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1. Introduction

1.1. Let G be a Kleinian group and denote by Ω(G) and Λ(G) the region
of discontinuity and the limit set of G, respectively. Throughout this paper,
a Kleinian group means a non-elementary one. The residual limit set of G,
which is denoted by Λ0(G), is the subset of Λ(G) which consists of all the
points not lying on the boundary of any component of Ω(G). Although the
study of Kleinian groups has long history, the residual limit sets were not treated
or were thought to be empty, until in 1971 AbikofT showed the existence of
Kleinian groups with the non-empty residual limit sets [1]. In his paper [2],
Abikoff also studied the properties of residual limit sets and showed their non-
emptyness for all finitely generated Kleinian groups except for those of two
classes which have clearly the empty residual limit set; one is a class of function
groups and the other is a class of Z2-extensions of quasi-Fuchsian groups.

In this paper we shall show the importance of the residual limit sets by
proving the following.

Theorem 1.1. Let G be a finitely generated Kleinian group and let S be
a finite set of generators of G. If G is neither a function group nor a Z2-extension
of a quasi-Fuchsian group, then S can be changed into a set of generators SQ of G
with the following properties :

i) each element of SQ is loxodromίc and its fixed points lie on Λ0(G), and
ii) the number of elements of SQ is not greater than that of S.

Among the sets of generators of a finitely generated group, there is a set,
the number of elements of which is minimum. We shall call it the minimal set
of generators. Choosing S in Theorem 1.1 to be the minimal set of genera-
tors, we have the following.

Corollary 1.2. Among the minimal sets of generators of a finitely generated
Kleinian group G with the non-empty residual limit set, there is a set consisting of
only loxodromίc elements with the fixed points on Λ0(G).
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1.2. This paper is arranged with respect to steps of the proof of Theorem
1.1. In §2, we list up some known results which we shall need later and then
define and discuss the rotation order of some loxodromic element. We change
S into S0 in three steps in §3 into a set which consists of the loxodromic ele-
ments only, in §4 into another set which consists of the loxodromic elements
only and contains at least one element which has the fixed points on Λo(G) and
in §5 into the desired S0. In each step the changed set is a set of generators of
G and the number of the elements of the set is not greater than that of the original
set. In §6, SQ is studied in detail for non-web groups. The author wishes to
express his deep gratitude to professor T. Kuroda for his advices.

2. Known results and rotation order of a loxodromic element

2.1. Let G be a finitely generated Kleinian group and let Δ be a component
of G. The component subgroup GΔ for Δ is the maximal subgroup of G which
leaves Δ invariant. For component subgroups of G, the followings are known.

Theorem 2.1 [3]. GΔ is a finitely generated function group with Δ as an in-
variant component.

Theorem 2.2 [4]. If GΔ has an invariant component different from Δ, then
GΔ is a quasi-Fuchsίan group with the invariant Jordan curve 9Δ=Λ(GΔ).

From these theorems we have the following.

Corollary 2.3. Let Δ' be a component o/GΔ which is different from Δ. Then
the component subgroup GΔ/ for Δ' o/GΔ is a quasi-Fuchsian group with the invariant
Jordan curve 9Δ'=Λ(GΔ/).

The Jordan curve 3Δ' in this corollary is called a separator of G and the
set of all such separators of G is called the set of separators of G.

Lemma 2.4 [2]. Separators do not cross each other.

Lemma 2.5 [2]. If oo eίl(G), then the diameters of separators of G form a
null sequence.

For common subgroups of component subgroups of G and for common
boundary points of components of G, the followings are known.

Theorem 2.6 [5,7]. Let \Δ1} Δ2, ••-, ΔM} be an arbitrary collection of com-
ponents of G. Then Λ( Π ϊ-i GΔ.)= Π 7-i 3Δf. Ifn^3, then Π 7-ι ΘΔ, consists of
at most two points.

Theorem 2.7 [6]. Let Δ', Δ" be the non-invariant components of GΔ.
Then 9Δ' Π 9Δ" consists of at most one point. If it is not empty, then the point is
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the fixed point of a parabolic element of G.

2.2. Here we shall recall the auxiliary domains. Let Δt, Δy be the
components of G. Let Δ y be the component of GΔ. containing Δy. The
complement of the closure of Δ/ ; is called the auxiliary domain of Δ, with
respect to Δy and it is denoted by D{j and, if there is no confusion, we write D
instead of D{j. By definition, the boundary dD is a separator of G. For
auxiliary domains, we have followings.

Lemma 2.8 [6]. Let Δ, and Δy (ΦΔ t ) be the components of G. Then

Ay =>Δ,., 9Z), yC9Δ,, Ay Π A , =0 ««<* 9Δ, Π 8Δ,=8Z>0 n 9D;,,

Lemma 2.9 [7]. Let {Δ19 Δ2, •• ,ΔJ (w>2) be an arbitrary collection of
components of G. If Π?=ι 9ΔZ consists of two points, then D^—D^ for any in-
tegers i,j, k.

If Δt is a component of G containing °o y then the auxiliary domain Dμ of
any component Δy of G with respect to Δt is bounded. By Lemma 2.8, the
diameter of Δy is identical with that of Dμ. By Theorem 2.6, the set 9Z)yz-
can be the subset of boundaries of at most two components of G. Hence by
Lemma 2.5, we have the following.

Lemma 2.10. // there is a component Δ of G containing °°, then the dia-
meters of components (excluding Δ) of G form a null sequence.

2.3. For loxodromic elements of G and for component subgroups, the
following is known.

Theorem 2.11 [5]. Let γbea loxodromic element of G with a fixed point on the
boundary of a component Δ of F. Then there is a positive integer r such that γr e GΔ.
Hence the other fixed point ofγ also lies on the boundary of the same component Δ.

The minimum of r in the above theorem is called the rotation order of γ
for Δ.

Lemma 2.12. Let γ be a loxodromic element of G. If one fixed point of
7 lies on a separator of Gy then the other fixed point of γ also lies on the same
separator.

Proof. Let 9ΔX be a separator, on which one fixed point of γ lies, and let
Δ be a component such that Δ7 is a component of <7Δ. Since 9Δ7c9Δ, we see
by Theorem 2.11 that both fixed points of 7 lie on 9Δ and that γreGΔ for the
rotation order r of γfor Δ. Hence we see by using Theorem 2.11 again that
both fixed points of 7 lie on 9Δ7.

Lemma 2.13. Let γ be a loxodromic element of G with a fixed point on the
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boundary of a component Δ of G. Assume that the rotation order r of γ for Δ is

greater than 1. If D denotes the auxiliary domain of Δ with respect to τ(Δ), then
the followings hold :

i) the fixed points of j lie on 9Z),

ii) γ'(Z>) is identical with the auxiliary domain of 7'(Δ) with respect to Δ,

/φr (mod r)y and
iii) 7\D) Π 7J'(D)=0 for integers i} j^pi (mod r).

Proof, i) Let Dl be the auxiliary domain of τ(Δ) with respect to Δ.

Since y has a fixed point on the boundary of Δ, one fixed point of γ lies on

3Δ Π 9γ(Δ). By Lemma 2.8, we see that it also lies on 9Z) Π 9A Hence y has
one fixed point on the separator 3D. Therefore the assertion follows from

Lemma 2.12.
ii) Let D{ be the auxiliary domain of y'(Δ) with respect to Δ, l^i<r.

Since y''(D)Dy''(Δ) and 9y'(Z))c9y''(Δ), we see that the outside of y'(Z>)
is a component of the complement of y'(5). We assert that y'(Z>) 0-0=0. In
fact, if ί=l, then evidently y(D) f}D=0. If l<ί, then y''(Δ) is contained in a
component of GΔ different from Δ, and hence, if y'(D) Π#Φ0, then y''(Z))cZ),

so y'(Δ) lies in a non-invariant component of GΔ which is different from the
one containing y(Δ). Since 9y'(Δ) Π 9y(Δ) contains at least two fixed points
of y, this contardicts Theorem 2.7. Hence, in any case, we have the asser-

tion that y''(D)Γl£)=0. Therefore, the outside of y''(D) is the component of
the complement of y'(5) which contains Δ. So we have 7I'(D)=Z)I .

iii) In the case of r=2, the assertion follows from Lemma 2.8 and ii).

If r>2, then by Lemma 2.9 and ii) we see that J\D] (or 7j(D)) is the auxiliary

domain of 7'(Δ) (or Ty(Δ)) with respect to γy(Δ) (or 7'(Δ)). Hence the asser-

tion follows from Lemma 2.8.

Theorem 2.14. Let 7 and Δ1? Δ2 be a loxodromίc element and two compo-

nents of G, respectively. If the fixed points of γ lie on the common boundary of

Δ! and Δ2, then the rotation order of 'y for Δ: is identical with that of γ for Δ2.

Proof. Assume that the rotation order of γ for Δ: be r^2. If Δ2=7I(Δ1)

for some integer /, then we see at once that the rotation order of γ for Δ2 is r.

Therefore we assume that Δ2Φ
fy'(Δ1) for any integer /. Let D12 (or D21) be

the auxiliary domain of Δx (or Δ2) with respect to Δ2 (or Δx). Then by Lemma

2.8, we see D12Γ\D2ι=0. Let D be the auxiliary domain of Δx with respect to

y(Δ2). Then by Lemma 2.9, we see D12=D. Hence by Lemma 2.13 and
Lemma 2.9, we see fγi(D12)Γ\D21=0 for any integer i. Hence we can find two

integers i and j such that the component of the complement of the closure of
y*(D12)UΎj(D12) including D21 does not include any Ύk(D12), l^k<r. Since γ

is an orientation preserving homeomorphism, T7(Aι) ϋes between 7i+l(D12) and
γ 7+/(Z)12) for any integer /. This and Lemma 2.13 imply that the rotation
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order r' of γ for Δ2 is not less than r. Similarly, we see r'^r. Hence we have
r'=r. As a consequence of this, we see that the rotation order of 7 for Δx is
1 if and only if that of γ for Δ2 is 1. Thus we have our theorem.

For the common subgroup Γl ?«ι GΔ. in Theorem 2.6 we have the following.

Corollary 2.15. Let γ and {Δly Δ2 •••, ΔΛ} be a loxodromic element and an
arbitrary collection of components of G, respectively. If the fixed points of γ lie on

Π7-1 8Δf. and if γeGΔ,, then <ye Π 7-ι GΔ..

Proof. If 7^GΔ., then the rotation order of 7 for Δt is 1. By Theorem
2.14, we see that the rotation order of γ for any Δ;. is 1. Hence our assertion

follows.

For later use we also need a following form of Theorem 2.14.

Lemma 2.16. Let D be an arbitrary auxiliary domain of a component Δ

of G. If a loxodromic element γ of GΔ has a fixed point on 3Z>, then rγ(D)=D.

Proof. Let Δ' be a component of GΔ whose complement is the closure
of D. Then the fixed points of 7 lie on 9Δ'. Applying Theorem 2.14 to Δ
and Δ', we have 7(Δ')=Δ', so that <γ(D)=D.

3. Loxodromic generators

3.1. In the following three sections including this section, we assume that
G satisfies the condition of Theorem 1.1. In this § we shall change a finite set
S of generators of a given finitely generated Kleinian group G in Theorem 1.1
into the set of generators consisting of loxodromic elements only. Our process
is repetition of the following three kinds of operations; 7X is changed into one

or 7Γ1, ΎiΎj and 7^7,-, where %, Ύ. are elements of S or of the changed sets by
this process. This operation does not increase the number of elements of the
set of generators and the changed set is clearly a set of generators of the same

group.
Let S= {7u 72, •"> 7n} Assume that there are elliptic elements in S with

the same fixed points. Since G is Kleinian, we can replace them by a single
elliptic element of G so that the changed set is also a set of generators of G and
the number of elements of this changed set is not greater than that of S. Hence

we may assume that S does not contain any two elliptic elements with the
same fixed points. We consider three cases.

3.2. The case (I) where S contains at least one loxodromic element:
Without loss of generality we may assume that rγl is loxodromic and its matrix

representation has the form ί ̂  i / L ), I k \ > 1 . Consider an elliptic or a para-

bolic element γf e*S with matrix representation (a A ad—bc=l. We con-
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sider the element of the form γfγ,- with the trace akm-}-dk~m

) where m is an
integer. If #ΦO (or JΦO), then we can take m so large (or small) that

\akm+dk~m\ >2. Hence γΓ% is loxodromic. With such an m we replace %•
by TΓΎ,- and after carrying out the above procedure for all such %-, we denote the
new set of generators by the same S. If #— d— 0, then γ, is an elliptic element
of order 2 and changes 0, °o into each other. Consider another loxodromic
element γ . ( Φ OΊ) of S whose fixed points are different from 0 and °o . Since G
is non-elementary, the existence of such a <γ. in S is assured. First we
change γ;. into 7T7j7Tm with so large integer m that | ξ . ξ f \ > | b \ 2, where
ξj, ξf are the fixed points of Tf 7; 7Γm, which we also denote by the same <γ..
Let A be a linear transformation which maps f . and £;/ to 0 and °°, respectively.
Then the conjugations of %, γ;. by A have the forms

and

respectively, where Z)=(fy-e/)1/2. Since (i+^ί/A"1)/^—f/)=f=0> we see

that (7*)IWΎ* is loxodromic for some integer m and hence γj"/; is also loxodromic
for some integer m. We replace γ, by 77%'-

3.3. The case (II) where S contains at least one parabolic element: Without
loss of generality we may assume that jl is parabolic and its matrix represen-

tation has the form (Q ,1. Since G is non-elementary, there is an element

Ύi of S with the matrix representation (a A cΦθ. We consider the element

of the form γfγ,. with an integer m. Since the trace of o^T; equals a+d+cm,

we see that for a sufficiently large m, Ύ^Ύi is loxodromic. We replace rγi by
7?Ύi Then S reduces to a set of generators in the previous case (I).

3.4. The case (III) where S consists of elliptic elements only: We
shall first prove the following two lemmas.

Lemma 3.1. Let j and δ be linear transformations with the matrix represen-

tations of the forms \ί ^_,A 0< | θ \ <π, and f * λ, ad—bc=l, respectively. If
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a-\-d is real and if d^a, then 78 is loxodromic.

Proof. Set a—a1-{~ia2 and d=d1-\-id2 with real numbers alf a2y dlt d2.
Then d2=—a2 and a^d^ Hence we see that the trace of γδ is not real.
Therefore, 78 is loxodromic.

Lemma 3.2. Let 7 and δ be elliptic. If all four fixed points of them do
not lie on a line nor on a circle, then γδ is loxodromic.

Proof. Without loss of generality we may assume that the fixed points of

Ύ are 0 and °o and that δ=( ,J, ad— fc=l,έΦθand£φO. Setα=Λ1+ώ2

 and

d=d1

Jrid2 with real numbers aly a2y dlt d2. Since δ is elliptic, we see that
d2=—a2. If d=ay then, by writing c= \ c \ eiθ, we see that the fixed points of δ

are

a-d±\/(a+d)2-4 2a2i±V4-(a+d)2i
2c ~ 2\c\eiθ

-
2\c\ e

because (a-\-d)2<4 . Hence all fixed points of γ and δ lie on the line which
passes through 0 and makes an angle πβ—θ with the real axis. This contra-
dicts our assumption. Hence we obtain that d^=a. By Lemma 3.1, γδ is
loxodromic.

If S contains two elements %, y. whose all four fixed points do not lie on
a circle nor on a line, then Lemma 3.2 implies that the changing %• into ji

rγj

takes S into a set of generators in the case (I). On the other hand, we shall
see in the following that, under our assumption that G is neither a function
group nor a Z2-extention of a quasi-Fuchsian group, S or its changed set by our
operation contains such γ, and <γ. as stated above.

For the purpose, we assume that, for any two elements of S (or its changed
set by our operations), all their fixed points lie on a circle or a line. Since this
property is invariant under the conjugation by a linear transformation, we may
assume that the fixed points of ryl are 0 and °o . Let Lt be a line on which the
fixed points of γf lie. Since G is non-elementary, there is an element γ2 °f *5
which does not leave oo invariant. Then L2 passes through 0. If γ, (ΦΎi) has
oo as a fixed point, then Lr must be identical with L2.

3.5. We first treat the case where there is an element 7y0 of S with L/0ΦL2.
Then γ, 0 has the finite fixed points and L/0 passes through 0.

Lemma 3.3. Under these circumferences, each element of S except for ry1

has the finite and non-zero fixed points .
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Proof. If γ2 has 0 as a fixed point, then <γJQ fixed above must have 0 as a
fixed point. This is also true for all γy with L;.ΦL2. Further, since fγjo has
another fixed point different from °o as already mentioned, we see γ;. satisfying
Lj=L2 must have 0 as a fixed point. This shows that every element of S and
of G has 0 as the fixed point, so that G is elementary, a contradiction. Hence
the fixed points of 72 are different from 0. So each Ύ . with L;ΦZ>2

 and, in
particular, rγjo has not 0 as a fixed point. Therefore Ύ. (j φ 1) satisfying Lj=I^
has not 0 or ^o as a fixed point. Thus we have our lemma.

Let £2, ξ2 be the fixed points of γ2. Without loss of generality we may
assume that \ξ2ξ2\=l. By an elementary geometric consideration we see
that if the line segment ξ2ξ2' includes (or does not include) 0, then the line
segment ?/0?/0' includes (or does not include) 0 and |f/0 |/0' |=l, where fy0, f/0'
are the fixed points of 7y0. Hence, it is not difficult to see that in both cases
these are also true for each γ;. (j ̂  2) of S. In the case where the line segment ξ2ξ2'
does not contain 0, this implies that the fixed points of each element of S lie
in the mirror images with respect to the circle C={z\ |,sr|=l}, so that C is
invariant under the action of each element of Sy hence, of G. Hence Λ(G) C C.
This contradicts our assumption that G is neither a function group nor a Z2-
extension of a quasi- Fuchsian group. Hence this case does not occur. Before
going to treat the case where the line segment ξ2ξ2 includes 0, we show the
following.

Lemma 3.4. Let γx and γ2 be elliptic transformations. If <γ. has the

fixed points rje
i@i and — rjVe> (/=!, 2) and if these four points lie on a line or a

circle, then γ^ is the identity or an elliptic transformation with the fixed points of
the similar forms, where, if r~0, then rjlei&j means <χ>.

Proof. If OΊ and γ2 have the same fixed points, then the assertion is
clear. Hence we assume that the fixed points of γx are different from those
of %• If the fixed points of ^ are finite, we may assume that Θi=0 and we
consider a transformation

Then A^A'1 has 0 and °o as the fixed points and the fixed points of A72A~l lie
on a line passing through 0 and separate 0 and °o on the line. If r2=0 or =°°,
then the fixed points of A<γ2A~l are — rx and rίl. If 0<r2<°o, then the fixed
points of A^A'1 are

J- '**-* and J_ -I7V*-*
rl r2e

t*-{-rϊ rλ —

and clearly the absolute value of the product of these two numbers is equal to 1.
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Thus we may assume without loss of generality that

% _ / ^ o \
7l ~ \o *-»./

and

2 I

D D

where D=r2+r2

1 and Θ2 is not a multiple of TT. Then the matrix represen-

tation of γ^ is

and the trace of 7ι72 is

a+rf = 2cos(θ1+θ2)+r2

2cos(θ1-θ2) ^

Hence we have —2ιJ traceoγy2ίS 2. The equalities occur only when
cos(<91+02):= cos(θ1—Θ2)=±l. These imply that Θl+Θ2=kπ and Θ1—Θ2=
kπ-{-2mπ, where k, m are integers, and hence θλ and Θ2 are multiples of π.
Hence 7l and 72 are the identity transformations. Therefore, the equalities
do not occur and γ^ is elliptic. We see easily that the product of the fixed
points of 7j72 has the absolute value 1. In order to complete the proof of
our lemma we have only to show that the line segment connecting the fixed points
of 7ι72 includes 0. It is easy to see that the ratio of the fixed points of 7^2 is
real. Hence it sufficies to show that the absolute value of the difference of
the fixed points is greater than that of the sum of them, or equivalently, to
show \(a+d)2—41 > \a—d\2, which can be easily verified. Hence the line
segment connecting the fixed points of ΎiΎz includes 0. Thus we have com-
pleted the proof of our lemma.

Now we return to the case where the line segment ξ2ξ2 includes 0. As
was already mentioned, the line segment ξ . ξ f has the same property (/2^2),
where ξ. and ξf are the fixed points of Ύj^S. By Lemma 3.4, we see that
any product of a finite number of elements of S is an elliptic transformation or
the identity, so that G is a finite group, a contradiction. Hence this case also



272 T. SASAKI

does not occur. Therefore, we have shown that if there is an element %• of S
with Z,,ΦL2, then S contains two elements whose four fixed points do not lie on
a circle nor a line.

3.6. We next treat the case where the fixed points of each element of S
lie on L2. If the order of each element of S is two, then L2 is invariant under
the actions of S and of G, so that Λ(G)cL2. This contradicts our assumption
that G is neither a function group nor a Z2-extension of a quasi-Fuchsian group.
Hence there is an element of S whose order is greater than two. We may assume
that the order of 7ι is greater than two. We shall show that S contains at least
one more element which is different from rγl and J2 Assume contrary that
S={rγl9 γ2}. Since G is non-elementary, the fixed points of γ2

 are finite and
different from 0. If the line segment connecting the fixed points of T2 does
not contain 0, then there is a circle with the center 0 being invariant under γ2.
This circle is also invariant under rγ1. Hence the limit set of G is contained
in the circle, a contradiction. If the line segment connecting the fixed points
of 72 contains 0, then, by Lemma 3.4, we see that G is elementary, a contra-
diction. Thus we have shown that S contains an element % (z>2) with

the fixed points on L2. We change S into {γj, y2, •••, OΊOY/Γ1, •••, Ύn} - Since
the order of OΊ is greater than 2, the line on which the fixed points of T^OT1

(/>2) lie is different from L2. Hence this case reduces to the case discussed
already.

Therefore the case where each element of S is elliptic can be reduced to
the case where S contains at least one loxodromic element. Thus we have
completed to change S into the set of generators of G, which consists of loxo-
dromic elements only and the number of elements of which is not greater than
that of S.

4. Loxodromic elements with the fixed points on A0(£r)

4.1. Let S be a set of generators of G consisting of loxodromic elements
only. As the second step of the proof of Theorem 1.1 we shall change S into
a set of generators of G, which consists of loxodromic elements only and con-
taining at least one element with fixed points on Λ0(G) and the number of elements
of which is not greater than that of S. Without loss of generality we may as-
sume that oo^Π(G). We shall first prove the following four lemmas.

Lemma 4.1. Let % and rγj be loxodromic elements of G with no common
fixed point and let ξjy ξf be the repelling and the attractive fixed points of γy,
respectively. Then, for a sufficiently large integer m, Ύff™ is loxodromic and the
repelling and the attractive fixed points of Ύff™ converge to ξj and to 7t (?/),
respectively, as m tends to °° .

Proof. For an arbitrary positive number £>0, there is a neighbourhood
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£7 of 7i(ξ/) such that C/Π7Γ1(f/)=0, Z/n?,.=0 and the diameter of U is
smaller than 8. Let m be an integer and let Cm be the isometric circle of γj1-
For a sufficiently large TW, we see that the diameter of Cm is smaller than £ and
that Cw is contained in an open disc with center ξ. and radius £ and ^(C^d

Ύ7\U) Then γ^y1 sends the exterior of Cm into C7. Hence, for a large TW,
%7y* is loxodromic and the distance between the repelling (or the attractive)
fixed point of Jff™ and ξj (or 7, (?/)) is smaller than £, which are to be shown.

Lemma 4.2. Le£ γf αwJ yy fo loxodromic elements of G whose fixed points

are different from each other and do not lie on Λ0(G). If there is no component of
G, on whose boundary all the fixed points of %• and γ. lie, then there is an integer
m such that jff™ is a loxodromic element with the fixed points on Λ0(G).

Proof. Let ξ. and ξf be the repelling and the attractive fixed points of
<yy, respectively. Then, by our assumption and by Theorem 2.11, ξ. and ξf
lie on the boundary of a component of G. Since G is Kleinian, %•(£/) Φfy, so

that d=\ξj—Ύi(ξf)\ >0. By Lemma 2.10, there is a finite number of com-
ponents of G whose diameters exceed d/2. Let δj (or δ2) be the minimum of the

distances between ξ. (or %•(£/)) and the components whose diameters exceed
d/2 and whose boundaries do not contain ξ. (or %(£;/)). Let δ be a positive

number smaller than min (819 S2> d/4). Lemma 4.1 implies that we can find an
integer m sufficiently large such that the distances between ξ. and the repelling

fixed point of y. γ? and between 7, (?/) and the attractive fixed point of γ. γj1 are
smaller than δ and such that γtf* is loxodromic. If there is a component on
whose boundary the fixed points of ΎΠ™ lie, then we see from the definition

of δ that ξ. and %•(£/) must lie on the boundary of that component. Since ζj

and 7i(ξ/) are the fixed points of j . and OY///?1, respectively, we see by
Theorem 2.11 that ξf and %•(£,-) also lie on the same boundary. Hence, by
Theorem 2.6, there are at most two components of G on whose boundaries
the fixed points of <γfγj lie. Let Δ be such a one. Then the rotation order

of 7tτ7 f°r Δ is at most 2. Let r be the rotation order of <γ. for Δ and take
m as a multiple of r. Then rotation order of <γft™ for Δ must be 2. In fact,

otherwise, jf/J^G^ or γ£eGΔ> so that the fixed points of γf lie on the

boundary of Δ, which contradicts our assumption. Hencp fyίγ/l7ί'yJIeGΔ

or ΎiΎ^Ύi^G^. On the other hand, since γ. γJγΓ1 is an element of GY.(Δ) and
has the fixed points on the boundary of Δ, we see by Theorem 2.14 that

ViTyTΓ^GA. Hence we have T?eGΔ so that the fixed points of 7, lie on
the boundary of Δ. This contradicts our assumption that four fixed points

of %, 7j do not lie on boundary of a single component of G. Therefore, for a
large integer m there is no component on whose boundary the fixed points of

y1 lie. Thus Ύft™ is a loxodromic element with the fixed points on Λ0(G).

Lemma 4.3. Let γ, and γ; be loxodromic elements of Gy let Abe a compo-
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nent of G on whose boundary the fixed points of γ, lie and let D be the auxiliary
domain of Δ with respect to %(Δ). If the rotation order of Jifor Δ is greater
than 1 and if the fixed points of ΎJ lie in D, then, for a large integer m, %-γJ1 is a

loxodromic element with the fixed points on Λ0(Gr).

Proof. Let ξjy ξf be the repelling and the attractive fixed points of 7y,
respectively. By Lemma 2.13, D and 7, (<D) lie outside of each other and
contain the points ξy and %•(£/), respectively. Lemma 4.1 shows that, for a
large integer m, the repelling and the attractive fixed points of 7ί 7/ί lie in D and
in Ύi(D), respectively. Hence the fixed points of Ύf/J are separated by the
separator 9Zλ Therefore we see easily that the fixed points of 7t 7jΓ lie on
Λ0(G) (cf. [1]).

Lemma 4.4. Let γ, and γy be loxodromic elements of G, let Δ be a component
of G on whose boundary the fixed points of γ, lie and let D be the auxiliary domain

of Δ with respect to 7;(Δ). If the rotation order of γ, for Δ is greater than 2 and
if the fixed points of 7y lie on QD and are different from the fixed points of 7,-, then,
for a large integer m, jffj is a loxodromic element with the fixed points on Λo(G).

Proof. We assume that the conclusion of the lemma is false. By Lemma

2.13, we see that D, 7, (.D), ••-, 7Ϊ~l(D) lie outside of each other and have the
fixed points of γ$ as the common boundary points, where r is the rotation order
of %• for Δ. As we have seen in the proof of Lemma 4.2, for a sufficiently large

integer m, the components which have the fixed points of 7t 77 on the boun-
daries, must have the four fixed points of γ. and 7, 7, 7Γ1 on the boundaries.
Let CΊ (or C2) be the subarc of 3Z) which has the end points at the fixed points
of 7, and on which the repelling fixed point of 7y lies (or does not lie). If the

attractive fixed point of γ . lies on C2, then the component which has the fixed
points of 7I 7/t on the boundary, must be identical with Δ, so that the rotation
order of γtff for Δ is 1. Take m=sk with an integer &, where s is the rotation

order of 7y for Δ. Then 7ί 7/1 = fy l (γJ)*eGΔ or %eGΔ, which contradicts the
assumption that the rotation order of 7, for Δ is greater than 2. Hence the

attractive fixed point of 7y lies on C\. Here we shall say that 7t(CΊ) (or %(C2))
faces to C2 (or CΊ) if the component of the complement of 7, (CΊ) U C2 (or
γ,(C2)UC1) containing D includes all rί(Z>), 0^/^r-l. Note that %(CΊ)
and 7,̂ 2) are the subboundaries of 7,(O) with the common terminal points
being the fixed points of γ, . We see easily that if 7i(CΊ) (or 7, (C2)) does not
face to C2 (or CΊ), then there is no component of Gon whose boundary the fixed

points of 7,77 lie. If % (CΊ) faces to C2, then, since the fixed points of 7t 7>7Γ1

lie on 7, (CΊ), the component which has the fixed points of 7,77 on the boundary,
must be identical with Δ. So we have the same contradiction stated just above.

Hence 7t (Cf

2) must face to CΊ, so that the component which has the fixed points
of 7;7yl on the boundary, must be identical with 7,(Δ) and the rotation order of
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7,77 for ^(Δ) is 1. Then 7Γ17ί 7yI7ί eGΔ or 7?7t eGΔ. Taking m^sΛ with
integers & and 5 being the rotation order of 7,- for Δ, we have the same contra-
diction as before. Thus we have proved our lemma.

4.2. If there are elements of S with the common fixed points, then we

shall replace one of them by another one as follows: Let 7,- and 7y be ele-

ments of S with the common fixed points and let jk be an element of S with no
common fixed point with 7,-. Lemma 4.1 implies that, for a large integer my

7I 7J5I is a loxodromic element with no common fixed point with Γfj and 7 .̂.

The new set, S with the replacement of 7,- by 7, 7?, has the same property as S
stated at the beginning of this §. Making such replacements, if necessary, we

may assume that the fixed points set of each element of S is different from that

of any other element of S. If there are elements 7t, *y. of S satisfying one of the

conditions of Lemmas 4.2~4.4, then we change 7,. into 7, 7jl with a suitable
integer m so that we have the desired conclusion in this §. Hence we assume

that there are no elements 7f , 7;. in S satisfying one of the conditions of Lemmas

4.2^4.4. So we may consider the case where, for any two elements of S, there
is a component of G on whose boundary all the fixed points of them lie.

4.3. We shall first treat the case where there is a component Δ of G on
whose boundary the fixed points of each element of S lie. Since G is not a

function group, there is at least one element, say 7,-, of S whose rotation order

for Δ is not 1. Let D be the auxiliary domain of Δ with respect to 7, (Δ)»
Since, by Lemma 2.12 aitdJLemma 2.8, each element of 5 has both fixed points

in D or on 3Z> simultaneously and since we have assumed that there are no
elements 7,-, rγj in S satisfying one of conditions of Lemma 4.2~4.4, we see

that each element of S has both fixed points on QD and that the rotation order
of 7t for Δ is 2. Let <γ. be an element of S different from 7,. By the same
reasoning as above, the rotation order of rγj for Δ is equal to 1 or 2. We

assert that if, for any large inetger m, the fixed points of 7t7/* do not lie on

Λ0(G), then either 7j(D)=D and 7/7t (I>))=7,(£>) or 7.(Z))=7, (£>) and

Ύ}(Ύi(D))=D.

To prove our assertion, we recall the following facts: As we have seen in

the proof of Lemma 4.2, the components, whose boundary contains the fixed

points of 7l 7yf for a large integer m, have four fixed points of rγj and 7,7/XΓ1 on

the boundary and the rotation order of 7t 7y* for such a component is at most two.
Moreover, as we have seen in the proof of Lemma 4.4, such a component is Δ

or 7, (Δ).
First we consider the case where the rotation order of 7y for Δ is 1. If

the fixed points of Jffj lie on ΘΔ, then 7ί 7y*7t 77(Δ)=Δ or 7, 777t (Δ)=Δ. If

the fixed points of 7ί 7/' lie on 37, (Δ), then 7ί7/7t 7/ί7ί(Δ)=7, (Δ) or

7jl7i7jl7, (Δ)=Δ or, equivalent^, 7, 7jl7f (Δ)=Δ. In both cases we have that

7, 7yl7i(Δ)=Δ. Since 7?(Δ)=Δ, we see that 7yI7t (Δ)=7Γ1(Δ)=7I(Δ), so that
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Vy has the fixed points on 97t (Δ). By Theorem 2.14, we see that the roation

order of 7y for 7, (Δ) is 1. Applying Lemma 2.16 to Δ (or 7,(Δ)) and the

auxiliary domain D (or %•(/>)) of Δ (or %(Δ)), we obtain that 7y(Z))=Z> and

Next we consider the case where the rotation order of 7y for Δ is 2. Let

m be an odd number. If the fixed points of ytf™ lie on 8Δ, then γt γyl(Δ)=

7t 7/Δ)Φ7t (Δ) so that 7I 7yl(Δ)=Δ. Hence we obtain from yί7y(Δ)=Δ that

γ^(Δ)=7x (Δ). If the fixed points of % γ* lie on 3τt (Δ), then either % 777, (Δ)=

% (Δ) or γf 7*γf (Δ)=Δ holds. The latter case corresponds to the case where the
rotation order of jffj for 7, (Δ) is 2. So, if this case occurs, we see
07X77^)= 7/Δ) for an odd w, which is absord. Hence the latter case does

not occur. Therefore, it holds that γl

 ίyJl7> (Δ)=7ί(Δ). This implies that

V7% (Δ)=Δ so that 7y7, (Δ)=Δ and 7y(Δ)=7t (Δ). In both cases we have

«yy(Δ)=7ί(Δ). Since the auxiliary domain of Δ with respect to 7y(Δ) is then
identical with D, we obtain rγj(D)=rγi(D) and rγj

fγi(D)=rγj(D)=D by Lemma

2.13 and Lemma 2.16. Thus our assertion is established.

By what just has been proved, we see that if, for each element 7y of S and

for any large integer my the fixed points of 7f 7jl does not lie on Λ0(G), then

QD U 97;(£>) is invariant under S and hence under G, so that Λ(G)=9D U 9γf (D).
But, we shall show that this does not occur. Since Z>Γl7t(£))=0 by Lemma

2.13, the equality Λ(G)=9Z> U 97;(£>) implies D Π Λ(G)=0. Therefore, we have
J9=Δ by Lemma 2.8, so that GΔ is a quasi-Fuchsian group with the invariant
curve 9Zλ If 9Z)=9γt (Z)), then Λ(G)=9Δ. This contradicts our assumption
that G is not a -Z2-extension of a quasi-Fuchsian group. Hence 8Z)Φ9γt(Z)).

Since Λ(G) and 9Z) are invariant under GΔ, the set 9%(Z))\9Z) is invariant under
GΔ. Let p be a point on 9Z> not lying on d7i(D) and let d be the distance

between p and 9%(Z>). It is well known that there is a loxodromic element γ

of GΔ such that the distance between p and the attractive fixed point of 7 is

smaller than d. Then, for a sufficiently large integer m, the distance between
p and 7m(d7i(D)\dD) is smaller than rf. Since fy"f(9rf(Z))\9Z))= 9γr (Z))\9D, we

have a contradiction. Thus the equality Λ(G)=9Z>LJ37ί(Z)) does not occur.
Therefore, there are an element γy of S and an integer m such that 7,77 is a

loxodromic element with the fixed points on Λ0(G). Thus we can change S
into the desired one in the beginning of this section.

4.4. Now we shall treat the case where there is no component of G on

whose boundary the fixed points of all elements of S lie. First we shall show

that there are elements 7,-, 7y, <γk of S and components Δ, , Δy, Δk of G such

that the fixed points of 7,., 7y and 7* He on (3Δy Π 9ΔΛ)\9Δf, (9ΔA Π 9Δy)\9Δy and
(3Δ, Π 3Δy)\9ΔA, respectively. Let Δ be a component of G on whose boundary

the fixed points of 7ι, 72^*5 lie. By Theorem 2.6, there is, except for Δ, at

most one component Δ' on whose boundary the fixed points of 7ι and <γ2 He.
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If Δ' does not exist, then let fγi=
tγly j.= j2y

 rγk be an element of S whose fixed"

points do not lie on 3Δ, Δ, (or Δ;.) be a component of G on whose boundary

the fixed points of 7j, 7k (or 7ky %•) lie, and Δ^==Δ. If Δ7 exists and if there is

an element 7, of S whose fixed points do not lie on 3Δ U 3Δ7, then let

γ.—γ l9 rγ.= <γ2, <γk=7h Δ, (or Δ;.) be a component of G on whose boundary the

fixed points of γ2, γ/ (or 7l9 γ/) lie, and Δ^^Δ. If Δ7 exists and if the fixed

points of all elements of S lie on 3ΔU3Δ7, then there are elements γp, 7q^S'

whose fixed points lie on 3Δ7\3Δ and on 3Δ\3Δ7, respectively. Let Δ77 be a

component of G on whose boundary the fixed points of γp and <γq lie. It is easy

to see that Δ77ΦΔ and Δ77ΦΔ7. Hence the fixed points of 7l and γ2 do not lie

on 3Δ77 simultaneously. Let γ, be either 7λ or 72 whose fixed points do not lie

on 3Δ77, 7j=7p, 7k=Ύqy Δ^Δ", Δ;.=Δ and ΔA=Δ7. It is easy to see that, in

each case stated just above, these γ, , γy, γk, Δ,, Δy and Δk have the desired

property.

Next, by using % , γj9 γ*, we shall change S into a set of generators of G,

which satisfies the property stated in the beginning of this section. Let Dpq,

be the auxiliary domain of Δj with respect to Δ9, p, q=i,j, k. Since 3Δy Π 3Δ^

contains both fixed points of γ. , it follows from Theorem 2.7 that Δ. and

Δj, are not included in the distinct components of GΔ.. Hence we see that

Z)f. =DίΛ. By the same reasoning as above, we see that Dji=Djk and Dki—Dk.*

For simplicity, we shall denote Dpq by Dp,p=i,j9 k. Let ξp and ξp' be the

attractive and the repelling fixed points of γpy respectively, p=ι,j, k. Then, we

see by Lemma 2.8 that £,. and f / lie on (3Dy Π dDk)\dDi. Let r be the rotation

order of γ, for Δ;, Clearly τίeGΔr Then by Theorem 2.14, 7ri<=G^. By

Lemma 2.16, we see that jr

i(Dj)=Dj and ̂ ri(Dk}=Dk. We consider the element

of the form γΓτ*77m with a positive integer m. Since 7rim(dDj)=dD. and

^(QD^dDky we see that, for a sufficiently large m, γ/w(3D,) lies near ξ4 and

meets to dDj (or dDk) at γίw(^) (or 7?m(?y)), and that the fixed points of 7rim7k7Trm'

lie on (3Z);. Π 7rim(dDt))\QDk. On the other hand, we can easily verify that, for

any integer /, there is a Jordan curve lying in Z) J.U^U fy/ /(A )U {?,-, Ίril(ζ^

7 r i l ( ξ k ) } - Therefore, there is no component of G on whose boundary the fixed

points of both γy and 7rimΎk7Trm He. Hence y. and 7rim7k7Trm satisfy the assump-

tion of Lemma 4.2. Changing 7k into 7rim7kΎTrm and applying Lemma 4.2, we

can change S into a desired set of generators of G.

4.5. We can easily see that the results in this section give an alternative
proof of the following.

Theorem [2]. Let G be a finitely generated Kleίnίan group. Then Λo(G)=0

if and only if G is either a function group or a Z2-extension of a quasi-Fuchsian.
group.
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5. Final step of the proof of Theorem 1.1

5.1. Let S be a set of generators of G which consists of loxodromic ele-
ments only and one of which has the fixed points on Λo(G). We shall change
S into SQ in Theorem 1.1. Without loss of generality we may assume that
oo^Ω(G) and J^S has the fixed points on Λo(G). Let ξl and £/ be the
repelling and the attractive fixed points of %, respectively, and let γ, be an

-element of S whose fixed points do not lie on Λo(G). By Lemma 4.1, for a
sufficiently large integer m, % 7Γ is loxodromic and the repelling and the at-
tractive fixed points of %γf lie near & and 7, (£/)> respectively. Let d be the
distance between ξ1 and 7,(?/) By Lemma 2.10, there is a finite number of
components of G whose diameters are greater than dβ. Let δ be the minimum
>of the distances of ξ1 or %(£/) from the components whose diameters are
greater than d/2. Since ξl and 7, (f/) are the points on Λo(G), δ is positive.

Let m be so large that the distance between ξ1 (or %•(?/)) and the repelling (or
the attractive) fixed point of 7^ is smaller than δ. Then there is no component
of G whose diameter is greater than d/2 and on whose boundary the fixed points
of ΎiV* lie. By Theorem 2.11, we see that there is no component on whose
boundary the fixed points of γ,γΓ lie. Hence, for a large integer m, γtγΓ is a
loxodromic element with the fixed points on Λo(G). Changing each 7,. of S,
whose fixed points do not lie on Λ0(G), into γ,τΓ, we obtain the desired *S0. Since
our operations do not increase the number of elements of the set of gener-
ators, the second property of S0 is clear. Thus we have completed the proof
Of Theorem 1.1.

6. Non-web groups

6.1. Among the set of finitely generated Kleinian groups with the non-
•empty residual limit sets there is a class of web groups. A finitely generated
(non-elementary) Kleinian group G is called a web group if, for each component
Δ of G, the component subgroup GΔ is quasi-Fuchsian [2]. Usually those
group which are themselves quasi-Fuchsian are excluded from the class. If G
is a finitely generated Kleinian group with the non-empty residual limit set and
is not a web group, then there is a subset A(G) of Λo(G) consisting of the
points, to each of which there is a converging nest sequence of the separators of
G [2], A sequence {Cm}Z=\ of Jordan curves, which converges to a point py

is called a nest sequence if p $ Cm and Cm+1 separates p from Cm for every m. In
this § we shall improve Theorem 1.1 and Corollary 1.2 for those groups G
with non-empty sets L^G).

6.2. Later we need the followings.

Lemma 6.1. Let G be a finitely generated Kleinian group and let D be a
Jordan domain whose boundary is a separator of G. Assume that the fixed points
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of a loxodromίc element 7 of G lie on Λ0(G). If Z)C7(D), then the fixed points of
7 lie on

Proof. The assumption that Dcγ(D) implies that the repelling and
the attractive fixed points of 7 lie in D and in the complement of 7(D), respec-
tively. Since the fixed points of 7 do not lie on 9Z), they are separated by a
separator 9Zλ Then {Ύm(dD)}~=1 (or {7~M(dD)}^l) forms a nest sequence of
separators converging to the attractive (or the repelling) fixed point of 7. Hence
the fixed points of γ lie on

Lemma 6.2. Let G be a finitely generated Kleinian group and let Δ and
7 be a component and a loxodromίc element G, respectively. Assume that the
fixed points of 7 lie on Λ^G^L^G) and denote by D and D' the auxiliary domains of
Δ and of 7(Δ) with respect to 7(Δ) and Δ, respectively. Then 7(D)=D' so that

Proof. Since both 7(D) and D' contain 7(Δ), we have only to prove
that 7(dD)=QD'. If it is not true, then γ(9Z>)Π£>'Φ0 and γ(9D) lies in
JD', because ZX Dγ(5). Hence either γ(D) or the exterior of <y(D) is contained
in D'. If 7(D)5/>', then there are points of 9iy\γ(D) (cγ(S)\γ(D)). This
contardicts the fact that γ(Δ)cγ(Z)). Hence the exterior of 7(D) is contained
in D'. Therefore the exterior of Z)' is contained in 7(D). Since D Π D'=0, we
have Dcγ(D). By Lemma 6.1, the fixed points of 7 lie on L^G), a contradic-
tion. Hence we have 7(dD)=dD' and our lemma.

Lemma 6.3. Let G be a finitely generated Kleinian group and let Δ and
7 be a component and a loxodromίc element of G, respectively. If the fixed points
of 7 He on A0(G)\L1(G)y then 7-1(Δ) is contained in the component of G^ which
contains

Proof. Let D be the auxiliary domain of Δ with respect to 7(Δ). Note
that the exterior of D is a component of GΔ. We shall show that both τ(Δ) and
7~\Δ) are contained in the exterior of D. By Lemma 6.2, we have only to
show this for γ'^Δ). If it is not true, then γ'^ΔJcZλ If 7~\D)c:D, then
by Lemma 6.1 we see that the fixed points of 7"1 lie on Zq(G), which con-
tradicts the assumption of the lemma. Hence 7~\D)<3:D. On the other
hand, γ-1(Δ)cD implies Qfγ~\D)c:D. This implies that γ~\D) contains
the exterior of D. Hence by Lemma 6.2, 7~\D)lD7(D) or Z)cγ~2(D). By
Lemma 6.1, the fixed points of 7 lie on L^G), a contradiction. Hence 7~\Δ)
is contained in the exterior of D. Thus we have our lemma.

6.3. Now we shall prove the following.

Theorem 6.4. Let G be a finitely generated Kleinian group and let S be a
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finite set of generators of G. If G is neither a function group nor a web group, then

S can be changed into a set of generators S1 of G with the following properties :
i) each element of Sλ is loxodromίc and its fixed points lie on L1(G)y and
ii) the number of elements of S1 is not greater than that of S.

To prove our theorem, we first change S into SQ which has the properties
i) and ii) in Theorem 1.1. We shall next change S0 by our operation stated in
§3.1 into a set which consists of loxodromic elements only and contains at
least one element with the fixed points on L^G). Assume that each element of
SQ has the fixed points on Λ0(G)\L1(G). Then we assert that there are ele-
ments γt, ΎJ of S0 and a component Δ of G such that the components γt (Δ) and
7 (Δ) lie in the distinct components of the component subgroup GΔ.

In order to prove this assertion we assume that there is no triple (γt , γj9 Δ)
with the property stated just above. Let Δ be a component of G, for which the
component subgroup GΔ is not quasi- Fuchsian. Then, by Theorem 2.2, each
component of GΔ which is different from Δ is a non-invariant component of
GΔ. Let Δ' be the component of GΔ which contains the component 7ι(Δ) of
G, Ύ^SQ. Then, from the assumption just stated above, Δ' contains each
component ^(Δ) of G, y^S^. Let D be the auxiliary domain of Δ with
respect to 7t(Δ), γ fe*SΌ. Clearly 9Z)=9Δ'. Since Δ' is a non-invariant com-
ponent of GΔ, there are a component Δ" (ΦΔ') of GΔ and an element g of
GΔ such that £(Δ')=Δ". It is easy to see that Δ"£D and 9Δ" (Ί DΦ0. Let
S=gfγ1g. Then δ maps Δ to a component δ(Δ)=Δ* of G lying in Δ" and we
have δ(D)ΠDΦ0. Let Z>* be the auxiliary domain of Δ* with respect to Δ.
We can see that δ(9Z>) Π g7ι(D)=g71(dAf/) Π£71(Z>)Φ0. On the other hand, we
have easily gΎι(D)=D*. So we obtain δ(9Z))φ9Z>*. Therefore, δ(Z>) is not
contained in D and δ(Z)) does not contain D. Since δ is an element of G, we
can represent it by elements of SQ as 8 = SmSm_l 8lί where δt (ί=l, 2, •••, m) is
an element of SQ or its inverse and δ δ,-,! is not identity (Z^i^m). We set

Lemma 6.2 implies 61(D)Γ}D= 0. It may happen for some k
that £k-ι(D)Γ(D^F0. By noting Lemma 2.4, we see that following three cases
may occur:

(l)*-ι :£*-ι(β) CD,

and
(3)A_!: D'C^.^D), where Dc is the complementary set of D.

We also denote by (0)^ the property εk(D) ΠD=0.

[I] The property (l)^_ι implies the property (0)^ In fact, (l)k-ι means
εk.λ(D)C.D, so we have βk(D)-=8k(8k.1(D))c:Sk(D). On the other hand, Lemma
6.2 and Lemma 6.3 yield δ*(Z>) Π D=0. Hence βk(D) Γi D=0.

[II] The property (2) !̂ implies the property (Q)k. In fact, the property
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(OX : ε^D) Π D=0 shows ^(Δ) Π D=Q. Hence δ^Δ)) Π 81(D)=δ1(£1(Δ) Π Z>)=

0. Lemma 6.3 and the assumption for elements of SQ and for components of G

imply that £2(Δ)n£ιCD)=0. By the same reasoning, we can see that £2(Δ)(Ί

S^D)— 0 implies £3(Δ)Π£2CD)— 0. Repeating this procedure, we obtain

εk(Δ)Γ\£k-ι(D)=0 Therefore, £k-ι(D) is an auxiliary domain of ^^(Δ) with
respect to £*(Δ). Lemma 6.2 yields 8k(D)Πεk.l(D)=0. Since ε^D^D, we

[Ill] If the property (O)̂  holds, then the property (3)^ does not hold
). In fact, (O)^ implies DclD£k_1(D)y which contradicts (3)Λ.

Now we recall that the property (0)! holds. The propositions [I], [II]

and [III] show that (3)m does not occur. So we see that the one of two relations

δ(D)cZ) and δ(D)Z)Z) must hold, becuase δ(D)fΊ-Dφ0. This contradicts the
fact obtained already. Thus we have the assertion that there is a triple

(γ, , ΎJ, Δ) such that Ύ^Δ) and 7/Δ) lie in the distinct components of the
component subgroups GΔ.

6.4. Let Di and Dj be the auxiliary domains of 7,(Δ) and 7/Δ) with

respect to Δ, respectively. Since they are included in the distinct components

of GΔ, we see by Theorem 2.7 that Z)tni>/= 0 and that QD^QDj consists of
at most one point. We shall show that ry, 771 is loxodromic and its repelling and

attractive fixed points lie in D. and in Z),, respectively. Since two fixed

points of ryI771 are separated from each other by a separator of G, the fixed
points of ΎiJJ1 He on A(G). Since ^(ΔJcZ),- and γy(Δ)cZλ, it suffices to show

that ViVj^dD.^QDi and that if dD{ Π QD.= {p} , then ΎfϊJ\ρ)*ρ. In fact,
from these properties, we see easily that Γfi

Γf^l(D^)'^Dj and that T Ύ/1 can be

neither parabolic nor elliptic so that Lemma 6.1 implies the assertion. Let D*

and Df be the auxiliary domains of Δ with respect to '//(Δ) and T/Δ), respec-
tively. Then 7{(Df)=Dh <yy(Z)*)=Z>y and dDf φ9Z)f. Lemma 6.2 shows

Ύi(Df )=9A and γi(QDf)=QDJ and we see that WJ\QD .)=γt<9Z)f )Φγf.(9Z)f )=

9Z)f.. If 9D; Π 9Z) ~ {̂ )} , then, by Theorem 2.7, ^> is the fixed point of a parabolic
element of G. Since γ;. is loxodromic, we see ΎJ1(p)3=p and rγγ1(p)^dDf.

Hence, by Theorem 2.7, we have γjl(p)$QDf. Hence we have 7i7Jl(ρ)& 9Dt ,

so that 7i771(p):^Fp'
Thus we have shown that ΎfΓJ1 is loxodromic and has the fixed points on

Lj(G). Changing γ, by T^TJ1, we obtain the desired set of generators, which
we shall denote by Sfr.

Lastly we shall change S* into Sλ. Without loss of generality we may

assume that °o^Ω(G) and that the fixed points of rγ1 lie on Lι(G). Let ξl and
ξι be the repelling and the attractive fixed points of γ^ respectively. Then
there is a nest sequence of separators of G which converges to ξ^ Let γf be

an element of Sf and let m be an integer such that ytf? is loxodromic and that

the fixed points of Ύ^T are separated by a separator. The existence of such
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m is assured by Lemma 4.1. Then clearly %-γϊ1 is the desired loxodromic

element. Changing each element γf of Sf which has the fixed points on Λo(G)\

Zq(G) by the element of the form fy, ryϊl, we obtain the desired S1 and complete

the proof of Theorem 6.4.

6.5. Choosing S in Theorem 6.4 to be the minimal set of generators, we

have the following.

Corollary 6.5. Among the minimal sets of generators of a finitely generated

Kleinian group G which is neither a function group nor a web groupy there is a set

consisting of only loxodromic elements with the fixed points on
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