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0. Introduction

The process of extending a measure on a ring to a measure on the generated
o-ring has been discussed by many authors. The primitive extension theorem
which is stated in terms of a non-negative real-valued set function can be gen-
eralized in two directions. One generalization is concerned with the range space
of the measure. Extension theorems in this direction are given in [9], [3],
[11], [16], [8] (the range space is a Banach space), [7] (a locally convex space),
[22], [21], [18] (an abelian topological group). Some authors ([9], [3], [16],
[7]), in the vector-valued cases, are based on the extendability principle of
uniformly continuous maps, while the Carathéodory’s method is adopted by
others ([11], [22], [21], [18]) and Zorn’s lemma in [8]. Among them, M. Sion
[21] proved that the monotone-convergence condition (Fox’s condition) was ne-
cessary and sufficient for a group valued measure on a field to be extended to
a measure on the generated o-field. The other type of generalization is the
abstraction of the domain of the measure. In this direction, discussions on real-
valued modulr functions (valuations) on certain types of lattices are seen in [4]
Ch. XI, [1], [12], [20]. Here we note that extension theorems of Daniell in-
tegrals of real-valued functions taking values in a Banach space [15] and in a
topological group [19] have been obtained. Inreference to integrals, group valued
or some abstract valued integration theories rae seen in [24], [25], [26], [2].

Under these circumstances, the main purpose of this paper is to establish
a general process of extending a group valued valuation [10] on a sublattice of
a distributive lattice to a valuation on the generated 8-sublattice (Theorem 1).
If the lattice is relatively complemented, then the process yields a generalization
of the extension theorems in [22] and [21]. In case the lattice is an I-group
(lattice-ordered group [4]) an extension theorem of a group valued Daniell in-
tegral of /-group valued functions is obtained (the valuation is defined on a
subgroup of the /-group of all functions taking values in an /-group). To ac-
complish the process we introduce the notion of a relative inverse of an element
of the lattice by some axioms which unify the relatively complemented lattice
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theory and the /-group theory. The relative inverse is interpreted as the relative
complement in the former case and is defined in terms of the difference operation
of the group in the latter case. Here the extension process is based on the
Carathéodory’s method and the monotone-convergence condition considered in
[8] and [21] plays an essential role. Finally, the maximal extension theorem in
[23] is generalized in Theorem 2 and a general completion theory is given in
section 3. The notion of completion is generalized in some extent from that

in [13] and [20].

1. 3-lattices and the first extension theorem

A lattice M will be called a 8*-lattice if, for any x,& M, i=1, 2, ---, with
upper bounds,

1) there exists '_gl x;=sup {x;|iEN},
2) xN (‘L:JO1 x;)= "Q (xNx;) for any x& M.
Dually, a lattice M is a 8~ -lattice if, for any x,€ M,i=1, 2, ---, with lower bounds,
1*) there exists .-61 x;=inf {x;|i€ N},
2¥) xU (.-Dx ac‘~)=i£]1 (xUx;) for any xe M.

If a 8*-lattice M is at the same time a §™-lattice, then we say that M is a
S-lattice. A 8-lattice is necessarily a distributive lattice.
A sublattice R of a 8*-lattice M is called a &*[respectively, o*]-sublattice if

¥ x%,€R for any x,ER, i€ N, with upper bounds in R [respectively, M].

i=1

Dually, a sublattice R of a §™-lattice M is a 8~ [o~]-sublattice if N x;ER for any
i=1

x,ER, i€ N, with lower bounds in R[M]. Ifa §*[c*]-sublattice R of a 3-lattice
M is also a [0 ~]-sublattice, then R is called a 8[c]-sublattice of M. Obviously,
any o[c™", o~]-sublattice of a 8[8", 8]-lattice M is a §[6*, 8 ]-sublattice.

Suppose that M is a 3[8", 8 ]-lattice and R is a subset of M. Then any
intersection of §[8*, 8~ ]-sublattices of M containing R is a §[8*, 8~ ]-sublattice
of M containing R. Hence there exists the smallest [8*, §~]-sublattice of M
containing R. This sublattice is called the 8[6*, 8~ ]-sublattice of M generated
by R and is denoted by RY[R’", R®"]. Similarly there exists the smallest
o[o*, o~]-sublattice of M containing R, which is called the o[o*, o~]-sublattice
of M generated by R and is denoted by R°[R°", R7].

Throughout this paper, we assume the following:

Assumption I. M is a lattice and G is a topological additive (abelian) group.

Let R be a subset of M and p a map of R into G.
Then we shall say that p is 8*[8]-convergent if u(x;)—wu(x) (i—o<) for any
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%,ER, i€ N, and for any xR such that x; } x ({—0)V [x; | x (—)]. p is
S-convergent if p is 8*-convergent and §~-convergent.

The map p is called to be §"[8~]-fundamental if the sequence u(x;), tEN,
is fundamental (Cauchy) for any increasing [decreasing] sequence x;ER, iE N,
with upper [lower] bounds in R. p is d-fundamental if p is 8*-fundamental
and & -fundamental.

Assume that R is a sublattice of M. Then the map p is called a valuation
on R if

wx)+p(y) = pxUy)+uny)
for any x, yeR.

ExampLE 1.1. Let m be a set and M the set of all subsets of m. Then M
is a complemented J-lattice when we define the relation x<y by xCy for each
x, yeM. A ring of subsets of m is defined to be a relatively complemented
sublattice of M containing the smallest element ¢ of M. Let R be such a
ring and p a map of R into G. Then the following conditions are equivalent:

1)  w(xU y)=p(x)+p(y) for any x, y=R such that x N y=4¢.

2) p is a valuation such that u(¢)=0.

If these conditions are satisfied and if G is separated (Hausdorff), then the
8-convergence of p is equivalent to the countable additivity of u.

ExampLE 1.2. In the above example, suppose that m is an infinite set and
that R is the ring of all subsets x of m such that the set x or the complement
x° of x is finite. Let us assume that G is the topological group R of all real
numbers. Then

1) Let us put p(x)=Card (x) (the number of elements in x) and p(x‘)=
—Card (x) for each finite subset xCm. If the set m is uncountable, then p is
a 8-convergent valuation on R such that u($)=0. But y is not 8-fundamental.

2) Let us put pu(x)=0 and u(x‘)=1 for each finite subset xCm. Then p
is a O-fundamental valuation on R such that p(¢)=0. But px is not
3-convergent if the set 7 is countable.

ExampLE 1.3. Let E be a set and K the set of all real numbers (or generally
a complete totally ordered additive group or a complete /-group). Then the
set M of all K-valued functions defined on E is a §-lattice under the usual
order relation. Further M is naturally considered to be an l-group and any
group homomorphism p of an l-subgroup R of M into G is a valuation such
that p(0)=0.

It is easy to see the following

1) This means that x;<x;+; for any {EN and x is the supremum U x; of the subset
i=1

{x;li€N} of M.
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Proposition 1.1. Let R be a sublattice of M and p a map of R into G.
Assume that M is a 3[8%, 6~]-lattice and consider the conditions :

1) Ris a 8[8*, 67 ]-sublattice and p is 3[6, 8~ ]-convergent.

2) There exists a 8[5*, 8 ]-sublattice R of M containing R and u is extended
to a 8[8*, 8~ ]-convergent map [ of R into G.

3) p s 3[8%, 8 ]-fundamental.
Then it holds that 1)=2)=3).

The following theorem asserts under some assumptions that the condition
3) in the above proposition implies the condition 2).

Theorem 1. Suppose that M is a S-lattice and that G is a separated and
complete topological additive group. Let R be a sublattice of M and p a G-valued
S-convergent and S-fundamental valuation on R. Then each of the following
two conditions is sufficient for p to be extended to a G-valued 5-convergent valua-
tion 1 on R®:

1) M is a relatively complemented lattice and R is a relatively complemented
sublattice of M.

2) M is an I-group, R is a subgroup of M, and w is a group homomorphism.

If u® exists, then it is unique. Moreover, R® is relatively complemented in case
1), and R? is a subgroup and u® is a group homomorphism in case 2).

A proof of the theorem will be stated in section 9. In this section we shall
give somemore notations and some lemmas.

We denote by D> [>¥] the set of all maps £ of N into M satisfying the con-
dition: there exists an x& M such that £G)SE(G+1)Sx[x<E(+1)<E(7)] for any
ieN. ForeachxeM and each &, ne>)[>1*] we define maps xUE, xNE, EUn,
and £N7 of N into M by (xUE&)(@)=xUE(®), (x NE)(E)=xNE(), (EUn)(E)=
£(?) Un(z), and (& N7)(Z)=E(z) N 7(Z), respectively, for any i€ N.

For a subset 4 of M, we denote by >(A4)[>1*(A4)] the set of all &3> *]
such that £(z)e 4 for any i€ N, and by >}(4) [23¥(A4)] the set of all E&3Y(A4)
[>3*(A)] such that there exists an x4 with £(2) <x[x<£(7)] for any iE N.

Then immediately we have

Lemma 1.1. If x&6M and if & nEX D], then xUE, xNE, EUn, and
E N7 are elements of 3 [31*].

Corollary. If R is a sublattice of M and if > denotes one of the sets >Y(R),
S¥(R), 2(R), and 2X§(R), then xUE, xNE, EUn, and E N7 are elements of >
for any xR and any £, n€XY.

Under the assumption that M is a §*[8]-lattice, we shall write £= f_j E(2)
[E= 5 £(2)] for each £€3[>*] and @= {£|£€ B} for each @CI[3#].
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Then the definition of a §"[§~]-lattice implies

Lemma 1.2. If M is a §'[8 -lattice, then xUE=xUE, xNE=xNE,
EUn=EU7, and ENn=EN7 for any x&M and £, n€ 3 [3*].

In this section we assume the following

Assumption 1.1. M is a 8*-lattice and R is a sublattice of M.
Then we have

Lemma 1.3. Let o be an element of 3YSYR)). Then there exists a
E€3\(R) such that
1) E@)=a(i) for any iE N,
2) E=a.
If, for each i€ N, x;< a(i) for some x;ER, then the condition 1) can be replaced by
1) %,<E(GE)= a(?) for any i€ N.

Proof. Since a(i)E3)(R), for each i€ N, there exists a £, 3)(R) such that
a(i)=&. In case x;=<a(i) for some x;ER, we can consider x; U£; in place of &
and hence it may be assumed that £,(j)=x; for any jE N. Puttmg E@)= U E7)
for each zEN we have a map £ of N into R such that £(z) < U E,,(z+1)<£(z—|—1)
and £(7)< U E= U a(k)=a(i)=a. Hence £ is an element of >(R) satisfying

the condltlon 1) (and 1’) under the additional assumption) and the condition
E<a. Let us show that @<&. For each i, jE N, putting /=max {i, j} we have

E(H=se=s LI:J E(D)=E()<E. This implies a(i)=& =<E for each i€N and
hence @ <&. -

Lemma 14. 3Y(R)=R"" and 33(R)=R*".

Proof. Corollary to Lemma 1.1. and Lemma 1.2 imply that 3I(R)[3(R)]
is a sublattice of M. Suppose that a sequence a,€XY(R)[>)(R)], iE N, has an
upper bound in M[3)(R)]. Putting a(i)= LLJ1 a, we have an element a of
2R))Z((R))]. Hence Lemma 1.3 ir:xplies the existence of a £€3(R)
[Z(R)] such that E=a& and therefore G a= 0" a(i)=a=Ec S (R)[WR)].

This implies that SYR)[Z(R)] is a o*[8*]-sublattice of M containing R so that
R CYR)[R* c3(R)]. The reverse inclusion is obvious.

Corollary 1. The following conditions are equivalent:
1) R is a o*-sublattice of M.
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2) SYR)CR.

3) SYR)=R.

Corollary 2. The following conditions are equivalent:
1) R is a 8" -sublattice of M.

2) SWR)CR.

3) 2W(R)=R.

Assumption 1.2. M is a 5-lattice.
Lemma 1.5. For any x < R® there exist a, bE R such that a<x=b.

Proof. This follows from the fact that the set {x|x&M and a<x=b for
some a, b= R} is a §-sublattice of M containing R.

Lemma 1.6. If a subset A of M contains R, > \(A4), and S ¥(A), then it
contains R®.

Proof. Let us put S={S|SCR® and 3(S)UD¥(S)cS}. Considering
AN R in place of 4, we can assume that RCA< S. For the intersection S, of
all 8’s such that RCSe S it is easy to see that RCS,&S. For any x&R? let
us show that the set S(x)={y|yeR} xUyeES,, and xNyE S} is an element
of §. For any 7€3(S(x)) it follows from S(x) CR® that 7= R?. Since 5=y,
for some y,& S(x) we have x U 7, x N 7€ 3(S,). Hence xUz=xUneE3(S,)C.S,
and x N5 E.S,, implying that 5= S(x). Thus we have >},(S(x)) C.S(x) and dually
S (S(x)) < S(x), which prove that S(x)eS. If #€R, then we have RC.S(¢) so
that S,C.S(f). Hence any xS, satisfies x=.S(¢) and therefore t&.S(x). Thus,
for any xS, we have RCS(x) so that S,CS(x). This implies that S, is a
sublattice of M. Since Sy& S implies that S, is a 8-sublattice containing R we
have R®c.S,C A4, which proves the lemma.

Corollary. Assume that G is separated. If &-convergent maps p and v of R®
into G are such that p(x)=v(x) for any xR, then it holds that p=v.

Proof. It is easily verified that the subset A= {x|x=R® and u(x)=v(x)}
of M satisfies the condition in the lemma. Hence R®*C A and this implies p=v.

Note that the above corollary implies the uniqueness of the valuation u® in
Theorem 1.

2. r.i. lattices and the second extension theorem

Suppose that for each a, x, b& M with a<x<b an element “x® of M is defined
subject to the conditions:
1) a=<x=<y=<b implies a<’*<°x*<b,
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2) a=<x=<y=<b implies “¥’="*(*y")" and *y’=1("x")’,

3) #NIxrui—y,
for each a, x, y, b&M. Then we say that M is a relatively inversible lattice or
an r.7. lattice and that “x’ is the relative inverse of x in the interval [a, b].

If M is an r.i. lattice, then a sublattice R of M is called to be relatively in-
versible or r.i. if °x* =R for any a, x, b€ R with a<x=<b.

If M is an r.i. lattice and if R is an r.i. sublattice of M, then a map u of R
into G is called an r.i. valuation if

w(@)+p(b) = p(x)+p(*x’)
for any a, x, b&R with a<x=<b. The above condition 3) implies that any r.i.
valuation is a valuation.

ExampLE 2.1. Suppose that M is an r.c. (an abbreviation for relatively
complemented) distributive lattice. Let us denote by “x’ the relative complement
of x in the interval [a, b] for each a, x, b&M with a<x=<b. Then M is an
r.i. lattice. In fact, the condition 2) is verified as follows: putting p=""x" and
g=*y* we have pNg=(pNy)Ng=pN(yNg)=pNx=a and dually pUg=b so
that p="1¢" and g="p". A sublattice R of M is r.i., by definition, if and only if
r.c.. If Ris an r.i. sublattice of M, then a map p of R into G is an r.i.valuation
if and only if g is a valuation.

We note that the condition 3) in the definition of an r.i. lattice implies
the uniqueness of the manner in which an r.c. distributive lattice is considered
to be an r.i. lattice.

ExamPLE 2.2. Suppose that M is an /-group and put *x*=a-+b—x for each
a, x, b&M with a<x=<b. Then M is an r.i. lattice as is verified by simple
computations. Let R be an l-subgroup of M. Then R is an r.i. sublattice
of M and any group homomorphism g of R into G is an r.i. valuation.

If M is an r.c. distributive lattice or an /-group, then we shall consider
M to be an r.i. lattice in the manners in Examples 2.1 and 2.2, respectively.
Then we have

Theorem 2. Suppose that M is an r.i. 5-lattice and that G is a separated and
complete topological additive group. Let R be an r.i. 6-sublattice of M and n a G-
valued S-convergent r.i. valuation on R. Then there exists a 8-sublattice R of M
such that RCRC R’ and yu is extended to a G-valued S-convergent valuation T on
R satisfying the condition: if P is a S-sublattice of M such that RCPCR’ and if a
G-valued 8-convergent valuation v on P is an extension of u, then P is contained
in R and v is the restriction of . Moreover, if M is an r.c. lattice, then R is
anr.c. sublattice of M. If Misan l-group,if Ris a subgroup of M, and if u(0)=0,
then R is a subgroup of M and T is a group homomorphism.
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A proof of the theorem will be given in section 9. In this section we shall
state some properties of r.i. lattices.

Assumption 2.1. M is an r.i. lattice.

Proposition 2.1. For any a, b M, the map x—°x" is an involutive dual
automorphism of the interval [a, b].

Proof. It suffices to show that *(“x’)’=x for each x&[a, b] and this follows
from x <*b'=1("x")’="a*<w.

Corollary. For any a, x, be M with a<x<b, the map s—°x* is an isomor-
phism of [x, b] onto [a, “x®] and the map t—'x® is an isomorphism of [a, x] onto [*x®, b].

Proof. Since the map s—“x* is the composite map of two dual isomorphisms
s—p="=s" and p—“p®, this map is an isomorphism. Dually, so is the map t—'x".

Let us write (x—7y),=*"?y?Y* for each e, x, yeM. Then,

Proposition 2.2. For any e, x, y& M.

1) (x_y)e:(x U y_y)yn e

2) (x_——y U e)e:(x U e_y)e:(x_y)e Ue,

2*) (x—x N y)ez(x_y)xﬂ =% (x—y)e'

Proof. 1) follows immediately from the definition of (x—y),. 2) follows
from (x_y U e)e:en(yue)(y U e)(yue)uzze(y U e)yuzuezeny(enyeyue)y Uxue_—en yyyu(xue)
=(xUe—y),= Ny unvoua—_enyyyuzjenyyyve—(x—y) Ue. 2%)isthe dual of 2).

Note that the condition 1) in the proposition is written in an equivalent

form:

1) (x—y)=(xUy—y).=(—y)n0
or generally
1”)  (x—y),=(x’—y), for any ¢/, ¥’ €M such that yNe<e'<eand x=<«’'=<

xUy.
Corollary 1. Ife, x, ye M are such that e<x, then

(x—y). = (x—xN(yUe)). = (x—(xNy)Ue)..

Proof. ex<x implies (x—y)=(xUe—y)=(x—yUe),=(x—yUe).n.=
(x—xN(yUe)), and dually we have (x—y),=(x—(x N y)Ue)..

Corollary 2. For any e, x, yE M, it holds that
(xUy)Ne=(x—y).=xU(yNe).

Proof. Putting f=ynNe and z=xUf we have (x—y)=(x—y),=
(x—y Uf);=(2—2);=(3=)en /=2 N (3—y),;=z=xU(y Ne) and dually (xUy) N
e=(¥—Y).
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The above corollary gives an inequality (x U y) N2=<xU (y N 2) for x,y, zE M.
If x<=z the reverse inequality immediately follows and this shows that M is a
modular lattice. Further we have (see [4], p. 36, Exercise 3)

Proposition 2.3. M is a distributive lattice.

Proof. For x,y, z&M it holds that (xUy)nz={xU(yNz2)}N{yu
(N2} S(YNHUEN HUENDHS(rN2)U{N3)U(=N=)}. This implies
a<b for a={(xUy)Nz}U(xNy) and b=(yN2)U(zNx)U(xNy). Since the
reverse is easily seen we have a=b, and dually a*=b* for a*=(xUy)N
{zU(xNy)} and d*=(yUz)N(zUx)N(xUy). The modularity implies a=a*
and hence b=5*, which proves that M is distributive ([4], p. 32, Theorem 8).

Proposition 2.4. Let e, x=M be such that e<x. Then the map y—(x—7y),
is a lattice (and hence order) dual homomorphism® of M into itself.

Proof. Corollary 1 to Proposition 2.2 implies that the map is the composite
map of the homomorphism y—z=xN(yUe) and the dual isomorphism
z—(x—2),="°=".

Proposition 2.5.
1) For any e, yeM, the map x—(x—7y), is a lattice endomorphism of M.
2) For any x, yEM, the map e—(x—y), is a lattice endomorphism of M.

Proof. 1) The map is the composite of the homomorphism x—s=yUx
and the isomorphism s—¢"Yy*.  2) is the dual of 1).

Obviously, a sublattice R of M is r.i. if and only if (x—y),€R for any
e, %, yER.
Here we state two propositions concerning with r.i. valuations.

Proposition 2.6. Suppose that u is an r.i. valuation on an r.i. sublattice
R of M. Then

1) p is 8-convergent if p is 8*-convergent or &~ -convergent.

2) pis 8-fundamental if p is 8*-fundamental or & -fundamental.

Proof. Let x,€R, i N, be any decreasing sequence with a lower bound
a<R and let us put b=x,. Since a<x;<b, for y;=°x,> we have an increasing
sequence y;ER, iEN, with an upper bound bR such that u(a)4 pu(b)=
w(x)+u(y;) for any ieN. 2) If p is §*-fundamental, then the sequence u(y;),

i€ N, is fundamental and so is the sequence wu(x;)=p(a)+ u(b)—u(y:), tEN,
which implies that u is 8 -fundamental. 1) Suppose that x is §*"-convergent
and x; | x (i—>o0) for some x=R. Since a=<x=b, Proposition 2.1 implies that

1) This means that (x—y1 Uyz)e=(x—y1)e N (x—y2)e and (x—y1 0 y2)e=(x—y1)e U(x—y2), for any
Y1, yzEM.
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¥: 1y (f—o0)for y="x’=R. Hence the sequence u(y;), i N, converges to u(y)
so that the sequence p(x;), i€ N, to p(a)+ p(b)— p(y)=p(x), which implies that
w is 6" -convergent. Thus the duality implies the proposition.

Proposition 2.7. Assume that M is an I-group and that anr.i. sublattice R
of M is a subsemigroup containing 0. Then, a map w of R into G is a homomorphism
if and only if p is an r.i. valuation such that 1(0)=0.

Proof. Let us assume that g is an r.i. valuation such that x(0)=0. Then
w(@)+ p(b)=p(t)+ p(°t’) for any a, ¢, b= R such that a<¢=<b. Considering one
of a, t, and b to be 0, we have the following lemma: if p, g= R satisfy one of the
three conditions p=<0=gq, 0=<pNg, and pUg=0, then u(p+q)=p(p)+n(q)-
(In case, for example, 0=<pNg, put a=0, t=p, and b=p-+q.) For each xER,
putting x,=xU0 and x_=xN0 we have x,, x_€R and the lemma implies
w(x)= p(%)+ p(x ).

Let x and y be any elements of R and put z=x-+y. Then we are to prove
that p(2)=p(x)+p(y). Since x4, x_, y,, y_ER, for u=x,+y_and v=y,+x_
we have #, vER and the above lemma implies w(u)=plx,)+p(y_) and p(v)=
w(y)+p(x.). Since wu+ov=x+y=z, since u=xUO0+y_=(x+y )Uy_-=
(x+y)U0=z,, and since v <z, it follows that u,+v,=uU 0+2 U O0=(u+2U0)
U(@U0)={(u+v)Uu} U(vUO0)=(u+v), U(mUv)=2, U (rUv)==2,. Hence the
above lemma implies p(2,)=p(u)+ p(v,). Furtheru_+v_=(u+4v)—(u++v.)=
z—z,=x_ implies p(z_)=p(u_)+p(v.). Thus we have u(2)=p(2:)+p(z-)=
w(us) + p(ve) + o) + p(v-) = pu) + p(o) = ps )+ p(y-)+p@)+mx-)=
w(®)+w(y), proving that u is a homomorphism. The converse is obvious and
hence the proposition holds.

Proposition 2.8. If M is a 8*-lattice or a 3~ -lattice, then M is a S-lattice.

Proof. Let, for example, M be a 8*-lattice. Suppose that a sequence
x, €M, i N, has alower bound a,& M and let x& M be any. Putting a=xNa,
and b=xUx, we have a<x=<b and a<x, for each i€ N. For each t&M such
that < it follows from a<bN(tUx;)<b that a<*(bN(tUx;))’<b. Since M

is a 8*-lattice, we have an element p(f)= Q “bN(tUx))" of M such that
a=p(t)<b. Proposition 2.1 and the inequality ;f_glx imply “p(2)*= .-61(1) N(tUx;))=
n (tUx,;). This shows the existence of n x;="p(a)’&M. Further x=b
i’mplies bN(xUx)=xU(bNx;) and similarly tb N(aUx)=aU b Nx;)=bNx; so
that p(x)= ig e U(dNx))= ;gl (x*N(bNx;)’)="%"N p(a). Thus we have
n (®Ux)="p(x)"="(“x" N p(a))’=x U *p(a)’=x U ( ) x;). 'This proves that M is

a &~ -lattice and hence a §-lattice.
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Assumption 2.2. M is a 3-lattice.

Lemma 2.1. For any e, x, yeM with e<x and for any y,€M, iEN,

D) y= U ys implies (x—3)i= N (&—)o

2) y= (1 i implies (s—y);= U (5=}

Proof. Put p(t)=xN(¢Ue) for each M. Then Assumption 2.2 implies
p(f_j y)= lj p(v;) and p(_a y)= 5 p(y;). Hence the argument invthe proof of
Pr'(;;ositio;l_IZA- proves thxej 1lemma'._1

Lemma 2.2. For any e, x, y, t€M and for any t,EM, iEN,

1) t= U t implies (t—y)— U (t—), and (x—y);= U (x—)s,
i= i=1 i=1
2) t= (O t; implies (t—y)i= N (t—), and (x—y);= 1 (=),

Proof. 2) Since we can write = 51 s; for a bounded sequence s;=t, N ¢,
tEN, it follows from the equality yU t:‘__r.j (y Us;) and Corollary to Proposition
2.1 that (¢—y),= E]: ($;—»).. Since Propo‘s_iltion 2.5 implies (s;—y),=(t—y).N
(t;—y). we have (£;y)e: Fj (t;—y).. The latter equality (x—y),= 6 (x—y),, is
easily seen. 1) follows dtia]llly. -

Proposition 2.9. An r.i. sublattice R of M is a S-sublattice if Ris a &*-
sublattice or a 8~ -sublattice.

Proof. We may assume that R is a §~-sublattice. Then it suffices to show
that E&R for any £€3Y(R) (Corollary 2 to Lemma 1.4). The sequence
£(¢), i€ N, has a lower bound a=£(1)ER and an upper bound bR. Since

“£(i)*< R, our assumption implies the existence of x= N %£({)’R. Thus we
i=1

have &= tj E(f)="x*<R.

Proposition 2.10. If R is an r.i. sublattice of M, then R® is an r.i. sublattice.

Proof. 1) For the subset A= {y|yER® and (x—y),E R? for any x, e R}
of M, let us show that R*C 4. Since RC A4 follows immediately, it suffices, by
Lemma 1.6, to prove that & 4 for any 7€ >(4)U > ¥(4). The duality implies
that we may assume 7&>(4). The relation & R® follows from ACR®. For
any x, eE R, putting x’=x U e we have e<x’=R. Since the sequence (x'—7(z)), €
R:, ieN, has a lower bound fNe=R’ Lemma 2.1 implies (¥'—7),=

0 (' —n(z)),=R®. Hence Proposition 2.2 and its Corollary 2 imply (x—7%),=
i=1
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(x—7),U{en(xU7n)} = {(x—7).Ue} N(xU7n)=(¥"—7%),N(xU7)ER?, proving
that 7€ 4. 2) For each y, eeR® and for B={x|x=R® and (x—y),ER%} it
holds that > (B)UXW(B)CB. In fact, for any £& > (B)[2]¢(B)] it is obvious
that E&R®. Since the sequence (£({)—y),ER’, i€N, has an upper bound

EUyeR¥a lower bound yNecR®], Lemma 2.2 implies (—y),= f_j (E(D)—y).
[= 5 (()—y).]ER?, proving that E€ B. Dually we have: 2*) For each x, yER?

and for C= {e|e=R® and (x—y),=R% it holds that >}(C)UW(C)cC. 3) If
yER? and if eER, then 1) implies that the set B in 2) contains R and hence 2)
implies that R*CB. Hence, for each x, y=R?, the set C in 2*) contains R so
that R®°CC. This implies that (x—y),ER® for any x, y, e R® or that R®is an
r.i. sublattice.

Proposition 2.11. If M is an l-group and if R is an l-subgroup of M, then
R? is a subgroup of M.

Proof. 1) Forany xR and for A= {y|y=R® and x—y<R%} let us show
that R®CA. For any n&€3>)(4) we have &R and 7=y, for some y,ER.
Since x—y,&RCR? is a lower bound of the sequence x—n(f)eR? iEN, it

follows that x— 7= 5 (x—n(i))eR®. Thus we have € 4 and dually € 4 for

any 77€>%(A4). It is obvious that RC A and hence Lemma 1.6 implies that
R:cA4. 2) For any yeR’ it follows from 1) that R is contained in
B={x|x€R® and x—ycR’}. Further we have 3(B)UX¥(B)CB so that
R}CB and this implies the proposition.

Lemma 2.3. If R is an r.i. sublattice of M and if a 5*-sublattice R of M is
such that R®- C RC R, then R is an r.i. 8-sublattice of M.

Proof. Itis sufficient to show that z=(x—y), belongs to R for any e, x, yeR
with e<wx. Since RCR*=3Y(R) there exist £ 7, EESYR) such that E=ux,
7=y, and E=e. For £€=E’U & we have a £ >(R) such that E=Fys=xUe=x
and such that §(k) <g(k) forany ke N. For the sequence 2,—(&(k)—7(k)).w ER,
ke N, Proposition 2.5 and Corollary 2 to Proposition 2.2 imply =2,=

(EM)—n(R)ey=E(1)NE()=R. Let us put £(j)= f\ g, for each je N. Then
(()SR™CR and 4(ji—1)<E(j)<s,SEG) UEG)~Ej)<x R, which imply
teSWR). For isi we have (E()—3)uy=(EG)—9)y= N (EE) =) =
(=L)< 0 (x—n(k).=(x— Un(k);==. Hence (£6)—3)i= U EOD—Dp=
,EJ; £(j)=%=<=z so that 2= 'Ql(g(i)—y),gfgz. Thus we have z=F&S(R)C R

and this proves the lemma.
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3. Completion of valuations

Throughout this paper we denote by U the set of all symmetric neigh-
bourhoods of 0=G.

Assumption 3.1. R is a sublattice of M and p is a valuation on R.

Let us denote by R the set of all ae M satisfying the condition: for any
UcsU there exist x, yER with x<a=<y such that p(s)—u(t)eU for any
5, tER with x<s<y and x<t<y.

It is easily seen that the part “u(s)—p(f)e U for any s, tER with x<s=<y
and ¥x<¢=<+y" in the above condition can be replaced by each of “u(s)—u(x)cU
for any s€R with x<s<y” and “u(s)—pu(y)€ U for any s€R with x<s=<y”.

Proposition 3.1. Let R be the set of all ac M satisfying the condition: there
exist x, yER with x<a=y such that p(x)=p(s)=p(y) for any s€ Rwithx<s=<3y.
Then it holds that RCRCR. If G is separated and satisfies the first condition of
countability, if M is a 5-lattice and if R is a S-sublattice of M, then it holds that
R=R.

Proof. The relation RCRCR being obvious, it suffices to show under
the additional conditions that e R for any acR. Let {U;|ie N} be a coun-
table base of the system of neighbourhoods of 06G. Then for each i€ N there
exist x;, y,ER with x,<a=<y, such that u(s)—p(f)e U, for any s, t&R with
x;,<s<y;and x,<¢<y; Since R is a §-sublattice we have x= lj x;,€R and

i=1

y= ﬁyieR with x<a<y. Then for any s€R with x<s=<y we have u(s)=
i=1
(), which implies that a€ R.

The following two examples show that the relation R=R in the above

proposition not necessarily holds if R is not a §-sublattice or if G fails to satisfy
the first condition of countability.

ExampLE 3.1. The Il-group M of all real-valued functions on a fixed
interval E=[a, b] in the real line R is a é-lattice (Example 1.3) and the set R
of all continuous functions in M is an l-subgroup of M. Putting G=R and
denoting by w(f) the integral (in the usual sense) of fER over E we bave a
§-convergent valuation z on R. Then R coincides with R while R is the set
of all Riemann-integrable functions on E.

ExampLE 3.2. Suppose that the set m in Example 1.1 is uncountable and
let R be the ring of all subsets x of m such that x or &° is countable. Then R
is a §-sublattice of M. Let G be the topological group of all real-valued func-
tions on m with the weak topology and let us denote by w(x) the characteristic
function of x&R. Then p is a §-convergent valuation on R and it is easy to
see that R=R+M—=R.
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REMARK. If we replace the topology of G with the discrete one, then the
set R in Proposition 3.1 coincides with R. Hence some properties of R are
derived from those of R. For example the following proposition implies that
R is a sublattice of M.

Proposition 3.2. K is a sublattice of M containing R.

Proof. Leta,, e, Rand U9 be any elements. Then, fori=1, 2, there
exist x;, ,€ER with x;<a;<y; such that u(s)—pu(f)eU for any s, t€R with
#,=s=y; and x;<t<y; For x=xNx, and y=y Ny, let us prove that
w(u)—p(x)€2U for any ueR with x<u=<y. It follows from u«Ux,ER and
#=uUx, <y, that p(u)—prNx)=pwUx)—ux)sU. Since uNxER is
such that x<uN«x,<y, similarly we have p(uNx)—p((@Nx)Nx,)eU. Thus
it is proved that w(u)— p(x)=p(u)—p((w Nx)Nx,)€2U. Since the elements
x, yER satisfy x<a,Na,<7y, that which is proved above implies a; N azelé.
Dually we have @, Ua,= R for any a, 4, R and this proves the proposition.

We say that the valuation p is complete if R=R.

Lemma 3.1. Assume that M is a 5*-lattice and that R and R are §*-
sublattices of M such that RCRCR’". If p is complete and extended to a valua-
tion & on R, then i is complete.

Proof. We are to prove that ac R for any acR. First let us show that
xNacR for any x€R. For any U the assumption aR implies the
existence of u, v& R with u<a=<wv such that u(s)—p(f)€ U for any s, tE R with
u<s<v and u<t<v. We can write u=a for some a=Y)(R) and hence it
follows from x N ¢ €3 (R) that x N u=xNa<sR. Likewise x Nv<R and further
we have x Nu<xNa<xNo. Lets,ERbesuch that xNu<s,<xNvfori=1,2.
Putting ¢,=s;Uu we have ¢,€ R with u<¢;<v so that fi(t,)—/t,)€U. Hence
it follows from u(s;)+ (w)=p(s; Uu)+&(s; Nu)=pt;)+H(x Nu) that u(s)—
w($;)=a(t)—#t)eU. Thus it is proved that xN acR=R for any xER.
Now the relation a< R is proved as follows. There exists a v& R such thata<v
and we can write v€€ for some E€3YR). Since ROR3E(G) Na<E=vER
implies a NE€ I (K) we have a=aNECS K.

A map 4 of R into G is called a completion of u if: for any ac R and for
any Ue U there exist x, yER with x<a=1y such that u(s)—a(a)€ U for any
sER with x<s=<3y.

Assumption 3.2. G is separated and complete.

Proposition 3.3. There uniquely exists a completion p of p. Moreover fi
is a valuation and is an extension of w.

Proof. Suppose thata completion i of u exists. The uniqueness of 4 and
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the fact that 4 is an extension of p immediately follow from the assumption that
G is separated. Let us show that f is a valuation. Let a,, @R and UeqU
be any elements. Then, for i=1, 2, there exist x;, y,€R with x;<a;=<y; such
that u(s)—p(f)eU for any s, tR with x,<s<y,; and »,<¢<y,. Here we
assert that p(u)— (e, Na,)=5U for any u=R with x, Nx,<u=<y; Ny, In fact,
we have p(u)— p(x; Nx,) E2U as is seen in the proof of Proposition 3.2. Since
% Nx=a,Na=7y N7y, the definition of g implies the existence of a u,& R such
that %, Nx, <w, <y, Ny, and p(u)— (e, Na,)eU. Since p(uy)— p(x; Nx,)E2U
we have p(#)— i(a, Na)€5U, which implies that our assertion is true. Dually
we have u(v)— (e, Ua)E5U for any vER with x,Ux,<v=<y,Uy,. Hence it
follows that ji(a; N @)+ (@ U @) € (%, N xz) 4 pa(y U 2)+ 10U = () + () +
10U. Since, for i=1, 2, u(s;)—i(a;)€U for some s;ER with x,;<s5;<v,; and
since u(s;)—u(x;)EU we have p(x;)—i(a;)€2U. Thus it is proved that
i, Nay)+ p(a, U ay) € ji(ay)+ play)+14U for any ay, 4ER and any UeU,
which proves that f is a valuation.

Now it suffices to show the existence of . For each acR we have a
directed set A(a)={x|xER and x=<a} and hence a directed sequence wu(x),
xEA(a), in G. This sequence is easily seen to be fundamental and hence con-
verges to an element 4(a) of G. Thus we can define a map 4 of Rinto G. Let
a€Rand U be any elements. Then for a Ve such that 2V C U there
exist x;, yER with x,<a=<y such that u(s)—u(f)EV for any s, tER with
% <s<yand x,<t<y. Further there exists x,&R with x,<asuch that u(x')—
fi(a)EV for any ¥’ € R with x,<x'<a. Putting x=x, U x, we have x, y=R with
x<a<y and, for any se€R with x=s=<y, p(s)— a(a)= {p(s)—p(x)}+
{n(x)— a(a)} €2V cU. Hence  is a completion of p and this completes the
proof.

The completion of p will be denoted by a.

ExampirE 3.3. 1) Proposition 3.1 implies that Lebesgue measure (re-
stricted on the ring of the sets of measure finite) is the completion (in our sense)
of Borel measure.

2) If p is the valuation in Example 3.1, then a(f) means the Riemann
integral of fER over E. In general, n-dimensional Riemann integral is
obtained as the completion of the integral of continuous functions.

3) For the valuation p in Example 3.2, p(x) means the characteristic
function of x&€ R=M.

Lemma 3.2. For any acR and for any UEU there exist x, y< R with
x<a=<y such that j(u)— p(v)E U for any u, vER with x<u=<y and x<v=}y.

Proof, Fora Ve suchthat3V CU, therearex, y=R withx<a=1y such
that u(s)—u(t)E V for any s, tER with x<s<y and *=<t=<y. Then for any
u,EIAQ with x<u;<y, i=1, 2, there exists an 5;ER such that x=<s5;,<y and
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p(s;)—a(w)EV. Thus we have j(u)— ()= — {i(s)— alw)} + {n(s) — ()}
+ {w(s,))— p(s2)} €3V C U, proving the lemma.

Proposition 3.4. f is complete.

Proof. It suffices to prove that ae R for any a eR. For any U, let
Ve be such that 4V CU. Then there exist u, u,& R with u,<a=<u, such
that 4(p)— p(w)EV for any pel@ with ;< p<wu,. For i=1,2, Lemma 3.2
implies the existence of x;, y;ER with x;<u;<y; such that j(q)— a(u,)EV for
any qEﬁ with x;,<¢=<y;. Thus we have x,, y,ER with x,=u,<asu,<Yy,.
Lets€Rbesuchthatx, <s<y, Foro=sUuy R it follows from x,<sNu, <y,
that u(s)— a(v)=a(s Nu;)— a(w,)EV. This implies p(x;)— f(w,) EV as a special
case. Further x<ovUwu,<y, implies a(v)—p(vNw)=p(vUw)—pu)EV.
Finally u,<vNwu,<u, implies a(v Nu,)—i(u)EV and hence we have u(s)—

w(x)E4V cU. Thus it is proved that acR.

Proposition 3.5. If M is a §*-lattice, if R is a 8" -sublattice, and if p is 8*-
convergent, then R is a 8" -sublattice and i is 8" -convergent.

Proof. Forany aEZO(IA?), it suffices to prove 1) @< R and 2) ala(t))—p(ax)
(t—o0). For any U let UycU be such that 5U,C U and U, U such that
2U;cU,_, for each i=N. Since @<a for some aEI@, we have a 2R with
a=z such that u(t)—pa(a)eU, for any tER with a<t<z. For each iEN,
Lemma 3.2 implies the existence of x;, y,€R with x;<a(f)<y;<=z such that
ji(u)— i(v) € U; for any u, vE R with x;<u=<y,andx,;<v=y; Wemay assume

x;=x;,, for each i€ N. For x= J x; and y= U y; we have x, yER with
i=1 i=1

x=as<y==z. Lets,ERbesuchthat x<s5,<y. Putting s,;=s,Uy,Uy,U---Uy;
we have s,ER fori=0, 1, 2,--- . Since s; } y (i—c0) implies u(s;)—p(y) (—°),
there exists an m & N such that u(s,)—u(y)€U,. Since x;=<s;_, N y;=y; implies
1(8i-1) — p(8:)= p(8; 1) — p(8: -1 U :)= (81 N :)— p(y:) € U it follows that pu(se)—

w(o)= 2 {ulsi)—n(sI} + {u(s)—w(»)} € 33 Ui+ U,C2U,CU.  Hence it is

proved that 1) @eR. To prove 2), we may assume thata=a. Then asy=<z
implies u(y)—a(@)eU,. If we put sy=x the above argument implies pu(x)—
w(y)€2U,. Sincex; | x (i— o) there exists an nE N such that u(x,)—pu(x)EU,
for any i=n. Then, for any i>n, a(a(i))—p(x,)€U,C U, implies p(a())—
a(@)e5U,c U, proving 2).

Corollary. If M is a 8-lattice, if Ris a 5-sublattice, and if u is S-convergent,
then R is a 8-sublattice and ji is S-convergent.

Proposition 3.6. If M is an r.i. lattice, if R is an r.i. sublattice, and if p
is an r.1. valuation, then R is an r.1i. sublattice and i is an r.i. valuation.
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Proof. Let a,, a,, and g, be elements of R such that a,=<a;=<a, and let us
put a=%a,"2. For any U, let VU be such that 7VcCU. Then, for
i=0, 1, and 2, there exist x;, y,ER with x;<a; <y, such that g(u)—a(v)EV for
any u, vE R with x,=u=<y; and x;,<v=<y,; Since g,<a,=<a, we may assume
that x,<x, and y,<7y,. Putting x="%y"1Y% and y= %"*1ix,”> we have x, yER
with =%y, 21V%2="(1" %2g,01V%2)1 Vo= y, ( @,)2 < “a,">—a, and hence the
duality implies x<a=<y. Suppose that s, tER are such that *x<s<y and
x=<t<y. For §¢=%s2&R we have 1(y,Uux,)2="(*y1V%2)2=¢". Dually
s'=%(y,Nx)** and hence s'Ny,=%(y,Nx,)*. Now, for any r&R with
Ny Uxp)2=r, it follows from y,=%(y, Ux,)2=rUy,=y, that %<y Ux,=<
M(rUy)2=y, and hence u(rNy)—pu(r)=p(y)—n(rUy)=np((rUy)?)—
uw(y,)€V. Dually we have up(x,Ur)—p(r)EV for any r"€R with r'=
*o(yoN %,)*1. Considering r and 7’ to be s and s' N y,, respectively, for u=x, U
("Ny)ER we have u(u)—u(s')= {u(x, Ur')— u(r')} + {ulr N 3)— u(r)} €2V.
This relation and the one u(u)— u(x;) €V, which follows from x; <u=<y,, imply
w(x)+ 1(y,)— p(8)=p(s")E pu(x,)+3V. Likewise it follows that u(x,)+ p(v,)—
w(t) € p(x,)+3V and hence pu(s)—u(t)€6V CU. This proves that a< R, imply-
ing that R is an r.i. sublattice.

In the above argument, to prove that 4 is an r.i. valuation, we may assume
that the element sER satisfies the condition u(s)—g(a)eV. Then we have
(a0)+ (@) — (@) — (@) € (o) + w(3)— w(s)— () +4V C TV C U, which im-
plies that 4 is an r.i. valuation and this completes the proof.

Proposition 3.7. If M is an I-group, if R is a subgroup, and if u is a homo-
morphism, then Risa subgroup and [ is a homomorphism.

Proof. Leta;,a,E Rand UeUbe any elements. Then, for i=1, 2, there
are x;, y;€R with x;<a;<y; such that p(s)—p()€U for any s, t€R with
x,<s=v; and x;<t<y;,. For x=x,—y, and y=y,—x, we have x, yER with
x<a,—a,<y. Let s€R be such that x<s<y and put s;=x, U(s+x,) and
s,=s,—s. Then itis easily verified that s;ER and x,<s;< y, for i=1,2. Hence
we have u(s)— p(x)= {u(s;)— (%)} — {n(s2)— p(32)} €2U and this proves that
al—aZEI@ or that R is a subgroup of M. Further Propositions 2.7 and 3.6 imply
that 4 is a homomorphism.

4, A common extension of two valuations

In this section we shall give some lemmas to prove Theorem 2.

Assumption 4.1. M is a distributive lattice and R is a subset of M. Fur-
ther R and R are sublattices of M.

We denote by R the set of all aeM such that xNa€R and xUac R for
any x&R. Then
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Proposition 4.1. R is a sublattice of M.

Proof. If a, b€ R, then xR implies xN(anNb)=(xNa)N(xNb)ER and
xU(aNbd)=(xUa)N(xUb)E R sothatanbe R. Hence the duality implies that
R is a sublattice.

Proposition 4.2. If M is a 5*[6, 8]-lattice and if R and R are 8*[57, 8]-
sublattices, then R is a *[8~, 8]-sublattice.

Proof. Let « be any element of 3Y(R). Then for any xR we have
xNaE3(R) and xUasS(R). _HencexNa=xNa€R andxUa=xUacR
so that #= R. This proves that R is a §*-sublattice.

Lemma 4.1. If M is a §*-lattice, if R is a o*-sublattice, and if R is a §*-
sublattice containing R, then R is a o*-sublattice.

Proof. Let a€3Y(R) be any element. Then, for any xR, xNa(f) <
¥*ERCR and x U a()<xUacsM imply x N aED3Y(R) and x U a =3 Y(R) so that
xNa=xNa€ER and xUaER. This implies @€ R, proving the lemma.

Corollary. Assume that M is an r.i. 5-lattice and that R is a non-empty r.i.
S-sublattice. If R=R°™ and if R=R"", then R=R".

Proof. Lemma 2.3 implies that R and R are §-sublattices and hence our
lemma that R is a o-sublattice. Obviously RC R and therefore R°"c R. For
the converse, let € R be any element. Since x Ua & R=3Y(R) for some xER,
we have a £€3(R) such that x Ua=E&. Since aN&(l) ERC R for each ie N
we have aNEEIYR’) so that a=aNé=aNZER’. This implies RCR” and
hence R=R".

Proposition 4.3. If M is an r.c. lattice and if R and R are r.c. sublattices,
then R is an r.c. sublattice.

Proof. Suppose that a€ R and b€ M are such thataNbE R and a UbE R.
Then for any x€R we have (x Na) N (xNbd)=xN(aNbd)ER and (xNa)U(xNd)=
xN(aUb)ER. Since Risr.c.,xNasRimpliesxNbER. Dually xUbE R for
any xR, and hence 6 R.

Assumption 4.2. R is non-empty and contained in RN R. If xR, then
xUaER for any acR and sNbER for any bER. p and [t are valuations on R
and R, respectively, such that p(u)=p(u) for any uERN R.

Proposition 4.4. It holds that RURC R. Further there uniquely exists a
valuation @ on R such that [ is a common extension of p and .

Proof. The first assertion is easily verified. Let x be a fixed element of R
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and let us put m(a)= p(x N a)+Ex Ua)— p(x) for each acR. Then we have a
map % of R into G. If @, bER, then 7(a Ub)+ p(x)=p(xN (aU b))+
ExU(aUb)=p((xNa)U(xNd))+ A(*Ua)U(xUb)) and m(aNb)+ p(x)=
p(xNa)N(xNb))+A(xUa)N(xUb)) so that m(aUb)+m(and)+2u(x)=
{1l N @)+ (e N B)} + {7x U @)+ A U )} = (@) + ()} + {m(b)+ ()} This
proves that 7z is a valuation. For any cER it follows from xUc=ERN R that
7#(c)=p(x N )+ p(x Uc)—p(x)=p(c). Hence mis an extension of y and, dually,
of i. 'Thus the existence of & is proved and the uniqueness is obvious.

We denote by 7 the valuation in the above proposition.

Proposition 4.5. If p and i are 8*[8~, 8]-convergent, then T is §*[8, 8]-
convergent.

Proof. Let a€3Y(R) be such that @ R. Then for an xR we have
xNaceS(R) with xNa=xNacR and xUacsd>)(R) with xUa=xUacRk.
This implies m(a(?))= p((* N a)())+A((x U a)(#))— p(*)—plx N @)+ Ax U a)—
p(%)=m(a@) as i—o° and therefore z is 5*-convergent.

Proposition 4.6. If p and i are complete, then [ is complete.

Proof. For any aE R, we are to prove that aE R or that xNeER and
xUa€ER for any x€R. For any Ue Y, there exist u, v€ Rwithu<a<wv such
that z(s)—7m(t)E U for any s, 1€ R with u<s<v and u<t=<v. Thus we have
xNu, xNvER with xNu=xNa=<xNov. Suppose that s;ER are such that
xNuss;=xNvfori=1,2. Sinces;Nu=xNu wehave u(s;)=mw(s;)=7m(x N u)+
75(s; Uu) —m(u) and hence it follows from u <s; U u <o that u(s;)— p(s;)=7(s; U ) —
7#(s;Uu)EU. Hence the completeness of p implies ¥xNaER and dually
xU a=R.

Assumption 4.3. M is an I-group and R contains 0. R is a subsemigroup
such that R=—R and such that g—pE R for any p, ¢ R with 0< p=q.

Proposition 4.7. It holds that R=R+R.

Proof. For any a< R it follows from a.=0Na<=R and a,=0Ua< R that
a=a_+a,ER-+R, which proves that R cR+R. Conversely let us show that
rER for any s€R and tE R with r=s+¢. Let x&R be any element. Since
—s_, §4, t, and —x_ are elements of R, for p——s_ and g=p U (s, +t—x_) we
have p, g€ R with 0< p=<gq so that Ro¢—p=0U (s+t—x_)=x_Ur—x_. Since
x_=Rwehavex_U r=(q—p)+x_ eRand hencex Ur=xU (x_U r)ER. Dually
xNrER and hence re R.

Corollary. R is a subgroup of M.

Proposition 4.8. If /& is a homomorphism such that p(—x)=—x) for any
xER, then 7 is a homomorphism.
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Proof. We note that p also is a homomorphsim. If a4, ¢’€R and
b,b’cR are such that a+b=a'+b’, then {u(a)+mb)}— {u(a’)+a(b")}=
{w(a)+ p(—b")} — {n(a’)+ p(—b)} = p(a—b")— p(a’—b)=0. Hence a map » of
R=R+R into G is defined by v(a+b)=p(a)+#(b) for ac Rand beR. Itis
obvious that » is a homomorphism and hence a valuation. Further 06 RN R
implies that » is an extension of x and % Hence v=7 and this proves the pro-
position.

5. The set of “measurable” elements

Assumption 5.1. M is a modular lattice and L is a sublattice of M. Further
w is a map of L into G.

Let us put S={a|la€L and p(x)+ p(a)=p(xUa)+ p(xNa) for any x= L}
and denote by u5 the restriction of x on S. Then

Lemma 5.1. Let a be an element of L and put A(x)=p(xUa)+ p(xNa)—
w(x) for each x L. Then A(xNv)=A(x) for any xEL and v < S such that a<v.

Proof. Since v€S, for y=xNov we have p(x)4 p(v)=p(xUv)+ p(y).
Further the modularity implies u(xU a)+ u(v)=p((x Ua) Uv)+ p((x Ua) N v)=
p(xUv)+p(yUa). Hence p(xUa)—p(x)=pn(yUa)—p(y) and thus it follows
from xNa=yNa that A(x)=A(y)=A(xNv).

Corollary 1. Suppose that ac L and vE S are such that a<v. Then, acS
if and only if p(x)+ p(a)=p(xUa)+ p(xNa) for any x& L with x<v.

Proof. If the latter condition is satisfied, the lemma implies A(y)=
A(y Nv)=p(a) for any yEL and hence a= S.

Corollary 2. Suppose that ac L and u, ve S are suchthatu<a=<v. Then,
a< S if and only if p(x)+ p(a)=p(xUa)+u(xNa) for any xL with u<x=<v.

Proof. Suppose the latter condition is satisfied. Then the dual of the
lemma implies A(x)=A(u U x)=p(a) for any x=L with x<v and hence Corol-
lary 1 implies a € S.

Proposition 5.1. S is a sublattice of M and uS is a valuation.

Proof. Let us show that aNb& .S for any a, b€S. By Corollary 1 to
Lemma 5.1, it suffices to prove that u(x)+ u(aNb)=pu(xU(aN b))+ p(xNa) for
any x&L such that x<b. Since b&.S we have u(a)+ p(b)=pu(a Ub)+ u(anbd)
and, by the modularity, p(xUa)+ w(d)=p(aUb)+u(xU(aNbd)). Hence the
relation needed follows from u(x)4 p(a)=p(xUa)+p(xNa). Thus we have
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aNbe S and hence the duality implies that S is a sublattice. It is obvious that
w’ is a valuation.

Proposition 5.2. If M is an r.c. distributive lattice and if L is an r.c.
sublattice, then S is an r.c. sublattice of M.

Proof. Suppose that ac L and b€ S are such that aNbe S and aUbES.
Then it is sufficient to prove that a€.S or that A=0 for A= pu(x)+ u(a)—
w(x Ua)—p(xNa) with an arbitrary x€L. The relations u(x)+ p(b)=p(x Ub)+
(% 015) and pu(a)+p(B)=p(aU )+ w(@nB) imply A=AqtA, for Ag—p(x Ub)+
w(aUb)—p(xNa)—pd)+p(xNanb)—p(xUaUb)and Ay=pu(x N b)+p(anb)—
w(xUa)—pb)+p(xUaUb)—u(xNanbd). Since aUbES implies u(xUb)+
w(@UB)=pu(xUaUb)+pu((xNa) UB) and since w(xNa)-+pu(B)=pu((x Na)Ub)+
w(x Nanb) we have Ay=0 and dually A;=0. Hence A=0 and this proves the
proposition.

Lemma 5.2. Let us assume that G is separated, that M is a 8*-lattice, and
that  is 8*-convergent. Then, for any a,ES, i€ N, with U a,=a&<L, it holds
that a€ S. -

Proof. The sequence may be assumed to be increasing. If x&L, then
a;€S implies p(x)+ p(a)=p(xUa))+p(xNa;). Since a; 1 a, xUa; t xUa, and

xNa; { xNaasi—>co, the §*-convergence of p implies p(x)+ p(a)=p(xUa)+
w(x N a) and hence a€S.

Corollary. Under the assumptions in the lemma, if L is a 8*-sublattice,
then S is a 8*-sublattice of M and u° is a 8*-convergent valuation.

Proposition 5.3. If G is separated, if M is an r.c. 8-lattice, if L is convexV,
and if p is 3-convergent, then S is an r.c. S-sublattice of M and u° is a §-
convergent valuation.

Proof. Since L is an r.c. §-sublattice, our proposition follows from Pro-
position 5.2 and Corollary to Lemma 5.2.

Assumption 5.2. M is an l-group and L is a subsemigroup. Further 0c L
and 1(0)=0.

We write T={a|a€ L and u(x+a)= pu(x)+ u(a) for any xL} and denote
by w” the restriction of x on 7.

Proposition 5.4. T is a subsemigroup of M containing 0 and u” is a homo-
morphism. If L is a subgroup, then T is a subgroup of M.

1) A subset A4 of a (partially) ordered set K is convex [4] if x€ A4 for any a, b€ 4 and x€K with
asx=<b.
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Proof. If a and b are elements of 7, then for any x&L we have
-+ (a+-8) = (4 0)+B)= lr-+-0) -+ 1) = () + (@) +1o(b)— () + (a+B),
which implies that a+b&T or that T is a subsemigroup. Further p(0)=0
implies 0T and it is obvious that 47 is a homomorphism. Let us assume that
L is a subgroup. Then it suffices to show that —a&T for any a=T. For any
x<L it follows from u(x)=p((x—a)+a)=p(x—a)+ p(a) that p(x—a)=p(x)—
w(a). Considering x to be 0 we have u(—a)=—pu(a) and hence, for any xEL,
w(x+(—a))=p(x—a)=p(x)— w(@)=p(x)+ p(—a) so that —acT.

Lemma 5.3. If G is separated and if p is &*-convergent, then ac T for any

increasing sequence a;=T, iE N, with U a,—a<L.
i=1

Proof. For any x&L, the relation u(x+a;)=u(x)+ p(a;) yields, when 7
tends to oo, the equality u(x+a)=u(x)+ n(a) which proves that aT.

RemMARK. Under the assumption that L is a subgroup, the following rela-
tion between the sets S and T can be verified: a+b&.S for any a€.S and b T.
This implies that the following three conditions are equivalent: 1) T'CS,
2) 058, 3) p(x)=p(xUO0)+p(xN0O) for any x L.

6. Extension of d*-convergent valuations
Assumption II. R is a sublattice of M and p is a valuation on R.

We say that an element a €M is p-inner regular [ u-outer regular] if it satisfies
the condition: for any U there exists an xER with x<a [a<x] such that
p(s)—p(x)eU for any s€R with ¥x=<s=<a [a<s=<x]. Obviously, the part
“u(s)—p(x)€ U---[a<s=x]” may be replaced by “u(s)—p(t)€ U for any s, t&R
with x<s<a and x<t<a [a<s<x and a<t=x]".

Let us denote by E, in this section, the set of all u-inner regular elements
of M. Then we have

Proposition 6.1. It holds that RC RCE. Further an\b&E for any a, bE.

Proof. The relation RC RCE is obvious. Let a,, ,€F and UeU be
any elements. Then there exists an x;,€R, for each =1, 2, with x;<a; such
that u(s)— u(x;)€ U for any s€ R with x;,<s<a;. Thus we have ¥, N x,&R with
xNx,<a;Na, LetseR besuchthatx, Nx,<s<a,Na, Since x=x,Us=Zgq,,
for s'=xNs€R we have pu(s)—p(s)=px,Us)—u(x)eU. Similarly
xNx,<s'<a,Na, implies wu(s)—u(x, Na)=p(s)—un(x,Ns")esU. Hence
wu(s)— u(x, N x,)€2U, which proves that g, Na,EE.

The set E is not necessarily a sublattice as is seen in the following

ExampLE 6.1. Suppose that m—=Z (=the set of all integers) in Example
1.1. Let R be the ring of all finite symmetric subsets of m and p the valuation
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defined by u(x)=Card (x) € R=G for each x& R. Then the intervals a=(— oo, 0]
and b=[0, o) in Z are elements of E although a Ub=m does not belong to E.

Proposition 6.2. If p is 8*-fundamental, then E is a convex subset of M.
The converse holds under the assumption that M is a 8t-lattice and u is 8*-
convergent.

Proof. It suffices to show a contradiction under each of the following two
conditions:

1) p is 8"-fundamental and E is not convex.

2) M is a &*-lattice and E is convex. pu is 6"-convergent and not §*-

fundamental.

First let us prove a lemma: for some U& there exists an increasing sequence
x,€R, i€ N, with an upper bound ¢EFE such taht p(x;4,)—up(x;)& U for any
ieN. If 1)is the case, there are elements a, c€E and b&M such that b E
and a<b=<c. Since x;,<a=b for some x; ER, our lemma follows from the fact
that b E. In case 2), p is not §*-fundamental and hence we have an increasing
sequence x," €R, i€ N, with an upper bound y& R such that the sequence u(x;),
iEN, is not fundamental. It is easy to see that some subsequence x;ER,

1€ N, of the sequence and the element ¢c= U x;, which lies between x,, yERCE,
i=1
satisfy the condition in the lemma. Thus the lemma is proved with, in case 2),

the additional condition c= U x;. LetVe9U besuchthat 2VCcU. ThencEE

i=1
implies the existence of an xR with x¥=c¢ such that p(s)—u(2)EV for any
s, tER between x and ¢. Since p is §*-fundamental (in case 1)) or since p is

8*-convergent and lj (xNx)=xNc=xER (in case 2)), the sequence p(xNx;),

i€ N, is fundamental. Hence there exists an #& N such that p(xN«x,.,)—
wlxNx,)EV. Since xUx;ER,iEN, are such that x=<xUx;=<c we have

”‘(xn+1)—”‘(xn): {:u"(x n xn+l)_‘,u'(x n xn)} + {I"’(x U x,,+1)——u(x U x”)} (S 2VC U and
this is a contradiction.

Lemma 6.1. Let E, be the set of all ac M such that

1) x=a for some xER,

2) if a is an upper bound of an increasing sequence x;ER, i€ N, then the
sequence u(x;), 1€ N, 1s fundamental.
Then it holds that E,CE.

Proof. Let a€E, be such that adcE. Thensome U & satisfies the con-
dition: for any xR with x=<a there exists an x' R such that x<x'<a and
w(x")—p(x)& U. Thus the condition 1) implies the existence of elements x;,ER,
1€ N, such that x;<x;.,<a and p(x;,)—p(x;)E U for any i€ N. This contra-
dicts the condition 2).
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Corollary. If M is a 8*-lattice, if R is a 8*-sublattice of M such that
RCRCR’*, and if p is extended to a S -convergent map m of R into G, then
it holds that RCE. If, further, G is separated and if a 8*-convergent map % of R
into G is an extension of p, then u=7p.

Proof. It is sufficient, for the first assertion, to prove that each element
aE R satisfies the conditions 1) and 2) in the lemma. 1) being obvious, suppose
that a is an upper bound of an increasing sequence x;ER, iEN. Then our as-

sumptions imply x= eLZJ ,ER and p(x;)=7(x;)—>p(x) as i—>oo so that the

sequence u(x;), i€ N, is fundamental. Thus it is proved that RCE,CE. The
second assertion immediately follows from R R™*=3Y(R).

RemARrk. The set E, in the above lemma is obviously a convex subset of
M such that aNbeE, for any a, bE,. Further it can be verified that the
following conditions are equivalent: 1) RCE,, 2) E,)=E, 3) p is 8*-fundamental.

Assumption IIl. G is separated and complete.
Then immediately we have

Proposition 6.3. If acM is p-inner[outer] regular, then there uniquely
exists an element g =G with the property: for any U&U there is an xR with
x=a [a<x] such that u(s)—gE€ U for any s€ R with x<s<a [a<s=x].

For a p-inner[outer] regular element a& M, the element g=G in the pro-
position will be called the p-inner value [p-outer value] of a.

Let us define a map j of E into G by assigning the p-inner value ji(a) to
each e L. Then j is an extension of 2 and hence of u.

Lemma 6.2. If a =X *(E) andif the sequence (i), i€ N, has a lower bound
XER, then for any UEU there exists a EE3*(R) such that x<E(F)=<a(i) and
such that p(£(1))— p(a(2))€ U for any i€ N.

Proof. Let U,=U and U;,=%U, i€ N, be such that 2U;C U;_,. Then the
definition of ji(«(7)) implies the existence of a y;ER with x<y,=< a(?) such that
w(s)—p(a(z)) € U,y for any s€R with y;<s=<a(i). Note that any sER with

¥, =s=a(r) satisfies p(s)—pu(y;)€2U;,,CU; Now putting £(i)=x,= ﬁyi we
j=1

have a £ *(R) such that x<{({)<y,<a(i). Hence it suffices to prove that
p(x;)—p(a(z)) €U for any iEN. Let us write Aj(2)=pu(x;U=2)—p(x;) for each

iEN and x€R. Then we can prove by induction the following: A,(2)E 2 U,

for any 2€R with < (7). The case =1 is proved by A,(2)=p(y;Uz)—
u(y)EU, which follows from y, <y, Uz=a(l). In case i=2, we see that
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A.-(z) = u(2) — p(x; N 2) = {(2) — p(x;s N2} + {u(x;- N 2) — p(y; Nx N 2)} =
Ay (2)+ {n(s)—p(y,)} for s=y,U(x;.;N2). Sincey,<s<y,Uz= a(i), the rela-

tion 2 < a(¢) < a(i—1) and the assumption for induction imply A,(2) EE U+U=
2 U;, which completes the induction. In particular, x,=<y,< a(i) implies

y.(y,) w(x)=Ay;)E Z U,. The definition of y; implies u(y;)— pi(a())) € Uin
and thus we have ,u(x) u(a(z))e 2 U,+U;;,CUy=U proving the lemma.

Corollary 1. If pis 8- fundamental, then ji is 8 -fundamental.

Proof. Let a=3>§(E) be any element. Then the lemma implies that for
any U€ U there exists a £&3§(R) such that u(£(7))— i(a(?)) € U for any iEN.
The assumption that x is §~-fundamental implies that the sequence u(£(7)), i€ N,
is fundamental, and therefore so is the sequence @(a(?)), iEN.

Corollary 2. If M is a 8 -lattice, if R is a 8~ -sublattice, and if p is 8-
convergent, then ji is 8 -convergent.

Proof. Let aE>*(E) be such that @ E and U€ U be any. Then there
exists an x& R with x<& such that u(s)— (@) U for any s€R with x=<s=a.
Hence the lemma implies the existence of a £E€>¢(R) such that x<E(Z) < a(2)
and p(E(2))—i(a(i))E U for any i€ N. It follows from EE R and x<Z<a that
wE)—p(@eU. Since p is 8 -convergent there exists an n& N such that
wE@)—w(E)e U for any i=n. Thus for any i=n we have ji(a(i))— p(@)e3U
proving the corollary.

Assumption 6.1. M is a 8*-lattice and p is 8*-convergent.

In this section, we write R=ENR°" and denote by /& the restriction of j
on R. Then

Proposition 6.4. R is a sublattice of M containing R. Further, fi is a
8*-convergent valuation on R and is an extension of u. If p is 8 -fundamental,
then R is a 8*-sublattice.

Proof. Inorderto see that R is a sublattice, let a;, a,& R be any elements
and put @;=a, Na,. Since Proposition 6.1 implies a,= R we need only show that
a,Ua,eE. For any U U, let Ve be such that 4V cU. Since a,€ RCE,
for each k=0, 1, 2, there exists an x,€ R with x,<a, such that u(s)—p@)EV
for any s, #¢€ R between x, and a,. Here we may assume that x,<x, Nx,. Since
R=x,Ux,=<a,Uaq, it suffices to show that u(s)— u(x, Ux,)E U for any s€ R with
xUx,<s<a,Ua, Fork=1,2, we can write a,=a, with some o, >(R), where
it may be assumed that x, < o, (?) for any i€ N. Thus we haveaoc=sN(a, U o) E
DYR) withs=sN(a, Uay)=s. Puttings,;=sNa,(7) for k=1, 2 and i€ N we have
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s E€R with x,<s5,<a,. Then x=<x Nx,=s;Ns;=a, implies p(s;Us;)—
(e U ay)= ’g {u(se) — p(x)} — {u(su: N &) —p(x Nx)} €3V for any (€N

Since u(sy; U s;;)=p(s N (ay(2) U ax(2)))= (o (2))—>p(s) as i—>oco, there exists an
n& N such that u(s,, Us,,)—up(s)eV. Hence u(s)—p(x, Ux,)e4V C U and this
proves that R is a sublattice.

Let us prove that & is a valuation or that ji(a,)+ ji(a,)= ji(a,)+ i(as) for any
a,, a,€ R and for ay=a, N a, and a;—a,Ua,. We can write a,=a, and a,=a, for
some oy, a,E2Y(R). Putting ay=a;Na, and az=a; Ua, we have a,E2Y(R)
with @,=a,= E for k=0, 1,2,and 3. Since u(a(2))+ w(ct(2))= p(ao(2))+ p(as(?))
for each 7€ N, the equality needed immediately follows from the lemma: pu(£(z))—
#(&) (i—0) for any E&3YR) such that EEE. Let us prove this. For any
U, there exists an xR with x<& such that u(s)— ()€U for any s€R
with ¥<s<E. Since the relations xNE€3YR) and xNE=xNE=x imply the
convergence u((xNE)(Z))— p(x) ((—o0) there is an nE N such that p(£(d))—
w(x U E(@))=u(x N E(G))—u(x¥)€ U for any i=n. Further x<xUE(F)<E implies
w(xU S(z’))—n’(f‘)e U so that ;L(E(i))—ii(g)e 2U for any i=n, which proves the
lemma.

To prove the §*-convergence of 7, let a= 3Y(R) be such that @< R and let
U be any. Then for each i€ N there exists an x,ER with x,<q(?) such
that p(s)— pg(a(?))€ U for any s€R with x;<s<a(i). Hence, by Lemma 1.3,
some £¢€XY(R) with é=a satisfies x,<E({))<a(i) for any i€ N. Further the
lemma proved above implies the existence of an #& N such that u(£(2))— p(@)e U
for any i=n. Thus w(£(i))—ii(a())€ U implies p(a(i))—p(@)€2U for any
t=mn, proving that j(a(7))— i@(a@)({—o) or that 7 is §*-convergent.

If u is §*-fundamental then Proposition 6.2 implies that R is a §*-sublattice
and hence the proposition holds.

_ Corollary 1. is extended to a 5" convergent valuation i on a &*-sublattice
R of M such that RCRCR"" if and only if p is 8*-fundamental. If such an
extension  on R exists then R C R and T is the restriction of .

Proof. 'This follows from Proposition 1.1 and Corollary to Lemma 6.1.

Corollary 2. If p is 8*-fundamental, then n is uniquely extended to a &*-
convergent valuation u** on R*".

Corollaries 1 and 2 to Lemma 6.2 imply that the extension 7 partly in-
herits the properties of wu:

Proposition 6.5.

1) If pis 8 -fundamental, then [ is 8~ -fundamental.

2) If M is a &-lattice, if R is a & -sublattice, and if p is 3-convergent,
then [t is S-convergent.
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If R is not a 8 -sublattice, in the above assertion 2), then # is not neces-
sarily 8~ -convergent. In fact we have

ExaMPLE 6.2. The l-group M= R is a §-lattice and R= {x|x& M and x40}
is a sublattice. Putting u(x)=sgnx we have a real-valued valuation on R which
is 8-convergent and §-fundamental. Then R=R*"=M and #0)=—1. Since

the sequence ﬁ(;lz—)zl, nE N, does not converge to #0), the valuation % is not

8™ -convergent.

7. Extension of r.i. valuations

Assumption IV. M is a 8*-lattice. u is §+-convergent and S-fundamental.

Assumption V. R is a §*-sublattice of M such that RCRCR’" and each
element of R is u-inner regular.

ExampLE 7.1. If we denote by R the set of all u-inner regular elements
in R°", then R satisfies Assumption V. (Proposition 6.4.)

ExampLE 7.2. If R=R’", then R satisfies Assumption V.
Let us denote by /i(x) the u-inner value of x& . Then we have

Proposition 7.1. 7 is a 8*-convergent and S-fundamental valuation on R
and is an extension of w.

Proof. Since 7 is the restriction of the map /& in the previous section, our
proposition follows from Propositions 6.4, 6.5, and 1.1.

Corollary 1. /i is the unique map of R into G such that p(£(5))—(E) (i—o0)
for any E€S(R) with EER.

Corollary 2. If M is a &-lattice, if Ris a 8~ -sublattice, and if u is -convergent,
then [ is 8-convergent.

Proof. This follows from Proposition 6.5.

Corollary 3. Let F be the set of all fi-outer regular elements of M. Then
F is a convex subset of M containing R. Further F contains a\Ub for any a, bEF.

Proof. This follows from the duals of Propositions 6.1 and 6.2.

Corollary 4. If M is a S-lattice and if [t is S-convergent, then the set of all
Jfi-outer regular elements in R°™ is a 8 -sublattice of M containing R.

Proof. 'This follows from the dual of Proposition 6.4.
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Assumption VI. L is a convex sublattice of M containing R and each
element of L is fi-outer regular.

ExampLE 7.3. If we denote by L the convex subset of M generated by R,
then L= {a|a€ M and p<a=gq for some p, g= R} ={a|lac M and x<a=gq for
some xE R and ¢ R} satisfies Assumption VI. (The fZ-outer regularity of ac L
follows from Corollary 3 to Proposition 7.1.)

ExampLE 7.4. If R=R*" (Example 7.2), then the set L in Example 7.3 is
the convex subset of M generated by R, namely, L= {a|ac M and x<a=y for
some x, yE R}.

ExampLE 7.5. If M is a §-lattice and if % is §-convergent, then the set
L={a|lacsM and t<a=<gq for some fi-outer regular element ¢ in R° and for
some g R} satisfies Assumption VI. (Corollaries 3 and 4 to Proposition 7.1.)

We denote by 7(a) the f-outer value of ac L. Then

Proposition 7.2. 7 is a §*-convergent map of L into G and is an extension

of i.

Proof. The dual of Corollary 2 to Lemma 6.2 implies that @ is &*-
convergent and hence the proposition holds.

Lemma 7.1. For any ac L and U€ U, there exists a p< R with a=<p such
that 7(s)—m(a)E U for any s€ L with a<s=p.

Proof. For a Ve such that 2V C U, the definition of w(a) implies the
existence of a p& R with a< p such that /i(t)—m(a)E V for any t€ R with a<t=<p.
It is easy to see that this element p satisfies the condition in the lemma.

Assumption VII. M is an r.i. lattice and R is anr.i. sublattice. Further p
is an r.i. valuation.

ExampLE 7.6. If M isan r.c. distributive lattice and if R is an r.c. sublattice,
then Assumption VII is satisfied. (Example 2.1.)

ExampLE 7.7. If M is an I-group, if R is an r.i. subsemigroup (e.g. if R is
a subgroup), and if p is a homomorphism, then Assumption VII is satisfied.
(Example 2.2.)

The following proposition, which follows from Propositions 2.8 and 2.6,
implies that the dual of Assumption IV is satisfied.

Proposition 7.3. M is a 3-lattice and u is S-convergent.

Assumption V*. R is a 8™ -sublattice of M such that RCRCR’ and each
element of R is p-outer regular.
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We denote by p(x) the #-outer value of xER.

Assumption VI*. L* is a convex sublattice of M containing R and each
element of L* is p-inner regular.

We denote by #(a) the y-inner value of ac L*.
It is easy to see the following

Proposition 7.4. L and L* are r.i. §-sublattices of M.

Lemma 7.2. If p, g R and if xER, then (¢—x),ER and (q—x),)+
#(x)=m(gUx)+MxNp).

Proof. We can write p=@ and ¢=p8 for some a, BE>(R). Putting
2;;/=(B(j)—%)a» and v(f)=z;;, for each 7, j€ N, we have an element yE3Y(R)
such that ¥(1)<B(7)) Ux<qUx< R, which implies y R. Since #(v(2))+ x(x)=
u(*O05x= VB4 ()= p((x U B)(@))+ 2((x Na)()) for any i€ N, it follows from
Corollary 1 to Proposition 7.1 that #(¥)+u(x)=&(xUq)+&xNp). Now, since
the double sequence z;; is increasing with respect to each index, Lemma 2.2

implies (¢—x),= U (B()—x),= U(u ;)= U 2,=7< R and this proves the
j=1 j=1 " i=1 i=1
lemma.

Corollary 1. If p, g= R and t= R are such that p<t<x=gq for some xR,
then *t'c R and (1) + p(t)= K p)+ i(q).

Proof. Since =7’ for some '€ 3¥(R), we havea 7=x N 7'E > *(R) such
that #7=x N #=t¢ and such that p<t<7(f)<x=<q for any i€ N. For A(2)="?7(:)*
the lemma implies M(D)ER and E\(3))+«(7(F))=/(q)+#(p) for each iEN.

Thus we have x& 3Y(R) and ?#=1( 'ﬁ (3))'= .E_Jl p7(i)i=%& R so that F(A())—
A(?t?) (i—o0). Hence the converger;(_:e /L(T(l.))‘—')_LL(t) (i—oc) implies the equality
needed.

Corollary 2. If x, yER and tER are such that x<t=<y, then ‘<R and
A(E)+ p(t)= p(x)+4(9)-

Lemma 7.3. Ifx, yeR and acM are such that x<a=<y, then, acL,
‘@S L*, and p(x)+u(y)—pi(a)+ B(@).

Proof. The relations ac L and *a’ € L* are obvious. Forany Ue U, there
exists a pER with < p=<*a’ such that pu(t)—p(*a’)€U for any t€R with
p=<t=<+a’. Similarly there is a g R with a< g=y such that #(s)—m(a)€ U for
any s€ R with a<s=<gq. Since the dual of Corollary 2 to Lemma 7.2 implies
*¢’E R we have an element t=p U *¢’E R such that p<t=<*a’ and hence p(t)—
u(*@)€U. Then, for s=*’, Corollary 2 to Lemma 7.2 implies s€ R and



222 M. TAKAHASHI

p(x)+p(y)=F(s)+p(t). Since a<s=<qg we have Zs)—ma)EU and hence
w(x)+ p(y)=m(a)+ p(*a’)+-2U for any U< U, which proves the lemma.

We put S={a|a= L and @(x)+m(a)=7(x U a)+m(x N a) for any x& L} and
S*={alae L* and p(x)+ p(@)=p(xUa)+p(xNa) for any x&L*}. Further
we denote by u°[1®"] the restriction of z[x] on S[S*].

Proposition 7.5. S is a 8*-sublattice of M such that LNS° cScCL.
Moreover p° is a 6*-convergent valuation.

Proof. 'This follows from Lemma 5.2 and its Corollary.
Proposition 7.6. It holds that RCRCS.

Proof. First for any x& R let us prove that xS or that A€3U for any
a€L, UeU and for A= pu(x)+m(a)—m(xUa)—m(xNa). SincexUa€E L there
is a peR with xUa<p such that #(s)—m(xUa)€U for any s€R with
xUa=<s<p. Since a<pthereis a g R with a<q=p such that (t)—m(a)€ U
for any te R with a<t=<gq. Further we have an re R such that xNa<r=xNgq
and #(r)—m(xNa)€ U. Then, for t="x*"%, Lemma 7.2 implies t=(¢—x),ER
and ()4 p(x)=@E(x U g)+A(r). Since xUa<xUg=<p we have ExUgq)—
m(xUa)eU. Further a=*"%*Ve <rx* VI=¢ <*N Ix*Vi=¢q implies #(t)—m(a)E U.
Thus we have A& pu(x)+ {#1)+U}—{#(xUq)+U}—{#(r)+U}=3U and
hence it is proved that RC.S. Then Proposition 7.5 implies RCLNR™"CLN
S°" .S and this proves the proposition.

In the above proof, Assumption VII is essentially used as is seen in the
following:

ExampPLE 7.8. Suppose that M is the complemented &-lattice (Example
1.1) consisting of all subsets of the set m={1, 2}. Putting p(x)=Card (x)
we have an R-valued function p defined on a sublattice R= {m, {1}, ¢} of M.
Then all assumptions but Assumption VII are satisfied for R=R=R and
L=L*=M. However, the sublattice S= {m, ¢} does not contain R.

Proposition 7.7. Let x, yE R and ac M be such that x<a=<y. Then acS
if and only if *a’= S*.

Proof. Under the assumption *a’& S* let us prove that a€.S. Let us put
ay=a, a;—a,Ua,, and a,=a,Na, for any a,&L. Then it suffices to show that
A=0 for A=7(a,)+m(a,)—7(a;)—mw(a,). Corollary 2 to Lemma 5.1 implies that
we may assume ¥<a,<y. Then x=<a@,<y and hence we can put a,'=*a,’ for
each k=1, 2, 3, and 4. Thus it follows from a,'€ S* and a,’ = L* that p(a,")+
W@ )=p(a' Na," )+ p(a, Ua)=p(as' )+ p(a,'). Now Lemma 7.3 implies
78(a)= p(x) 4 p(y)— p(a,") for each k and hence we have A=0. Dually *@’€ S*
follows from a€ S,
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Lemma 7.4. Let I be the convex subset of M generated by R and suppose
that an element a< I satisfies the conditions :

1) m(a)=m(a)

2) wlr)=pl(r) and panr)+paUn=ma)+a0) for any re(RURNL.
Then, for any U U there exist pR and q=R with p<a=<gq such that
w(s)—m)e U for any s, tel with p<s=q and p=t=q.

Proof. We can write x=a=y for some x, y=R. For a Ve such that
10V'cU we have a pE R with x< p=<a such that u(u)—p(a)EV for any uc R
with p<u=a and dually we have a g€ R with a<q=<y such that i(v)—@(@)c V
for any ve R with a=v=gq. 'ThuswehavepeR and qef\j with x<p=<a=<¢=y.
Let s, t I be such that p<s=<q and p=<¢=gq. Then p=s implies the existence
of an r&ER such that p<r=s and p(r)—u(s)EV. Likewise u(u)—ulanr)cV
for some xR with p<u=<aNr and further Z(v)—@(@aUr)EV for some ve R
with aUr=v=q. Then p=su<a<v=gq implies p(u)—p(a)eV and p(v)—
7(a)€ V and thus we have p(aNr)+m@(aUr)—p(a)—m(a)E4V. Now the con-
dition 2) implies p(aNr)+7m(@Ur)— u(a)= u(r)=p(r)E p(s)+V so that p(s)—
7(a)e5V. Dually we have z(t)— p(a)E5V and hence the condition 1) implies
w(s)—m(t)€ 10V C U, proving the lemma.

Assumption 7.1. R is a non-empty S-sublattice of M.

Proposition 7.8. R and R are r.i. S-sublattices of M. Moreover anbs R
and aUbE R for any acR and b R.

Proof. Lemma 2.3 implies that R is an r.i. §-sublattice of M and, dually,
sois R. Since b= for some B> (R), we have aN BE D (R) so that aNb=
anNBER. Dually we have aUbER.

Proposition 7.9. u and [ are 8-convergent r.i. valuations.

Proof. The 8-convergence of 7 follows from Corollary 2 to Proposition 7.1.
Suppose that p, x, g R are such that p<x=gq. Then x=£ for some £ 3(R).
Let us put 7()=(¢—&(z)), for each i€ N. Then Lemma 7.2 implies 7(s)€ R and
E(n(@))+ p(§(@)=mHq U E@)+AHER) N p)=A(g)+A(pNE)F). Further Lemma

2.1 implies 7€ 3*(R) and 7= -61 (q—E()),=(q—x),=*x"€ R so that (n(i))—

*x%) (i—>0). Since E=x and since pNE=pNx=p we have A(*x?)+ H(x)=
B(q)+(p), which proves that  is an r.i. valuation. Dually the assertion on p
holds.

Corollary. p(u)=F(u) for any uc RN R.

Now we can see that Assumptions 4.1 and 4.2 are satisfied. Let us con-
sider the sublattice R of M and the valuation % on R defined in section 4. Here
we write u for the valuation . Then
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Proposition 7.10. R is a S-sublattice of M such that RURCRCR".
Further u is a 8-convergent valuation on R and is a common extension of p and .

Proof. This follows from Propositions 4.2 and 4.4,Corollary to Lemma
4.1, and Proposition 4.5.

Proposition 7.11. If p is complete, then w is complete.

Proof. This follows from Lemma 3.1 and Proposition 4.6.
Proposition 7.12. If M is an r.c. lattice, then R is an r.c. sublattice.
Proof. This follows from Proposition 4.3.

Assumption 7.2. R is the set of all p-inner regular elements in R°*
(Example 7.1) and R is the set of all u-outer regular elements in R°".

Proposition 7.13. Let P be a §-sublattice of M such that RCPCR’ and
suppose that p is extended to a 5-convergent valuation von P. Then P is contained
in R and v is the restriction of 1.

Proof. Let us consider theset A={xUa|xeRand a=P}. Since PCR°,
Corollary to Lemma 4.1 implies that ACR°". We can write A= {a|ac P and
x=a for some xR} so that A4 is a §*-sublattice of M containing R. Hence
Corollary 1 to Proposition 6.4 implies that AC R and that the restriction of » on
A is the restriction of &. Dually the subset B={xNa|x&R and ac P} of Pis
contained in R and the map v coincides with x on B. Hence each element
acP is contained in R and, for an x&R, v(a)=v(xUa)+-»(x N a)—v(x)=
AU @)+ (e @)— p()=7@)

8. Valuations on r.c. sublattices
Assumption 8.1. M is an r.c. lattice.
For S and x° defined in the preceding section we have

Proposition 8.1. S is an r.c. S-sublattice of M and p° is a 8-convergent
valuation on S.

Proof. Proposition 5.2 implies that .S is an r.c. sublattice and hence our
proposition follows from Propositions 7.5, 2.9, and 2.6.

Corollary. It holds that R°CS. Moreover p is uniquely extended to a
3-convergent valuation p® on R® and u® is the restriction of u°.

Proof. Proposition 7.6 implies R*C.S. The uniqueness of p?® follows from
Corollary to Lemma 1.6.
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Proposition 8.2. If ac SUS* is such that x<a=<y for some x, yE R, then
ac SN S* and p’(a)=p(a).

Proof. Suppose that acS satisfies ¥x<a=<y for some x, ycR. Then
Proposition 7.7 implies *a’ S* and therefore the dual of Proposition 8.1 im-
plies a=*(*a’y’€S*. Further Lemma 7.3 implies p%(a)+p%(*@’)=p(x)+
p(¥)=p%(a)+p*("a’) so that p(a)=p%(a). Thus the proposition follows
from the duality.

Let us put S;={a|acS and ¥x<a=<y for some x, y=R} and denote
by u, the restriction of x° on S,.

If R and L are the sets stated in Example 7.4, then we see that S;=S and

Bo=p°.

Lemma 8.1. For any ac S, and for any U U there exist pc RN R® and
qe RN R with p<a=gq such that p(s)—m(t)e U for any s L* with p<s=q and
for any te L with p<t=q.

Proof. Proposition 8.2 implies that the element a satisfies the conditions
1) and 2) in Lemma 7.4 (Note that (RUR)NICRCS,). Since x<a=<y for
some ¥, yE R, we may assume that the elements pcR and ¢ R in the lemma
satisfy x<p<a=<g=<y. Then p, g= R® and hence our lemma holds.

For the valuation x® in Corollary to Proposition 8.1, we have
N A
Proposition 8.3. S;=R® and p, coincides with the completion u® of u?.

Proof. Let us show that ae .S, for any ael@. Since x=<a=<y for some
x, yE R® we have ac L. Hence it suffices to show that A(u)=7(a) for any uc L
and for A(u)=m(u U a)+@(x N a)—m(u). Forany Ue U, the assumption aeI/Q\s
implies the existence of p, g= R® with p=<a =g such that p%(s)—n?(#)e U for any
s, teR® with p<s=<q and p=<t=<gq. Putting v,=a, v,=pU(uNg), v,=v,Ua,
and v;=v, N a, we have v, L with p<v,<q. Since v;<¢=<=z for some 2 ER,
Lemma 7.1 implies the existence of an r,€ R with v,<r,<z such that 7(s)—
w(v,)eU for any seL with v;<s=<r, Then, for s;=¢Nr,€R® we have
v;<5;=q and p’(s)—7m(v;)eU. Hence p=<v,<s5;<q implies =(v;)—m(vo)E
w¥(s;))— 1’(sg)+2Uc3U. Since p, g= R*C S are such that p<a=<gq, Lemma 5.1
and its dual imply A(u)—AQu N q)=A(e)—(v:)+ () (0 € (en)+IU=
w(a)+9U. /§ince Uc is arbitrary, we have A(u):ﬁ(@\proving th/a\t ac S,
for any ac R®. It is easy to see that the relations S;CR® and po=pu? follow
from Lemma 8.1.

9. Valuations on /-groups

Assumption 9.1. M is an l-group, R is a subgroup of M, and p is a
homomorphism.



226 M. TAKAHASHI

Proposition 9.1. R°" and R*" are subsemigroups of M.

Proof. For any &, n€>Y(R) we can define an element £+7 of >3 (R) by
(E-+7)(5)=E(@)+n(). Then the identity £4-7=E&47 and Lemma 1.4 imply the
proposition.

Lemma 9.1.  Assume that R[R)] is the set of all p-inner[outer] regular elements
in R”°[R°"] (Example 7.1). Then

1) R=—R.

2) p(—x)=—p(x) for any x€R.

Proof. Let us consider the dual automorphism ¢ of the l-group M defined

by @(x)=—x. Then the set R is the inverse image g)“l(ﬁ) of the set R of all
pog@~-inner regular elementsin @(R)’"=R’". Since we can write go@ '=+ropu
for the automorphism +» of the topological group G defined by (g)=—g, the
wo@~l-inner regularity coincides with the p-inner regularity. Hence we have

R=R and this proves that R=@ (R)=—R. Further xR implies p(—x)=
(o ™)(x) = o {5y = o () = (o ) ()= — ().
Lemma 9.2. Assume that R is a S-sublattice and that R is the set of all

w-inner regular elements in R°". Then R is an r.i. sublattice and subsemigroup
of M and [ is a homomorphism.

Proof. To prove that R is a subsemigroup, let us put a=a,+a, for any
a, &, R. Since the relation ac R*" follows from Proposition 9.1 we need only
show the p-inner regularity of a. For any U U and for a Ve such that
2V c U, the p-inner regularity of a;, for each i=1, 2, implies the existence of an
x;,€R with x;=a; such that u(s;)—p(x;)eV for any s;eR with x;,=s5;=<a,.
Thus we have an element x=x,+x,& R such that x<a. Let s&R be such that
x<s<a. Since s—x,&R and since ;& RC R"" we have elements s,=(s—x,) N
a,cR* CR and s,=s—s;,cR. The inequality x;<s;<a; being easily verified

we have u(s)—p(v)EV for i=1,2. Hence u(s)—n(x)= 3] {u(s) —n(x)}

2V c U, which implies the p-inner regularity of a proving that R is a subsemi-
group. Propositions 7.8 and 7.9 imply that R is an r.i. sublattice and 7 is an
r.i. valuation, and hence Proposition 2.7 implies that % is a homomorphism.

Now we can prove Theorem 2.

Proof of Theorem 2. It is obvious that Assumptions I, II, ITI, and VII
are satisfied and Assumption IV follows from Proposition 1.1. For the sets R
and R stated in Lemma 9.1, Assumptions V and V* are satisfied. Further
Assumptions VI and VI* hold for some L and L* (Example 7.3). We may
~ assume that R is non-empty and then follow Assumptions 7.1 and 7.2. Hence
Propositions 7.10 and 7.13 imply that the sublattice R and the valuation % in
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section 7 satisfy the conditions in the theorem. If M is an r.c. lattice, then
Proposition 7.12 implies that R is an r.c. sublattice. Let us assume that M is
an [-group, that R is a subgroup of M, and that x(0)=0. It has been verified
in section 7 that Assumptions 4.1 and 4.2 are satisfied. Since Assumption 9.1
follows from Proposition 2.7, we see that Assumption 4.3 follows from Lemmas
9.1 and 9.2. In fact, for any p, g R with 0<p=gq we have g—p="'c R.
Hence Corollary to Proposition 4.7 proves that R is a subgroup. Finally the
above two lemmas and Proposition 4.8 imply that x is a homomorphism.

REMARK. In the above arguments we see that Proposition 7.11 implies the
following: If w is complete, in Theorem 2, then T is complete.

Assumption 9.2. R and R are subsemigroups of M.

ExampLE 9.1. If R=R*" (Example 7.2) and if R=R®", then Assumption
9.2 is satisfied (Proposition 9.1).

Proposition 9.2. & is a homomorphism.

Proof. For each a,e R, k=1, 2, we can write a,=a, for some a,&>Y(R).
For the element ay=a,+a,=>(R) defined in the proof of Proposition 9.1, we
have an element a,—=a&,—=a&,+®,—a,+a,cR. Hence our proposition follows
from Assumption 9.1 and Corollary 1 to Proposition 7.1.

Assumption 9.3. L and L* are subsemigroups of M.

ExampLE 9.2, If L[L*] is the convex subset of M generated by R[R]
(Example 7.3), then Assumption 9.3 is satisfied.

We put T={a|ac L and m(x+a)=p(x)+m(a) for any xL} and T*=
{alacsL* and p(x+a)=p(x)+ p(a) for any x=L*}. Further we denote by
uT[pT"] the restriction of @[x] on T[T*].

Then Proposition 5.4 implies

Proposition 9.3. T is a subsemigroup of M and u” is a homomorphism.

Further Lemma 5.3 implies

Lemma 9.3. LN>YT)cT.
Corollary. If T is a sublattice of M, then T is a 8% -sublattice.
Proposition 9.4. It holds that RCRCT.

Proof. First let us show that TCR or that m(a+x)=m(a)+ p(x)+2U for
any xR, acL, and UcU. There exists a pc R with a<p such that fi(s)—
7a)e U for any se R with a<s<p. Likewise for some g R with a+x=gq it
holds that f(t)—m(a+x)eU for any teR with at+x=<t=q. Since ¢g—xe&
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R+Rc R we have an element s=p N (g—x)< R such that a<s=<p, which implies
that f(s)—m(a)e U. Thus it follows from s+x= R and a+x=<s}x=<gq that
w(a+x) e p(s+x)+ U=p(s)+ #(x)+ U Cm(a)+ p(x)+2U, which proves that
RcCT. Hence Lemma 9.3 implies the proposition: RcRcLN3IYR)C
LN3YT)cT.

Lemma 94. An element ac L is contained in T if: for any U U there
exist pc —R and g R with p<a=<q such that p(x)eU for any xR with
0=x=q—p.

Proof. It is sufficient to show that w@(a)-+ m(b)—m(a+b)6U for any be L
and UcU. Suppose that pc —R and ge R satisfy the conditions in the
lemma. Then there exists a uc R with a< u=q and #(u)—m(a)eU. There
exists a we R with a+b=<w such that #(w')—m(a+b)e U for any w’c R with
a+b<w’'<w. Further b=(a-+b)—a<w—pe Rimplies the existence of a v& R
with b<v<w—p and #(v)—7m(b)c U. Since s=u-tve R satisfiesa+b=<wNs=w
we have FwNs)—m(a+b)eU so that m(a)+m(b)—m(a+bd)e w(u)+i(v)—
Aw N $)+3U=pa(s)—HwNs)+3U.

Now it suffices to prove that #(s)—@(wNs)e3U. Let us put c=wUs—w.
Since 2<w for some 2R we have 0<c<wUs—zeR+RcCL so that ceL.
Since ¢=0U (u+v—w)<0U(¢q—p)=g—pcR there is a teR such that
c=t=q—p and Z(t)—@(c)e U. Further 0=c=timplies the existence of an x& R
with 0=x=¢ and p(x)—@(t)eU. Thus 0=x=<t=<qg—p implies pu(x)e U and
hence it follows from we RC T that f#(s)— fi(w N )= (e U §)— i{w)=m(c+w)—
ww)=m(c)e &(t)+ U C p(x)+2U c3U, which proves the lemma.

Assumption 9.4. L=L*={a|acM and x<a=<y for some x, yER}.

ExampLE 9.3. If R and R are the sets in Example 9.1 and if L and L* are
the sets in Example 9.2, then Assumption 9.4 is satisfied. Conversely, the fol-
lowing lemma shows that these conditions are necessary under the assumption.

Lemma 9.5. R=R®" and R=R* =—R.

Proof. Assumptions V and VI imply R**cRc R " NLCR®" and dually
we have R=R* =3 (R)=—2(—R)=—2(R)=—R.

Proposition 9.5. L and T are subgroups of M.
Proof. 'This follows from Proposition 5.4.

RemaArRk. We can verify that TC S for the set S in section 7, or equi-
valently (Remark in section 5) that 7(x,)—m(x,)—7(x;)=0 for any x,& L and for
x,=x,U0, x,=x,N0. In fact, forany U U there exists ap,eR, for i=0, 1,2,
with x;<p; such that fi(s,)—7(x;)€ U for any s, R with x,<s,<p,. Putting
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si=p1 N (PoU0), s;=p, N (poN0), and sy=s,+-5,, we have x; <s; < p; so that m(x,)—
o) — ) € ) o) )+ 3U=3T.

Lemma 9.6. p(a)=—7m(—a) for any ac L.

Proof. For the dual automorphism ¢ of M and the automorphism + of G
considered in the proof of Lemma 9.1, the identity po@™ =10/ is easily verified
(see the proof of Lemma 9.1, 2)). Hence we have p(a)=(p-inner value of
a)=(po@~'-outer value of p(a))=(yrof-outer value of —a)=+(f-outer value of
—a)=—a(—a).

Corollary 1. T=T* and p"=p™.

Proof. Let a be any element of 7. Then a=L* is obvious and for any
xe L* it follows from —ae T that p(x+a)=—@(—x—a)=—5(—x)—@(—a)=
#(x)+#(a). Thus we haveT'CT* and dually 7*CT. Further ac T implies
(@)= (@)= —Ti(— a) = — wT(—a)=p7(a) 50 that uT—p .

Corollary 2. p(a)+m(b)=p"(a-+0b) for any a, b L such that a+be T.

Proof. This follows from w@(b)=m(—a+(a+b))=m(—a)+m(a+b)=
— i(a)+u"(a+b).

Lemma 9.7. For any ac T and for any Uc U there exist pc R and g= R
with p<a=q such that p(s)—um(t)€ U for any s, te L with p=<s=q and p=t=q.

Proof. Itsuffices to see that the element ac T'C L=1 satisfies the conditions
1) and 2) in Lemma 7.4 and this follows from the above two corollaries and
Proposition 9.4. In fact, for any r&(RU R)NI we have r& T=T* and aNr+
aUr=a+reT so that plaNr)+maUr)=p"(a+r)=pn"(a)+ pT(r)=r(a)+ 1(r).

Corollary. Anelement ac M is contained in T if and only if: for any U U
there exist pc R and g R with p<a=gq such that u(x)cU for any xR with
O=x=g—p.

Proof. If acT, then for any U U the elements p and ¢ in the lemma
satisfy the conditions in the corollary as is easily verified by putting s=x-p
and t=p. The converse follows from Lemma 9.4.

Proposition 9.6. T is a &-sublattice of M and u” is a §-convergent homo-
morphism.

Proof. First we show that a,=aUO&T for any acT. For any U U,
we have the elements pc R and g R stated in the above corollary. Then the
elements p,cR and ¢,CR satisfy p,<a,<q, and for any xR with
0=x=gq,—p, it follows from 0=x=q,—p.=(¢—p)—(gN0—pN0)<g—p that
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p(x)e U. Thus the corollary implies a,=T. This proves that the subgroup T
is an [-subgroup and hence Corollary to Lemma 9.3 and Proposition 2.9 imply
that T is a &-sublattice. The &-convergence of the homomorphism p” follows
from Propositions 7.2 and 2.6.

Corollary. It holds that RURCR}CT. The homomorphism p is uniquely
extended to a 3-convergent map pu® on R® and u® is the restriction of u*. Further
R® is a subgroup of M and p® is a homomorphism.

Proof. The inclusion R®*CT is a consequence of the proposition. The
uniqueness of p?® follows from Corollary to Lemma 1.6. Finally Proposition
2.11 implies that R? is a subgroup of M and thus the corollary holds.

For the homomorphism x? in the corollary we have
A A
Proposition 9.7. T=R? and p" coincides with the completion u® of u®.

AN
Proof. Letusprovethatac T forany ac R®. Foragiven U U, let VeU

be such that 6/ CU. Since ae]@ there are x, y& R® with x<a =<y such that
wd(w)—p(w)eV for any w, w'€R® with x<w=<y and x=w'<y. Since
xe R® C L* there exists a p& R with p=<x such that u(u)— u(x)€ V for any uc R
with p<u<x. Dually there exists a g R with y=<gq such that #(v)—m(y)eV
for any ve Rwithy<v=<q. Thuswehave peR and g R withp<x<a<y=q.
Hence, by Corollary to Lemma 9.7, it suffices to verify that u(r)e U for anyr& R
with 0=<r=<g—p. Suppose that an element s& R? satisfies the condition p <s=gq.
Since p=sNx thereexistsaue R withp<u=<sNxand w(u)—pu(sNx)eV. Then
p=u=ssNx=x implies p(u)—p(x)eV so that up(s)—u(sUx)=p(sNx)—
p(x)e2V. Dually, for any teR?® with p<t=<q we have p¥t)—p’(zNy)e2V.
Putting s=r-p and t=sUx we have s, t& R® with p<s=<¢=gq and hence u’(s)—
Wt N )= {u3(5)—p* (s Un)} + {w3(t)— p¥(eN )} €4V. Since x=<tNy=y im-
plies (2 N y)—p¥(x)€ V and since p(p)— pi(x)= p(p)—L(x)E V we h/a\ve w(r)=
pi(s)—pd(p)s6V cU. Thl}i it is proved that ag’ T for any acR? or that
1/3} CT. The converse TCR?® and the relation u”=pu® immediately follow from
Lemma 9.7 and thus the proposition is proved.

Proof of Theorem 1. We have seen that the uniqueness of x® follows
from Corollary to Lemma 1.6. In either case 1) or 2) we see that Assump-
tions I, II, III, IV, and VII are satisfied. Let us put R==R?*" and R=R?®", and
denote by L=L* the convex subset of M generated by R. Then Assumptions
V, V¥ VI, and VI* are satisfied (Examples 7.2, 7.3, and 7.4). In case 1),
Assumption 8.1 is satisfied and hence Corollary to Proposition 8.1 and Pro-
position 2.10 imply the theorem. In case 2), all assumptions in section 9 are
satisfied so that Corollary to Proposition 9.6 implies the theorem. Thus the
proof is completed.
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RemARk. The following problems are unsolved:

1) Can the conditions 1) and 2) in Theorem 1 be unified in a general
form: 0) M is an r.i. lattice, R is an r.i. sublattice, and y is an r.i. valuation?

2) In Theorem 2 can we say that R is an r.i. sublattice and 7 is an r.i.
valuation ?

3) Does it hold that 7=.S under the assumptions in section 9?

4) Does the valuation x5 in Proposition 8.1 become an extension of the
maximal extension, in the sense of Theorem 2, of x® when the sublattices R
and L are chosen sufficiently large?
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