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Peter J. Cameron [3] has shown that a primitive permutation group G has
rank at most 4 if the stabilizer GΛ of a point a is doubly transitive on all its
nontrivial suborbits except one.

The purpose of this paper is to prove the following two theorems, one of
which extends the Cameron's result.

Theorem 1. Let G be a primitive permutation group on a finite set Ω,
and all nontrivial G-obrits in Cartesian product Ωxίl be Γly •••, Γ5, Δί9 •••, Δ,,
where GΛ is doubly transitive on Γ,(α)= {/3 1 (α, /3) BΓt} , l<Zi^s and not doubly
transitive on Δt (α), ί^i^t. Suppose that G has no subdegree smaller than 4 and
that t>\. Then, we have

where r=fl{Δ, | Δt =Γ*oI\ 1 ̂ j ^s} . Moreover if r=ly then we have

(For the notation Γ*ol\, see the section 1)

Theorem 2. Under the hypothesis of Theorem 1, if r=t, then s=t=2y and
G is isomorphic to the small Janko simple group and G« is ίsomorphic to PSL(2y 11).

For the case of £2^3, / don't know the example satisfying the equality
s=2t— r, and when r=l, the exampel satisfying the equality s=2t—2. I know
only three examples with t=2 and s—2.

The small Janko simple group/! of order 175560 has a primitive rank 5 re-
presestation of degree 266 in which the stabilizer of a point is isomorphic to
PSL (2, 11) and acts doubly transitively on suborbits of lengths 11 and 12; the
other suborbit lengths are 110 and 132 (See Livingstone [7]). The Mathieu
group M12 has a primitive rank 5 representation of degree 144 in which the
stabilizer of a point is isomorphic to PSL (2, 11) and acts doubly transitively on
two suborbits of length 11 the other suborbit lengths are 55 and 66 (See Cameron

£4]).
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The group [Z^xZ^Z^S^ has a primitive rank 5 representation of degree
27 in which the stabilizer of a point is £4 and acts doubly transitively on two
suborbits of length 4; the other suborbit lengths are 6 and 12. I conjecture
that it may even be true that s is at most t.

1. Preliminaries

Let G be a transitive permutation group on a finite set Ω, and Δ be a

subset of the Cartesian product ΩxΩ which is fixed by G (acting in the
natural way on ΩxΩ), then Δ(α){/3eΩ|(α, β)eΔ} is a subset of Ω fixed by
GΛ. This procedure sets up a one-to-one correspondence between G-orbits
in ΩxΩ and GΛ-orbits in Ω. The number of such orbits is called the rank
of G. Δ*= {(/3, α)|(α, /3)3Δ} is the subset of - Ω x Ω fixed by G paired
with Δ Δ is self-paired if Δ-Δ*. Note that | Δ(α) | =Δ*(α) | = 1 Δ | / 1 Ω | . If
Γ and Δ are fixed sets of G in ΩxΩ, let ΓoΔ denote the set {(α, β)} there
exists γeΩ with (a, 7)eΓ, (γ, /5)eΔ; αΦ/3} this is also a fixed set of G.
The diagonal {(α, α)|α^Ω} is a trivial G-orbit. If Γ is a nontrivial G-orbits
in Ω X Ω, the Γ-graph is the reqular directed graph whose point set is Ω and
whose edges are precisely the ordered pairs in Γ. A connected component of
any such graph is a block of imprimitivity for G. G is primitive if and only if
each such graph is connected.

For a G-orbit Γ in ΩxΩ, the basis matrix C=C(T) is the matrix whose
rows and columns are indexed by Ω, with (α, β) entry 1 if (α, /5)eΓ, 0 other-
wise. All of the basis matrices form a basis of the centralizer algebra of the
permutation matrices in G.

Let G be a group which acts as a permutation group on Ω, and π the permu-
tation character of G i.e. the integer-valued function on G defined by π(g)=
number of fixed points of g. The formula

(TT, 1)G = - Σ π(g) = number of orbits of G 3
I G |'*e<?

is well-known. If G acts as a permutation group on Ωx and Ω2, with per-
mutation characters TZΊ and τr2, the number m of G-orbits in Ωx X Ω2 is

m = (πiT^, 1)G — (πly π2)G .

In particular, if G is a transitive permutation group on Ω with permutation
character TT, the rank r of G is given by

r = (π , π)G = sum of squares of multiplicities of irreducible consitituents of π

If G acts doubly transitively on Ωx and Ω2,

(πly π2)G = 2 or 1 according as πλ = π2 or πl
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Lastly, we note that if G is a primitive permutation group on Ω, then for
a> β (Φ)eΩ, either GΛΦGp or G is a regular group of prime degree ([8],
Prop. 8.6); primitive groups with a sudbegree 2 are Frobenius groups of prime
degree ([8], Theorem 18.7); primitive groups with a subdegree 3 are classified
by W.J. Wong [9].

2. Lemmata

Throughout this section, we suppose that G is a primitive but not doubly
transitive group on a finite set Ω, and Γlf Γ2, ••• are G-orbits in ΩxΩ such
that Grt is doubly transitive on Γt(α), ί=l, 2, ••• π{ and πf are the permutation
characters of GΛ on Γt(α) and Γf (α), respectively, and let Ct=C(Γt ), Cf =

Lemma 1. (P. J. Cameron [2]. Proposition 1.2)
GΛ is doubly transitive on Γf (a).

Lemma 2. (P. J. Cameron [3]. Lemma 1)
Γf oΓ, is a G-orbit in Ω X Ω, and if \ Γ,(α) | > 2, then GΛ is not doubly transi-

tive on Γf oΓ,(α).

Lemma 3. (P. J. Cameron [2]. Theorem 2.2)
For (α, /3)<ΞΓtoΓf, we put vi = \TJ(a)\ and £,= | Γ,(α

,.<»,- and i Γ j o Γ f M l ^ " " . If vt>2, then ̂ ^^; wAm particulary
ki 2

j=Q^I±9 then v~?> or 5.

In the following, we set

,<α) I = *, , I Γ

Lemma 4. (P. J. Cameron [2], Lemma 2.1)

Lemma 5. Γf oΓ,ΦΓ?oΓ2 z/ α«rf oτzfy if \ (Γl0Γ?(α) I = I Γj(α) | | Γ2(α) | .

Proof. If I Γl0Γί(α) I < I Γ^α) | | Γ2(α) | , we have | Γ^α) Π Γ2(/3) | > 1 for
some (α, /9) e ΓtoΓf . For γlf γ2(Φ) e Γ^α) Π T2(β), (•/„ •/,) e Γf ol^ and

oΓ2. So Γf oΓ1=Γ?oΓ2. Conversely, if Γf oΓ^ΓfoΓ, for (rι> -y2)
we can choose a and /? such that αeΓf(71)nΓ?(τ2),

Since Γ^αjnΓ^e y!, 7z, |Γ l(α)nΓί(/8)|>l. There-
fore |Γ1oΓf(α)|<|Γ1(α)| |Γ2(α)|.

Lemma 6. ΓfoΓ2 is the union of at most two G-orbits in ΩxΩ, and
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πi—π2 if and only if Γf oΓ2 is the union of two G-orbits in

Proof. Since (π^, l)c— (^u 7Γ2)c = 2, and πλπ2 is the permutation charac-
ter of GΛ on Tι(a)xΓ2(a), G has at most two orbits in {(a, 7, δ)|(α, y)eΓΊ,
(α, δ)eΓ2}, and hence, ΓfoΓ2 is the union of at most two G-orbits. If
TΓiΦTΓg, then G is transitive on {(α, 7, δ)|(α, 7)^Γ\, (α, δ)eΓ2}, and hence,
Γf oΓ2 is a G-orbit in ΩxΩ. Now, we shall assume that π1=π2 and Γf oΓ2 is a
G-orbit in ΩXΩ. We put v=v2=vl9 and ιw= |Γf(α)ΠΓf(δ)| for (α, δ)eΓf °Γ2.
If τw=l, then since ΓfoΓ2 is a G-orbit, G is transitive on {(a, 7, δ)|(7, α)eΓi,
(7, δ)eΓ2}. Therefore (π^ τr2)G=l, and hence, TCΊΦT^, this is contrary to the
assumption If w>l, then there exist quadrilaterals (a, 7ι, δ, 72) whose edges
are successively Γf , Γ2, Γjf and Γx and whose vertices are all distinct.
Counting all of them in two ways, we have

m kλ

so
v(m-l) = (v-l)k2 .

Hence, v=k2. This is impossible by Lemma 3.

Lemma 7. T/T. oΓf ΦΓf oΓ,, then ΓtoΓ,φΓ,oΓ?, ΓfoΓ. .

Proof. Now assume TfoT^Γ^Tf or Γf oΓx, then we have the following
figure,

Γi

and hence, Γ, oΓ,θΓ, oΓf UΓfoΓ. . Since Γ,oΓ, is the union of at most two
G-orbits in ΩxΩ, we have Γ,°Γ,=Γ,oΓ*UΓ*°Γ,. By the assummption of
this lemma, | (Γ,oΓ;)(α) | = | Γ, (α) | | Γ,(α) | =»?. So

Therefore, v~2. All of the suborbits of the primitive group with a subdegree
2 are self-paired. This is contrary to the assumption of this Lemma.

Lemma 8. Let Γf oΓ2 be the union of two G-orbits 2ι an& Σz ^ ̂

v=v1=v2y 5t=C(Σt ), ίi=IΣί(α)lι ί=1> 2> and C?C2=<*ιSl+a2S2. Then we
have
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i) sly s2^v. If sl=v} GΛ is double transitive on Σι(α)

ii) ^=^ + 0^2
iii) ΓjoΓfΦΓgoΓf if and only if al=o2=l

iv) if sl=v(v— 1), then Γ1oΓfΦΓ2oΓ* and Γ?oΓ2 contaίnes some Γt

Proof, i) Assume s^v. Then (πf, 7r(Σι))=l or 2 according as πf φ

7r(Σι) or ^*=7r(Σι) where τr(2]ι) is the permutation character of G^ on Σι(#)
If 7r?φ7r(Σι)> for δeΣι(α)» GΛ,δ is transitive on Γf(α). Thus Γ?(α)=Γf(δ).
Therefore Gr

rt=G{Γ*(rt)} = G{Γ*(8)j=Gδ. This is impossible. So we have πf==

τr(Σι)> and hence, ίi=ϋ and GΛ is doubly transitive on Σι(tf).
ii) For the matrix ί1 such that any entry is 1, we have

and F(a1S1+a2S2) = (a

so v2 = alsl-\-a2s2 .

iii) The existence of the following figure is equvalent to Γ^Γ* =

It holds also that the figure exists if and only if a^2 for i—l or 2.
iv) By ii), v2=alv(v — \)-\-a2s2. Since s2*^.v, a1=a2^=l and s2=v. Therefore

we conclude that Γf oΓ2 containes some Γ, by i), and IVΓfφΓ2oΓ* by iii).

Lemma 9. If π^π2y GΛ is not doubly transitive on Γ*oΓ2(α).

Proof. Assume that Ga is doubly transitive on ΓfoT2(a). If |ΓfoΓ2(αc)|
Φ I Γi(α) I , then GΛ has different permutation characters on Γf (a) and ΓfoΓ2(α).
Hence, for (α, 7)eΓf ,GΛ§Y is transitive on ΓloΓ2(α), so, Γ2(γ)=ΓfoΓ2(α).
Therefore Gγ=G{Γ2(v)} = G{Γ*0 Γ2(Λ)} = GΛ. This is impossible. Thus, we obtain
|ΓίoΓ1(α)|==|ΓfoΓ2(α)| = |Γ1(α)|. On the other hand, for (δ, γ)eΓί,

i(δ). So, Γf oΓ1(δ)=Γ1(γ). This is alos impossible.

Lemma 10. Assume ΓjoΓf = Γ2oΓf and Γf oΓ2 be the union of two G-

z=l, 2; βflrf |Γ2(τ)nΣ2(α)l=ί /^ γeΓ?(α) ΓAerc, we Ad^e the following
quadratic equation for t

v(v — t)2 . Vt2 T / 1λ Λ-̂  '- + v—k(v— 1) — 0 .
Sl S2

v(v— 1)
Partίculary, i) wA^/z ^ ̂  -̂  ', ίAe quadratic equation has at most one root for

k
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0<t<Vy ii) when f=l, then s2=v, s1=
v^v~' ' and GΛ is doubly transitive on
(k + V)

ΣK«).

Proof. For OΊ, 72(Φ)eΓf (α), counting arguments show that

* = ir.fr) nr.fr,) i

(«,-!)* = "ϋ+-fr-

We shall prove the latter assertions. We put

f(t) = *(*-*? +vJ*-.v-k(v-l).

When ^ 1 ^ ~ then /(0)<0. Since the coefficient of t2 in f(t) is positive,
Γ?

f(f) has at most one root for 0<t<v. When ί=l, then £2^^ By Lemma 8,

i) s2^v. So ί2=^> and hence, GΛ is doubly transitive on ΣaO*)* and ίι=— - -.
1

Lemma 11. L ί̂ Γf oΓ2 be the union of two G-orbits JJi ond^^^ and GΛ

doubly transitive on Σι(<*) and Σj2(«)> ^w | Γ\(α) | = | Γ2(α) | ̂ 3.

Proof. This lemma due to P. J. Cameron. ([3], Lemma 4.) We put

|Γι(α)| = |Γ2(α)|==tf, and assume IΣι(α)|φϋ. Then, GΛ has the different

permutation characters on Γf (a) and Σι(tf)> so> f°r («> δ)eΣι> .̂δ is transi-
tive on Γf(α). Hence, Γ?(α)=Γί(8). Therefore, GΛ-G{rίU)}=G{Γ*(δ)} = Gδ.

This is impossible. Thus we conclude that | Σι(tf) I =v In the same way, we

have |Σz(α)l=»
Now, if ΓjoΓf ΦΓ2oΓr, then by Lemma 5 |Γf oΓ2(α)| = |Γf(α)| |Γ2(α)|

=Λ Therefore, ^2-|ΓfoΓ2(α)| = IΣ1(α)|+IΣ2(α)|==2ϊ;, so z;=2. Thus,

when ϋ>2, we obtain that Γ^Γf^ΓzoΓ?. For γeΓ? (α), we put ί= | Γ2(τ) Π

ΣI(Λ)|. Then for (y^ γ2) e IVΓ? , by Lemma 10 we have the following
equation
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k2 = I r2(7θ n Γ2(γ2) I = -1- {(v-tγ+t*-v}
V— I

*-ι

If *=-£, |Γ2(7θnΓ2(γ2)| = ί,+ î_ is not integer, so ί̂ ^ or ί^5±l.
2 z(t;—1) Z Z

Hence k2=v— ^v~~ '^v— (v+l)=—(v— 1). But &2<^—-(^—1) by Lemma
v—l 2 2 2

3, so equality holds, and thus v=Z or 5 by Lemma 3, and t=—-(v-\-1) or

~(v— 1). Counting arguments show that IΓ^) Π Γ2(y2) Π Σi (a) I = ~
2 z;—1

for T!, ^(^^Γfία). Therefore τ;— 1 divides ί(ί— 1); this excludes ϋ=5,
and so v=3.

Lemma 12. For ΓΊ, Γ2, Γ3, ί/ Σ w Λ G-orbit contained in Γf oΓ2

I Γ^α) I >3; ίAew GΛ ά not doubly transitive on Σ(<*)

Proof. Σ*°Γf l^Γf UΓf. If GΛ is doubly transitive on Σ(α), Σ*0Γf
is the union of at most two G-orbits by Lemma 6, so Σ^Γi^Γjf UΓf. This
is contrary to Lemma 11.

Lemma 13. If Γ!θΓί = Γ2oΓf and πι^π2 then, \vλ— v2\^2, and
Γf(α)|>|ΓfoΓ2(α)|.

Proof. For (α, δ)eΓf oΓ2, we put

Count in two ways quadrilaterals (#, γl9 δ, γ2) with ΎiΦΎz whose edges are
successively Γf, Γ2, Γf, and Γ^ then we have

SO

(^-1)^ = ^(111-1). (1)

If v1=v2> then kl=vl. This is impossible. If v1=v2-\-lJ then ft^^, and
£

hence, by Lemma 3 ^=2, ^2=1. This is also impossible. Thus we can con-
clude that 1^— v2 1 ^2.

Assume | Γ^Γ^α) | =Vl (^~ ̂ = | Γf oΓ2(α) | = .̂ Then
Λ! WZ

1). (2)
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From ΓιoΓf=Γ2oΓf , we have also

k2vl^m(v2— 1). ( 3 )

Therefore, (1) and (2) yield

Vι^kι+m . (4)

By Lemma 3 and (3), we have

κ2 m

so

J (5)
/-

Thus (4) and (5) yield

This is contrary to Lemma 3.

Lemma 14. (P.J. Cameron [3]) //IVΓ?=ΓιoΓf, then IVΓ? ΦΓ2oΓf.

Proof. We shall prove this lemma in a different way from P. J. Cameron's.
Assume ΓVΓ? ̂ IVΓf =Γ2oΓf . We put

|ΓloΓf(α)| = p = |Γ2oΓf(α)| = f = HVΓf(α)| =
RI κ2 m

where m=\Γ1(ά)Γ\T2(8)\ for (a, δeΓ^Γf ). Then it is trivial that m>l
from the above formula, and hence, Γf oΓ^Γ? oΓ2. Thus, by Lemma 13,

I IVΓf (a) \<\Tf oΓ^α) I = I Γl0Γ?(α) I . This is contrary to assumption.
Now we shall investigate from Lemma 15 to Lemma 22 the necessary

condition that the intersection of Γf oΓ2 and Γ?oΓ3 for Γ^ Γ2, Γ3 (Φ) is not
empty.

Lemma 15. If π1=π2^π3 and π$=π$, or τrι=π2=7t3 and π$ ^πf, then

Proof. Assume πι=π2^τr3 and TT* =τr*. Then we have Vι=v2=v3. We
put v=vl=v2=v3. By Lemma 13, Γ^Γf ΦΓaoΓ?1, and hence, |ΓfoΓ3(α)| =
|Γf(α)| \Γ3(a)\=v* by Lemma 5. If Γf oΓ2ΠΓf oΓ3Φ0, then since ΓfoΓ3

is a G-orbit and Γf oΓ2 is a union of two G-orbits, we have Γf oΓ22Γf oΓ3.
Therefore |Γf oΓ2(α)| > \Γ^oΓ3(a)\=v2. This is impossible. Similarly, we
can prove the lemma for the case of πλ=π2=π3 and zrf
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Lemma 16. If πf=£π$y τrfφ7r? and 7Γ2Φ7Γ3, then ΓxoΓf ΠΓVΓf =0.

Proof. By the assumption, ΓjoΓf , ΓjoΓf and Γf oΓ3 are G-orbits. Assume
ioΓf =Γ1oΓί. For (α, δ)eΓl0Γf , we put

I Γ!(Λ) n Γ2(S) I = m2 and | I\(α) Π Γ3(δ) \ = m3.

For 7j, γ2(Φ)eΓ!(α), we put

Then, since Γf oΓι=Γ? oΓ3, we have

^pll = I ΓMMα) I = I Γf oΓ3(α) | = ^-3,
KI X

so

Vifa—lfy = Vzvfa . ( 1 )

Count in two ways quadrilaterals (α, 77, δ, γ) whose edges are successively
Γi, Γf , Γ3 and Γf, then we have

SO

(vl— ί)x = v3m2. ( 2 )

(1) and (2) yield

kλv2 . 3

If m2>l, there exist quadrilaterals (α, yδi, δ, β2) whose edges are successively
Γi, Γf , Γ2 and Γf , whose vetices are all distinct; count all of them in two
ways, we have

so

On the other hand, from ΓfoΓ^Γf oΓ2,

so

(3) and (4) yield

v.ι =
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This is contrary to Lemma 3.
Thus, we have m2= m3=l and V1=k1v2. For (a, 7)eΓΊ, G^ is transitive on
Γj(α)\{7} and since τr?=t=7rf , it is also transitive on Γf(γ). Count in two ways
(7', δ) such that T'eΓ^XίT}, SeΓf(γ) and (7', δ)<ΞΓf , then we have

This is impossible.

Lemma 17. If π^π2, πl^Fπ3andTlo~Γ*=Γ2Γ*, thenΓ$oΓ2ΓiΓ¥oΓ3=0.

Proof. Assume Γf oΓ2=Γf oΓ3. By Lemma 16, π f =7rf . We put v=vl9

w=v2=v3, ίfi=|Γf(α)nΓf(8)| = |Γ?(α)nΓf(8)|>l for (α,δ)eΓfoΓ2, and
*= I Γ2(7θ n Γ3(T2) I for n, 72( Φ ) e Γf (a).

Count in two ways quadrilaterals (α, Ti, δ, γ2) whose edges are successively
Γf , Γ2, Γf and Γι; then we have

Λ! m

so

(v—l)x = wm . ( 1 )

Next, count in two ways quadrilaterals (α, 7ι, δ, γ2) whose edges are
successively Γf , Γ2, Γf , Γx and whose vertices are all distinct; then

m

w(m-l). (2)

(1) and (2) yield

(v— l)(x— k2) = w, that is, Λ?>A2^1 . ( 3 )

Since #^2, there exist quadrilaterals (7, δ^ 7', δ2) whose edges successively
Γ3, Γf, Γ2 and Γf, whose vertices are all distinct, and (7, 7/)eΓ1oΓf =Γ2oΓf
count all of them in two ways, then

(λ = |Γf(δ1)nΓf(δ2)ΠΓ1oΓf(7)| for S19 S2

so

_ *(*-!)
- "
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χ(x _ j\
By the definition of X, \^k2. On the other hand, since x>k2, λ=-^ - ->k2.

fy
This is a contradiction.

Lemma 18. I f π Ϋ Φ π ί , πΐ*π$ and ΓjoΓf =ΓχoΓί , then dCJ =dCf .

Proof. By Lemma 6 2=Γ1oΓί=Γ1oΓf is a G-orbit. Let S=

For the matrix F such that the value of any entry is 1, we have

Vlv2F = F(dCf ) = ίΌifeS) = m2sF ,

so

1̂̂ 2 = m2s .

Similarly

On the other hand, by Lemma 16, 7r2=7r3, and hence, ^2=^3- So, m2=m3.
Thus we can conclude that CxCf =CxCf .

Lemma 19. // dCf ^CjCf ίznJ | Γ^α) | -^ > 3,

i) ^2=^ πf Φπ"*, TT*.
ii) ΓfoΓ1φΓ?oΓ2, ΓfoΓiΦΓfoΓa.

iii) ^=^+1=^+1, |Γί(71)nΓf(ra)|=l/or(71,γ2)eΓfoΓ1.

iv)

Proof. By the assumption Γ1oΓ|ί=Γ1oΓf . For the matrix F such that
the value of any entry is 1, we have

Similarly

So

We shall show that Vi^FV2=v3. Assume v=v1=v2 — v3 ana put D=
C(ΓfoΓO. If ΓfoΓ1=ΓfoΓ2> then |iγ>Γf(a)| = |Γ10Γf(a)| Φ | Γ^a) | - 1 Γz(a) I
= I Γι(a) I I Γ3(a) | , therefore ΓfoΓj^ΓfoΓa by Lemma 5. We put k—k1=

= (Cf C,)Cf = (vE+kD)C$ = βCf +Λ(c-l)Cf +

terms not involving Cf .

Similarly
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Cf(dCί)=cCf +k(v-l)C$ +terms not involving Cf .
So

(vE+kD)C$ = {v+k(v-l)}Cf +terms not involving Cf .

Since the coefficients of the basis matrices in DC$ are at most v, the above
formula is impossible.

Next, if Γf oΓΊΦΓf°Γ2, then ΓίoΓΊΦΓfoΓ3, and Z)Cf does not ivnolve
Cf. Now

Cf (dCf ) = (Cf d)Cf = (v

Cf (dCf ) = (Cf d)Cf = (»£+AD)Cf = ί>Cf +terms not invloving Cf ,

and hence, ΛtZ)Cf =oCf + terms not involving Cf .
For (γj, y2)eΓf oIΊ and fa, S)eΓf, we put

*=|Γffa)ΠΓffa) | and ί=|ΓfoΓ1fa)ΠΓ2(8)|.

Then from the above formula we have

Counting in two ways triplilaterals (OΊ, δ, γ2) whose edges are successively
It, Γ 2 andΓfoΓ 1 , we have

v(v-l)
-± - lχ = vt .

RI

(1) and (2) yield

(v — l)x = v ,

which is a contradiction. Thus we can conclude that VιΦv2=v3, and hence,
π*^πfφπ*. Therefore, we obtain π2—π3 by Lemma 16, Γ*oΓ2ΦΓ?coΓ1φ
Γf oΓ3 by Lemma 17, and hence we have i) and ii) of Lemma.

For (α, 7)eΓι, count in two ways the ordered pairs (γr, δ) such that
γ'eEΓ^αOX fr}, δeΓf(r) and (γ', δ)eΓί then since Γf oI^ΦΓf oΓ3 we have

(v1-l)x = v2. (3)

Now, we shall show that x= I . Assume x> 1 , then there exist quadrilaterals
(7, δi, 7', δ2) whose edges are successively Γf, Γ3, Γj and (Γ2 whose edges are
all distinct, and (γ, γ^eΓf oΓ\; count all of them in two ways, then we have

(λ= |Γf oΓxί yjΠΓaίδOnΓ^)! for fa Sx), (7, 82) (Φ)eΓ?, (SX) S2)eΓ2oΓ?) ,
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so

(v2 — l)X&ι = Vι(x — 1) = (vλ — !)#+# — V1 = v2-\-x — Vι .

Therefore, x^Vi— 1. If x=vλ then (v2— I)\k1=v2y which is a contradiction.

If x>vl9 then v2=(vl-l)x>v^Vl"'1\ So (*f, τr(Γ? 0 (̂7)))̂ = 1, where
KI

7r(Γ* 01^(7)) is the permutation character of Gf on Γ? 01 (̂7). Hence, for

(7,7')er*ori> Gyy is transitive on Γf(γ). So Γf(r)=Γf(γ/) This ίs ίm~
possible.

Thus we have x=vl—\y Λ1=λ=l, v2=(v1— I)2 and |Γf oΓ!(7)nΓ3(δ)| =^
for(r,δ)€=Γί.

Now, count in two ways quadrilaterals (α, 7ι, 72> Ύz) such that (α,
(tf, Ύ2), (α, Ύ3)eΓ3, and (<yί9 γ2), (7^ 73)eΓf oΓ^ Tz^Tsί then we have

I Ω I vfa- l)λx = I Ω I ̂ 1(v1« 1) ,

(V = |Γf oΓ^) ΠΓf 0^(73) nΓ2(α) I for 72, 73

so

Therefore, ^x— 3. This is contrary to the hypossesis of Lemma. Thus we
can conclude that x= 1, and hence, by (3) we have vl—v2

Jτ\=vz-\-\. This
proves Lemma iii).

Lastly, we shall show that A1=2. If Λ1==l, then iΓfoΓ^α) 1
I Γ?Γo3(α) I ̂ z;2u3=(£;1— I)2 This is impossible. Now, we have

M=|ΓfoΓ1(7)nΓ3(8)| = -̂  for(7,8)eΓf and 2^A1<-
AI

Count again in two ways quadrilaterals (#, 7ι, 72, 73) such that (α,

(α, T2), (α, 73)^r3 and (71, 72), (7ι, 73)eΓf oΓj, 72Φ73; then

(λ" - I ΓfoΓiM Π Γf oΓ1(73) n Γ2(α) | for 72, 73(Φ)eΓ3(α))

so

_ PI (PI— ̂ i) = u(u—l)kι = u(u—
(klU-2)k

If w is odd, then kιU—2 divides w— 1. This is impossible. We put u=2uQ>

then
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χ// = 2u0(2u0-ί) = u0(2u0-l)
2kluΰ-2 Mo-1

Therefore, we conclude that kι=2.

Lemma 20. If πl=π2^
1Fπ3 and Γf oΓ2ΠΓf oΓ3Φ0, then vl = vz =

ΓjoΓf ΦΓ,oΓί and Γf °Γ2=Γ? oΓ,UΓ,/or ίowe Γ, .

Proof. By assumption, Σ=Γ*°Γ3 is a (?-orbit contained in r?or2. We
put v=vl==v2, zv=v3, |Γ2(7θnΓ3( y2)|=Λ: for (OΊ, o^elVΓ?, | Γf («) Π Γf(δ) |

=jand |Γf(α)nit(δ)|=»for (α,δ)eΣ, |Γ2(r)nΣ(α)l=< for (a,
By Lemma 15, Tr i'Φπf) and hence, Γ2oΓf is a G-orbit. We have

? = = I ΓloΓΓ (%) I = I Γ2o
K\

so

We have also IΣ(«)I =— =— , and so

( 1 )

wy = tm. ( 2 )

Count in two ways quadrilaterals (a, 7ι, δ, 0^2) whose edges are succes-
sively Γf, Γ2, Γf and Γ^ then we have

I A L I K\ X — I <1 L I "iiy >
kλ m

so

(v—\)x = wy. (3)

<1) and (3) yield

y = hl. (4)

From (2) and (3),

(v-l)x=tm. ( 5 )

We shall show that m=l. If w> 1, then there exist quadrilaterals (α, 7ι,
5, γ2) whose edges are successively Γf , Γ3, Γf and Γ^ whose vertices are all
•distinct; count all of them in two ways, then we have

3 m
so

(w-l)k1 = v(m-l)

On the other hand, from (3) and (4)
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(w— V)kι = wkί—^ = (v—V)x— kt ,

therefore

v(m— 1) = (v—\)x—kλ y

so

0$ v(x— m+l) = x+kλ<2v . ( 6 )

(6) yields

x = m , v = m-i-ki . ( 7 )

From (5) and (7),

t = v-l. (8)

y ι
If Γ1oΓf=Γ2oΓiβ, then by Lemma 10, 1 2(α) I =v^v~1\ This is a contradio

*ι+l
tion. So we have ΓioΓ?ίΦΓ2oΓf', and hence,

!=? = *!. (9)

Therefore we have m—v— 1 from (7) and (9), and «;=(z;— I)2 from (2) and (8).
So

^2w = 2(v-iγ>v(v-l) .

This is impossible. Thus, we can conclude that m=l, and then by (5) t=v— 1>

x=l and \Σ(a)\=V(V~~l\ By Lemma 10, Γ l 0ΓfΦΓ 2oΓf, and hence,
ki

I=y=k1. Therefore, by (2) w=v— 1, |Σ(α)| =φ-l). By Lemma 8 iv),
Γf oΓ2=ΣUΓ, for some Γt,

Lemma 21. J/ Γf oΓ2ΓlΓ? oΓ3Φ 0, «wJ vίf v2, v3>3, then the following
hold;

i) if ^=^2=^3, Zλew 1̂* = ̂
ii) if πι—π2^Fτr3ί then π$=£π* and V1=v2==v3+l.

iii) if π^πz, π3, then π$=πf, C*1C2=C¥C3 and V1=v2+l=v3+ί.

Proof. We have this assertion by arranging from Lemma 15 to Lemma 20.

Lemma 22. Suppose that Γ? oΓ2 and Γf oΓ3 contain a G-orbit 2 in Ω X Ω,

πι=π2=π3) \Tι(a)\>3. For γl9 γ2(Φ) Γf (α) αwrf δeΣ(«), ̂  following
hold;

|Γf(α)nΓf(8)|>l, |Γf(α)nΓf(δ)|>l



326 M. NUMATA

ii) if Γ1oΓf = Γ2oΓf..ΦΓaoΓf> then |Pf (α)ΠΓf(δ)| > |Γf (α)ΠΓί(8)| =

I Γ2(OΊ) Π Γ3(γ2) 1 = 1 , 1 Σ(α) I =*^A), and Γf oΓ2 αmtoάu some Γ,.
*ι+l

iii) i/ I>Γ? Φ Γ2oΓf , Γ3oΓf , then \ Γf (α) Π Γf (δ) | = | Γf (α) Π Γf (δ) | =
I Γ2(7ι) Π Γ3(γ2) I = 1, \^(a)\=v(v— 1), and ΓfoΓ2 contains some Γ, αwrf
Γf oΓ3 contains another T..

Proof. Put IΣ3(α)nΓ2(71)nΓ3(y2)|=λ for y lf 72(Φ)e=Γf(α). |Γf(α)Π
Γf (δ) I =x2, I Γf (α) Π Γf (δ) I =x3 for (α, δ)^Σ. Count in two ways quadrila-

terals (α, 7ι, δ, γ2) whose edges are successively Γf , Γ2, Γ* and Γ^ and (α, δ)
, then we have

so

φ-l)λ=|Σ(α)|^3. (1)

Assume Γ^Γf ΦΓ2°Γf , Γ3°Γf. Then we have | Γf (α) Π Γ? (δ) | =
|Γf(α)nΓf(δ)|=l. By(l)

Since | Σ(α) I ̂ K1'"" 1)> we have λ= 1 and | Σ(«) I =v(v— 1). By Lemma 8 iv),
ΓfoΓ2=ΣUΓ, and Γ?°Γ3=ΣUΓy for some Γ,, Γy. By Lemma 8, iii), we

have CfC2=5+C,, Cf Cf=S+CΓ (5=C(Σ)) K C*,=Cy, then CΪC^CfCa,
and hence, by Lemma 19 wιφπ 2, πr3. This is contrary to the hypothesis of this

lemma. Thus C,ΦCy, that is, Γ, ΦΓr So Σ(«) Π Γ2(τ1) Π Γ3(γ2)=Γ2(-y1) Π
Γ3(r2). Therefore | Γ^) Π Γ3(r2) | = | Σ(α) Π Γ2( y,) Π Γ3(r2) | = λ= 1 . Thus we
have iii) of Lemma.

Next assume Γ^Γf =Γ2oΓ?φΓ8oΓf . Then we have |Γf(α)ΠΓf(δ)| =1.
By(l)

l^ (2)

Count in two ways triplilaterals (α, δ, γ) whose edges are successibly
Γf , and T! then we have

i). ( 3 )

If afe=l, then IΣ(^)I=Φ-1) by (2) and (3). By Lemma 8. iv), Γ
Γ2oΓf. This is contrary to the assumption. Therefore we have x2>^> λ=l

and IΣ(α)l*2=»(»-l). Since IΣ(^)I^2=^"1), IΣ2ία)nΓ2(r)|=ι;-l for

(α, γ)eΓf . By Lemma 10. ii), 1 2(α) I =^p""^ and Γf oΓ2 contains some Γ,.
*ι+l

Now we shall show that Γ2(7!)n Γ3(72) = Γ2(γ1) Π Γ3(γ2) Π Σ(<*)> for
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7α, 72eΓ?(α). If Γ2(γ1)nΓ3(γ2)SΓ2(γ1)nΓ3('y2)nΣ(«), then Γf oΓ2=ΓfoΓ3.

But \TfoT2(a)\ = \^(a)\ + \Tί(a)\=v^^+v<v2 and |ΓfoΓ8(α)| = Λ

This is impossible. Therefore, |Γ2(71)nΓ3(72)l = |Γ2(71)nΓ3(γ2)nΣ(α)| =
\=1. Thus we have ii) of Lemma.

Last assume Γ1oΓf=Γ2oΓί=Γ3oΓί. We shall show that x2=\Γ*(a)Γ(
Γf (δ) I > 1 and *3= | Γf (a) Π Γf(δ) | > 1 . We note that k,= k2 = k3, therefore
we put k=k1=k2^=k3. If x2=x3=ly by (1) we have \*Σl(ά)\=v(v— 1). By

Lemma 8. iv) Γ^Γf ΦΓ2oΓf , Γ3oΓf . This is contrary to the assumption. If

= 1, we have 1 2(^)1= - as before, and x2 = k-\-l. We put
k+1

x = I rf (α) Π It(δ') I for (α, δ

Since Γ!θΓf=Γ3Γf and x3=l, there exist quadrilaterals (α, 7ι, δ', 72), wit
^jLΦγ j and (α, δ^eΣ7* whose edges are successively Γf, Γ3, Γf and Γ^ Count
all of them in two ways then we have

=!ϊX-Sί
so

t(k+l)k __ tk(k+l)
„_*>-! f(A+l)+l-ί

A+l

ι _
X

Therefore ί=l, and hence, τ;=^+2. This is impossible by Lemma 3. Thus
we have #2> 1 and #3> 1.

Now we shall show that X>1. If \=1, by (1) we have

v(v-l)=

Since #2>1, there exist quadrilaterals (a, 7ι, δ, γ2)» with 7ιφγ2 and (α,
whose edges are successively Γf , Γ2, Γf and Γi Count all of them in two
ways then we have

k

(X2 = I Γ2(γ1) Π Γ2(72) n Σ(«) I for 7,, 72( Φ ) e Γf (α))

so
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and by (1),

_
Λ2 —

Thus — - is a positive integer. Since #3>1, in the same way, we have that
x3

χ _ j
-̂  - is a positive integer. This is impossible. Thus we have i) of Lemma.

Lemma 23. // Γ^Γf = Γ2oΓf and π^π2, then for any Γ, , Γ/φ),

Proof. Assume Γt oΓf DΓioΓf. Note that \v1—v2\^2 by Lemma 13,
and hence, 7rfφ7rf. If {Γt, I\} = {Γι, Γ2}, then since Γt oΓ^ is a G-orbit,
ΓtoΓf =Γ1oΓϊί =Γ2Γf. This is a contrary to Lemma 14. Therefore we can
assume that Γ^ΦΓj, Γ2. If Γ—ΓΊ then, Γf oΓiίΊΓfoΓ ΦO. By Lemma 21
have v2=v1— 1 . This is a contradiction. Thus we have {Γ\ , Γ;.} Π {Γi, Γ2} =0.

From ^ιφ^2>
 we may assume ^Φ^i. Since Γf o Γ V f l Γ f o l V Φ O , «;ί=ί;1— 1

by Lemma 21. On the other hand, from \Vι— v2\ ^2, v^v2. Since Γ^ΓίΠ
Γf oΓ;.Φ0, in the same way, we have vi=v2—ί. This is a contradiction.

Lemma 24. // ΓxoΓf =Γ2oIt=Γ3oΓf =Δ, 7r1=3r2=w3 and |Γ!(α)|>3,
then Γ^Γf ΐ>Δ or Γ^Γf φΔ.

Proof. Assume ΓχoΓ?Z)Δ and Γ^Γf ^Δ. We put v=v1=v2 = v3 and
k=ki=k2=k3. Since τr1=π2=π3J we have TT? = τrf=7rf by Lemma 21. We
shall show that Γf oΓ1=Γ|ίoΓ2=ΓlίoΓ3. If Γfo^ΦΓf oΓ2, Γ?oΓ3, |Δ(α)| =

v(v-ΐ) by Lemma 22. iii). Since | ΓfoΓ^a) \ = I Γ^Γf (α) I = I Δ(α) | =ι<t;-l),
wehaveΓ2oΓrΦΓ3oΓf by Lemma 8. iv). If Γf oΓi-ΓfoΓ.ΦItoΓa, |Δ(α)| =
v\v~~ ' by Lemma 22. ii). This is impossible. Thus we can conclude that

k+l

Γf oΓ1-ΓroΓ2-Γ?oΓ3. If T1oTf=Γ1oTfy then C1C?=C1Cf by Lemma 10,
i); and hence, Vι=v2-{-ί by Lemma 19, iii). This is contrary to the hypothesis

of this lemma. We shall show that k>l. If Λ = l,

v(v—l). Since Γ?oΓ3=)Γf oΓi, Γ2Γf ΦΓ3oΓ^ by Lemma 8, iv). This is con-
trary to the assumption. Count in two ways quadrilaterals (a, OΊ, δ, 72) whose
edges are successively Γ^ Γf , Γ3 and Γf then we have

SO
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Aγ γ v ( Λ \
/VtAf —— tΛ<2ιΛ<3 I J. I

Here we put x2= | ΓΊ(α) Π Γ2(δ) |, #3= IΓ^α) Π Γ3(δ) | for (a, δ)eΔ and *=

We shall show that x, x2 and Λ?3 are smaller than k. If x2^ky then for

(α, 7)e'Γ!, |Δ(α)ΠΓ?(7)l ^v— 1. Of course, |Δ(α)nΓ^(7)| ^^— 1, and
-./-. 1 \

hence, |Δ(α)nΓί(γ)|=τ;— 1. By Lemma 10, ii), we have ,
k+l

which is a contradiction. We can prove in the same way that x3<k. Then,
(1) yields

x<χ2, χ3<k. (2)

Now

= Cl(χ]y+yS') ,

(CxCf )C3 = (̂ 2^+^2*5)̂ 3 = ^2(^— l)C3+terms not involving C3 .

(Δ' = Γf oΓj, Γl0Γ2* = ΔUΣ> Γ?oΓ3 = Δ'UΣ' »

Z) = C(Δ), Z)7 = C(Δ7), 5 = C(Σ) and 57 =

Since Λ?2>Λ: and the coefficient of C3 contained in CΊZ)' is at most ϋ— 1, C3 is

contained in C^7, that is, ΓfoΓsIDΣ7- On t̂ 16 other hand, since ΓLoΓί
there exists the following figure.

Therefore ΓfoΓ3DΔ r. Thus Γf oΓ3=Δ/nΣ/=Γf oΓ3. By Lemma 10, i) we
have CfC3—CfC3. So, π^π3by Lemma 19, i). This is contrary to the
hypothesis of this lemma.

Lemma 25. If vl9 v2, v3 and ^4>3, then the following figures don't exist.

iV\r2

r.X/r* Γ'VΓs

Fig. 1 Fig. 2 Fig. 3 Fig. 4

Proof. For each figure above, we assume its existence and show that it
implies a contradiction.

Non-existence of Fig. 1.
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Case I.

By Lemma 18 and Lemma 19, v1=v2+l=^3+1=^4+1, |ΓΊoΓί(α)| =

|Γ2(α)nΓ4(δ)|=lfor(α,δ)eΓ1oΓf and πf=πf=

Ttf. Now let us consider the following figure.

Γ2^ \r.

Γ4

Then by Lemma 22, i) and iii), we have

|ΓΊoΓ?(α)| = v2(v2—V) = to— l)to~2).

Thus,

HVrf(a)| =

so
A 1

This is contrary to the hypothesis of this lemma.

C/ase 11. τΐ\'== 7C2^r7t^ ττ4.

By Lemma 21, V1=v2==v3+l=v4+l and π$—π*3=π*. But considering
the following figure,

Γ4

we have v3=v2+l by Lemma 20. This is impossible.

Case III. πι=π2=τr^π4.

By Lemma 20, V1=v2=v3=v4+l. But since there exists the following

figure,
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we have v4=v3-\-l=v2-\-l by Lemma 21, which is a contradiction.

/^< „_ TTT _ _ _ _ TP ηp^ί T-i ^T1* "Π ^T1* T* ^TΠ^^386 IV . 7tι= 7Ϊ2== 7^3= 7Γ4, I j O l 1 =:i 2 ol2 : : : : : : ι l 3 ol3=l 4 ol 4 .

Existence of the following figure is contrary to Lemma 24.

Γ2,

Γ4

Case V. 7Γ1=7Γ2=7Γ3=7r4, TVΓ?=Γ2oΓ?=Γ3oΓf ΦΓ4oΓf.

Since I>It=Γ2oΓf=Γ3oΓf, we have by Lemma 22, i) | Γ^Tj) Π Γ3(<y2) | > 1
for (7ι, O^elVΓ?, and hence, ΓfoΓ2=ΓfoΓ3. So, we have iΓ^Γ^α)^
«ι(ϋι —1) by Lemma 8, iv). On the other hand, since IVΓf=Γ2oΓf=Γ3oΓj Φ
Γ4oΓ4* we have by Lemma 22, ii) | Γ4(7ι) nT2(γ2) I = | Γ4(7ι) Π Γ3(72) | = 1 for
(7ι, Taί^Γ^Γ*. Then from the existence of the following figure,

Γ4

we have |Γ!θΓf(o£)| =ϋj(ϋι—1) by Lemma 22, which is a contradiction.

Case VI. »!=«,=w,=»4, Γ1oΓ?=Γ2oΓf ΦΓ3oΓf, Γ4oΓf.

There exist the following figures, where 2 ^s a G-orbit.

ΓNX/ΓS

Fig. a Fig. b

From Fig. a, we have lΣ(<^)l=^ι(^ι—1) by Lemma 22, iii). On the other
v (v _ ι \

hand, from Fig. b, we have 12(^)1=-^^ by Lemma 22, ii), which is a

contradiction.

Case VII. ^=^2=^3==^4, ΓVΓ?ΦΓ2oIt, Γ3°Γ?, I>It.

From IVΓfφIVΓf, ΓsoΓ?, we have |Γ2(7ι)nΓ3(72)|=l for γlt 72(Φ)e
Γf(α), by Lemma 22, iii). Similarly from Γ^Γf ΦΓ2oΓf, Γ4oΓ!ίί, we have
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I =1 for n, y2(Φ)eΓf(α). From Γ2oΓ3* ΠΓ2ol 4

have by Lemma 22

I Γl0Γf(α) | = ι>ι(ι>ι-l).

By Lemma 21, τr*=7r*=7r*. Therefore we have by Lemma 8, iv)

ΓfΌΓ2ΦΓf oΓ3, ΓfoΓsΦΓίoΓ4 and ΓfoΓ4ΦΓfoΓ2

and Γ,oΓf (2^/,/(Φ)^4) contains some Tk.

We put

v = v1 = v2 = v2 = v49 ΓαoΓf = Δj, Γf oΓ2 = Δ2,

Γ2oΓf = Δ! U Γf , Γί oΓ4 = Δ2 U Σ', and D1=C(A1),

A = C(Δ2), 5" = C(ΣO and /= | Σ7(«) I

Now,

(C2Cf)C4 = (A+C,)C4 = (^-l)C3+ .

The coefficient of C3 of the above equation is v— 1 or v by (2). Next,

so

By Lemma 8, i), s'^zv, so

<v—2 .~

we

(1)

(2)

(3)

We shall show that ΓfoΓ4ΦΣ/ If Γ?oΓ4=Σ/> there exists the following
figure.

Γ4

Since Γ3oΓf =Δ1UΓy, we have Γ4oΓf ̂ Δi^ΓioΓf. This is contrary to the
assumption of this case. From Γ2oΓ? ΠΓ3oΓf Z)Δι and (2), for γl9 72(Φ)e
Γ4(α) we have by Lemma 22, iii)

irfwnitMi =ι. (4)
If Γ^Σ7 contains Γ3, then we have Γf oΓ3=Γf OΓ4ΠΣ', and by (4)

C3

Jr terms not involving C3 .



GENERALIZATION OF A THEOREM OF PETER J. CAEMRON 333

When &4=1, v-~^=\. So Γ2oΔ2 contains Γ3, by (3). When k4> 1, v—1>
k4

v—v~~" >—. So, #=1, and hence Γ2oΔ2 contains Γ3.
k4 2

In all cases, we can conclude that Γ2oΔ2 contains Γ3, and hence, Γ?oΓ3Z)Δ2.
Thus, we have the following figure.

So, Γ1oΓf=Γ2oΓί. This is contrary to the assumption.
Non-existence of Fig. 2.

Case I. πΊΦπ^, π3.

From ΓfoΓ 2 ΠΓfoΓ 3 Φ0 and π, Φ τr2, τr3, we have |ΓΊoΓf(g) | =v^~l\
Zj

^ι=^2+l and ΓΊ°Γ? ΦΓ2oΓjf by Lemma 21 and Lemma 19. On the other
hand, lAoΓf^I
This is impossible.

Case II. π 1=

By Lemma 20, v1 = v2=v3+l. On the other hand from the existence of
following figure,

we have ^3=^2+l=^ι+l by Lemma 21, iii). This is impossible.

Case III. πι=π2=π3, Γ1oΓf-Γ2oΓr=Γ3oΓr.

By Lemma 22, for (α, δ)eΓf o^, 1< |Γf(α)nΓf(δ)l and 1< | Γf (a) Π Γί(δ) | .

The counting auguments show that | Γf(α) Π Γf (δ) | = | T^ΎI) Π Γ2(τ2) | and

IΓf^nΓ^I-lΓ^OΠΓ^)! for (Tl, r2)eΓ!θΓf. Therefore, TfoΓ^
Γ^oΓ2=ΓίoΓ3. Now Γf oΓ2Z)Γf oΓi and Γf oΓ3Z)Γf oΓlβ Since we can show
that πf =π*=πf by Lemma 21, we have a contradiction by Lemma 24.

Case IV. πι=π2=π3, Γ^Γf-Γ

From Γ?oΓ2nΓfoΓ3DΓfoΓ1, we have IΓfoΓ^α) =^~^ by Lemma 22.
This is impossible. kl+ 1
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Case V. πl=π2=π39 Γ^Γf ΦΓ2oΓf, Γ3oΓί.

By Lemma 21, we have πf=π*=π*. By Lemma 22, iii), |ΓΊoΓ?(α)| =

v(v—1), and by Lemma 8, iv), Γf oΓΊΦΓf oΓ2.

From the existence of the above figures, we have Γf oΓ3 =

Therefore,

oΓ2

This is impossible.
Non-existence of Fig. 3.

For the above figure, if Σi—Σz then there exists the following figure.

This is contrary to non-existence of Fig. 1. Thus we have

ΓiθΓf=ΣιUΣ2 and GΛ is not doubly transitive on Σι(<*) an^ Σlzί^) by
Lemma 12. So, by Lemma 20 we have πf=τrf=πf—π*. Also ΓfoΓi=
ΓfoΓ2=Γ§coΓ3=Γ!ίίoΓ4 by Lemma 22. From Γf oΓ3nΓiίoΓ4Z)Γ?oΓ1, this is

contrary to Lemma 24.

Non-existence of Fig. 4.

There exist the following figures.



GENERALIZATION OF A THEOREM OF PETER J. CAMERON 335

Γ3 I^_^Γ3

Fig. a Fig. b

Case I. TΓfΦTΓ*.

By Lemma 21, we have vl =v2-\-\ from Fig. a, and v2=^i+l from Fig. b.
This is impossible.

Case II. π^=πf^pπf.

By Lemma 20, we have V1=v2=v3+l and Γ2oΓiίΦΓιoΓf from Fig. b. On
the other hand, IVΓ^IVΓf dΓ2oΓf DΓ^Γf, and Γ2oΓf has some Γ, by
Lemma 20, and hence, IVΓΪ^IVΓf. This is impossible.

Case III. π*=π$=πf9 Γ?oΓ^ΓfoΓ^Γf oΓ3.

By assumption, Γf oΓ1ΠΓ|ίoΓ3Z)Γ?oΓ1=Γf oΓ^ΓfoΓg, which is contrary to
Lemma 24.

Case IV. π^=πf==πf9 Γf oΓ^Γf oΓ2ΦΓf oΓ3.

From Fig. a, IVΓf ^IVΓ? UΓ, for some Γ,- by Lemma 22. So, !>!? Π

Γ l0Γf=Γ l0Γf and Γ^Γf (α)=^ .̂ This is impossible.

Case V. πf =πf=πf, Γf oΓ1=

We put Σ=Γl0Γf ΠIVΓf .

By Lemma 22,

From that AoΓf ZDΓxoΓf, we have Γl0Γ?=Σ U Γ^Γf . So v2=v(^

v(v~~l\ Therefore ^==1 and ^—1=^+1=2. This is contrary to the hypo-

}
thesis of this lemma.

Case VI. «f=^=^, ΓfoΓ!ΦΓίoΓ2, Γ*3oΓ3.

We put Σi^IVIt Π ΓioΓί . By Lemma 22, we have Γ^Γf =Σ U Γ,, Γl0Γ?

=2 U Tj from some Γf , T. and IΣ(^)I=^— 1) Since ΓjoΓίDΓioΓ? and
f, we have ΓioΓf ^Σ^ΓzoΓ?. On the other hand, since

foΓ1! and |Γf oΓ^α)! ==*;(«>— 1), Γ l0ΓfΦΓ2oΓί by Lemma 8, iv).
This is impossible.

Lemma 26. For Γ\, Γ2 and Γ3, suppose that IVΓ^ ΓHVΓf contains a
G-orbit 2 ίw ΩxΩ, αwJ vί9 v2, v3>3. Then, there does not exist Γf such that
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Proof. From non-existences of Fig. 2, Fig. 3, Fig. 4 of Lemma 24, we
have this assertion.

Lemma 27. (P. J. Cameron [3], Prop.)
// Γ? ΦΓ, and Γ oΓ SΓ, U Γ? U (Γ, U Γ*) U (Γ? oΓf), then G has rank 4.

3. Proof of Theorem 1

We put

and assume that x1'^ '^xr>xr+1= •• =χt=Q. Counting in two ways triplila-
terals (ΓΛ, Γ/, Δ,-) such that I\oΓf 13 Δ f, we have by Lemma 9 and 11

The equality means that, for any Γ, and Γy, we cannot have ΓίoΓjί=

When Λ?f >0, by Lemma 26 y^Xi+s. When Λ?t=0, by non-existence of
Fig. 1 of Lemma 25 y^2s. Therefore

so

r+l. (1)

Now, let Δ1=Γί 0oΓf0 and we put

A = {{Γ,, Γy} : unordered pair |Γ,.oΓ* DΔX, ΓtΦΓy} ,

For {Γ,, Γ.}, {Γ,, Γ7}(Φ)e^, {Γt , Γ.} Π {Γ,, Γ7}=0 by Lemma 26. There-
fore I B\ =2\A\ . Furthermore, for {Γt , Γy}, {Tky Γ7}(Φ)e^, and for Γm, Γn

(Φ)Φ5, Γf0oΓ,ΠΓf0oΓy, Γ^oΓ.nΓ^oΓ,, Γf0oΓw, Γf0oΓM are disjoint to each
other by non-existence of Fig. 1 of Lemma 25. Thus we have

t, (2)

and by Lemma 26

\A\-l^t-r. (3)

Assume s=2t—r-}-l. Since the equality of (1) hold ji=#i+£, and hence
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\A\ =— and — -l^t-r by (3), and hence, 2t—r+l=s^ 2t—2r+2. So

7=1. Therefore, if r > 1, we conclude that s^2t—r.
We shall show that when r=l, s^2t— 2. Assume r=l and 2t^s^2t— 1,

and put Δ^IVΓf , l^i^s. If τrt Φτry for some Γ, and IV, then by Lemma
23, ΔφΓ.oΓf for any ΓΛ, Γ,(Φ), and hence, Γ*ol\ ΓHtoΓ,= 0. So s^t.
This is contrary to the assumption that t^2. Thus, it holds that 7Γ1=7Γ2=

Now, Suppose Γ. oΓ—ΔUΓ? for some Γ, , IV and Γk, and put Z>=
Γ,oIV=Δ'UΓ*, Z>'=C(Δ'), *HΓ,<tf)nΓ*(/3)| for (α, /8)eΓf, *=
Γ*(δ)| for (α, δ)^Δ, ^=^=^2=..., k=k1=k2= . Then we have

= tvI+tkD+xDCk ,

CACpύ = Ci(fCΪ+xΊy) = t'vI+t'kD+x'C D' .

(tT= |Γ/α)nitGβ)| for (α, /S)eΓf, ̂  = |Γy(α)nΓf(δ)|

We have £=£' by counting in two ways triplilaterals (β, a, 7) whose edges are
successively Γt , IV and Tk, and have | Δ(α) | = | Δ7(α) | and Λ?=Λ?' by Lemma 10.
So,

If C.-ΦC* I Δ7(α)| =p(p "1) by Lemma 10. This is impossible. Thus C~Ck.k+l
Similarly, C}=Ck.

When S=2t, then the equality of (1) holds. Therefore, for any Γt, there
exists Tj such that Γ toIV=ΔUΓf for some Γf. So, as is shown above,
Γί=Γy=ΓΛ. Therefore we have any Γ, .

Γ.ΦΓf, Γ.oΓ, = ΔUΓ? and Γ.oΓSΠΓ^Γ* = 0 for ΓmΦΓw, Γ* .

When ί=2ί— 1, then |^4|^ί— 1, and from (2) s- \A\ ̂ t. So \A\=t— 1.
Therefore, there is a unique ΓM such that for any Γ^ΦΓ^), Γ\oΓ;fctΔ. We
shall show that for anyΓ,, Γ^ (φ), ΓtoΓf contains some Tk. Assume Γ,oΓ^=
Δ^UΔ; for some Γt , Γy (Φ). Count in two ways the paired (Γw, ΔM) such
that Γt oΓ£ contains Δn, then by Lemma 25, we have

So, equality holds. Thus for any ΔΛ, there exist Γ ,̂ and Tq (Φ) such that
Γt oΓ^ and Γ^Γf contains Δft. Therefore we may choose Γa such that Γt oΓ? Π
Γ,oΓ*Φ0 andΓΛΦΓ«. Then I>Γ* Z^Γ^Γf-Δ. This is impossible. Thus,
again as is shown above, we can conclude that for any Γ\ (ΦΓM),
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Γ,ΦΓ*, Γ,oΓ t=ΔUΓf and

I>Γ*nΓtoΓ* = 0 for ΓWΦΓM. Γ*

Thus if s^2t— 1, there exists Γt such that

Γ,ΦΓf and Γ,°Γ, = Γ,°Γ? U Γ* .

By Lemma 27, this show that G has rank 4. This is impposible for s^2t—
and

4. Proof of Theorem 2

When r—ty we have s^t by Theorem 1. On the other hand, from s^r=t,
we conclude that s=t—r.

We put I>Γf =Δ, , Λ={{IY> Γ,} unordered pair|I\°Γf =>Δt , ΓΛΦΓ/}.
Then \Ai\-\^t-r=Q, so \At\^l.
Count in two ways triplilaterals (Γ,, Γ; , ΔΛ) such that Γ,oΓf DΔA, we have

so

*SS3. (1)

Case t=2. If |Γj(α)| Φ |Γ2(α)|, by T. Ito [6], G is isomorphic to the
small Janko simple group and GΛ is isomorphic to PSL(2.11). We shall prove
that the case of | I\(α) | = | T2(ά) \ does not occure. We put | Γι(α) | = | T2(a) \
—v. It is easy to prove that πι=π2. We shall show that I\ and Γ2 are self
paired. If not, then Γf =Γ2. Since ΓΊoΓ?ΦΓ2oΓf =Γ?oΓι, we have that
ΓioΓjφΓioΓf , Γf oΓ1(=Γ2oΓf) by Lemma 7. By Lemma 11, there exists a
G-orbit 2 in Γ\oΓι such that GΛ is not 2-transitive on Σ(«)> and Σ^Δi, Δ2.
This is impossible for t = 2. Thus, we have IVΓ j^ΔiUΔz. So, vz =

\T1oΓ2(a)\ = \TloTl(a)\+\T2oΓ2(a)\=^^+ This is impossible.
KI K2

Case t= 3. For this case, the equality of (1) holds. So we have \At\ =1
for l^/^3. We shall show that if Γ. oΓj^Δ! then Ti=Yl or Γy=Γlβ If
Γ, , Γ yΦΓi, then since Γf oΓ, ΠΓfoI\ φ 0, there exists a G-orbit 2 in
Γf oΓt Π ΓfoΓy such that G is not 2-transitive on Σ(#) by Lemma 12, and for
any Γt , Γ^oΓf Φ2 by Lemma 25. From r=t, this is impossible. Thus we
may assume that there exist the following figures.

Γ,

Fig. c
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If jnΦΛi, ττ3, then v,v2= |Γf oΓ2(α)| = iΓfoΓ^α)! = vfa *) from Fig. a, so
RI

3. Similarly, vz>vl from Fig. c. Therefore V3>v2. On the other hand,

=v^V2~~ ' from Fig. b, so v2>v3. This is impossible. Thus we have

πι=π2=π3. By Lemma 7, Γj, Γ2 and Γ3 are self-paired.
Thus Γ1oΓ2=Γ3UΔι, Γ2oΓ3=Γ1UΔ2, ΓsoΓ^ΓzUΔs- Put

then by Lemma 8, iii) we have

We put

Then

Now

So

Similarly

Next

So

Similarly

α)! = |Δ2(α)| = |Δ3(α)| = v(v-\) .

D{ = C(Δ£) and C, = C(Γ,), 1 ̂  * ̂  3

Z)2C3

D3C3

not involving

not involving

= AC.+A-A = (*i-l)A

= ACΊ+A— A = *ιA+(*a-l)A+(*H-l)A

)C3 =

AC3+(β-i)c,-A
(Xl-ί)D1+xzD2+x3D3+(v-l)C3 .

(2)

(3)

Furthermore
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= (vI+Dί)C2 = vC2+D,C2 ,

= CΊ(C8+A) = C2+ A+ ACΊ
So

Similarly

Z)3C3 = D3C1+(v—l)C1—D2

Thus (2), (3) and (4) yield

-1)̂  . ( 4 )

We put #3=#, then

XB = (x+l)+(x+l)+x = ( 5 )

It is easy to show that the graph (Ω, Γx U Γ2 U Γ3) is a strongly regular graph
parameters 3v, 2, 3.

From the conditions of the existence of the strongly regular graph, (see [1] p.
97) it holds that

(d is a positive integer)

(m is a positive integer)

3^(^; 2\
From (7), —- ' is integer, and hence

d

I2v—ll = d2 is a divisor of v2(v—2)2.
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So

12v-ll is a divisor of 112 132.

From v=3x-{-2, we conclude

v= 11.

Lastly, we shall prove that the primitive group satisfying these conditions does*
not exist. It is easy to prove that Ga acts faithfully on Γα(α). We shall show~
that for OΊ, γ[ (Φ)^Γι(α), G^^ has the fixed points in ΓΊ(α)\{ry1, γί}.

For (a97ι}^Tl9 put {72}=Γ2(α)nΓ3(y1) and {γ3}-Γ3(α)nΓ2(γ1). Then,
Ga YI fix T2 and γ3. So we must have that (γ2, T^elV Now for %, 7ί (Φ)e
Γ!(α), put {8X} =^(70 Π Γ2(γ(), {S2} =Γ2(γ1) Π Γ^γί). Then G^ fiix ̂  and
δ2. Since (Ti, γί) φΓ3, we have (Sl9 S2) φΓ3. Therefore Γ^i) Π Γ3(δ2)- {δ} Φ

So, GΛf y γj fix δi and δ. Since Γ^γ^Bα, δ^ δ (Φ), in the same way, we

obtain that G^γ^j, has the fix points in Γ^αjXίr! U 7ι} . The order of GΛ is at
most one million. If Ga is non-solvable, then the minimal normal subgroup of
Ga is non-solvable simple. From [5], it is isomorphic to the Mathieu group
MII °r tne transitive extension of the alternating group A5 act on ten points..
These groups have not the representation such that it is doubly-transitive on
eleven points and it's stabilizer of two points has the additional fixed point.
Thus, we can conclude that GΛ is solvable and the order of Ga is 110. So-
|G| = |Ω| 11 10=364 11 10=:23 5 7 11-13. G is non-solvable group and
( I G 1 , 3)= 1. But there does not exist such group by M. Hall [5].
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