (2) (6) (9) (3) (4 7) (5 8) \cdots (2), \\ &(1) (2) (6) (9) (3) (4 8) (5 7) \cdots (3), \\ &(1) (2) (6) (9) (4) (3 5) (7 8) \cdots (4), \\ &(1) (2) (6) (9) (4) (3 7) (5 8) \cdots (5), \\ &(1) (2) (6) (9) (4) (3 8) (5 7) \cdots (6), \end{aligned}$$

M. Yoshizawa

$$\begin{array}{c} (1) (2) (6) (9) (5) (3 4) (7 8) \cdots @, \\ (1) (2) (6) (9) (5) (3 7) (4 8) \cdots @, \\ (1) (2) (6) (9) (5) (3 8) (4 7) \cdots @, \\ (1) (2) (6) (9) (7) (3 4) (5 8) \cdots @, \\ (1) (2) (6) (9) (7) (3 5) (4 8) \cdots @, \\ (1) (2) (6) (9) (7) (3 8) (4 5) \cdots @, \\ (1) (2) (6) (9) (7) (3 8) (4 5) \cdots @, \\ (1) (2) (6) (9) (8) (3 4) (5 7) \cdots @, \\ (1) (2) (6) (9) (8) (3 5) (4 7) \cdots @, \\ (1) (2) (6) (9) (8) (3 7) (4 5) \cdots @, \\ \end{array}$$

If $x^{I(a)}$ is of the form (2), (3), (5), (6), (8) or (9), then $|I(x_1^{I(a)}) \cap I(x_3^{I(a)})| = 3$, and $x_1^{I(a)}x_3^{I(a)}$ is not a 2-element, which is a contradiction. Suppose $x_3^{I(a)}$ is of the form (10). Then $x_1x_3=(1)(2)(3+1)(5+8)(6+7)\cdots$, and $(x_1x_3)^2=(1)(2)(3)(4)(5+8)(6)(7)\cdots$. Set $y=(x_1x_3)^2$ and $x_4=x_1^y$. Then $x_4=(1)(2)(3)(4)(9)(6+7)(5+8)\cdots$. So, $|I(x_1^{I(a)}) \cap I(x_4^{I(a)})| = 4$, and $x_1x_4=(1)(2)(3)(4)(5+8)(6)(7)\cdots$, which is a contradiction. If $x_3^{I(a)}$ is of the form (11), (12), (13), (14) or (15), we have a contradiction by the same argument as in the case (10). Hence $x_3^{I(a)}$ is of the form (1), (4) or (7).

Suppose $x_2^{I(a)}$ is of the form α or γ . Since $x_3^{I(a)}$ is of the form (1), (4) or (7), we get a contradiction by considering $x_2^{I(a)}x_3^{I(a)}$.

Suppose $x_2^{I(a)}$ is of the form β . If $x_3^{I(a)}$ is of the form (1) or (4), we get a contradiction by considering $x_2^{I(a)}x_3^{I(a)}$. Suppose $x_3^{I(a)}$ is of the form (7). Then $x_2x_3=(1)(2)(6)(5\ 9)(3\ 4\ 7\ 8)\cdots$. Set $x_5=(x_2x_3)^2$, then $x_5=(1)(2)(6)(5)(9)(3\ 7)(4\ 8)\cdots$. So, $|I(x_1^{I(a)})\cap I(x_5^{I(a)})|=3$, and $x_1x_5=(1)(2)(5)(3\ 7\ 6)(4\ 8\ 9)\cdots$, which is a contradiction. Thus $T^{I(a)}$ has neither orbit of length one nor orbit of length two.

(6) The case (b) does not hold.

Proof. Suppose $T^{I(a)}$ has an orbit of length three or three blocks of length three. We may assume that $\{1, 2, 3\}$ is such an orbit or a block.

Assume that $T^{I(a)}$ has three orbits of length three or three blocks of length three. We may assume that $\{1,2,3\}$, $\{4,5,6\}$ and $\{7,8,9\}$ are the orbits or the blocks. T_{124} has an involution x_1 . By the assumption (iv),

$$x_1 = (1)(2)(3)(4)(5\ 6)\cdots$$

Similarly T_{125} has an involution x_2 of the form

$$x_2 = (1) (2) (3) (5) (4 \ 6) \cdots$$

So, $|I(x_1^{I(a)}) \cap I(x_2^{I(a)})| \ge 3$, and $x_1x_2 = (1) (2) (3) (4 \ 6 \ 5) \cdots$, which is a contradiction.

By (5) and the above, we have that $\{1, 2, 3\}$ and $\{4, 5, 6, 7, 8, 9\}$ are the

 $T^{I(a)}$ -orbits. Since $3 \mid \{4, 5, \dots, 9\} \mid$, we may assume that T has an element y of the form

$$y = (4 \ 5 \ 6) \cdots$$
.

 T_{789} has an involution x_1 . We may assume that

$$x_1 = (1 \ 2) (3) (4 \ 5) (6) (7) (8) (9) \cdots$$

Set $x_2 = x_1^y$, then $x_2 = (5 \ 6) \ (4) \ (7) \ (8) \ (9) \cdots$. So, $|I(x_1^{I(a)}) \cap I(x_2^{I(a)})| \ge 3$, and $x_1x_2 = (4 \ 6 \ 5) \ (7) \ (8) \ (9) \cdots$, which is a contradiction. Thus $T^{I(a)}$ has neither orbit of length three nor block of length three.

(7) The case (c) does not hold.

Proof. Suppose $T^{I(a)}$ has an orbit of length four. We may assume that $\{1, 2, 3, 4\}$ is a $T^{I(a)}$ -orbit. By (5) and (6), $\{5, 6, 7, 8, 9\}$ is a $T^{I(a)}$ -orbit. Since $5 || \{5, 6, 7, 8, 9\} |$, we may assume that T has an element y of the form

$$y = (1)(2)(3)(4)(5\ 67\ 8\ 9)\cdots$$

 T_{123} has an involution x_1 . We may assume that x_1 is of the form

$$x_1 = (1) (2) (3) (4) (5) (6 7) (8 9) \cdots,$$

(1) (2) (3) (4) (5) (6 8) (7 9) \dots or
(1) (2) (3) (4) (5) (6 9) (7 8) \dots .

Set $x_2 = x_1^y$. Then x_2 is of the following form respectively:

$$x_{2} = (1) (2) (3) (4) (6) (7 8) (5 9) \cdots,$$

(1) (2) (3) (4) (6) (7 9) (5 8) \dots or
(1) (2) (3) (4) (6) (5 7) (8 9) \dots .

In any case, we get a contradiction by considering $x_1^{I(a)}x_2^{I(a)}$.

(8) We show that the case (d) does not hold, and complete the proof of Lemma 2.

Proof. If $T^{I(a)}$ is primitive, then by (1) and the assumption (iv), we have $T^{I(a)}=A_9$ (cf.e.g.[10]). But this contradicts (2). Thus $T^{I(a)}$ is not primitive.

Thus we complete the proof of Lemma 2.

GAKUSHUIN UNIVERSITY

References

[1] H. Nagao: On multiply transitive groups IV, Osaka J. Math. 2 (1965), 327-341.

M. YOSHIZAWA

- [2] T. Oyama: On multiply transitive groups VII, Osaka J. Math. 5 (1968), 155-164.
- [3] T. Oyama: On multiply transitive groups VIII, Osaka J. Math. 6 (1969), 315-319.
- [4] T. Oyama: On multiply transitive groups IX, Osaka J. Math. 7 (1970), 41-56.
- [5] T. Oyama: On multiply transitive groups XI, Osaka J. Math. 10 (1973), 379-439.
- [6] T. Oyama: On multiply transitive groups XII. Osaka J. Math. 11 (1974), 595-636.
- [7] T. Oyama: On multiply transitive groups XIII, Osaka J. Math. 13 (1976), 367– 383.
- [8] D. Livingstone and A. Wagner: Transitivity of finite permutation groups on unordered sets, Math. Z. 90 (1965), 393-403.
- [9] A. Wagner: Normal subgroups of triply-transitive permutation groups of odd degree, Math. Z. 94 (1966), 219–222.
- [10] C.C. Sims: Computational methods in the study of permutation groups, (in Computational Problems in Abstract Algebra), Pergamon Press, London, 1970, 169–183.