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Peter J. Cameron [3] has shown that a primitive permutation group G has
rank at most 4 if the stabilizer G, of a point a is doubly transitive on all its
nontrivial suborbits except one.

The purpose of this paper is to prove the following two theorems, one of
which extends the Cameron’s result.

Theorem 1. Let G be a primitive permutation group on a finite set Q,
and all nontrivial G-obrits in Cartesian product QX be Ty, -+, T, Ay, >+, A,y
where G, is doubly transitive on T'(a)={8|(a, B)=2T}, 1=:{<s and not doubly
transitive on A(a), 1=i=t. Suppose that G has no subdegree smaller than 4 and
that t>1. Then, we have

s<2—r,

where r=4${A;| A;=T"%FT'; 1=<j=<s}. Moreover if r=1, then we have
s=2t—2.

(For the notation T'}oT"}, see the section 1)

Theorem 2. Under the hypothesis of Theorem 1, if r=t, then s=t=2, and
G is isomorphic to the small Janko simple group and G, is isomorphic to PSL(2,11).

For the case of =3, I don’t know the example satisfying the equality
s=2t—r, and when r=1, the exampel satisfying the equality s=2¢t—2. I know
only three examples with =2 and s=2.

The small Janko simple group J; of order 175560 has a primitive rank 5 re-
presestation of degree 266 in which the stabilizer of a point is isomorphic to
PSL (2, 11) and acts doubly transitively on suborbits of lengths 11 and 12; the
other suborbit lengths are 110 and 132 (See Livingstone [7]). The Mathieu
group M, has a primitive rank 5 representation of degree 144 in which the
stabilizer of a point is isomorphic to PSL (2, 11) and acts doubly transitively on
two suborbits of length 11; the other suborbit lengths are 55 and 66 (See Cameron

[4]).
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The group [Z;X Z3X Z,]S, has a primitive rank 5 representation of degree
27 in which the stabilizer of a point is S, and acts doubly transitively on two
suborbits of length 4; the other suborbit lengths are 6 and 12. I conjecture
that it may even be true that s is at most 2.

1. Preliminaries

Let G be a transitive permutation group on a finite set , and A be a
subset of the Cartesian product QX Q which is fixed by G (acting in the
natural way on QX Q), then A(a){B€Q|(a, B)= A} is a subset of Q fixed by
G,. This procedure sets up a one-to-one correspondence between G-orbits
in QX Q and G,-orbits in ). The number of such orbits is called the rank
of G. A*={(B, a)l(a, B)DA} is the subset of QX Q fixed by G paired
with A; A is self-paired if A=A*. Note that |A(a)|=A*)|=|Al/|Q|. If
T and A are fixed sets of G in QX Q, let ToA denote the set {(a, B)} there
exists yEQ with (a, Y)ET, (v, B)EA; a+6}; this is also a fixed set of G.
The diagonal {(a, a)|a=Q} is a trivial G-orbit. If T" is a nontrivial G-orbits
in QX Q, the I'-graph is the reqular directed graph whose point set is Q and
whose edges are precisely the ordered pairs in I'. A connected component of
any such graph is a block of imprimitivity for G. G is primitive if and only if
each such graph is connected.

For a G-orbit T" in QX Q, the basis matrix C=C(T") is the matrix whose
rows and columns are indexed by Q, with («, B) entry 1 if (o, B)ET, 0 other-
wise. All of the basis matrices form a basis of the centralizer algebra of the
permutation matrices in G.

Let G be a group which acts as a permutation group on £, and = the permu-
tation character of G i.e. the integer-valued function on G defined by z(g)=
number of fixed points of g. The formula

(7, 1)s = —— 3V (g) = number of orbits of G,

| G | it

is well-known. If G acts as a permutation group on £, and £,, with per-
mutation characters 7, and 7,, the number m of G-orbits in Q, X Q, is

m = (mm; 1)e = (7, ) -

In particular, if G is a transitive permutation group on £ with permutation
character z, the rank » of G is given by

r = (=, m)e = sum of squares of multiplicities of irreducible consitituents of =
If G acts doubly transitively on Q; and Q,,

(1, m) = 2 or 1 according as z, = =, or m =+, .
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Lastly, we note that if G is a primitive permutation group on £, then for
a, B (F)EQ, either G,#Gp or G is a regular group of prime degree ([8],
Prop. 8.6); primitive groups with a sudbegree 2 are Frobenius groups of prime
degree ([8], Theorem 18.7); primitive groups with a subdegree 3 are classified
by W.]J. Wong [9].

2. Lemmata

Throughout this section, we suppose that G is a primitive but not doubly
transitive group on a finite set Q, and T, T, -+ are G-orbits in QX Q such
that G, is doubly transitive on T'y(a), =1, 2, -*+; z; and z¥ are the permutation
characters of G, on T',(a) and T'¥(a), respectively, and let C;=C(T;), C¥=
C(T¥).

Lemma 1. (P.]. Cameron [2]. Proposition 1.2)
G, is doubly transitive on T¥(cx).

Lemma 2. (P.]. Cameron [3]. Lemma 1)
T¥oT; is a G-orbit in QX Q, and if |T(a)| >2, then G, is not doubly transi-
tive on TFoT'(a).

Lemma 3. (P.]. Cameron [2]. Theorem 2.2)
For (o, B)ET;oT¥, we put v;=|T(cx)| and k=|T(a)NT(B)|. Then

v(v;—1) 1

k;<v; and IF,-oI‘?‘(a)IzT. If v;>2, then k,g”"; ; when particulary

1

£

k-='v"2_1, then v;=3 or 5.
In the following, we set

IT(a)l=v;, ITwTHa)l= g‘(vk—_l) :

Lemma 4. (P.]. Cameron [2]. Lemma 2.1)
|T¥oTya)| =|T;eTH(a)l.
Lemma 5. T¥oT;==T¥oT, if and only if |(ToT¥H(a)|=|Ty(a)|+ [Ty(a)!-

Proof. If |TyeT¥(ar)| <|Ty(e)|*|To(er)|, we have |Ty(a) NTH(B)| >1 for
some (a, B)EToT¥. For vy, v(F) € Ty(a)NTL(B), (V1, ¥v2) ETFoT, and
(71, Vo)ETFoT,. So TFoIy=T¥oT,. Conversely, if T¥oI',=T¥cT, for (7;, 72)
eTfoIy=T%oT, we can choose a and B such that acT¥(7,)NTH7",),
BET¥(v)NTH(v,). Since Ty(a) NTH(B)E Y1, V2 [ Ti(a) NTH(B)| >1. There-
fore |TyoTH(a)| <ITy(a)] - | Ty(a)].

Lemma 6. T¥oT, is the union of at most two G-orbits in QXQ, and
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m=m, if and only if TFoT, is the union of two G-orbits in QX Q.

Proof. Since (7,75, 1)g=(7;, 7;)¢=2, and =7, is the permutation charac-
ter of G, on T'j(a) X T'y(a), G has at most two orbits in {(a, v, 8)|(a, v)ET,,
(a, 8)€T,}, and hence, T¥oT, is the union of at most two G-orbits. If
m =% m,, then G is transitive on {(a, 7, 8)| (e, ¥)ETY, (o, )Ty}, and hence,
T¥oT, is a G-orbit in QX Q. Now, we shall assume that z,=r=, and T'}.T, is a
G-orbitin QX Q. We put v=v,=1v,, and m= |T¥(a) N T¥(8)| for (a, 8)T¥oT,.
If m=1, then since T'¥T, is a G-orbit, G is transitive on {(a, ¥, 8)|(7, @)ET,
(v, 8)eT,}. Therefore (m,, m;)c=1, and hence, 7, ,, this is contrary to the
assumption If m>1, then there exist quadrilaterals («, v;, 8, 7,) whose edges
are successively T'¥, T, T'F and T,; and whose vertices are all distinct.
Counting all of them in two ways, we have

101 P m(m—1) = || 2@ Drp,,
m Ry

SO
o(m—1) = (v—1)k, .

Hence, v=~k,. This is impossible by Lemma 3.
Lemma 7. If I‘,-\OF?‘#F’,"OF;, then F,-OF,-:DF,-OF?, F?‘OF;.

Proof. Now assume I';oI'; DT;oI'¥ or T'¥oT';, then we have the following
figure,

and hence, T';oT; DT;ocT'¥ UTFoT";. Since I';oT'; is the union of at most two
G-orbits in QX Q, we have T;oT;=T;oT¥UT¥-T;. By the assummption of
this lemma, |(T;oT;)(a)| =|T(a)| * |Te)| =2i. So

0} = |ToT(a)| = II‘i°F:'k(05)| =+ Fi-kor,-(a)l =
vk, = 2(v;—1).

20,(v—1)
kR

Therefore, v;=2. All of the suborbits of the primitive group with a subdegree
2 are self-paired. This is contrary to the assumption of this Lemma.

Lemma 8. Let TFoT, be the union of two G-orbits >3 and >Y,. We set
v=0,=10,, §;=C(2)), s;=|2%(a)l, i=1, 2, and C¥C,=a,S,+a,S,. Then we
have
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) s, %=v. If s,=v, G, is double transitive on 3\(t)
i) v*=a,8,+ays,
i) T oT¥=T,0T¥ if and only if ay=a,=1
iv) if s;=v(v—1), then T,oTF¥+T,0T'F and T¥oT, containes some T';

Proof. i) Assume s;=v. Then (z¥, #(3}))=1 or 2 according as =¥
7(3Y) or #¥=n(3],) where z(2))) is the permutation character of G, on > («).
If z¥+7(32Y), for s€X(a), G, s is transitive on T'¥(a). Thus T¥(a)=T%(3).
Therefore G,=Grxn=Gr1sn=Gs. This is impossible. So we have #¥=
7(2), and hence, s,=v and G, is doubly transitive on > ().

ii) For the matrix F such that any entry is 1, we have

F(C¥C,) =v*F and F(4,8,4aS,) = (a;5,+as,)F,

S0 2 = a5+ a,s, .
iii) The existence of the following figure is equvalent to I'joT¥=T",0T'¥.

T, T,

It holds also that the figure exists if and only if 4;=2 for /=1 or 2.
iv) By ii), ¥’=a,9(v—1)4as,. Since s,>v, a;=a,=1 and s,=v. Therefore
we conclude that T'foT", containes some T'; by i), and T';oT'¥ 4= T,oT'¥ by iii).

Lemma 9. If z,%m,, G, is not doubly transitive on T¥oTy(a).

Proof. Assume that G, is doubly transitive on I'foT'y(ct). If |TFoTy ()l
#+ |T'y(a)l, then G, has different permutation characters on I'f(c) and T oT'y(a).
Hence, for (a, v)eT¥,G, is transitive on I'oT'y(a), so, Ty(7)=TFoTy(a).
Therefore Gy=G'r,1) =G r*ry(sn=G,. This is impossible. Thus, we obtain
[T¥oTy ()| =|T¥oTy(a)|=IT,(a)|. On the other hand, for (3, v)eT¥,
Ty(v)cT#$oTy(8). So, T'foI'y(8)=T(v). This is alos impossible.

Lemma 10. Assume T,oT'f=T,oT¥ and T%oT, be the union of two G-
orbits T} and T put | Ti(@)] = | T(@)]| =o, | TeTH@) =", | (@)l =
=1, 2; and |Ty(v)N2u(a)|=t for yeTF(a). Then, we have the following

quadratic equation for t

po=tf LW ko—1)=0.
81 §

v(v—1)

Particulary, i) when s,= , the quadratic equation has at most one root for



316 M. NuMAaTAa

v(v—1)
(k+1)

0<t <w; ii) when t=1, then s,=v, s;= and G, is doubly transitive on

22()-

Proof. For vy, v,(%)&T¥(a), counting arguments show that

| = (v—28){v(v—1t)—s;} i

ITo(7) N To(72) N 230(e@)

(v—1)s,
| (7)) N Ta(v) N (et | = f%%) ,
_ _ (o—)fo(o—t)—s} , Hot—s)
SO k= |F2('Yl) nrz(')’z)l = (‘v—l)sl + (7)——1)82 »

Y 2
_ v(v—1) LU
8 5

)

(o—1k=2@T_ o,
5 8

0= v o how_1).
$1 $2

We shall prove the latter assertions. We put

ft)=20= % ho—1).
$ §:

1 2

When s g‘”("’T_l), then f(0)<0. Since the coefficient of #2 in f{(¢) is positive,

f(t) has at most one root for 0<¢<v. When ¢=1, then 5,<v. By Lemma 8,
o(v—1)
k+1°
Lemma 11. Let T¥oT, be the union of two G-orbits 33, and 3%, and G,
doubly transitive on 23 (c) and 2%(a), then |Ty(a)|=|Ty(a)| =3.

Proof. This lemma due to P.J. Cameron. ([3], Lemma 4.) We put
|Ty(a)|=|Ty(a)| =v, and assume |2)(a)| +v. Then, G, has the different
permutation characters on I'f(er) and 2Y(x), so, for (a, )2, G, 5 is transi-
tive on I'f(a). Hence, I'f(a)=T%(8). Therefore, G,=Gren=GC r3on=Gs-
This is impossible. Thus we conclude that |>%(a)| =v. In the same way, we
have |>%(a)|=v.

Now, if TyoT¥=T,0T¥, then by Lemma 5 |TFoTy(a)| = |T¥(a)| |Ty(t)l
=2, Therefore, v’=|T¥oTy(a)| =2V (a)|+ 2% (a)| =2, so v=2. Thus,
when v>2, we obtain that T',oT'¥=T,0T¥. For y&T{(a), we put t=|T%(7)N
2N(a)l. Then for (7, 7,) €T oT¥, by Lemma 10 we have the following
equation

i) ,=v. Sos,=v, and hence, G, is doubly transitive on D Y(«t), and §;=
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ky, = |Ty(v) NTy(7,)| = ;_1_—1 {(‘U"t)z‘l‘tz—'v}

2t(v—1)
v—1

—= U —

+ 200 Wil) is not integer, so tévgl or tg”*z‘l.
('v—i—l)——('v—l) But kzg%(v—n by Lemma

If i=-72)*, D7) NTo7) | =

Hence k,= 2t(v 1)

3, so equality holds, and thus v=3 or 5 by Lemma 3, and t=—21-(7)—{—1) or

%('v— 1). Counting arguments show that |T(7,)NT(7)N2Y ()= %t:Tl)

for vy, vi(F)eT¥(a). Therefore v—1 divides #(t—1); this excludes v=S5,
and so v=3.

Lemma 12, For T, T, Ty, if >\ is a G-orbit contained in TFoT,NT¥oT,,
and |Ty(a)| >3; then G, is not doubly transitive on >Y(ar).

Proof. >WoT¥DTFUT¥. If G, is doubly transitive on DY), S1*oT¥
is the union of at most two G-orbits by Lemma 6, so D¥*eT¥=T¥ UT¥. This
is contrary to Lemma 11.

Lemma 13. If T, oT¥=T,T% and =, =*n, then, |v,—v,|=2, and
IT,oTH(a) | > [TFeTy(a)].
Proof. For (a, 8)T¥ T, we put
m= |T¥a)NTF(O)|.

Count in two ways quadrilaterals (a, 7, 8, 7,) with v,%v, whose edges are
successively TF, T, T'f, and T';; then we have

|Q|7’_z(”2_—_1_)k2k1:|m%m(m_1),
k m

2

S0

(v,— 1)k = vy(m—1). (1)
If v,—=v,, then k=v,. This is impossible. If v,=v,41, then klg%, and
hence, by Lemma 3 9,=2, v,=1. This is also impossible. Thus we can con-
clude that |v,—v,| =2.

Assume |ToT¥(a)| =§£};__1)= |

1

T¥oTy(a)| =2%. Then
m

kv, =m(v,—1). (2)
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From T';oI'¥=T,oT¥, we have also
kv, =m(v,—1) . (3)
Therefore, (1) and (2) yield
o <k-+m. (4)
By Lemma 3 and (3), we have

m
so
zgmg% . (5)
Thus (4) and (5) yield
k= %vl

This is contrary to Lemma 3.
Lemma 14. (P.]. Cameron [3]) If T',oT¥=ToT'¥, then T oTF=£T,0T¥.

Proof. We shall prove this lemma in a different way from P.J. Cameron’s.
Assume ToI'¥f=ToT¥=T,0I'¥. We put

ITeTH@)] = 2O=D — rers(@) = 2= - rerse) = 2%,
1

2

where m=|Ty(a)NT,(8)| for (a, 3&T0I'F). Then it is trivial that m>1
from the above formula, and hence, TfoI')=T%0I,. Thus, by Lemma 13,
[TyoT¥(a)| < |T¥oTy(a)|=|ToT¥(a)|. This is contrary to assumption.

Now we shall investigate from Lemma 15 to Lemma 22 the necessary
condition that the intersection of I'¥foT', and T'¥oT for T, T, T'; (%) is not
empty.

Lemma 15. If n,=n,%*n; and n¥=n¥, or mi=m,=n, and =¥ +=¥, then
T¥oT,NT¥ol=0.

Proof. Assume z,=n,%+7; and z¥==F. Then we have v;,=v,—v;. We
put v=v,=v,=9;. By Lemma 13, T,oT¥=+TI¥, and hence, |T¥oTy(a)| =
|T¥(a)| * |Ty(er)| =2 by Lemma 5. If T¥ol,NT¥oT3=%0@, then since T¥olY
is a G-orbit and I'¥oT', is a union of two G-orbits, we have I'¥oT,RT¥oT.
Therefore |TFoTy(a)| > |TFoly(a)|=2%. This is impossible. Similarly, we
can prove the lemma for the case of 7,=#,==; and z¥+=¥.
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Lemma 16. If z¥+nx¥, n¥+2¥ and n,=%n,, then T1oTF NToTF=0.

Proof. By the assumption, I';oT'¥, I';oT'¥ and I'f oT'y are G-orbits. Assume
ToT¥=ToT¥. For (o, 8)eToT¥, we put

[Ty (ax)NT(8)| =m, and |Ty(a)NTy(d)| = ms.
For v,, 7:(F)eT (), we put
IF’Zk('Yl) n F’sk(')’z)| =X.

Then, since T'¥oT;=T"§0I";, we have
v (v—1) _ 1% T _ 003
oL = [Tfely(a)| = [T¥oTya)| = =3,
k, x
S0
(v, —1)x = w03k, . (1)

Count in two ways quadrilaterals (a, 7/, 8, 7) whose edges are successively
T,, T%, T; and T'¥, then we have

10120 =D o 10) 2%mm,
k, my
SO

(0,—1D)x = vgm, . (2)

(1) and (2) yield
'vlmz = kl'vz . ( 3 )
If m,>1, there exist quadrilaterals (e, B3,, 8, [3;) whose edges are successively

T,, T¥, T, and T'¥, whose vetices are all distinct; count all of them in two
ways, we have

|Q|91£zi;e___l)k1k2 = |Q|v;n—v2m2(m2—1) ’
A 2
s0

(0,— 1)k, = vp(m,—1) .
On the other hand, from I'¥oT',=T% 0T,
‘vz(vz— l)kl == vl(vl“'l)kz == ‘vl'vz(mz— 1) Iy
S0
vl(mz_].) - (‘Uz_l)kl .
(3) and (4) yield

U = kl.
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This is contrary to Lemma 3.

Thus, we have m,=m,=1 and v,=k;v,. For (a, v)ET), G,y is transitive on
T'y(a)\ {7} and since z¥ 7%, it is also transitive on T'$(y). Count in two ways
(7, 8) such that ¥ eT(a)\ {7}, 8T¥(7) and (v, 8)T¥, then we have

U
k,

(—Dx=19,=

This is impossible.
Lemma 17. If n,%m,, my 73 and T1oTF=T,T'F, then T§oT, N TFoT'y;=0.

Proof. Assume I'fol,=T¥oI;. By Lemma 16, z¥==%. We put v=uv,,
w=v,= v, m=|T¥(a)NTFO)|=ITFa)NT$@®)|>1 for (a, §)cT¥oT,, and
x=|Ty(71)NT3(72)| for vy, 7(F)ETY (a).

Count in two ways quadrilaterals («, 71, 8, 7,) whose edges are successively
T¥, T, T¥ and T;; then we have

Iﬂlz’(—”{i)kxx= 12| 2% mm
1 m

SO
(v—1)x = wm . (1)

Next, count in two ways quadrilaterals (e, v;, 8, 7,) whose edges are
successively T'¥, T, T'}, T, and whose vertices are all distinct; then

lm”("’;”klkz =101 ™ m(m—1),
m

1

(v—1)k, = w(m—1) . (2)

(1) and (2) yield
(v—1)(x—k;) = w, that is, x> k,=1. (3)
Since x=2, there exist quadrilaterals (v, 8, 9/, §,) whose edges successively

T, T%, T, and TF, whose vertices are all distinct, and (7, ¥/)ET o T¥=T,0TF;
count all of them in two ways, then

Q| w(w—1)A -——~]Qlw(%l—)x(x—l),

(= ITF@E)NTHE)NTeTH(v)|  for §,, &, (F)eT(7))
so

_ %(x—1)
A ——————kz .
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By the definition of A, A=k,. On the other hand, since x> k;, x:’i(kal)>kz.
2
This is a contradiction.

Lemma 18. If ¥ #=n¥, n¥+#¥ and T,oT'F=T"0T'%, then C,CF=C,C¥.

Proof. By Lemma 6 > =T,0oI'¥=ToT%¥ is a G-orbit. Let S=C(3)),
C,C¥=m,S, C,C¥=m,S and |2}(a)|=s.
For the matrix F such that the value of any entry is 1, we have
0,0,F = F(C,C¥) = F(m,S) = mysF,
)
ViV = M,S .
Similarly

‘vl'va = m3$ .

On the other hand, by Lemma 16, 7,=m, and hence, v,=v;. So, m,=ms,.
Thus we can conclude that C,C¥=C,C%.

Lemma 19. If C,\C$=C,C¥ and |T\(a)| =v,>3, then we have
1) m=m;, ot Fn¥, n¥.
ii) Fikol-‘l:'::["zkol-‘z, P’]"OI‘I*F?; 0].-‘3.

iil) 1)1=‘U2+ 1——_7/'3—‘—1, I]._"zk(')’l) n F;}k('yz) l :1 for (71, ’)’Z)EP?OPP
iv) |TfeTy (@) =20,

Proof. By the assumption I'joT'f=T,oI'f. For the matrix F such that
the value of any entry is 1, we have

F(C\,C¥) = (FC,)C% = (v,F)C¥ = v,(FC¥) = viv,F .
Similarly
F(C.C¥) = vu,F .
So

'UZ=‘U3.

We shall show that v,#v,—v,. Assume v=9,=v,=9v; ana put D=
C(T¥oTy). If TFoI,=T%oTY, then | T oT¥(a)| = |T1oTH(a)| + | Ty(a)| - | Ty(a)]
=|Tya)| - | Ts(a)|, therefore TFoT,=T%oT; by Lemma 5. We put k=k=
k,=Fk;.

C¥(C.,C¥) = (C¥C))CF = (vE+kD)C¥ = vC¥+k(v—1)C¥+
terms not involving C¥.

Similarly
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C¥(C,C¥)=vC¥+k(v—1)C¥+terms not involving C¥ .
So
(vE+kD)CT = {v+k(v—1)} C¥+terms not involving C¥ .

Since the coefficients of the basis matrices in DC¥ are at most v, the above

formula is impossible.
Next, if T¥oI,3=TFoT,, then T'FoI’==T%0T;, and DC¥ does not ivnolve
C¥. Now

C¥(C,C¥) = (C*¥C)C¥ = (vE+kD)C¥,
C*(C,C¥) = (C*¥C,)C*T = (vE+EkD)C¥ = vC¥+terms not invloving C¥,

and hence, k,DC¥=vC¥—terms not involving C¥.
For (v, v,)€T¥T and (v,, 8)eT¥, we put

x=|THv)NTH)| and t=|TFeIy(v)) NTy()].

Then from the above formula we have

v
t=—. 1
. (1)

Counting in two ways triplilaterals (v,, 8, 7,) whose edges are successively
T¥, T, and T¥oT';, we have

‘Z_)(‘Z);L)x = ot .
1

(1) and (2) yield

(v—Dx=wv,
which is a contradiction. Thus we can conclude that v,+v,=wv;, and hence,
nf ¥ +x¥. Therefore, we obtain m=m; by Lemma 16, T¥oT,==T¥oI",=+
T§oI'; by Lemma 17, and hence we have i) and ii) of Lemma.

For (a, v)T, count in two ways the ordered pairs (v/, §) such that

v'eTy(a)\{7}, s€T¥(v) and (v, §)T¥; then since I'fol",+=T¥oT"; we have

(o,—x=w0,. (3)

Now, we shall show that x=1. Assume x> 1, then there exist quadrilaterals
(7, 81, v, 8,) whose edges are successively T'¥, I';, T'¥ and [T, whose edges are
all distinct, and (v, v/)eT¥oI; count all of them in two ways, then we have

10 w(t— ) = |mﬂiz;l)x(x—1),
1

(7\,= |Pf 01-‘1(')’) n P3(81) ﬂ 1-‘3(82)' fOI‘ ('Y, 81), ('}’, 82) (:'z)EP;, (81, 82)6 onl-“zk) >
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)
(2— 1Nk = vy(x—1) = (0,— D)x+x—v;, = v+x—0, .
Therefore, x=v,—1. If x=v, then (v,—1)Ak,=v,, which is a contradiction.

If x>0, then v2=(01—1)x>%’;e:l). So (¥, m(TFeTy(7)))e,=1, where
1
a(T¥oI'y(7)) is the permutation character of Gy on I'foI'y(v). Hence, for

(v, ¥)ET¥oT, Gyy is transitive on T¥(v). So T'i(v)=T%(v’). This is im-
possible.

Thus we have x=v,—1, ki=A=1, v,=(v,—1)? and |TFTy(7)NT3)| =2,
for (v, 8)eT¥.

Now, count in two ways quadrilaterals (e, 7, 72, 73) such that (e, v,)ET,,
(@0, 72), (a, V3)ETy, and (71, 72), (Y1, Y3)ETF T, 7,5 73; then we have

I\Ql‘vs("’a_ 1)7\-, = |Q|7’27’1(‘Z’1_1) ’
(V= [T¥eTy(72) NTFoT'y(7s) NTy(@x) | for v,, 73 (F)ETy(a))
SO

— 1)1(7)1—1) — 7)1('01_1) — '01‘_1

A .
‘1)3—1 (‘01_12)_1 ‘Z)l—-z

Therefore, v,=3. This is contrary to the hypossesis of Lemma. Thus we
can conclude that x=1, and hence, by (3) we have v;,=9v,+1=v,+1. This
proves Lemma iii).

Lastly, we shall show that k,=2. If k=1, then |T}oTy(a)l =v,(v,—1)<
I T¥Toy(a)| Sv,0;=(v;—1)* This is impossible. Now, we have

u= |r;kor1(n/)nr3(a)|=% for (v, 8)&T} and 2§k1<%;

1

Count again in two ways quadrilaterals («, v;, 72, 73) such that (a, v,)ET,,
(e, 72), (at, v3)ET5 and (v, 72), (V1 ')’3)EI“1'<°F1, Y.#+73; then

" _pf(2q)®
Q] (@—1) (0 =2\ = Q] (e, 1)(k1 1) 2,
W= |F>1k°r1('72)nP'lx."Fl('Ya)an(a)I for 7,, 73(=1=)EF3(L¥))

SO

N vy (v—k) _ w(u—1)k _ w(u—1)
(n—2)k%  (hu—2)k?  ku—2

If u is odd, then ku—2 divides u—1. This is impossible. We put u=2u,,
then '
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_ 2uy(2uy—1) _ uy(2u,—1)

x//
2k1u0_2 kluo—‘ 1

Therefore, we conclude that k,=2.

Lemma 20. If m=m=+m; and T¥oT,NT¥oTy3+0, then v,=v,=v;+1,
>F1°PT4=F20F§= dnd I‘TOFZ=I‘T°I‘3UF,' for some Fi‘

Proof. By assumption, >1=T¥oT; is a G-orbit contained in T¥oI,. We
put v=0v,=70,, w=1v;, |Ty(7:) NTs(7;)| == for (71, V;)ET1oTF, [T a) NTH(3)I
=y and |T¥(a) NT¥(8)|=m for (a, 8)E, |To(Y)NX(a)| =t for (a, ¥)=T¥.
By Lemma 15, z¥ ¥, and hence, T,oT'¥ is a G-orbit. We have

U=1) _ | poT¥ ()| = | TpeTH(m) | = 22,
k, x
SO

(v—1)x = wk, . (1)
‘We have also | >Y(a)] =% _ ﬂ, and so
m y

wy = tm. (2)

Count in two ways quadrilaterals (a, 7, 8, 7,) whose edges are succes-
sively T¥, T, T¥ and T, then we have

Im“’(”T“l)klx= 1917 my,
m

1

S0
(v—x=wy. (3)
(1) and (3) yield
y=~Fk. (4)
From (2) and (3),
(v—Dx=1tm. (5)

We shall show that m=1. If m>>1, then there exist quadrilaterals (o, v;,
3, 7,) whose edges are successively T'¥, Ty, T'¥ and T';, whose vertices are all
distinct; count all of them in two ways, then we have

m!"’(“;“l)ks , = 191“2 mm—1),
3 m

SO
(w—1)k, = v(m—1) .

On the other hand, from (3) and (4)
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(w—l)kl = Wkl_kl = (‘ZJ——I)x——kl N

therefore
o(m—1) = (v—1)x—Fk, ,
)
0sv(x—m+1) = x+k<2v. (6)
(6) yields
x=m, v=mtk. (7)
From (5) and (7),
t=ov—1. (8)
Thus | 3Ya)| =2 =2=D
y k
If T)oT¥=T,0T¥, then by Lemma 10, |>Ya)| =vlgvT—ll)' This is a contradic-

tion. So we have I'joT'¥=T,0oI'§, and hence,
l=—y—h. (9)

Therefore we have m=v—1 from (7) and (9), and w=(v—1)? from (2) and (8).
So

ITyoTH(a)| = | Tyal¥(a)| = "’(“’T—l)gzu; — 2(v—1P>o(v—1).

3
This is impossible. Thus, we can conclude that m=1, and then by (5) t=v—1,
x=1 and |>XY(a)| =W(Lk_l). By Lemma 10, T,oI'¥ f=T,I'¥, and hence,

1
l=y=~k,. Therefore, by (2) w=v—1, |3 a)|=v(v—1). By Lemma 8 iv),
T¥oI,=3IUT; for some T;.

Lemma 21. If T¥oT,NT¥oT3% @, and v, vy, v;>>3, then the following
hold ;
i) if m=m=m,, then nf=n¥
i) if m=m s, then n¥ +=nf and v,=v,=v;+1.
ill) i mFm,, w, then nf=n¥, CXC,=C*¥C,; and v,=v,+1=v,+1.

Proof. We have this assertion by arranging from Lemma 15 to Lemma 20.

Lemma 22. Suppose that TF T, and T¥ oT; contain a G-orbit 33 in QX Q,
and m=m=m;, |Ty(a)|>3. For v, v,(F) T'f(a) and s> (a), the following
hold ;

i) of TyoTF =T,oT¥ =T30T%, then |THa)NTFO)|>1, [THa)NTHE)|>1

and |T5(71) N Ty(72) N 23(e) [ > 1.
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i) if Tyl =Tyl +Tel¥, then |TH(@)NTHE)|> |TF(@)NTHE) =
[Ty () NTs(72) | =1, X))l =v§:)7—,—_11)’ and T'¥oT, contains some T,.
1
iii) #ff TyoT¥ = Thol¥, Teol¥, then |THa)NTFO)| = [TF(a)NTFO) =

[Ty () NTs(72) =1, |2 a@)|=v(v—1), and T¥oT, contains some T'; and
T¥oT'; contains another T;.

Proof. Put |S}(a) NTy(v) NTH)| =) for 7, v(+)eTHa). ITHa)N
T¥()|=x, IT¥(@)NT¥(S)|=ux; for (o, §)>). Count in two ways quadrila-
terals (a, 71, 8, 7,) whose edges are successively T'¥, T, T'f and T';, and («, 9)
€3, then we have

zm?’—(—"’k——l)klm 191 S e) 235,

SO
o(o—1)N = | X(e) | %5 . (1)

Assume TyoTI'f = T,0T¥, TyoT'¥. Then we have |T¥(@)NT¥(S)| =
IT¥e)NTH(8)|=1. By (1)

v(v—I\ = [2(a)].

Since |>Y(a)| =v(v—1), we have A=1and |3}(a)|=2v(v—1). By Lemma 8 iv),
T#oT,=3IUT; and T¥eI'3=23UT; for some T, I';, By Lemma 38, iii), we
have C¥C,=S+C;, C¥C;=S5+C,. (S=C(X))) If C;=C,, then C¥C,=C¥C,,
and hence, by Lemma 19 z,%n,, z;. This is contrary to the hypothesis of this
lemma. Thus C;=%C}, that is, I';=#T,. So 2Y(a)NTH(7:) NTs(7:)=T(71) N
T'y(7;). Therefore |Ty(v,) NTy(72) | =1 2@) NTH(7:) N Ts(7,) | =r=1. Thus we
have iii) of Lemma.

Next assume T'oT'¥=T,0T'f +=T;0I'f. Then we have |T¥(a)NTH(3)|=1.
By (1)

o(o—I\ = [2(a) |2 . (2)

Count in two ways triplilaterals (a, 8, ¥) whose edges are successibly

S, T'¥, and T, then we have

123(@) % =v(v—1). (3)

If x,=1, then |>X}(a)|=v(v—1) by (2) and (3). By Lemma 8. iv), T'oI'f
T,oT'¥. This is contrary to the assumption. Therefore we have x,>1, A=1
and |X(a)|x,=v(v—1). Since [X}(a)|xm=0v(v—1), |2(a)NTy(7)|=v—1 for

(a, Y)eT¥. By Lemma 10. ii), |>Y(a)| =v§;0—_*—_i) and T"¥oT", contains some T;.
1

Now we shall show that I'(v,)N Ts(7:)=T%(7:) N Ts(7z) N 23 (), for
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Y1, V2 E I‘ik(a)- If 1"2(’)'1) n P3('Yg) ;Fz('yl) n Fg(')’z) n Z((x), then Fik °F2=P>1k °F3.
But [TEoTy(@)] = 2] +1T(@) | =20 Dto<ot and |Tter@)=o
1

This is impossible. Therefore, |T(7,) NT3(72)|=IT%(7)NTs(7) N2 () | =
A=1. Thus we have ii) of Lemma.

Last assume I'joT¥=T,oT'¥=T3I%. We shall show that x,= [T¥ ()N
T¥()|>1 and x;=|T¥(a)NT#(8)| >1. We note that k,=Fk,=k;,, therefore
we put k=k=k=k;. If x,=x,=1, by (1) we have |>}(a)|=v(v—1). By
Lemma 8. iv) Ty oT'¥ #T30'f, T';oT'¥. This is contrary to the assumption. If
x,>x;=1, we have ]Z(a)|=v§fT—"11)
TFoTy=1U>Y,

x = |T¥(a)NTFE)| for (a, 8")€>Y, and

as before, and x,=k-+1. We put

t=

k+1 for (a,v,)eTF .

Since ToT'¥=T,T'f and x3=1, there exist quadrilaterals (a, 7v,, &', 7;), with
7157, and (o, §’)€ XY, whose edges are successively I'f, T';, T'F and ;. Count
all of them in two ways then we have

v<v v— 1)
101%0 D — o)~ ey,

SO

_ (=D _  Hk+DE  _ th(k+1)
o—1  t(ktD)fi—z  th+1
E+1

Therefore =1, and hence, v=k--2. This is impossible by Lemma 3. Thus
we have x,>1 and x;> 1.
Now we shall show that A>1. If A=1, by (1) we have

v(v—1) = | 2 ()| 2,3

Since x,>> 1, there exist quadrilaterals («, 73, 8, 7,), with ¥,%7, and (a, §)E3),
whose edges are successively I'f, T, I'f and T,. Count all of them in two
ways then we have

X—
0—

lnl”(” Din, = 101 12(@) | x(0,—1)

(2 = [To(7) NTo(72) N 2() | for v,, v(F)eTH ()
S0
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r — 2@ (1)

v(v—1) ’
and by (1),
XZ = 2_1 .
X3
Thus ¥ ¥ is a positive integer. Since x;>1, in the same way, we have that

3
xg—1
Xz

Lemma 23. If T1oT¥=T%T% and = =+ m, then for any T, T (*),
T,oT* DTy 0T,

is a positive integer. This is impossible. Thus we have i) of Lemma.

Proof. Assume T';oT'¥ DTIoI'¥. Note that |v,—v,| =2 by Lemma 13,
and hence, #f=+=¥. If {I;, I';}={T}, T}, then since T;oT'f is a G-orbit,
T;,oT¥= I‘,ol"*—l"zl"* This is a contrary to Lemma 14, Therefore we can
assume that I';#T, T,. If T';=T, then, T'foI NT'§ol;+@. By Lemma 21
have v,=v;—1. Thisis a contradiction. Thus we have {T';, '} N {T';, T} =0.

From v,+v,, we may assume v;,%9,. Since I'foI;NTToT,*+0, v;=v,—1
by Lemma 21. On the other hand, from |v,—v,| =2, v;%v,. Since I'foI';N
T'¥oT';=0, in the same way, we have v,=v,—1. This is a contradiction.

Lemma 24. If T oT¥=T,0T¥=Ty0'f=A, m=m=m; and |T\(a)| >3,
then T1oT¥ DA or T1oT¥ DA.

Proof. Assume ToT'¥DA and I'oT¥DA. We put v=0,=0,=1v; and
k=k,=k,=k,. Since z,=m,=m;, we have 7¥ = 7§ ==% by Lemma 21. We
shall show that T¥oT,=T§ol,=T%oT;. If T'Fol FTFoI,, I'Fol,, |A(a)|=
v(v—1) by Lemma 22. iii). Since |TFoI'y(at)|=|T1oT¥(a)|=|A(a)| =v(v—1),
we have I,oT¥ #=T3oI'f by Lemma 8. iv). If T¥oD,=T%oT,=+T%oT,, |A(a)|=
o(v—1)

k+1
T¥oly=T%oI=T%ol; If ToI'f=T,oT¥, then C,C¥=C,C% by Lemma 10,
1); and hence, 9,=v,+1 by Lemma 19, iii). This is contrary to the hypothesis

of this lemma. We shall show that 2>1. If k=1, |F>1"ol‘l(a)[=”(7’k_1)=

by Lemma 22. ii). This is impossible. Thus we can conclude that

v(v—1). Since T'§oT3DT¥oT, I, T'¥=T0I'f by Lemma 8, iv). This is con-
trary to the assumption. Count in two ways quadrilaterals (a, Vi, 8, ;) whose
edges are successively T'), T'¥, T; and T'}; then we have

mﬁ%—“l)kx: lm’-’(”%”xzxs,

SO
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kx=xzx3. (1)

Here we put x,=|T(a)NT,(8)|, ¥=|Ty(a)NTd)| for (a, ) A and x=
ITF(v) NTE(72) N A(@)| for 71, 7, (F)eT(a).

We shall show that x, x, and x; are smaller than k. If x,=k, then for
(a, V)ET, |Al@)NTH(Y)|=v—1. Of course, [A(a)NT¥(v)|=<v—1, and

hence, |A(a)NT#(v)|=v—1. By Lemma 10, ii), we have IA(a)|=v~——(:;11),

which is a contradiction. We can prove in the same way that x;<k. Then,
(1) yields

x<x,, x3<k. (2)
Now

C(C*tCy) = C(xD'+yS8"),
(C,C¥)C; = (%,D+y,S)C3 = x,(v—1)C;+terms not involving C;.
(A, = I“fol"l, FIOF? =S AUZ, P’Zkol-‘:; = A,UE, ’
D = C(A), D' = C(4'), S = C(X)) and S’ = C(XY))
Since x,>x and the coeflicient of C; contained in C,D’ is at most v—1, C; is

contained in C,S’, that is, T¥oI';D3Y. On the other hand, since T,oT¥ DA,
there exists the following figure.

I T,

Fl 1-‘3

Therefore TFoI'yDA’. Thus T'fely=A’N>V=T%oI;. By Lemma 10, i) we
have C¥C3=C%C;. So, m,#n; by Lemma 19, i). This is contrary to the
hypothesis of this lemma.

Lemma 25. If v, v,, v; and v,>3, then the following figures don’t exist.

Fig. 1 Fig. 2 Fig. 3 Fig. 4

Proof. For each figure above, we assume its existence and show that it
implies a contradiction.
Non-existence of Fig. 1.
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Case I. = =+m, m, 7.

By Lemma 18 and Lemma 19, v,=v,+1=9v,+1=9,+1, [T, cT¥(a)|=
"’I(”IT—”, |Ty(a) NTy(8)| = | Ty(a) NT(8) | =1 for (a, §)eToT'F and nf=rnt=

#¥. Now let us consider the following figure.

Pz 1“3

I‘z F4

Then by Lemma 22, i) and iii), we have

ITyoT¥(a)| = vy(v,—1) = (1,—1)(v1—2) .
Thus,

* (v, —1) _

lFlorl (a)l = ——2—‘*— = (7)1_“1)(1}1—2) )
)

‘Z)1=4', 7)2=‘Z)3=‘Z)4=3.
This is contrary to the hypothesis of this lemma.

Case II. m=m,*+n;, n,.
By Lemma 21, v,=v,=v;+1=9v,+1 and z¥=n¥=+2¥. But considering
the following figure,

we have v;=v,+1 by Lemma 20. This is impossible.

Case I1I. m=m=m=*mn,.
By Lemma 20, v,=v,=v;=v,+1. But since there exists the following
figure,
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we have v,=v;+1=v,+1 by Lemma 21, which is a contradiction.

Case IV. T =T—TC3—=Tly, T10P?=FZOP§‘=F3OF§<=I‘4OFT.

Existence of the following figure is contrary to Lemma 24.

Case V. m=m=my=m, 1ol =T =T IF=+T oI},

Since Iy oT¥=T;0oT'F =T';0I'¥, we have by Lemma 22, i) | Ty(v;) N Ts(v;)| >1
for (7, ;)T oT¥, and hence, T'§ oI =I'FeI;. So, we have |T'oI'f(a)| <
2y(v;—1) by Lemma 8, iv). On the other hand, since I'joT'¥=T,0T"f=T';oT%¥ %
T, oT# we have by Lemma 22, ii) |Ty(v,) NTy(7)=|Ty(v:)NTs(7;)|=1 for
(71, 7.)€ToT¥. Then from the existence of the following figure,

T, T,

/P:Pl*\
M

we have |T'oI'§(a)| =v)(v;—1) by Lemma 22, which is a contradiction.

Case VI. T =T=—=T3=—= 1Ty, PIOFT=F20F§<=FF3°I‘§<, P4°Pik.
There exist the following figures, where 33 is a G-orbit.

2 >3

Fig. a Fig. b
From Fig. a, we have |XYa)l=uv,(v,—1) by Lemma 22, iii). On the other
hand, from Fig. b, we have IZ}(a)I:?—J{v‘——l) by Lemma 22, ii), which is a

41
contradiction.

Case VII. T\ =My=TC3= Ty, I‘lor’f #onrf, I‘3°I‘§<, I‘4°I‘ik.

From Ty oT¥#T5oT¥, T'3oT¥, we have |Ty(7;) NTy(72)|=1 for 7, 7,(*)e
T'#(a), by Lemma 22, iii). Similarly from I'joT'¥=T,0I'¥, T',oT'F, we have
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Il"z(')'l) n I‘.‘('),z)l =1 for Y1 ‘)’2(=I=)EFi"(a). From onrsk ﬂ ]:‘20].-‘;‘< DI‘IOP?:, we
have by Lemma 22

[Tyel¥ ()| = vy(—1). (1)
By Lemma 21, z¥f=#z%=n=¥. Therefore we have by Lemma 8, iv)

I‘:{OI‘Z:*:F;}"OI‘:;, I‘%kor3=!:rik°r4 and Ff°F4=’:P’2k°P2

and T';oT¥ (24, j(&)=4) contains some I'; . (2)
We put
V=10, =7, = v3= 17, [1o'F = A}, T§oT, = A,,
T,0T¥ = A UTY, T¥oI', = A, UYY, and D,;=C(4,),
D, = C(4,), §' = C(2Y) and s'=|2¥(e)] .
Now,

(C.LE)C = (D1 +C))Cy = (v—1)Cy+-- .

The coefficient of C; of the above equation is v—1 or v by (2). Next,

Cy(C%¥C,) = Cy(D,+xS"),
S0

= v—(v_1)+xs’ .

2

By Lemma 8, i), s'=v, so
—1
= A
We shall show that T'foI',#=3Y. If T'foI',=2Y, there exists the following
figure.

Q

<v—2. (3)

Since TypI'f=A,UT;, we have I',eI'f=A,=T";oI'¥. This is contrary to the
assumption of this case. From T,oTFNT;T¥ DA, and (2), for vy, %(F)e
T'(«) we have by Lemma 22, iii)

ITFr)NTH()| = 1. (4)
If T,03Y contains Ty, then we have I'f o T';=T"¥ I, N >V, and by (4)

C,8' = (v—v—k_ 1>C3+ terms not involving C,.

4
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When k=1, v—v};l:l. So T';0 A, contains Ty, by (3). When £,>1, v—1>
4

—UZI >2. So, x=1, and hence T',0A, contains T';.
4

In all cases, we can conclude that T',0A, contains T's, and hence, T'}oT;DA,.
Thus, we have the following figure.

v

T, T

FZ Fs

So, TyoT'¥=T,oI'¥. This is contrary to the assumption.
Non-existence of Fig. 2.

Case I. m=*+m, 7,

From TFoT,NT¥eTy+ ¢ and m %+ m, m, we have |Tyol(a)|=2(2=1),

v,=v,+1 and T,oI'¥=+T30I'f by Lemma 21 and Lemma 19. On the other
hand, |TyoT¥(a)l=|T¥Ti(a)|=ITFTy(a)|=|TH(a)|* T, ()| = v, (v,—1).
This is impossible.

Case II. m=m=*+m,.
By Lemma 20, v,=v,=v;+1. On the other hand from the existence of
following figure,

we have v;=v,+1=v,+1 by Lemma 21, iii). This is impossible.

Case III. m=m=m;, T1oT¥=T,0T§=T0T%.
By Lemma 22, for (a, §)&T¥oT, 1< |TH(a)NTH(S)) and 1< |TH ) NTH(S)|.
The counting auguments show that |T¥(a)NTF(8)|=|Ty(7)NTy(v,)| and
IT¥@)NTFES) | =ITy(7) NTy(v,)| for (v,, v,)ToTF. Therefore, TFoT, =
T§oT,=T%oI;. Now I'fol,DT¥oI'; and I'foI'; DT ¥oI. Since we can show
that z¥=#=¥=7=¥ by Lemma 21, we have a contradiction by Lemma 24.

Case IV. m=m=m;, T 1oTF=T,o'F£T;oT%.

From T¥eI,NTFeIy DY, we have |T¥oTy(a)l =ﬁ”__}) by Lemma 22.
This is impossible. ky+



334 M. Numara

Case V. Ty =T=—T3, 1"101-"1"=I=1"2°I‘§", I‘3°F>2k.
By Lemma 21, we have zf=nf==¥. By Lemma 22, iii), |T\oT'¥(a)| =
9(v—1), and by Lemma 8, iv), T'¥oT",==T¥oT,.

Ty

From the existence of the above figures, we have T'¥ol;=TFoI UT'¥oT,.
Therefore,

v’ = [Ty(a)| - [Ty(a) |=|TTT'(a)|

= IPTOPl(C{)l +|P’2"0I‘z(a)| — ‘U(‘Z)-—l)—I—zE];—_l) .
2

This is impossible.
Non-existence of Fig. 3.

For the above figure, if 3% =237, then there exists the following figure.

r,

This is contrary to non-existence of Fig. 1. Thus we have X),%>3, n¥=nr¥,
TyeT¥=33U>Y and G, is not doubly transitive on > (a) and >%(a) by
Lemma 12. So, by Lemma 20 we have z¥=nf=n¥=n¥f. Also I'foI=
T§ol,=I%oly=T%oT', by Lemma 22. From T'foI'sNT¥I',DITFoTY, this is
contrary to Lemma 24.

Non-existence of Fig. 4.

There exist the following figures.
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Fig. a Fig. b

Case I. #F=nx¥.

By Lemma 21, we have v,=v,4+1 from Fig. a, and v,=9,+1 from Fig. b.
This is impossible.

Case Il. #¥=n¥=En=¥.

By Lemma 20, we have v,=v,=v;+1 and T,oI'¥=+T,oI'¥ from Fig. b. On
the other hand, Iel¥=T30¥CT,0oI¥ DI o, and T,oT'¥ has some T'; by
Lemma 20, and hence, T',oT'¥=TI"oI'}. This is impossible.

Case IIl. #z¥=rn¥=n¥, TFol=TFoT,=T%oT%,.
By assumption, I'§ oI, N TF oy DI¥ o =T%oI', = I'f oT';, which is contrary to
Lemma 24.

Case IV. n¥f=n¥=n¥, TFoI=T%oI,*=T¥oTI,.
From Fig. a, T,oI'¥=T,cT'¥UT; for some I'; by Lemma 22. So, I';oT¥N
T,oT#=T0T% and I‘lol"i"(a)=v§:’_;).

1
Case V. rf=znf=n¥, TFoD\=TFoI+T%¥oT.
We put 2=P1°P§‘ n F1°I"2k.

This is impossible.

By L 22, _vv—1)
y Lemma 22, | 53w ="
From that T';oI'¥ DT,oT'¥, we have ToT'¥=31UToT'¥. So v’= v(o— 1)+

k+1
'zi(v—;—l). Therefore k=1 and v—1=*k,+1=2. This is contrary to the hypo-

1
thesis of this lemma.

Case VI. rz¥=nf=n¥, TFoT+T¥oT,, IoT.
We put DY =ToT¥ NT;oT'¥. By Lemma 22, we have I',oeT¥=31UT}, T';o'¥
=>1UT, from some T';, T'; and |>}(a)| =v(v—1). Since I'}oI'f DT oT¥ and
T,oT¥DT,0oT'¥, we have TyolI'¥ =31=T,oI'¥. On the other hand, since
T¥oT, DT ¥y and [TFoly ()| =v(v—1), T1ol'¥+T0I'f by Lemma 8, iv).
This is impossible.

Lemma 26. For T, T, and T, suppose that T',oT'§f NT,oT¥ contains a
G-orbit X in QX Q, and vy, vy, v3>3. Then, there does not exist T'; such that
1-‘,'011:!‘=2.
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Proof. From non-existences of Fig. 2, Fig. 3, Fig. 4 of Lemma 24, we
have this assertion.

Lemma 27. (P. J. Cameron [3], Prop.)

IfT#=T; and T;0 T, ST, UTF U (T, UTH)U (T¥oT,), then G has rank 4.

3. Proof of Theorem 1

We put
X; = #{leAi = I‘j°1”}‘} ’
Yi =H#{(Th T))IT4oTF DA}
and assume that x,=---=x,>x,,,=-.-=x,=0. Counting in two ways triplila-

terals (T, T';, A;) such that T',oT'f D A,;, we have by Lemma 9 and 11

The equality means that, for any T'; and T',, we cannot have T, oT¥=A,UA,
A=A,

When x,>0, by Lemma 26 y;<x;+s. When x;=0, by non-existence of
Fig. 1 of Lemma 25 y;<2s. 'Therefore

< <3V (@) 2t—7)s,
)
£=Z(r+1)s+(2—7)s
sZ2t—r+1. (1)
Now, let A;=T; oI'} and we put
A= {{T';, T} : unordered pair |T;oT'¥ DA, I';+T},
B={;|{Tl, T;}e4} .
For {T', T}, {T,, T}(F)ed, {T;, T} N {T}, T'}=0 by Lemma 26. There-
fore | B|=2|A|. Furthermore, for {T';, T'}, {T', T'}(*)e 4, and for T, T,
(F)&EB, TEoT;NTH T, TF o T, NT¥ oI, TF oI, T'¥oT, are disjoint to each
other by non-existence of Fig. 1 of Lemma 25. Thus we have
| Al +(s— | Bl)=s— 4| <t, (2)
and by Lemma 26
|A| —1=Zt—r. (3)
Assume s=2t—r-1. Since the equality of (1) hold y,=x;-+s, and hence
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| A| =% and —;——lét—r by (3), and hence, 2t—r-+41=s=<2t—2r+2. So

r=1. Therefore, if > 1, we conclude that s <2¢—r7.

We shall show that when r=1, s<2¢—2. Assumer=1 and 2t=s=2¢—1,
and put A=ToT¥, 1=<i<s. If 7% n; for some T; and T';, then by Lemma
23, AGEToT¥ for any T, T')(=), and hence, T¥oI',NTFol=@. So s<t.
This is contrary to the assumption that £=2. Thus, it holds that 7y =m="--
=7,

Now, Suppose T';oI',=AUT¥ for some I';, T'; and T, and put D=C(A),

T;oI=A'UTY, D'= C(A’) t=|Ty(a)NT¥B)| for (a, B)ETF, x=|Ty(a)N
1‘*(8)! for (a, 8)EA, v=v,=v,=--+, k=k;=Fk,=-:-. Then we have

(C.C,)C, = (¢C¥+xD)Cy = tol4-tkD+xDC, ,
C{(C,Cy) = Ci(t C¥+-'D") = t'vI+-t'kD+x'C.D’ .
(¢ =T NTEB)| for (o, B)ETY, &’ = [T (a) NTE(E)!
for (a, 8)=A"))
We have t=¢’ by counting in two ways triplilaterals (83, a, ¥) whose edges are

successively I';, T'; and T';, and have |A(a)| =|A’(«)| and x=x" by Lemma 10.
So,

C.D' = DC, = (v—1)Cyt -+

o v(v—1)
If C;#C, |A(a)l= P
Similarly, C;=C,.

When S=2¢, then the equality of (1) holds. Therefore, for any T';, there
exists T', such that T;oT',=AUT¥ for some I'¥. So, as is shown above,

T;=T;=T}. Therefore we have any T',.

by Lemma 10. This is impossible. Thus C;=C,.

].1,'4:1-‘?, I‘iOI“' == AUP? and I‘;orﬁﬂrﬁrf = 0 fOl‘ Fm—_-l:I-‘”, I‘;,k .

When s=2t—1, then | 4| =<¢—1, and from (2) s— | 4| =<t. So |4|=t—1.
Therefore, there is a unique T, such that for any I'; (T,), T;oT¥d-A. We
shall show that for any I';, T'; (=), T';oI'f contains some I';. Assume I';oI'f=
A,UA,; for some T';, T'; (#). Count in two ways the paired (T',, A,) such
that T';oT'}; contains A,, then by Lemma 25, we have

2t = s+ 1=<H{(T,, A,)| TioTEDA,} <2t.

So, equality holds. Thus for any A, there exist I', and I'; (&) such that
T;oT¥ and T';oT'¥ contains A,. Therefore we may choose T', such that T';oT"¥ N
T;oT¥=+0¢ and T',#T,. Then I',oT'¥DT;ocI'f=A. This is impossible. Thus,
again as is shown above, we can conclude that for any T'; (&T,),
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T;==T¥, Tol; = AUTY and

T;oTENT;oT% = ¢ for T, +T,. T¥
Thus if s=2¢—1, there exists I'; such that

T,=#T¥ and T';oT; = I';eTFUT .

By Lemma 27, this show that G has rank 4. This is impposible for s=2:—1
and £=>2.

4. Proof of Theorem 2

When r=¢, we have s=¢ by Theorem 1. On the other hand, from s=r=t¢,
we conclude that s=¢=7.

We put T;oT¥=A,;, 4;={{T}; T} unordered pair|T,cT¥DA,;, T\*I}.
Then |4;| —1=t—r=0, so |4;| =1.
Count in two ways triplilaterals (T';, T;, A,) such that T';eTf D A,, we have

$2<3s,

SO

s=<3. (1)

Case t=2. If |Ty(a)|=*|Ty(a)|, by T. Ito [6], G is isomorphic to the
small Janko simple group and G, is isomorphic to PSL(2.11). We shall prove
that the case of |T'y(ar)| =|Ty(ex)| does not occure. We put |T'j(a)|=|Ty(a)|
=o. Itis easy to prove that z;—=x,. We shall show that T'; and T, are self
paired. If not, then T¥=T,. Since T oT¥=+T,oT¥=T%F0oI";,, we have that
Tyoly DToT¥, T#oly(=T,0T¥) by Lemma 7. By Lemma 11, there exists a
G-orbit 37 in I'joT, such that G, is not 2-transitive on >)(a), and > A, A,.
This is impossible for #=2. Thus, we have ToI,=A;UA,. So, v*=
| TyoTy(@)| = | TyoTy(@) |+ | TyoTy(a)] =""(”k“ D, ”(”k— 1) This is impossible.

1

2
Case t=3. For this case, the equality of (1) holds. So we have |4;|=1
for 1=<i<3. We shall show that if T;oI'f=A, then I')=T or T';=T". If
T;, T';# Ty, then since T'¥oI';NT¥oI';4 (@, there exists a G-orbit >} in
T'¥ol;NT¥ol, such that G is not 2-transitive on >3(a) by Lemma 12, and for
any T, T;oT¥=+>" by Lemma 25. From r=t¢, this is impossible. Thus we
may assume that there exist the following figures.
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If = =, ms, then vlvz——-:II"{‘ol“z(a)|=|I"1"oI‘1(a)l=v‘—(v;e'—_l) from Fig. a, so
1
©,>v;. Similarly, v,> v, from Fig. c. Therefore v;>>v,. On the other hand,

V(v —

VU= 1) from Fig.b, so ©9,>v;. This is impossible. Thus we have

m=m=m; By Lemma 7, T}, T, and T'; are self-paired.
ThuS F10P2=P3 U Al’ P20P3=P1 U Az, P3°F1=P2 U A3. Put | Fl(a) I =9,
then by Lemma 8, iii) we have

[Aa)| = |Afa)| = | Aya)| = v(v—1).

We put
D;=C(A)and C; =C(T), 1=i<3;
D,C; = x,Dy+x,D,+x;D; .
Then
X +x+x; =0
D,Cy = x,D,-terms not involving D, , (2)
D,C, = x,D,-+terms not involving D, .
Now
(C,C,)Cy = (D1 +-C3)Cy = vI+D3;+D,C,
Cy(C,C;) = Cy(Dy+C,) = vI4D,+D,C, .
So
D,C, = D,C3+D;—D, = (%,—1)D,~+x,D,+(x5+1)D;5 .
Similarly
D;C;, = D,Cy+D,—D, = x,D1+(x,—1)Dy4-(5+-1)D, .
Next
(C,C)C; = (vI+-D,)C3 = vC3+D,C;,
Cy(C,C;) = C(Dy+C,) = C3+D,+DyC, .
So
D,C, = D,C;+(v—1)Cy3—D,
= (%,— 1)Dy+x,D,+x;,D5+(v—1)Cs .
Similarly
D,C, = D,Cy+(v—1)C,—D,
= (%,—1)D, 4 (%,— 1) D+ (%3+1)Dy+(v—1)C, ,
D,C; = D;C;+(v—1)C,—D,
= %,D,+4(2,—1)D,+x3D54(v—1)C, . (3)

Furthermore
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(C,C)C, = (vI+D,)C, = vC,+D,C,,
Ci(CiCy) = CY(Cs+Dy) = C+Dyt-D,C,
So
D,C, = D,C;+(v—1)C,—
= (#,—1)Dy+(x,— 1)D2—|—x3D3+(v— 1)C+(v—1)C, .
Similarly
D,C, = D,Cy+(v—1)C;—D,
= (x,—1)Dy+4(x,— 1)D2—{—x3D3+(v—— NCo+(v—1)C,,
D,C; = D,C,+4-(v—1)C,—
= (%y—1)D,+(%,— 1)D2+x3D3+('o- NCs+(v—1)C,. (4)

Thus (2), (3) and (4) yield
X = %, 5—1 = x5
‘We put x;=x, then
v = X420+ = (x+ 1)+ (x4 1)+x = 3x4-2. (5)

It is easy to show that the graph (Q, T UT,UT}) is a strongly regular graph
with parameters 3v, 2, 3.

From the conditions of the existence of the strongly regular graph, (see [1] p.
97) it holds that

(3—2)+4(3v—3)=12v—11=d?, (6)
(d is a positive integer)

7Jz_l_3fz)(ivd 2). (7)

~ 2. 3 d
(m is a positive integer)

From (7), 3’”(?%2)

is integer, and hence

120—11 = 4% is a divisor of v,(v—2).
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So
12v—11 is a divisor of 112.132.

From v=3x4-2, we conclude
v=11.

Lastly, we shall prove that the primitive group satisfying these conditions does-
not exist. It is easy to prove that G, acts faithfully on I')(«). We shall show
that for v, ¥{ (F)ET(@), Gy, has the fixed points in Ty(a)\{7,, 71}

For (a, vm)€Ty, put {7:}=Tya)NTy(7:) and {v3}=Tya)NTy(7:). Then,
G, fix v, and v;. So we must have that (7,, v;)€T\. Now for vy, ¥{ (*)e
Ty(a), put {8} =T(v1) NTo(71), {&:}=To(v1)NTx(7{). Then G, v fiix &, and
8,. Since (7y, 71)PTs, we have (8, 8,)PT;.  Therefore T'y(v7,) N Ty(8,)= {8} =+
{8.}.

So, G,y v fix 8, and 3. Since T'y(71)3a, 8y, 8 (), in the same way, we
obtain that G, 5, has the fix points in T'y(a)\{7;U7{}. The order of G, is at
most one million. If G, is non-solvable, then the minimal normal subgroup of
G, is non-solvable simple. From [5], it is isomorphic to the Mathieu group
M, or the transitive extension of the alternating group 45 act on ten points..
These groups have not the representation such that it is doubly-transitive on.
eleven points and it’s stabilizer of two points has the additional fixed point.
Thus, we can conclude that G, is solvable and the order of G, is 110. So-
|Gl=|Q]-11-10=364-11-10=23.5.7-11-13. G is non-solvable group and
(1G1, 3)=1. But there does not exist such group by M. Hall [5].
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