
Takahashi, M.
Osaka J. Math.
15 (1978), 193-232

EXTENSION OF VALUATIONS ON
DISTRIBUTIVE LATTICES

MASAHIRO TAKAHASHI

(Received October 13, 1975)

0. Introduction

The process of extending a measure on a ring to a measure on the generated
cr-ring has been discussed by many authors. The primitive extension theorem
which is stated in terms of a non-negative real-valued set function can be gen-
eralized in two directions. One generalization is concerned with the range space
of the measure. Extension theorems in this direction are given in [9], [3],
[11], [16], [8] (the range space is a Banach space), [7] (a locally convex space),
[22], [21], [18] (an abelian topological group). Some authors ([9], [3], [16],
[7]), in the vector-valued cases, are based on the extendability principle of
uniformly continuous maps, while the Carathέodory's method is adopted by
others ([11], [22], [21], [18]) and Zorn's lemma in [8]. Among them, M. Sion
[21] proved that the monotone-convergence condition (Fox's condition) was ne-
cessary and sufficient for a group valued measure on a field to be extended to
a measure on the generated σ-field. The other type of generalization is the
abstraction of the domain of the measure. In this direction, discussions on real-
valued modulr functions (valuations) on certain types of lattices are seen in [4]
Ch. XI, [1], [12], [20]. Here we note that extension theorems of Daniell in-
tegrals of real-valued functions taking values in a Banach space [15] and in a
topological group [19] have been obtained. In reference to integrals, group valued
or some abstract valued integration theories rae seen in [24], [25], [26], [2],

Under these circumstances, the main purpose of this paper is to establish
a general process of extending a group valued valuation [10] on a sublattice of
a distributive lattice to a valuation on the generated δ-sublattice (Theorem 1).
If the lattice is relatively complemented, then the process yields a generalization
of the extension theorems in [22] and [21]. In case the lattice is an /-group
(lattice-ordered group [4]) an extension theorem of a group valued Daniell in-
tegral of /-group valued functions is obtained (the valuation is defined on a
subgroup of the /-group of all functions taking values in an /-group). To ac-
complish the process we introduce the notion of a relative inverse of an element
of the lattice by some axioms which unify the relatively complemented lattice
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theory and the /-group theory. The relative inverse is interpreted as the relative
complement in the former case and is defined in terms of the difference operation

of the group in the latter case. Here the extension process is based on the
Carathέodory's method and the monotone-convergence condition considered in
[8] and [21] plays an essential role. Finally, the maximal extension theorem in
[23] is generalized in Theorem 2 and a general completion theory is given in
section 3. The notion of completion is generalized in some extent from that

in [13] and [20].

1. d-lattices and the first extension theorem

A lattice M will be called a δ+-lattice if, for any x^My i=l,2y •••, with

upper bounds,

1) there exists U tft=sup {x^i^N},
00 00

2) x ΓI ( U #,•)= U (x Γ! xt) for any x<=M.

Dually, a lattice M is a δ~-lattice if, for any xi^M9i=ly 2, •••, with lower bounds,
oo

1*) there exists p Λ?f ==inf {tf f-|ieJV},

2*) x U ( Q *,-)= Π (x U Xi) for any #<ΞM.

If a δ+-lattice M is at the same time a δ~-lattice, then we say that M is a
δ-lattice. A δ-lattice is necessarily a distributive lattice.

A sublattice R of a δ+-lattice M is called a δ+[respectively, σ+]-sublattice if

U Xi^R for any x^R, i^Ny with upper bounds in R [respectively, M].
ί = l oo

Dually, a sublattice R of a δ~-lattice M is a δ~[σ~]-sublattice if Π x^R for any
i = l

x^R, i^N, with lower bounds in R[M], If a δ+[σ+]-sublattice R of a δ-lattice

M is also a δ~[cr~]-sublattice, then R is called a 8[σ]-sublattice of M. Obviously,

any σ[cr+, σ-~]-sublattice of a δ[δ+, δ~]-lattice M is a δ[δ+, δ~]-sublattice.
Suppose that M is a δ[δ+, δ~]-lattice and R is a subset of M. Then any

intersection of δ[δ+, δ~]-sublattices of M containing R is a δ[δ+, δ~]-sublattice
of M containing R. Hence there exists the smallest δ[δ+, δ~]-sublattice of M

containing R. This sublattice is called the δ[δ+, δ~]-sublattice of M generated
by R and is denoted by R8[R8+, R8"]. Similarly there exists the smallest
cr[σ+, σ~]-sublattice of M containing R, which is called the cr[σ+, σ~]-sublattice
of M generated by R and is denoted by jRσ[Λσ+, Rσ~].

Throughout this paper, we assume the following:

Assumption I. M is a lattice and G is a topologίcal additive (abelian) group.

Let R be a subset of M and μ a map of R into G.

Then we shall say that μ is 8+[8"]-convergent if μ(xi)->μ(x) (i->°°) for any
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, zEΞ JV, and for any x€ΞR such that #,- \ x (z'-^oo)1) [̂  j % (/__>oo)]. μ is

^-convergent if μ, is δ+-convergent and δ~ -convergent.
The map μ is called to be S+[S~]-fundamental if the sequence μ(xi)J

is fundamental (Cauchy) for any increasing [decreasing] sequence x^R,
with upper [lower] bounds in R. μ is ^-fundamental if μ is δ+-fundamental
and δ~ -fundamental.

Assume that R is a sublattice of M. Then the map μ is called a valuation
o n t f i f

for any x, y£ΞR.

EXAMPLE 1.1. Let m be a set and M the set of all subsets of m. Then M
is a complemented δ-lattice when we define the relation x^y by xCLy for each
x, y^M. A ring of subsets of m is defined to be a relatively complemented
sublattice of M containing the smallest element φ of M. Let 72 be such a
ring and μ a map of R into G. Then the following conditions are equivalent:

1) μ(x(J y)= μ(x)+ μ(y) for any x, y^R such that xΓi y=φ
2) μ is a valuation such that μ(φ)=Q.

If these conditions are satisfied and if G is separated (Hausdorff), then the

δ-convergence of μ is equivalent to the countable additivity of μ.

EXAMPLE 1.2. In the above example, suppose that m is an infinite set and
that R is the ring of all subsets x of m such that the set x or the complement
xc of x is finite. Let us assume that G is the topological group R of all real
numbers. Then

1) Let us put μ(x)=Card (x) (the number of elements in x) and μ(xc)=
— Card (x) for each finite subset xdm. If the set m is uncountable, then μ is
a δ-convergent valuation on R such that μ(φ)=0. But μ is not δ-fundamental.

2) Let us put μ(x)= 0 and μ(xc)=l for each finite subset xdm. Then μ
is a δ-fundamental valuation on R such that μ(φ)=0. But μ, is not
δ-convergent if the set m is countable.

EXAMPLE 1.3. Let E be a set and ./£ the set of all real numbers (or generally
a complete totally ordered additive group or a complete /-group). Then the
set M of all ^-valued functions defined on E is a δ-lattice under the usual

order relation. Further M is naturally considered to be an /-group and any
group homomorphism μ of an /-subgroup R of M into G is a valuation such

that μ(0)=0.

It is easy to see the following

1) This means that Xf^Xi + i for any i^N and x is the supremum U Xi of the subset
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Proposition 1.1. Let R be a sublattίce of M and μ a map of R into G.
Assume that M is a δ[δ+, 8~]-lattice and consider the conditions :

1) R is a δ[S+, S~]-sublattice and μ is 8[δ+, δ~]-convergent.
2) There exists a δ[δ+, 8~]-sublattice R of M containing R and μ is extended

to a δ[δ+, δ~]-convergent map μ of R into G.
3) μ is δ[δ+, ^-fundamental

Then it holds that 1)=Φ2)=^>3).

The following theorem asserts under some assumptions that the condition
3) in the above proposition implies the condition 2).

Theorem 1. Suppose that M is a ^-lattice and that G is a separated and
complete topologtcal additive group. Let R be a sublattice of M and μ a G-valued
^-convergent and ^-fundamental valuation on R. Then each of the following
two conditions is sufficient for μ to be extended to a G-valued ^-convergent valua-
tion μ8 on R8:

1) M is a relatively complemented lattice and R is a relatively complemented
sublattίce of M.

2) M is an l-group, R is a subgroup of M, and μ is a group homomorphism.
If μ8 exists, then it is unique. Moreover, R8 is relatively complemented in case

1), and R8 is a subgroup and μ8 is a group homomorphism in case 2).

A proof of the theorem will be stated in section 9. In this section we shall
give somemore notations and some lemmas.

We denote by Σ[Σ*] the set of all maps ξ of N into M satisfying the con-
dition: there exists an Λ^Msuch that ξ(i)^ξ(i+l)^x[x^ξ(i-\-l)^ξ(i)] for any

i^N. For each #eM and each ξ , ?7^Σ[Σ*] we define maps x U f, x Π ξ , ξ U ^7,

and £Π?7 of N into M by (xUξ)(i)=xVξ(i), (x^ξ)(i)=x^ξ(t), (ξ U >?)(*)=
ξ (i) U ij(i), and (ξ Π ι?)(0=?(0 Π ^(i), respectively, for any ie N.

For a subset A of M, we denote by Σ(^)[Σ*(^)] the set of all ?

such that ξ(i)^A for any i<=N, and by Σo(^) \Σf(A)Ί th^ set of all
[Σ*(̂ )] such that there exists an x^A with ξ(i)^x[x^ξ(i)] for any i

Then immediately we have

Lemma 1.1. If x^M and if ξ, ^Σ[Σ*L t^en # U £, Λ? Γ) ?, (? U ?,
ξΓ[ V are elements of Σ[Σ*]

Corollary. If R is a sublattίce of M and if Σx denotes one of the sets

Σ*(Φ, ΣoCR), and Σo*CR), then x U ζ,x Π ξ, ξ U ?, and ξ Π V are elements of Σ'
for any x£ϊR and any ξy

Under the assumption that M is a δ+[δ~]-lattice, we shall write 1= U ξ(i)
oo ' ί = l

[|= n ξ(ί)] for each feΣE!*] and Θ={?l?eΘ}for each ΘcΣ[Σ*]
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Then the definition of a δ+[δ~]-lattice implies

Lemma 1.2. If M is a S+[8-]-lattice, then x ( J ξ = x\Jξ, xΓ\ξ=xΓ(ξ,

lfil 9, and ̂ η==ξΓ(^for any x£ΞM and ξ,

In this section we assume the following

Assumption 1.1. M is a δ4 -lattice and R is a sublatttce of M.

Then we have

Lemma 1.3. Let a be an element of Σ(Σ(^)) Then there exists a
?eΣ(#) such that

1) ξ(i)^ a(i) for any ie N,
2) f=ff.

If, for each i^N, Xi^a(i) for some x^R, then the condition 1) can be replaced by
V) xi ̂  ξ(i) ̂  a(ι) for any ί <= N.

Proof. Since α(/)^Σ(^)> f°Γ eac^ i^N> there exists a f ^ΣC^) such that
<x(i)=ζit In case Xi^a(i) for some x^R, we can consider #t U f, in place of £,

ί
and hence it may be assumed that ξi(j)^Xi for any ye N. Putting ξ(i)= U ξk(i)

for each ie.N, we have a map f of JV into R such that £(/)^ U ξk(i+l)^ξ(i+ί)
i _ t *-1

and ?(ί)^ U CΛ= U a(k)=a(ΐ)^όl. Hence ξ is an element of Σ(^) satisfying

the condition 1) (and I7) under the additional assumption) and the condition
l^α. Let us show that cί<^%. For each i,j^N, putting /—max {i,j} we have

ξi(j)^ξt{l)£ \J ξk(l)=ξ(l)^ξ. This implies α(i)=?, ̂ ! for each ίeJV and

hence S^?.

Lemma 1.4.

Proof. Corollary to Lemma 1.1. and Lemma 1.2 imply that

is a sublattice of M. Suppose that a sequence tf,€ΞΣC^)[Σo(^)L ί€= N> has an

upper bound in M[Σo(̂ )] Putting a(i)= U ak we have an element a of
_ _ k = l

Hence Lemma 1.3 implies the existence of a f

such that ξ=a and therefore U α, = U α(/)=σ=

This implies that Σ(̂ )[Σo(̂ )] ίs a σ+[δ+] -sublattice of M containing R so that

Λσ+ cΣ(^)[^δ+ cΣo(^)] The reverse inclusion is obvious.

Corollary 1. The following conditions are equivalent:
1) R is a σ+ -sublattice of M.
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2)

3)
Corollary 2. The following conditions are equivalent:
1) Λ is a δ+-sublattice of M.

2) lOTc/Z.

3) ΣM*)=*

Assumption 1.2. M w α ^-lattice.

Lemma 1.5. For any x^R8 there exist a,b^R such that a^

Proof. This follows from the fact that the set {x\x^M and a^x^b for
some a, b^R} is a δ-sublattice of M containing R.

Lemma 1.6. If a subset A of M contains R, ΣoO^X an^ Σ*G^)> tnen ̂
contains R8.

Proof. Let us put S={S\Sc:R8 and Σo(S)UΣ?(S)c,S}. Considering
^4 Γ)Λδ in place of A, we can assume that RdA^S. For the intersection *50 of
all S's such that RdS^S it is easy to see that RdS0<=S. For any ̂ eΛ8 let
us show that the set S(x)= {y\y^R8, x\Jy^S09 and xf]y^S0} is an element
of S. For any ̂ Σ0(S(#)) it follows from S(x)dR8 that η^R8. Since ^^J0

for some jo ̂  S(x) we have Λ U η, x Π ^^Σoί^o)- Hence Λ? U ^^Λ? U 17 e Σoί^o) c ̂

and # Γ) 3? G So, implying that ^ e S(x). Thus we have Σo(^(^)) c *5( :χι) and dually

Σfί'S'W) c s(x)> which Prove that s(x) ^S Ift^R, then we have R c S(ί) so
that S0C.S(t). Hence any Λ eiSΌ satisfies x&S(t) and therefore t^S(x). Thus,
for any #eS0, we have RdS(x) so that ίSΌc^Λ?). This implies that S0 is a
sublattice of M. Since S0^S implies that S0 is a δ-sublattice containing Λ we
have R8dSQdAy which proves the lemma.

Corollary. Assume that G is separated. If ^-convergent maps μ and v of R8

into G are such that μ(x)=v(x) for any xEίR, then it holds that μ=v.

Proof. It is easily verified that the subset A= {x\x^R8 and μ(x)= v(x)}
of M satisfies the condition in the lemma. Hence R8d.A and this implies μ=v.

Note that the above corollary implies the uniqueness of the valuation μ8 in
Theorem 1.

2. r.i. lattices and the second extension theorem

Suppose that for each α, x, b^M with a ̂  x ̂  b an element axb of M is defined
subject to the conditions:

1) a^x^y^b implies a^ay*<Zaxb<Zb,
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2) a^x^y^b implies aχy=°(*y*)b and xyb=a(axy)b,
3) x"yχχvy=y,

for each ay x, y, b^M. Then we say that M is a relatively inversίble lattice or

an r.i. lattice and that axb is the relative inverse of x in the interval [a, b].

If M is an r.i. lattice, then a sublattice R of M is called to be relatively ίn-
versίble or r.i. if axb^R for any a, x, b^R with a^x^b.

If M is an r.i. lattice and if R is an r.i. sublattice of M, then a map μ of R

into G is called an r.i. valuation if

μ(a) + μ(b) = μ(x)+μ(aXb)

for any α, #, i£Ξi? with flrS^r^i. The above condition 3) implies that any r.i.

valuation, is a valuation.

EXAMPLE 2.1. Suppose that M is an r.c. (an abbreviation for relatively
complemented) distributive lattice. Let us denote by axb the relative complement

of x in the interval [a, b] for each α, x, bEΞM with a^x^b. Then M is an

r.i. lattice. In fact, the condition 2) is verified as follows: putting p=axy and

q=xyb we have pΓ\q=(pΓ\y)Γ\q=pΓ\(yΓ\q)=pΓ[x=a and dually p U q=b so
that p=aqb and q=apb. A sublattice .R of M is r.i., by definition, if and only if

r.c.. If R is an r.i. sublattice of M, then a map μ of Λ into G is an r.i.valuation

if and only if μ is a valuation.

We note that the condition 3) in the definition of an r.i. lattice implies

the uniqueness of the manner in which an r.c. distributive lattice is considered

to be an r.i. lattice.

EXAMPLE 2.2. Suppose that M is an /-group and put aχb=a-\-b — x for each
α, x, έ£ΞM with a^x^b. Then M is an r.i. lattice as is verified by simple
computations. Let R be an /-subgroup of M. Then R is an r.i. sublattice
of M and any group homomorphism μ of R into G is an r.i. valuation.

If M is an r.c. distributive lattice or an /-group, then we shall consider

Mto be an r.i. lattice in the manners in Examples 2.1 and 2.2, respectively.
Then we have

Theorem 2. Suppose that M is an r.i. ^-lattice and that G is a separated and

complete topological additive group. Let R be an r.i. ^-sublattice of M and μ a G-

valued ^-convergent r.i. valuation on R. Then there exists a ^-sublattice R of M

such that RdRdRσ and μ is extended to a G-valued ^-convergent valuation ~μ on
R satisfying the condition: if P is a ^-sublattice of M such that RdPciR* and if a

G-valued ^-convergent valuation v on P is an extension of μy then P is contained
in R and v is the restriction of ~μ. Moreover, if M is an r.c. lattice, then R is
an r.c. sublattice of M. If M is an l-group, if R is a subgroup of M, and if μ(0)=0,

then R is a subgroup of M and ~μ is a group homomorphism.
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A proof of the theorem will be given in section 9. In this section we shall
state some properties of r.i. lattices.

Assumption 2.1. M is an r.i. lattice.

Proposition 2.1. For any a, b^M, the map x-*axb is an involutive dual
automorphism of the interval [a, b\.

Proof. It suffices to show that a(axb)b=χ for each x^[a, b] and this follows
from x^xbb=a(axb)b=aax^x.

Corollary. For any a, x, b^M with a^x^b, the map s-*axs is an isomor-
phism of [x, b] onto [a, axb] and the map t->txb is an isomorphism of \a, x] onto [axb, b].

Proof. Since the map s-*ax* is the composite map of two dual isomorphisms
s-*p=xsb andp-*apb, this map is an isomorphism. Dually, so is the map t-*txb.

Let us write (x— y)e=
e{]yyy u* for each e, xy y^M. Then,

Proposition 2.2. For any e, x,

2) (x-y\Je)β=(x\Je-y).=(x-y).\Je,

2*) (χ-χΓίy).=(χ-y)**.=χn(χ-y).
Proof. 1) follows immediately from the definition of (x— y)e. 2) follows

from (x _ y \Je) =en(yve)(y Uβ) ( y u β ) u*=β(vUβyu*u β=β n >(β n vu βyu*u«=β ny u(* u*>

=(x\Je—y)β='nyy<y»x>"<yυβ>=βnyyyΌ*\J nyyyυβ=(x—y).\Je. 2*) is the dual of 2).

Note that the condition 1) in the proposition is written in an equivalent
form:

1 ') (x—y)e= (x U y—y)β= (χ—y)yt\ „
or generally

l/x) (x—y)e=(x'—y)e' f°r anY ^> x'^M such that y^\e^e'^e and
x\Jy.

Corollary 1. If ey x} y^M are such that e^x, then

(χ-y)e = (χ-χ n (y u *))β = (x-(x n y) u *). .
Proof. e^x implies (x— y)e=(x U e— y)e=(x— y U e)e=(x—y U e)xn,=

(x—x Π (y U e))e and dually we have (x— y)e=(χ— (x f| y) U e)e.

Corollary 2. For any e, x,y^M, it holds that

(x U y) Π e^(x—y),^x \J(yΓ\e)

Proof. Putting f=yfte and z=x\Jf we have (χ—y)e=(χ—y)f=

(x—y Vf)f=(z—y)f=(z—y)g(\f=z Π (x— y)f^z= x U (y Π e) and dually (x U y) Γi
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The above corollary gives an inequality (x U y) Π % ̂  x U (y Π #) f or x, y, z e M.
If x^ Z the reverse inequality immediately follows and this shows that M is a
modular lattice. Further we have (see [4], p. 36, Exercise 3)

Proposition 2.3. M is a distributive lattice.

Proof. For *, y, z <Ξ M it holds that (x U y) Γi * ̂  {* U (y Π #)} Π

« ̂ έ for # = {(x U j) Π *} U (x Π j>) and i=(y Π *) U (* Π #) U (# (Ί y). Since the
reverse is easily seen we have a=b, and dually α*=ό* for α*=(#U y) Π

{# U (# Γl j)} and i*=(y U s) Π (̂  U x) Π (ΛJ U y). The modularity implies β=α*
and hence b=b*, which proves that M is distributive ([4], p. 32, Theorem 8).

Proposition 2.4. Let e, x^Mbe such that e^x. Then the mapy->(x—y)e

is a lattice (and hence order) dual homomorphiswP of M into itself.

Proof. Corollary 1 to Proposition 2.2 implies that the map is the composite
map of the homomorphism y-*z=χ Π (y U e) and the dual isomorphism

z->(x— z)e=
ezx.

Proposition 2.5.
1) For any eyy^.My the map x-*(x— y)e is a lattice endomorphίsm of M.
2) For any x, yEϊM, the map e-*(x — y)e is a lattice endomorphism of M.

Proof. 1) The map is the composite of the homomorphism x-*s=
and the isomorphism s-+e*yys. 2) is the dual of 1).

Obviously, a sublattice R of M is r.i. if and only if (x—y)e^R for any

e, x9 y^R.
Here we state two propositions concerning with r.i. valuations.

Proposition 2.6. Suppose that μ is an r.i. valuation on an r.i. sublattice
R of M. Then

1) μ is ^-convergent if μ is 8+ -convergent or δ~ -convergent.
2) μ is ^-fundamental if μ is 8+ -fundamental or δ~ -fundamental.

Proof. Let x^R, ίeΛΓ, be any decreasing sequence with a lower bound
and let us put b=x1. Since a^x^b, for yi=

aχi

b we have an increasing
sequence y{EiR, i€ΞN, with an upper bound b€ΞR such that μ(a)-\-μ(b)—

μ(xΐ)+μ(yi) for any i^N. 2) If μ is δ+-fundamental, then the sequence
i&N, is fundamental and so is the sequence μ(xi)=μ(a)-\-μ(b)— μ(j>t ), ί

which implies that μ is δ~ -fundamental. 1) Suppose that μ is δ+-convergent

and Λ?f I x (i-»°°) for some x^R. Since a^*x^b, Proposition 2.1 implies that

1) This means that (x—yι (Jy2)e=(χ—yι)e Π (x—y2)e and (χ—yι Π y2)e=(x—yι)e U (x—y^e for any
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Vi ΐ y (ί-*°°) fory=axb^R. Hence the sequence μ(yt), i^N, converges to μ(y)

so that the sequence μ(#f ), ieΛΓ, to μ(a)+μ(b)—μ(y)=μ(x), which implies that
μ, is δ~-convergent. Thus the duality implies the proposition.

Proposition 2.7. Assume that M is an l-group and that an r.i. sublattice R

of Mis a subsemigroup containing 0. Then, a map μ of R into G is a homomorphism

if and only if μ is an r.i. valuation such that μ(0)=0.

Proof. Let us assume that μ is an r.i. valuation such that μ(0)=0. Then
μ(a)+μ(b)=μ(t)+μ(atb) for any a, t, b^R such that a^t^b. Considering one

of a, £, and b to be 0, we have the following lemma: if p, q^R satisfy one of the

three conditions p^Q^q, Q^pΠq, and p\Jq^Q, then μ(p+q)=μ(p)+μ(q)
(In case, for example, Q^pΓ\q, put a=Q, t=p, and b=p+q.) For each x^R,
putting x+=x\JO and χ_=χ(^0 we have x+, x.^R and the lemma implies

Let x and y be any elements of R and put z=x-\-y. Then we are to prove

that μ(z)=μ(x)+μ(y) Since x+, #_, y+, y_^R, for u=x++y_ and v=y++X-
we have u, v^R and the above lemma implies μ(u)=μ(x+)+μ(y-) and μ(v)=

μ(y+)+μ(x_). Since M+i;=^+y=«, since M=^UO+y_=(ic+<y-)Ujy-^
(x+y) U 0=#+, and since v^z+, it follows that z/++?;+=wUO+?;UO=(w+^UO)

U (v U 0)— {(u+v) U «} U (v U O)=(M+U)+ U (« U ϋ)=*+ U (M U v)=z+. Hence the
above lemma implies μ(z+)=μ(u+)+μ(v+). Further U-+v_=(u+v)—(u++v+)=

z—z+=z_ implies μ(z_)=μ(u_)-\-μ(v_). Thus we have μ(z)=μ(z+)+μ(z_)=

μ(u+) + μ(v+) + μ(u_) + μ(v_) = μ(u) + μ(v) = μ(x+ )+ μ(y~) +μ(y+)+μ(%-) =
μ(x)+μ(y), proving that μ is a homomorphism. The converse is obvious and
hence the proposition holds.

Proposition 2.8. If M is a ^-lattice or a S~ -lattice, then M is a ΰ-lattice.

Proof. Let, for example, M be a δ+-lattice. Suppose that a sequence

A^ eM, i^Ny has a lower bound aQ^M and let Λ^Mbe any. Putting a=x Π #0
and b=x\Jxλ we have a^x^b and a^x{ for each i^N. For each t^M such

that t<^x it follows from a < Z b f t ( t \ J X i ) ^ b that aSa(*n(iU^-))^i. Since M

is a δ+-lattice, we have an element p(t)= U β(6 Π (ί U Λ?, ))* of M such that
t =1 ^

a^p(t)ίίb. Proposition 2.1 and the inequality t^x imply ap(t)b= Γ\(bΓ\(t\J Λ?, ))=

Π ( £ U f f , ). This shows the existence of Π Xi=ap(a)b^M. Further ΛJ^δ
t = l / = 1

implies b Π (x U #f )=# U (b Π Λ?, ) and similarly # n (^ U xt)=a U (έ Π x{)=b Π Λ?, so

that />(Λ?)= U a(x\J(bΓ\Xi))b= 0 (e^ne(6n^-)*)=βΛ?*Π/>(«)• Thus we have
ί = 1 ί = 1

Γl (x U Λ?f.)=β/>(Λ?)*=β(βΛ;* Π p(a))b=x U ap(a)b=x U ( (Ί Λ?f ). This proves that M is
ι=l f = 1

a δ~-lattice and hence a δ-lattice.
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Assumption 2.2. M is a ^-lattice.

Lemma 2.1. For any ey xy y^M with e^x and for any y^M, i^N,

1) y= U ji implies (χ—y)e= n (x—yl).,
i=l ί=l

00 OO

2) y= Π yι implies (x—y)e= U (x—yύ.
ΐ = 1 ί=l

Proof. Put p(t)=x Π (t U e) for each £ e M. Then Assumption 2.2 implies
00 00 00 00

jp( U 3;,-)= U p(yi) and />( Γl Vi)= Π p(Vi) Hence the argument in the proof of
»=1 t = l »=1 ί=l

Proposition 2.4 proves the lemma.

Lemma 2.2. For any ey x,yyt^M and for any t^My i^N,

1) t= U t{ implies (t-y\= G (ί.—y). αiw/ (^-^)f= U (^-j),,.,
i=l ί=l ι=l

00 00 00

2) ί-= n ί, ίmp/ώί (t-y)e= n (ί, — j'X ^^ (^-^)ί= n (χ—y)tiί = l ί = 1 i = 1
00

Proof. 2) Since we can write t= n ί, for a bounded sequence $,-=£1 Π th
ι = l

OO

/e^V, it follows from the equality y U t= p (j U ^) and Corollary to Proposition

2.1 that (ί— j;)β= n (if— j)e. Since Proposition 2.5 implies (ίf — y)e==(t1— y)ef]
00 00

(if— y)e we have (ί— j;)e= n (*»— v)e The latter equality (jc— 30*= Π (Λ?— y)ί is
ι = l ί = 1

easily seen. 1) follows dually.

Proposition 2.9. An r.i. sublattice R of M is a δ-sublattice if R is a δ+-
sublattίce or a 8~ -sublattice.

Proof. We may assume that R is a δ~ -sublattice. Then it suffices to show
that ξ<=R for any £eΣoC#) (Corollary 2 to Lemma 1.4). The sequence
ξ(i), ί^N, has a lower bound a=ξ(l)^R and an upper bound b^R. Since

OO

aξ(i)b^Rί our assumption implies the existence of x= Π aξ(i)b^R. Thus we
co t = 1

have ξ= U ξ(i)=axb<=R.

Proposition 2.10. 7/ Λ w an r.i. sublattice of M, then R8 is an r.i. sublattice.

Proof. 1) For the subset A= {y \y <=R* and (x— y)e^R8 for any x, e<=R}
of M, let us show that R*dA. Since RdA follows immediately, it suffices, by

Lemma 1.6, to prove that η^A for any ?7^ΣoC^) U Σ*(^) The duality implies
that we may assume ^^ΣoC^)- The relation η^R8 follows from AdR8. For
any x,e^Ry putting x'=x U e we have e^x'^R. Since the sequence (x'— η(i))e^

R8,i^N, has a lower bound ηΓ\e^R8, Lemma 2.1 implies (x'— η)e=;

Π (xf — η(i))eEίR8. Hence Proposition 2.2 and its Corollary 2 imply (x — η)e=
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= {(x-η),Ve} (}(x\lη)=(x'-η)eΐ\(x\Jη}<=ΞR\ proving
that η<=A. 2) For each j, e<=Rs and for B= {x\x<=R8 and (x—y)e^R8} it

holds that ΣoC8) U Σ?(£)<=β. In fact, for any f eΣoCB)E*CB)] it is obvious
that ζ^R8. Since the sequence (£(/)— j^^Λ8, ieJV, has an upper bound

ξ\Jy<=R8[a lower bound yΓ}e<^R8], Lemma 2.2 implies (f— j;)β= 0 (ξ(ϊ)—y)e

[= n (£(*) —y)e] e Λδ, proving that f e 5. Dually we have : 2*) For each x, y e jRδ

and for C= {e\e<=R8 and (Λ-yXelP} it holds that Σo(C)UΣ?(Cl)<=C'. 3) If
y^R8 and if £^72, then 1) implies that the set B in 2) contains Λ and hence 2)
implies that R8dB. Hence, for each x, y^R8, the set C in 2*) contains R so
that ΛδcC. This implies that (#— y)e^R8 for any jc, y, e^R8 or that Λδ is an
r.i. sublattice.

Proposition 2.11. If M is an l-group and if R is an l-subgroup of M, then
R8 is a subgroup of M.

Proof. 1) For any x^R and for A= {y \y^R8 and x—y^R8} let us show
that R8dA. For any ?7^Σo(^) we have η^R8 and ^^y0 for some y0^R.
Since x— y0^RdR8 is a lower bound of the sequence x—η(i)^R*, i^N, it

CO _

follows that x—rj— Π (x— η(i))^R8. Thus we have η^A and dually η'^A for
'

any ^^Σ*^)- It is obvious that RdA and hence Lemma 1.6 implies that
R8dA. 2) For any y^R8 it follows from 1) that R is contained in

and x—y^R8}. Further we have *ΣQ(B)\J*Σ$(B)c:B so that
R8d.B and this implies the proposition.

Lemma 2.3. If R is an r.i. sublattice of M and if a δ4 -sublattice R of M is
such that R8~ dRciR**, then R is an r.i. S-sublattice of M.

Proof. It is sufficient to show that z=(x— y)e belongs to R for any e,x,y^R

with e^x. Since £c/?σ+=ΣCR) there exist ξ' ij, £<ΞΣ(#) such that le=x,
η=y, and 8=e. For ξ=ξ' U £ we have a ?^Σ(^) such that f =!/ U 8=x U e=Λ;
and such that B(k)^ξ(K) for any k^N. For the sequence zk=(ξ(K)—η(K))ζ(k)^R,

Proposition 2.5 and Corollary 2 to Proposition 2.2 imply zk^

>7(Λ))8(1)^| (l)n£(l)elZ. Let us put f(/)= Π zk for each 'eΛ''. Then
*=y

ζ(j)^R8~dR and ^(7— l)^ζ'(</)^^.^f(y)U£(y)=|(y)^Λ?e^, which imply
CO

For ί^f" we have (f(t)— ̂ )8ω^(?(/)— ̂ )8(i)= Π (ξ(k)—y),w ^
oo * = ̂ 'oo

ϊ Π(#—97(^))e::=:(Λ;—U^(A))β=5r. Hence

U ξ(j)=ξ^% so that #= U (?(ί)~Λ^^^^ Thus we have z=ξ€
;=t »=1

and this proves the lemma.
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3. Completion of valuations

Throughout this paper we denote by V the set of all symmetric neigh-
bourhoods of

Assumption 3.1. R is a sublattice of M and μ is a valuation on R.

Let us denote by R the set of all a^M satisfying the condition: for any
there exist x, y^R with x ̂ a ̂ y such that μ(s)—μ(t)^U for any
with x^s^y and x^t^y.

It is easily seen that the part "μ(s)—μ(t)^ U for any s, t^R with x^s^y
and x<^t?ζy" in the above condition can be replaced by each of "μ(s)—μ(x)& U

for any s^R with x<*s^y" and "μ(s)—μ(y)^U for any s^R with x<^s^y".

Proposition 3.1. Let R be the set of alla^M satisfying the condition: there
exist x, y^R with x^a^y such that μ(x)=μ(s)=μ(y) for any s^R with x^s ^y.
Then it holds that RdRc:&. If G is separated and satisfies the first condition of
countabίlity , if M is a ^-lattice and if R is a δ-sublattice of M, then it holds that
#=A

Proof. The relation RdRdR being obvious, it suffices to show under

the additional conditions that a^R for any a^R. Let {U^i^N} be a coun-
table base of the system of neighbourhoods of O^G. Then for each ί^. N there
exist xh y^R with x^a^yi such that μ(s)—μ(t)^Ui for any s, t^R with

oo

Xi^s^y{ and x^t^y^ Since R is a δ-sublattice we have x= U x{^R and
oo

y= pi y^R with x^a^y. Then for any s^R with x<^s^y we have μ(s)=

μ(x), which implies that aEϊR.

The following two examples show that the relation R=R in the above

proposition not necessarily holds if R is not a δ-sublattice or if G fails to satisfy
the first condition of countability.

EXAMPLE 3.1. The /-group M of all real- valued functions on a fixed
interval E=[a, b] in the real line R is a δ-lattice (Example 1.3) and the set R
of all continuous functions in M is an /-subgroup of M. Putting G=R and
denoting by μ(f) the integral (in the usual sense) of f^R over E we have a
δ-convergent valuation μ on R. Then R coincides with R while R is the set
of all Riemann-integrable functions on E.

EXAMPLE 3.2. Suppose that the set m in Example 1.1 is uncountable and
let R be the ring of all subsets x of m such that x or xc is countable. Then R
is a δ-sublattice of M. Let G be the topological group of all real-valued func-
tions on m with the weak topology and let us denote by μ(x) the characteristic
function of x€ΞR. Then μ is a δ-convergent valuation on R and it is easy to
see that R=R^=M=R.
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REMARK. If we replace the topology of G with the discrete one, then the
set R in Proposition 3.1 coincides with R. Hence some properties of R are
derived from those of K. For example the following proposition implies that
R is a sublattice of M.

Proposition 3.2. R is a sublattice of M containing R.

Proof. Let al9 a2 e R and U e V be any elements. Then, for ί= 1 , 2, there
exist xhy^R with xi^ai^yi such that μ(s)—μ(t)^U for any 5, Z^jR with

Xi^s^yt and x^t^y^ For ^=^0^2 and J^JΊ Π 3>2> let us prove that
μ(u)—μ(x)^2U for any we/? with x^u^y. It follows from wll^e/? and

Xi^uΌxi^yi that μ(w)— μ(w Γ\Xι)=μ(u \JxJ- μ(x1)G U. Since e/Π^i^^R is
such that x^*uΓ[Xι^y, similarly we have μ(u f| Xi) — μ((u Π x\) Γ\ #2) ̂  f^ Thus
it is proved that μ(u)—μ(x)=μ(u)—μ((uΓ[Xι)Γ\X2)^2U. Since the elements
x, y^R satisfy x^al{\a2iίy, that which is proved above implies al{\a2^.R
Dually we have a± U «2e R for any al9 a2^R and this proves the proposition.

We say that the valuation μ is complete if R=R.

Lemma 3.1. Assume that M is a §+ -lattice and that R and R are δ+-
sub lattices of M such that R(Σ.R<^.Rσ+. If μ is complete and extended to a valua-
tion μ on R, then μ is complete.

Λ

Proof. We are to prove that a^R for any a^R. First let us show that

xf\a^R for any x^R. For any U^^U the assumption a^R implies the
existence of u, v^R with u^a^v such that μ(s)—μ(t)^U for any s, t ̂ R with

and u^t^v. We can write u=cί for some ct^ΣJZ and hence it

follows from x Π a e Σ0(Λ) that Λ Π W=Λ; Π a e Λ. Likewise Λ Π v e 1? and further
we have #n#^# ΠflίS#0^ Letί$ e/2be such that Λ?nw^ί, ̂ ^Π^for /=!, 2.
Putting ^=^11^ we have t^R with u^t^v so that μ(t^—μ(t^)^U. Hence

it follows from μ(ίf )+/^tt)=/^jf Uw)+/^Jf n^ that A&(JI)""
μ(s2)=F>(tι)—p>(t2)<^U. Thus it is proved that tfΓlfleJ?^ for any x<=R.
Now the relation a e ̂  is proved as follows. There exists av^R such that α ̂  v
and we can write »ef for some ?eΣ( ̂ ) Since

implies ^Π?^Σo(^) we have α=αΠf e5.

A map μ of R into G is called a completion of ^ if : for any a^R and for
any t/e^ there exist xy y^R with Λ ^α^j; such that μ(s)— μ(a)^ U for any

with

Assumption 3.2. G is separated and complete.

Proposition 3.3. There uniquely exists a completion μ of μ. Moreover μ
is a valuation and is an extension of μ.

Proof. Suppose that a completion μ of μ exists. The uniqueness of μ and



EXTENSION OF VALUATIONS ON DISTRIBUTIVE LATTICES 207

the fact that β is an extension of μ immediately follow from the assumption that
G is separated. Let us show that β is a valuation. Let aly a2^& and t/ecU
be any elements. Then, for /=!, 2, there exist xίy y^R with x^a^yi such
that μ(s)—μ(t)^U for any s, t^R with x^s^y^ and x^t^y^ Here we

assert that μ(u)—μ(alΓ\a2)^5U for any u^R with xλ ^\x2^u^yl ΠjV In fact>
we have μ(u)— μ(x1 Γ)#2)^2[/ as is seen in the proof of Proposition 3.2. Since

x\ Π #2^#ι n^^Λ nj>2 the definition of μ, implies the existence of a u0^R such

that Λ?! Π #2 ̂  u0 ̂  JΊ Π J>2

 and μ(uo) — β(aι Π #2) <Ξ t^ Since μ(w0) — μ(xl Π #2) ̂  2 £7
we have μ(w) — μ(aλ Π^ί^^C/, which implies that our assertion is true. Dually

we have μ(v) —μ(a1\Ja2)^5U for any v e R with xl U ̂ 2 ̂  ̂  ̂  Ji U ^2 Hence it

follows that μ,(«! Π #2) + A(^ι U a^ e ̂ (̂  Π #2) + A&(ΛI U #2) + 1 0 ̂ = ̂ (̂ 0 + ̂ (̂ 2) +
10C7. Since, for i=l,2, μ(si)—μ(ai)^U for some i,-eJf? with x^s^yi and
since μ(si)—μ(xi)^U we have μ(xi)—μ(aί)^2U. Thus it is proved that

Aί^in^+Aί^iU^ί^Aί^O+Aί^+l^^ f°r anY aly Ot^ft. and any t/e^U,
which proves that μ, is a valuation.

Now it suffices to show the existence of μ,. For each aZΞK we have a
directed set Λ(<2)= {^|ΛJ^|? and x^a} and hence a directed sequence μ(x)y

ΛJ^Λ(α), in G. This sequence is easily seen to be fundamental and hence con-
verges to an element μ(ά) of G. Thus we can define a map μ of R into G. Let
0eJ? and C/e^ be any elements. Then for a Feΐ/ such that 2FcC7 there
exist xlyy&R with #ι^#fgj> such that μ(s)— μ(t)^V for any s, Zel? with
Λ ̂ ί^j; and x^t^y. Further there exists ^2

e^with #25=|0such that μ(x')—
μ(ά) e V for any xf ^R with #2 =S Λ;' ̂  α. Putting x= xλ U Λ^2 we have x, y e R with

tffjaigj and, for any s^R with #5^5^;y, μ(s)— μ(a)= {M5)~~ A6(Λ;)} +
{^(^)— A(^)} &2VdU. Hence μ is a completion of μ and this completes the
proof.

The completion of μ will be denoted by μ.

EXAMPLE 3.3. 1) Proposition 3.1 implies that Lebesgue measure (re-
stricted on the ring of the sets of measure finite) is the completion (in our sense)
of Borel measure.

2) If μ is the valuation in Example 3.1, then //,(/) means the Riemann
integral of f€=R over E. In general, n-dimensional Riemann integral is
obtained as the completion of the integral of continuous functions.

3) For the valuation μ in Example 3.2, μ(x) means the characteristic
function of x^R=M.

Lemma 3.2. For any a^R and for any U^V there exist x,yξΞRwith
x^a ̂ y such that μ(u)—μ(v)^U for any u, v^R with x<^u^y and x^v^y.

Proof, For aV^V such that 3Fc [/, there are x, y ̂ R with x^a^y such
that μ(s) — μ(t)£ΞV ίor any s, t£ΞR with x ̂ s ̂ y and x^t^y. Then for any
u^R with x^u^y^ i= 1, 2, there exists an s{^R such that x^s^y and
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μ(si)-μ(ui) e V. Thus we have β(ul)-μ(u2)= - {μ(ίι)— A(MI

+ {μ(sι)—μ(s2)} ^3Fc [7, proving the lemma.

Proposition 3.4. μ is complete.

Proof. It suffices to prove that a^R for any a^R. For any t/e'U, let
Fe^U be such that W C U. Then there exist ul9 u2^R with ul^a^u2 such
that μ(p)—β(ul}^V for any p^P. with u^p^u2. For ι=l,2, Lemma 3.2
implies the existence of xh y^R with x^u^y^ such that μ(q)—μ(Ui)^V for
any <7e$ with x^q-^y^ Thus we have ,̂ y2^R with

Let $e/? be such that ff^fS^ Foru=iUwie$ it follows from x1

that μ(*)— μ(v)=μ(sΓ\u1)— μ(u^)^V. This implies μ(ΛΊ)— μ(uλ) e Fas a special
case. Further X2^v\ju2^y2 implies μ(v)—μ(vΓ}ι>i2)—β(vUu2)—μ(u2)^V.
Finally u1^vΓ\u2^u2 implies μ(vΓ\u2)— μ(u^)^V and hence we have μ(s)—

μ(x1)^4Vc:U. Thus it is proved that tf e A

Proposition 3.5. If M is a §+ -lattice, if R is a S+-sublattice, and if μ is δ+-
convergent, then R is a S+-sublatΐice and μ is 8+ -convergent.

Proof. For any a ^Σo(^)> it suffices to prove 1) a e /? and 2) μ(a(ί)}-> μ(cί)
(/-* oo ). For any C7 e V let Z70 e ̂  be such that 5U0dU and Z7, e ΐ/ such that
2C/ tcC/ ί_1 for each ίeJV. Since ^^Λ for some #ej?, we have a ^eΛ with
α^2" such that μ(t)—μ(ά)^UQ for any £e.R with a^t^z. For each ίe^V,
Lemma 3.2 implies the existence of x^y^R with Xi^a(i)^yi^z such that
μ(u)—μ(v)^Ui for any w, v^R with x^u^yi and Λ ̂ ϊ ^y,. We may assume

CO 00

for each ίe^V. For x= U Λ?, and y= U v, we have Λ?, j 'el? with
ί=l i=l

Let ί0e/? be such that ΛJ^ίo^j;. Putting si=sQ\J y^ y2\J ••• U^,
we have st e/? for ί=0, 1, 2, . Since ^ f j (ί->oo) implies μ(Si)-^μ(y) (i-^00),

there exists an we JV such that μ(sm)— μ(y)^ Z70 Since tf/^-i ny, ̂ y, implies

M .̂ -i)— M^)=M^-i)— A^(ίί-ι U jO=M*. -ι Π ̂ t)~ At(jί) e Ui it follows that /z(ί0)-

μ(y)= ΣJ {̂ (̂ -ι)- (̂̂  )} + MO-My)} e Σ ̂  + U0C22UQc: U. Hence it is
ί=l ι=l

proved that 1) a^P.. To prove 2), we may assume that a=cί. Then ^<Ξj><^

implies μ(y)— μ(cί)^. U0. If we put s0=x the above argument implies μ(x)—

μ(y) e 2 C70. Since Λ:t | ^ (^^ °° ) there exists an n GΞ .ZV such that μ(Xi) — μ(x) ^ C/0

for any i^n. Then, for any i^n, μ(a(i))—μ(xi)^UiC.U0 implies μ(a(i))—
Uy proving 2).

Corollary. If M is a ΰ-lattice, if R is a 8-sublattice, and if μ is ^-convergent,
then R is a S-sublattice and μ is ^-convergent.

Proposition 3.6. If M is an r.i. lattice, if R is an r.i. sublattίce, and if μ
is an r.i. valuation, then R is an r.i. sublattice and μ is an r.i. valuation.
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Proof. Let a0, aly and a2 be elements of R such that aQ^a1^a2 and let us
put a=aoa1

a2. For any C/e<U, let V^V be such that 7Vd U. Then, for

i=0, 1, and 2, there exist xi9 y{^R with x^a^yf such that μ(u)—μ(v)^ V for
any w, ^ejx with x^u^yi and Λ?, ̂ ϋ^yt . Since aQ^al^a2 we may assume
that tf0^#! and y^y2. Putting jc=Ό<y1yιu*2 and y= Ww^z we have #, y£ΞR
with Λ? ̂  Vy/i u «2= «o(Ίn *2β/ι u «2)3Ί u β2== «0(yi n ̂  ̂  ̂ a^=a9 and hence the

duality implies tfrgfl^j. Suppose that s, £eί? are such that x<Ls^y and

For s/=*osy*&R we have ^ \Jx2)
y*=*o(*oy1

yι[ί**Y*^s'. Dually
)̂*1 and hence s'Γ\yι^xo(yQΓ\Xι)Xl. Now, for any r^R with

^ follows from y2^>yι(yl\Jx2)
y2^r\Jy^y^ that ^^^U^^

and hence μ(r^yl)-μ(r)=μ(y1)-μ(r(jy1)=μ(^(r[jy1)
yή~

Dually we have μ(x!\Jrf)~μ(rf)^V for any r'^R with r'^

*°CVo Π Xi)*1. Considering r and r' to be sf and ί' Π yίy respectively, for u=xl U

(s'nyjGR we have M«)-MO= W^iUr'J-M^'W + M^nyι)-μ(r)} ^2V.
This relation and the one μ(u)—μ(x1)^V9 which follows from x^u^y^ imply

(s')^μ(xι)+3V Likewise it follows that μ(x0)+μ(y2)—
hence μ(s)—μ(t)^6Vc: U. This proves that a^R, imply-

ing that is an r.i. sublattice.
In the above argument, to prove that μ is an r.i. valuation, we may assume

that the element s^R satisfies the condition μ(s)—μ(ά)^V. Then we have
μ(a0)+μ(a2)—μ(ά)—μ(al)^μ(x0)+μ(y2)—μ(s)—μ(x1)+4 Vc:7Vc: U, which im-
plies that β is an r.i. valuation and this completes the proof.

Proposition 3.7. If M is an l-group, if R is a subgroup, and if μ is a homo-
morphίsm, then R is a subgroup and μ is a homomorphism.

Proof. Let alya2^R and Ue°U be any elements. Then, for /= 1, 2, there
are x^y^R with x^a^yi such that μ(s)—μ(t)^U for any s, t^R with

and x^t-^y^ For χ=χl—y2 and y—yλ—x2 we have x, y ̂ R with

^y. Let s^R be such that x<*s^y and put ^=^^(^+^2) and
s2=s1—s. Then it is easily verified that s{^R and x^s^yf for i=l, 2. Hence

we have μ(s)—μ(x)= {μ(s1) — μ(xι)} — {At(^)~^(^2)} G2C7 and this proves that
a^—a^ίi or that J? is a subgroup of M. Further Propositions 2.7 and 3.6 imply

that μ is a homomorphism.

4. A common extension of two valuations

In this section we shall give some lemmas to prove Theorem 2.

Assumption 4.1. M is a distributive lattice and R is a subset of M. Fur-
ther R and R are sublattices of M.

We denote by R the set of all a^M such that xΓia^R and x\Ja^R for
any x<=R. Then
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Proposition 4.1. R is a sublattίce of M.

Proof. If a, b<=R, then x<=R implies χΓ\(aΓ\b)= (xΓ}a)Γ((xΓ[b)<=R and

x U (a Π b)=(x U a) Π (x U b)<^ R so that aΓ{b<=R. Hence the duality implies that
R is a sublattice.

Proposition 4.2. 7/M ώ α δ+[δ~, S]-lattice and if R and R are δ+[δ~, δ]-

sublattices, then R is a δ+[δ", S]-sublattίce.

Proof. Let a be any element of Σo(^) Then for any x^R we have

Hence x Π a=x Γ\a<E.R andx(Ja=x\Ja<=R
so that oί^.R. This proves that R is a δ+-sublattice.

Lemma 4.1. If M is a ^-lattice, if R is a σ+ -sublattice, and if R is a δ+-
sublattice containing R, then R is a σ+ -sublattice.

Proof. Let a^^Σ(R) be any element. Then, for any x^R,

R and x (Ja(i)^x\Ja<=M imply xΓia^Σ^R) and x\Ja^^(R) so that

x Π a=χ n a^R and x U cc^R. This implies ά^R, proving the lemma.

Corollary. Assume that M is an r.i. ̂ -lattice and that R is a non-empty r.i.
S-sublattice. If R=Rσ~ and if R=Rσ+, then #=#σ.

Proof. Lemma 2.3 implies that R and R are δ-sublattices and hence our
lemma that I? is a σ-sublattice. Obviously RdR and therefore RσdR. For

the converse, let a^R be any element. Since x\Ja^R=^(R) for some

we have a fe ]>](/?) such that x\Ja=ξ. Since aΠξ(i) ^Ra.Rσ for each i<=N

we have αΠfeΣOR0) so that a^anl^^n^e^0". This implies
hence ^=Λ".

Proposition 4.3. If M is an r.c. lattice and if R and R are r.c. sublattices,
then R is an r.c. sublattice.

Proof. Suppose that a e R and b^M are such that aΓ\b^R and a\Jb^R.

Then for any x<=R we have (x Π a) Π (x ΓΊ *)=Λ? Π (α Π i) eΛ and (Λ: Π a) U (ΛJ Π b)=
x Π (α U b)<=R. Since Λ is r.c., x Γ\a<=R implies x Γ(b<=R. Dually x\Jb<=Rfor
any # eJ?, and hence b^R.

Assumption 4.2. R is non-empty and contained in RΓϊR. If x^R, then

x\Ja^Rfor any a^R and sΓ\b^Rfor any b^R. μ and μ are valuations on R

and R, respectively, such that μ(u)=μ(u) for any u^RΓiR.

Proposition 4.4. It holds that R \jRdR. Further there uniquely exists a
valuation ~μ on R such that jz is a common extension of μ and μ.

Proof. The first assertion is easily verified. Let x be a fixed element of R



EXTENSION OF VALUATIONS ON DISTRIBUTIVE LATTICES 211

and let us put jz(a)=μ(xΓ}a)-\-μ(x\Ja)— μ(x) for each a^R. Then we have a
map ~μ of R into G. If a,b^Ry then 'μ(a\Jb)~i-μ(x)=μ(xΓ[(a\Jb))-\-

μ(x U (a U ft)) = μ((x ΓI 0) U (x Π ft)) + jδ((Λ? U 0) U (* U ft)) and τ*(α Γi ft) + #(*)=

μ((* Π α) Π (* n ft))+/*((* U a) n (x U ft)) so that μ(a U ft)+/z(α Π 6)+ 2^)=
{μ (x Π *)+ g (x n ft)} + {#* U a)+μ(x U ft)} = {μ(a)+ μ(x)} + {μ(b)+ μ(x)} Γ This
proves that /z is a valuation. For any £€=/? it follows from #U£€=J?n J? that
-μ(c)=μ(x Γ\c)+ μ(x U 0— μ(x)= μ(c) Hence -μ is an extension of μ and, dually,
of μ. Thus the existence of ~μ is proved and the uniqueness is obvious.

We denote by ~μ the valuation in the above proposition.

Proposition 4.5. If μ and μ are δ+[δ~, ^-convergent, then ~μ is δ+[δ"J> δ]-

canvergent.

Proof. Let a^Σί^K) be such that a^R. Then for an x^R we have

with xf}a=xP(a<=R and x\Ja&J£(S) with
This implies -μ(a(i))= μ((x Π α)(/))+yδ((Λ; U a)(i))—μ(x)-*μ(x

,̂(,%ι)= (̂̂ ) as i-^oo and therefore /£ is δ+-convergent.

Proposition 4.6. T/" />t αwrf yS are complete, then ~μ is complete.
_A. _

Proof. For any a^R, we are to prove that a^R or that xΓ\a^R and

Λ U^^^ for any x^R. For any U^^, there exist w, ί ^.Rwithw^β^z; such
that jz(s)—jz(t)^U for any s, ΐ^R with u^s^v and u^t^v. Thus we have

^^R with ^Πw^^Πα^^n^. Suppose that i,-^-R are such that
^Si^xf}v for ί=l, 2. Since SiΓ\u=xf}u we have μ(si)='μ(si)= μ(xΓ{u)+

Si U u)—-μ(u) and hence it follows from u^s{ U w^^ that μ(sι)— μ(s2)='/z(s1 U &)—
.̂ Hence the completeness of μ, implies tffltf^J? and dually

Assumption 4.3. M is an l-group and R contains 0. R is a subsemigroup
such that R=—R and such that q—p^Rfor any p, q^R with

Proposition 4.7. It holds that R=R+R.

Proof. For any a^R it follows from a.=0(~]a^R and a+— 0\Ja^R that
a_Jt-a+^R-}-R, which proves that RdR+R. Conversely let us show that

for any s^R and t^R with r=s+t. Let x^R be any element. Since

s_, s+y ty and — X- are elements of Jf?, for ρ=—s, and <?— ̂ >U ($++*— x~) we
^Λ with 0^^)^^ so that jR3^—^=OU(ί+ί—^-)=^-Ur—Λ?_. Since

x_ ̂ R we have Λ?_ U r=(q— p)+%- ̂ R and hence x U *"=# U (x~ (Jr)^R. Dually
xΓ\r£ΞR and hence r€ΞR.

Corollary. R is a subgroup of M.

Proposition 4.8. If μ is a homomorphίsm such that μ(— x)=— μ(x) for any
, then ~μ is a homomorphism.
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Proof. We note that μ also is a homomorphsim. If α, a'^R and
b,b'<=ΞR are such that a+b=a'+b', then {μ(a)+ μ(b)} - {μ(a')+ μ(b')} =
{μ(a)+μ(-b')}-{μ(af)+μ(-b)} = μ(a—br)-μ(af--b)=Q. Hence a map v of

R=R+~R into G is defined by ι>(fl+δ)==μ(0)+/*(*) for atΞ R and i<Ξ #. It is
obvious that v is a homomorphism and hence a valuation. Further OeJRD J?
implies that v is an extension of μ and /£. Hence v=jz and this proves the pro-
position.

5. The set of "measurable" elements

Assumption 5.1. Mis a modular lattice and L is a sublattice ofM. Further
μ is a map of L into G.

Let us put S={a\a^L and μ(x)-}- μ(a)= μ(x \J a)+ μ(x Γ( a) for any
and denote by μs the restriction of μ on S. Then

Lemma 5.1. Let a be an element of L and put Δ(x)=μ(x U a)+ μ(x ΓΊ a)—
μ(x) for each x^L. Then Δ(x Π v)= Δ(x) for any x^L and v^S such that a^v.

Proof. Since v^Sy for y=χf}v we have μ(x)-\-μ(v)= μ(x\Jv)-\-μ(y).
Further the modularity implies μ(x\Ja)-\-μ(v)=μ((x(Ja)\Jv)+μ((x\Ja)Γ\v)=
μ(x(Jv)-\-μ(y\Ja). Hence μ(x\Ja)— μ(x)= μ(y \J a)— μ(y) and thus it follows
from x Π tf— y (Ί a that Δ(x)= Δ(y)= Δ(x Π v).

Corollary 1. Suppose that a^L and v^S are such that a^v. Then,
if and only if μ(x)-\- μ(ά)= μ(x U a)+μ(x Π a) for any x^L with

Proof. If the latter condition is satisfied, the lemma implies Δ(y)=
Δ(yΓ\v)=μ(a) for any j>eL and hence

Corollary 2. Suppose that a^L and u} v e S are such that u^a^v. Then,
if and only if μ(x)+μ(a)=μ(x(Ja)-\-μ(xΓ\a)for any x^L with

Proof. Suppose the latter condition is satisfied. Then the dual of the
lemma implies Δ(x)=Δ(u\Jx)=μ(a) for any x^L with x^v and hence Corol-
lary 1 implies a&S.

Proposition 5.1. S is a sublattice of M and μs is a valuation.

Proof. Let us show that a Π b e S for any a, b^S. By Corollary 1 to
Lemma 5.1, it suffices to prove that μ(x)-\-μ(aΠb)=μ(x\J(aΓib))+μ(xΓ\a) for
any x^L such that x^b. Since b^S we have μ(ά) -\-μ(b)=μ(a\Jb)+μ(aΓib)
and, by the modularity, μ(x\Ja)+μ(b)=μ(a\Jb)-}-μ(x)J(aΓ\b)). Hence the
relation needed follows from μ(x)-{-μ(ά)=μ(x\Jά)-}-μ(xΓ(ά). Thus we have
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and hence the duality implies that S is a sublattice. It is obvious that
μs is a valuation.

Proposition 5.2. If M is an r.c. distributive lattice and if L is an r.c.

sublattice, then S is an r.c. sublattice of M.

Proof. Suppose that a^L and b^S are such that aΓ\b^S and a\
Then it is sufficient to prove that a^S or that Δ=0 for Δ= μ(x)-\- μ(a)—

μ(x U a)—μ(x Π a) with an arbitrary x^L. The relations μ(x)+ μ(b)= μ(x U δ)+
μ(xΓ\b) and μ(ά)+μ(b)=μ(a\Jb)+μ(aΓ\b) imply Δ^Δo+Δifor Δ0=μ(x\Jb)+

μ(a U b)—μ(x Π ά)—μ(b)+μ(x [Ί # Π b)—μ(x \Ja\Jb) and Δ,1=μ(x Π i)+ μ(# Γ) i)—
Since a\Jb<=S implies

and since

μ(xΓ\aΓ(b) we have Δ0=0 and dually Ax— 0. Hence Δ=0 and this proves the
proposition.

Lemma 5.2. Let us assume that G is separated, that M is a 8+ -lattice, and
CO

that μ is δ+ -convergent. Then, for any a{^S, i^N, with U a~a^L, it holds

that

Proof. The sequence may be assumed to be increasing. If x^L, then

implies μ(x)+ μ(ai)= μ(x U ai)+μ(x Π a{). Since α, f «, x U a{ ,\ x U β, and

t t ^Π^ as /-»°°, the δ+-convergence of μ, implies
and hence

Corollary. Under the assumptions in the lemma, if L is a §+ -sublattice,
then S is a ^-sublattice of M and μs is a ^-convergent valuation.

Proposition 5.3. If G is separated, if M is an r.c. ^-lattice, if L is convex^,
and if μ is δ-convergenΐ, then S is an r.c. ^-sublattice of M and μs is a 8-

convergent valuation.

Proof. Since L is an r.c. δ-sublattice, our proposition follows from Pro-
position 5.2 and Corollary to Lemma 5.2.

Assumption 5.2. M is an l-group and L is a subsemigroup. Further OeL

and μ(0)=0.

We write T— {a\a^L and μ(x+a)=μ(x)-\-μ(a) for any x^L} and denote
by μτ the restriction of μ on T.

Proposition 5.4. T is a subsemigroup of M containing 0 and μτ is a homo-
morphism. If L is a subgroup, then T is a subgroup of M.

1) A subset A of a (partially) ordered set K is convex [4] if x^A for any α,b^A and x&K with
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Proof. If a and b are elements of Γ, then for any x^L we have

which implies that a+b^T or that T is a subsemigroup. Further μ(Q)=0
implies Oe T and it is obvious that μτ is a homomorphism. Let us assume that

L is a subgroup. Then it suffices to show that — a^ T for any a^T. For any

x^L it follows from μ(x)=μ((x— a)-}-a)=μ(x— a)+μ(a) that μ(x— ά)=μ(x)—

μ(ά). Considering x to be 0 we have μ(—ά)=—μ(a) and hence, for any x^L,
μ(x-\-(—a))=μ(x—a)=μ(x)—μ(ά)=μ(x)-}-μ(—a) so that —a^T.

Lemma 5.3. If G is separated and if μ is 8+ -convergent, then αe Tfor any
CO

increasing sequence a^T, ieJV, with U a~

Proof. For any x^L, the relation μ(x-{-ai)= μ(x)+μ(ai) yields, when/

tends to oo, the equality μ(x-\-a)=μ(x)-\-μ(ά) which proves that a^T.

REMARK. Under the assumption that L is a subgroup, the following rela-

tion between the sets S and T can be verified: a+b^S for any a^S and

This implies that the following three conditions are equivalent: 1)

2) 0<EΞS, 3) μ(x)=μ(x\Jθ)+μ(xΓ\0) for any x^L.

6. Extension of d+-convergent valuations

Assumption II. R is a sublattice of M and μ is a valuation on R.

We say that an element a^Mis μ-inner regular [μ-outer regular] if it satisfies
the condition: for any U^V there exists an x^R with x^a [a^x] such that
μ(s)—μ(x)^U for any s^R with x ̂ s^a [a^s ^x]. Obviously, the part

"μ(s)—μ(x)GU [a^s^x]"mΆyberephcedby "μ(s)— μ(t)^U for any ί, t^R
with x^s^a and x^t^a [a^s ^x and a^t^x]".

Let us denote by E, in this section, the set of all μ-inner regular elements
of M. Then we have

Proposition 6.1. It holds that Rd&dE. Further a Γ) b^Efor any a,b<=E.

Proof. The relation Rd&dE is obvious. Let aly a2^E and U^V be

any elements. Then there exists an x^Ry for each £=1,2, with tf^β, such

that μ(s) — μ(Xi) e C7 for any s^R with #f ̂  s ̂  Λ f . Thus we have x1Γlx2^R with

ΛΊn# 2^ βιΠβ 2 Let s^R be such that x1ΓiX2'^
s^aιΓ\a2 Since ^^^Uί^^i,

for ί'— x1(~]s^R we have μ(s)~ μ(s')= μ(Xι(Js)— μ($ι)G. U. Similarly

Xi Π x2ίίs'^aι Π «2 implies μ(s')—μ(xι Π Λ:2)
:=/^(^/)~'//'(Λ:2 Π ̂ ')e U. Hence

μ(s)— μ(xι n^2)^2?7, which proves that a1Πa2^E.

The set E is not necessarily a sublattice as is seen in the following

EXAMPLE 6.1. Suppose that m=2Γ(=the set of all integers) in Example
1.1. Let R be the ring of all finite symmetric subsets of m and μ the valuation
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defined by μ(x)=Card (x)^R=Gfor each x^R. Then the intervals a=(—°°, 0]
and i=[0, oo) in Z are elements of E although a\Jb=m does not belong to E.

Proposition 6.2. If μ is S+-fundamental, then E is a convex subset of M.
The converse holds under the assumption that M is a δ4-lattice and μ is 8+-
convergent.

Proof. It suffices to show a contradiction under each of the following two
conditions:

1) μ is δ+-fundamental and E is not convex.
2) M is a δ+-lattice and E is convex, μ is δ+-convergent and not δ+-

fundamental.
First let us prove a lemma: for some C/e^ there exists an increasing sequence

i^Nj with an upper bound c^E such taht μ(xi+1)—μ(xi)^U for any
If 1) is the case, there are elements α, c^E and όeM such that b&E

and a^b^c. Since x^a^b for some x^R, our lemma follows from the fact
that b&E. In case 2), μ is not δ+-fundamental and hence we have an increasing
sequence #/ e/2, i^N, with an upper bound y^R such that the sequence μ(#t'),

, is not fundamental. It is easy to see that some subsequence x
00

Γ, of the sequence and the element c= U #,-, which lies between xl9

satisfy the condition in the lemma. Thus the lemma is proved with, in case 2),

the additional condition c= U #f . Let Ve V be such that 2Vc f7. Then ce£
» = 1

implies the existence of an x^R with x^c such that /^(ί)—μ(t)^V for any
s, t^R between # and c. Since ^ is δ+-fundamental (in case 1)) or since μ is

CO

δ+-convergent and U (xΓ\Xi)=xΓ\c=x^R (in case 2)), the sequence μ(xΓ(xi)y
i = l

i^N, is fundamental. Hence there exists an n^N such that μ(xΓ\xM+ι)—
μ(x Π ^«) ̂  V Since Λ; U Λ?, G Jf?, ί. e ̂ V, are such that ΛJ ̂  Λ? U #, ̂  c we have
M*»+i)—M^»)= {̂ (̂  Π^+1)—MΛ Π**)} + {/^(Λ?Uxn + l)—μ(xUΛ?W)} e2Fc C7 and
this is a contradiction.

Lemma 6.1. Let E0 be the set of all a^M such that
1) x^a for some x^R,
2) if a is an upper bound of an increasing sequence x^R, i^N, then the

sequence μ(Xi), i^N, is fundamental.
Then it holds that E0dE.

Proof. Let a^E0be such that a^ΞE. Then some C/e^U satisfies the con-
dition: for any x^R with x^a there exists an x'^R such that x^x'^a and
μ(xr)—μ(x)& U. Thus the condition 1) implies the existence of elements XiEΞR,
i^iN, such that Xi^x^i^a and μ(xi+l)—μ(x{)^'U for any i^N. This contra-
dicts the condition 2).
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Corollary. If M is a S+-lattice, if R is a S+-sublattice of M such that
Rc:RdRσ+, and if μ is extended to a δ+ -convergent map jz of R into Gy then
it holds that RdE. If, further, G is separated and if a δ4 -convergent map ~μ of R
into G is an extension of μ, then ~μ= μ.

Proof. It is sufficient, for the first assertion, to prove that each element
a^R satisfies the conditions 1) and 2) in the lemma. 1) being obvious, suppose
that a is an upper bound of an increasing sequence x^R, i^N. Then our as-

oo _

sumptions imply x= U x^R and μ(xt)— jz(Xi)^>jz(x) as /->oo so that the
i = l

sequence μ(xl), ίeΛΓ, is fundamental. Thus it is proved that RdE0c:E. The

second assertion immediately follows from R c J?σ+ = TV R] .

REMARK. The set E0 in the above lemma is obviously a convex subset of
M such that aΓ\b^E0 for any #, b^EQ. Further it can be verified that the
following conditions are equivalent: 1) RdE0, 2) E0=E, 3) μ is δ+-fundamental.

Assumption III. G is separated and complete.

Then immediately we have

Proposition 6.3. If a£ΞM is μ-ίnner\puter\ regular, then there uniquely
exists an element g^G with the property: for any U^V there is an x^R with
x<^a [a^x] such that μ(s)—g^ U for any s^R with x^s^

For a μ-inner [outer] regular element a^M, the element g^G in the pro-
position will be called the μ-inner value [μ-ouΐer value] of a.

Let us define a map μ of E into G by assigning the μ-inner value μ(ά) to
each a^E. Then μ is an extension of μ and hence of μ.

Lemma 6.2. If a^^Σ^(E) and if the sequence α(z'), i^N, has a lower bound
x<=R, then for any U^V there exists a ξ^J£*(R) such that x^ξ(i)^a(i) and
such that μ(ξ(i))—μ(a(i))^Ufor anyί^N.

Proof. Let UQ= U and C7, e V, i e N, be such that 2J7f C 17,.̂ . Then the
definition of μ(a(i)) implies the existence of a y{^R with x^yi^a(i) such that
μ(s)— μ(a(i))^Ui+1 for any s^R with y^s^aψ). Note that any s^R with

I

y^s^aίi) satisfies μ(s)—μ(yl)^2Ui+lc:Ui Now putting ξ(i)=χi= f} y we
y=ι

have a ξ^*Σ*(R) such that x^ξ(i)^yi^a(i). Hence it suffices to prove that
μ(xi)—μ(a(i))^U for any i^N. Let us write Ai(z)=μ(xi U z)—μ(xt) for each

z^R. Then we can prove by induction the following: Δt(#)e 2 C7
'for any z^R with z^a(i). The case i=l is proved by Δ1(z)=μ(y1\Jz)—

U1 which follows from ι^yι\Jz^aί. In case z^2, we see that



EXTENSION OF VALUATIONS ON DISTRIBUTIVE LATTICES 217

Δf (*) = μ(z) — μ(xi Π *) = {μ(z) - μ(xi-ί Π *)} + {μfa-i Π z) - μ(yέ Π *, -ι Π *)} =

Δ, -ι(*)+ {μ(s)—μ(yi)} for s=yt U fa-i Π z). Since j, <^<;j>t U *.^α(i), the rela-
i-l

tion z^a(i) ̂  cφ'— 1) and the assumption for induction imply Δf (#) ̂ Σ C/y+ ί/, =
ί >=1

Σ t^ > which completes the induction. In particular, x^y^aii) implies

μ(yi)—μ(Xi)=Δi(yi)& Σ Uj. The definition of y{ implies μ(yi)—μ(a(i))^Ui+l
j=1 i

and thus we have μ(xi)—μ(a(i))^ Σ U,+ Ui+1c:UQ= U proving the lemma.
y=ι ;

Corollary 1. If μ is δ~ -fundamental, then μ is S~ -fundamental.

Proof. Let α^Σ*(^) be any element. Then the lemma implies that for
any U^V there exists a f eΣί(Λ) such that μ(ξ(i))—μ(a(i))^U for any i
The assumption that μ is δ "-fundamental implies that the sequence μ(ξ(i))> i

is fundamental, and therefore so is the sequence μ(a(i))> i

Corollary 2. If M is a δ~ -lattice, if R is a S'-sublattice, and if μ is δ~-
convergent, then μ is 8~ -convergent.

Proof. Let a<=^*(E) be such that oί^E and C/e^U be any. Then there
exists an x^R with x^a such that μ(s)—μ(cί)^U for any s^R with x^s ̂ a.

Hence the lemma implies the existence of a ξ ̂ Σ*(^) sucn tnat x^ξ(i)^a(i)
and μ(ξ(i))—fl(a(i))^ U for any feΛΓ. It follows from ξ(ΞR andx^ξ^a that
μ(%)—μ(cί)^U. Since μ, is δ~ -convergent there exists an n^N such that
μ(ξ(i))—μ(ξ)<= U for any i^n. Thus for any /^w we have μ(a(i))—μ(ά)^3U

proving the corollary.

Assumption 6.1. M is # 8+-lattice and μ is δ+ -convergent.

In this section, we write R=EΓ\Rσ+ and denote by μ the restriction of μ
on R. Then

Proposition 6.4. R is a sublattice of M containing R. Further, μ is a
8+ -convergent valuation on R and is an extension of μ. If μ is 8+ -fundamental,
then R is a 8+ -sublattice.

Proof. In order to see that R is a sublattice, let alya2^R be any elements
and put a^=al Π a2. Since Proposition 6.1 implies a^R we need only show that
aλ U a2^E. For any C/eΉ, let V^V be such that 4Fc U. Since ak<=RdE,

for each k=Q, 1, 2, there exists an xk^R with xk^ak such that μ(s)— μ(t)^V
for any s, t^R between #Λ and βΛ. Here we may assume that XQ^XI Π #2 Since

ΛBΛ?! U #2^^! U αz it suffices to show that μ(s)— μ(Xi \Jx2)^U for any ί^J? with
x\ U ̂ ^^^^i U a2. For Λ= 1, 2, we can write ak=oίk with some αΛ^Σ(^)> where
it may be assumed that xk ̂  αΛ(ί) for any ίe Λ". Thus we have a σ=ί Π (#ι U «2) ̂

Σ(̂ ) with σ=s Π ( î U 02)= s Putting ski=s Π αΛ(ί) for k= 1 , 2 and ie Λ^ we have
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with xk^ski^ak. Then #0=^ιΠ#2^% Π%^fl0 implies μ-(%U%)—

μ(Xl U x2)= Σ {μ(ski)-μ(xk)} — {μ(*ii Π S2i)—μ(x1 Π x2)} e W for any i<EΞ ΛΓ.

Since A6(ίιίΌ%)=^(jn(αι(θUα2(0))=Mσ(0)"*At(ί) as *-*°°» there exists an
n^N such that μ(sln U £2«)— μ(s)^ V. Hence μ(s)—μ(xι \Jx2)^4rVdU and this
proves that R is a sublattice.

Let us prove that μ is a valuation or that μ(a1)+μ(a2)= μ(aQ)+μ(a3) for any

al9 a2^R and for α0— a1 Π #2 and tf3=tfi U a2. We can write #!=#! and a2=a2 for

some tfj, cfc^ΣCR)- Putting a0=a1Γ\a2 and α3=αιUα2 we have αΛeΣCR)
with ak=ah^Efoτ k=Q, 1, 2, and 3. Since μ(a1(i))+ μ(a2(i))= μ(a0(i))+ μ(a3(i))
for each ίe ̂ V, the equality needed immediately follows from the lemma : μ(ξ(i))^»

μ(ζ) (ί-»oo) for any ξ^^Σl(R) such that le£. Let us prove this. For any

, there exists an x^R with x^ξ such that μ(s)—μ(ζ)^ U for any

with Λ?^ί^|. Since the relations xΓ\ξ^^(R) and Λ?Πf=^n?=^ imply the
convergence μ((x Γ\ ξ)(ϊ))-> μ(x) (/->o°) there is an n^N such that μ(ξ(t)}—
μ(x U ?(ι)) = μ(# n ?(i)) — μ(#) e Z7 for any i^n. Further x^x\J ξ(ι) ̂  i implies
M*U £(/))— μ(H)<=Uso that //,(£(/))— ̂ (I)e2[/for any /^w, which proves the
lemma.

To prove the δ+-convergence of μ, let a^*Σ(R) be such that a^R and let
U^yj be any. Then for each i^N there exists an x^R with ^^o:(i) such

that μ(s)— μ(a(i))^U for any i^.R with Λ?f ̂ ί^α(ί) Hence, by Lemma 1.3,

some £^Σ(^) with ξ=a satisfies xi^ξ(ί)'^a(ί) for any ίeJV. Further the

lemma proved above implies the existence of an n^ N such that μ(ξ(ϊ))—μ(&)^ U
for any ί^n. Thus μ(ξ(i))—jϊ(a(i))<=U implies ft(a(ί))—μ(a)^2U for any

z^/z, proving that μ(a(i))->μ(a)(i-*°°) or that /& is δ+ -convergent.
If μ, is δ+-fundamental then Proposition 6.2 implies that R is a δ+-sublattice

and hence the proposition holds.

Corollary 1. μ is extended to a ^convergent valuation p on a 8+-sublattice
R of M such that RaRdR^ if and only if μ is 8+ -fundamental. If such an

extension jz on R exists then RdR and ~μ is the restriction of μ.

Proof. This follows from Proposition 1.1 and Corollary to Lemma 6.1.

Corollary 2. If μ is S+ -fundamental, then μ is uniquely extended to a δ+-

convergent valuation μ8+ on R8+.

Corollaries 1 and 2 to Lemma 6.2 imply that the extension μ partly in-

herits the properties of μ :

Proposition 6.5.
1) If μ is S~ -fundamental, then μ is S~ -fundamental.
2) If M is a ^-lattice, if R is a S~ -sublattice, and if μ is ^-convergent,

then μ is ^-convergent.
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If R is not a δ~-sublattice, in the above assertion 2), then μ is not neces-
sarily δ~ -convergent. In fact we have

EXAMPLE 6.2. The /-group M=R is a δ-lattice and R= {x\x^M and #Φ 0}
is a sublattice. Putting μ(x)=sgnx we have a real-valued valuation on R which
is δ-convergent and δ-fundamental. Then R=R*+=M and μ(Q)= — 1. Since

the sequence μ( — )=1> n^N, does not converge to μ(0)y the valuation /£ is not

δ~ -convergent.

7. Extension of r.i. valuations

Assumption IV. M is a δ4 -lattice, μ is δ+ -convergent and ^-fundamental.

Assumption V. R is a 8+ -sublattice of M such that RciR^R^ and each
element of R is μ-inner regular.

EXAMPLE 7.1. If we denote by R the set of all μ-inner regular elements
in R**, then R satisfies Assumption V. (Proposition 6.4.)

EXAMPLE 7.2. If R=R8+

y then R satisfies Assumption V.

Let us denote by μ(x) the μ-inner value of x^R. Then we have

Proposition 7.1. μ is a ^-convergent and ^-fundamental valuation on R
and is an extension of μ.

Proof. Since μ is the restriction of the map μ in the previous section, our
proposition follows from Propositions 6.4, 6.5, and 1.1.

Corollary 1. μ is the unique map of R into G such that μ(ζ(i))-^Pt^) (i-*°°)
for any ξ^^(R) with ξ^R.

Corollary 2. If M is a ^-lattice, ifRisa8~ -sublattice, and if μ is ^-convergent,
then μ is ^-convergent.

Proof. This follows from Proposition 6.5.

Corollary 3. Let F be the set of all μ-outer regular elements of M. Then
F is a convex subset of M containing R. Further F contains a\Jb for any ay b^F.

Proof. This follows from the duals of Propositions 6.1 and 6.2.

Corollary 4. If M is a ^-lattice and if μ is ^-convergent, then the set of all
μ-outer regular elements in Rσ is a δ~ -sublattice of M containing R.

Proof. This follows from the dual of Proposition 6.4.
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Assumption VI. L is a convex sublattice of M containing R and each
element of L is μ-outer regular.

EXAMPLE 7.3. If we denote by L the convex subset of M generated by R,
then L={a\a^M and p^a^q for some/), q^R} = {a\a^M and x^a^q for

some x^. R and q^. R} satisfies Assumption VI. (The //-outer regularity of αe L
follows from Corollary 3 to Proposition 7.1.)

EXAMPLE 7.4. If R=R8+ (Example 7.2), then the set L in Example 7.3 is
the convex subset of M generated by R, namely, L— {a \ a^M and x^a^y for
some Λ:, y^R}.

EXAMPLE 7.5. If M is a δ-lattice and if μ is δ-convergent, then the set

L={a\a^M and t^a^q for some /£-outer regular element t in Rσ~ and for
some q^R} satisfies Assumption VI. (Corollaries 3 and 4 to Proposition 7.1.)

We denote by ~p,(a) the μ-outer value of a^L. Then

Proposition 7.2. jz is a ^-convergent map of L into G and is an extension
ofμ.

Proof. The dual of Corollary 2 to Lemma 6.2 implies that ~μ is δ+-

convergent and hence the proposition holds.

Lemma 7.1. For any a^L and U^V, there exists a p^R with a^p such
that ~μ(s)—-μ(a)^ U for any s^L with

Proof. For a V^V such that 2V 'Ct7, the definition of jz(a) implies the
existence of a^>e R with a^p such that μ(t)—~μ(a)^ Vfor any t^R with a^t^p.

It is easy to see that this element p satisfies the condition in the lemma.

Assumption VII. M is an r.i. lattice and R is an r.ί. sublattice. Further μ
is an r.i. valuation.

EXAMPLE 7.6. If M is an r.c. distributive lattice and if R is an r.c. sublattice,
then Assumption VII is satisfied. (Example 2.1.)

EXAMPLE 7.7. If M is an /-group, if R is an r.i. subsemigroup (e.g. if R is

a subgroup), and if μ is a homomorphism, then Assumption VII is satisfied.

(Example 2.2.)

The following proposition, which follows from Propositions 2.8 and 2.6,

implies that the dual of Assumption IV is satisfied.

Proposition 7.3. M is a ^-lattice and μ is ^-convergent.

Assumption V*. R is a δ~ -sublattice of M such that Rc.Rc.Rσ~ and each
element of R is μ-outer regular.
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We denote by μ(x) the jut-outer value of x^R.

Assumption VI*. L* is a convex sublattίce of M containing R and each
element of L* is μ-inner regular.

We denote by μ(a) the μ,-inner value of αeL*.
It is easy to see the following

Proposition 7.4. L and L* are r.i. S-sublattices of M.

Lemma 7.2. If p, q^R and if x^R, then (q—x)p^R and μ((q—x)p)+

*(*)=/% u *)+/*(* n/O

Proof. We can write p=ol and q=/5 for some α, β^^(R) Putting
zij—(β(j)~χ)Λ(i} an(3 Ύ(Ϊ)=ZHJ f°Γ eacn i,j^N, we have an element y^J^R)
such that 7(i)^β(i)\Jx^q\Jx^R, which implies γ^R. Since /ί(γ(i))+ /*(#)=

β(*(i)«xxXΌB^)+β(x)=β((xUβ)(i))+β((xΓ(a^ for any ie^Y, it follows from
Corollary 1 to Proposition 7.1 that μ(fy)+β(x)=μ(x[Jq)+μ(xnp). Now, since
the double sequence zfj is increasing with respect to each index, Lemma 2.2

00 CO CO 00

implies (q—χ)p= \J (β(j)—χ)= U ( U #,••)= U zii=
fγ^R and this proves the

y=ι y=ι i=ι ; 1=1

lemma.

Corollary 1. //"/>, ^e ̂  αwrf t^R are such that p^t^x^q for some
then ptq^R and μ(ptq)+μ(t)=μ(p)+μ(q).

Proof. Since t=r' for some τ'^Σ*CR)> we have a r=χ Π τ'e2*(-R)
that τ=xΓ\t=t and such that/>^^τ(/)^Λ;^^ for any ieJV. For \(i)=pτ(iγ

the lemma implies \(i)^R and y&(λ(/))+Λί(τ(z'))— fi(q)+fi(p) for each x'e^V.

Thus we have λeΣo(^) and V=*( Π τ(i))*= U pr(iγ=\^R so that jK(λ(ί))-*
ί=l ί=l

^( ί̂9) (i->oo). Hence the convergence μ(τ(i))->μ(t) (i->oo) implies the equality
needed.

Corollary 2. If x,y<=R and t<=R are such that x^t^y, then xty<=R and

Lemma 7.3. Ifx,y^R and a^M are such that x^a^ίy, then,
, and μ(x)+v(y)=μ

Proof. The relations a^L and xay^L* are obvious. For any t/e ^U, there

exists a p^R with x^p<*xay such that μ(t)—μ_(xay)^U for any t^R with
p<>t^xay. Similarly there is a <?e$ with # 5^ ĵ; such that μ(s)—μ(a)^ U for
any sel? with a^s^q. Since the dual of Corollary 2 to Lemma 7.2 implies
xqy^R we have an element t=p\Jxqy^R such that ^> ̂  ί ̂  W and hence μ(t)—

μ]ίxay)<=U. Then, for s=*ty, Corollary 2 to Lemma 7.2 implies s<=R and
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μ(x)+μ(y)=μ(s)+μ(t). Since a^s^q we have μ(s)—-μ(ά)^U and hence

μ(x)+μ(y)=~μ(a)+μ(xay)-\-2U for any C/e'U, which proves the lemma.

We put S={a\a^L and -μ(x)+-μ(a)=-μ(x\Ja)+-μ(xΓ\a) for any^eL} and

S*= {a I αe L* and μ(#)+ //,(#)= μ(# U α)+ μ(# Π #) for any #e L*} . Further

we denote by μs[μs*] the restriction of -μ[μ] on S[*S*].

Proposition 7.5. S is a S+ -sublattice of M such that LΓ\S*+dSciL.

Moreover μs is a ΰ+ -convergent valuation.

Proof. This follows from Lemma 5.2 and its Corollary.

Proposition 7.6. It holds that RdRc:S.

Proof. First for any x^R let us prove that x^S or that Δe3t7 for any

αeL, C/e^U and for Δ=μ(x)+-μ(a)— μ(x\Ja)— -μ(xf\ά). Since x\Ja^L there

is a p^R with x\Ja^p such that /*($)— ~μ(x(Ja)^ U for any ί^jβ with
x U a^s^p. Since «^/> there is a ̂ e R with a^q^p such that μ(t)—-μ(a)^ U
for any Ze/? with a^t^q. Further we have an r^R such that Λ: (Ί a^r^x Π ̂

and μ(r)— μ(xΓ}a)<= U. Then, for t=rxx"g

y Lemma 7.2 implies t=(q—x)r^R

and /*(0+M*H#(*U#)+/£(r). Since tfUfl^U?^ we have μ(x\Jq)—
μ(x\Ja)^ U. Further a= x{] ttχ3C^β^rχx[ίg=t^xn qxx^q= q implies μ(t)—μ(a)<^ U.

Thus we have Δ<^μ(x)+{μ(t)+U} — {μ(x(Jq)+U} — {μ(r)+U}=3U and

hence it is proved that RdS. Then Proposition 7.5 implies RdL Π Λσ+cL Π

*Sor+ cS and this proves the proposition.

In the above proof, Assumption VII is essentially used as is seen in the
following:

EXAMPLE 7.8. Suppose that M is the complemented δ-lattice (Example
1.1) consisting of all subsets of the set m={l, 2}. Putting μ(x)=Card (x)

we have an J?-valued function μ defined on a sublattice R= {m, {!}, φ} of M.

Then all assumptions but Assumption VII are satisfied for R=R=R and
L=L*=M. However, the sublattice S= {m, φ} does not contain R.

Proposition 7.7. Let x, y e R and a e M be such that x^a ̂ y. Then

if and only if x

Proof. Under the assumption xay^S* let us prove that a^S. Let us put

a1=a> a3=a1\Ja2, and a4=a1f}a2 for any a2^L. Then it suffices to show that

Δ=0 for Δ='μ(a1)-\--μ(a2)— ~μ(a^— X^4). Corollary 2 to Lemma 5.1 implies that
we may assume x^a2^y. Then x^ak^y and hence we can put ak'=

xak

y for
each k=l, 2, 3, and 4. Thus it follows from α/eS* and #2'eL* that μ(a1

f)+

μ(a^=μ(a^ Γia2

r)+μ(a1

f\Ja2

f)=μ(a3

r)+μ(a^r). Now Lemma 7.3 implies

~β(ak)=μ(x)+μ(y)— μ(ak') for each k and hence we have Δ^O. Dually xay

follows from
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Lemma 7.4. Let I be the convex subset of M generated by R and suppose
that an element αGΞ 1satisfies the conditions:

1) μ(ά)=μ(a)

2) μ(r)=μ(r) and μ(aΓir)+-μ(a\Jr)=μ(a)+μ(r) for any r<=(R\jR)Γ(L
Then, for any U^V there exist p^R and q^R with p^a^q such that

μ(s)—~μ(i)^ U for any s, t^I with p^s^q and p^t^q.

Proof. We can write x^a^y for some x, y^R. For a Fe^U such that
lOFc U we have a p^R with x^p^a such that μ(u)—μ(a)^ V for any u^R
with p^u^a and dually we have a q&R with a^q^y such that μ(v)—~μ(a)Eϊ V

for any v^Rwitha^v^q. Thus we havep^R andq^R with x^p^a^q^y.
Let s, t^I be such that p^s^q and p^t^q. Thenp^s implies the existence

of an reJ? such that p^r^s and μ(r)—μ(s)^ V. Likewise μ(u)—μ(aΓ\r)^ V

for some u^R with p^u^aΓ\r and further μ(v)—-μ(a[_)r)^ V for some z ej?
with αLJr^ίy^^. Then p^u^a^v^ίq implies μ(u)—μ(a)^V and μ(v)—
μ(a)^ V and thus we have μ(a Π r)+7*(α Ur)—μ(a)—-μ(a)^W. Now the con-

dition 2) implies μ(ΛΠr)+7A(αUr)—^(α)=μ(r)=μ(r)e^(ί)+FP so that μ(s)—
Dually we have ~μ(t)—μ(ά)^SV and hence the condition 1) implies
lOFc Uy proving the lemma.

Assumption 7.1. R is a non-empty 8-sublattice of M.

Proposition 7.8. R and R are r.ί. 8-sublatΐices of M. Moreover aftb^R
and a\Jb^Rfor any a^R and b^R.

Proof. Lemma 2.3 implies that R is an r.i. δ-sublattice of M and, dually,

so is R. Since b=j3 for some β^^(R), we have a Π β^*Σo(R) so that a Π b=

a{}β<=R. Dually we have a\Jb<=R.

Proposition 7.9. μ and μ are ^-convergent r.ί. valuations.

Proof. The δ-convergence of μ follows from Corollary 2 to Proposition 7.1.

Suppose that^, x, q^R are such that^^Λ ^g'. Then x=I for some ξ^Σ(^)

Let us put T7(i)—(q—ξ(i))p for each i^N. Then Lemma 7.2 implies η(ϊ)^R and

μ(v(i))+μ(ξ(i))=μ(q U ξ(i))+P(ξ(i) Π p)=μ(q)+P>((p Π ?)(ί)). Further Lemma

2.1 implies v<^Σ*(R) and ^= Π (?—f(0)ί=(ff—Λ?)^=Ve-R so that P>(η(ΐ)}->

μ(pxq) (i->oo). Since £=# and since /) Π ?=^ Π ^=/> we have μ(pxq)+μ(χ)=

μ(q)+μ(p), which proves that μ is an r.i. valuation. Dually the assertion on μ
holds.

Corollary. μ(u)=μ(u) for any

Now we can see that Assumptions 4.1 and 4.2 are satisfied. Let us con-

sider the sublattice R of M and the valuation -μ on R defined in section 4. Here
we write ̂  for the valuation -μ. Then
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Proposition 7.10. R is a ^-sublattice of M such that R
Further μ is a ^-convergent valuation on R and is a common extension of μ and μ.

Proof. This follows from Propositions 4.2 and 4.4,Corollary to Lemma
4.1, and Proposition 4.5.

Proposition 7.11. If μ is complete, then μ is complete.

Proof. This follows from Lemma 3.1 and Proposition 4.6.

Proposition 7.12. If M is an r.c. lattice, then R is an r.c. sublattice.

Proof. This follows from Proposition 4.3.

Assumption 7.2. R is the set of all μ-inner regular elements in Rσ+

(Example 7.1) and R is the set of all μ-outer regular elements in Rσ~.

Proposition 7.13. Let P be a ^-sublattice of M such that R^PdR* and

suppose that μ is extended to a ^-convergent valuation v on P. Then P is contained
in R and v is the restriction of /Γ.

Proof. Let us consider the set A = {x U a \ x e R and a e P}. Since P C Rσ,
Corollary to Lemma 4.1 implies that AaRσ+. We can write A= {a\a^P and
x^a for some x^R} so that A is a δ+-sublattice of M containing R. Hence
Corollary 1 to Proposition 6.4 implies that AdR and that the restriction of v on
A is the restriction of μ. Dually the subset B= {x Π a \ x^R and a^P} of P is
contained in R and the map v coincides with μ on B. Hence each element
a^P is contained in R and, for an x^R, v(a)=v(x\Ja)+v(x(~}a)—v(x)=

μ(x U a)+μ(x Π d)—μ(x)=^μ(ά).

8. Valuations on r.c. sublattices

Assumption 8.1. M is an r.c. lattice.

For S and μs defined in the preceding section we have

Proposition 8.1. S is an r.c. δ-sublattice of M and μs is a ^-convergent
valuation on S.

Proof. Proposition 5.2 implies that S is an r.c. sublattice and hence our

proposition follows from Propositions 7.5, 2.9, and 2.6.

Corollary. It holds that R8dS. Moreover μ is uniquely extended to a
^-convergent valuation μ8 on R8 and μ8 is the restriction of μs.

Proof. Proposition 7.6 implies R8dS. The uniqueness of μ8 follows from
Corollary to Lemma 1.6.
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Proposition 8.2. If a^ S U S* 'is such that x^a^yfor some x, y^R, then

a<= S Π S* and μs(a)=μs*(ά).

Proof. Suppose that a^S satisfies x<*a^y for some x9 y^R. Then
Proposition 7.7 implies xay^S* and therefore the dual of Proposition 8.1 im-

plies a=x(xay)y<=S*. Further Lemma 7.3 implies μs(a)+μs*(*ay)=μ(x)+
μ(y)=μs*(a)+μs*(xay) so that μs(a)=μs*(ά). Thus the proposition follows
from the duality.

Let us put S0={a\a^S and x^a^y for some x9 y^R} and denote

by μ0 the restriction of μs on SQ.
If R and L are the sets stated in Example 7.4, then we see that S0=S and

Lemma 8.1. For any a^S0 and for any U^V there exist p^RΓ\Rδ and

q&RftR8 withp^a^q such that /fι(ί)— 7*(f)e U for any seL* with p^s^q and
for any t&L with p^t^q.

Proof. Proposition 8.2 implies that the element a satisfies the conditions
1) and 2) in Lemma 7.4 (Note that (ΛU^)Π/cΛδc50). Since x^a^y for

some xy y&Ry we may assume that the elements p^R and q^R in the lemma
satisfy x^p^a^q^y. Then/), q^R8 and hence our lemma holds.

For the valuation μ8 in Corollary to Proposition 8.1, we have
/\ /\

Proposition 8.3. S0=R8 and μQ coincides with the completion μ8 of μ8.
/\

Proof. Let us show that a^S0 for any a^R8. Since x^a^y for some
ΛJ, y^R8 we have a^L. Hence it suffices to show that Δ(u)=~μ(ά) for any u^L

/\
and for Δ(w)— ~μ(u U a)-\-~μ(u Π a)—~β(u). For any ί7e ίϊ7, the assumption a^R8

implies the existence of p, q^R8 with p^a^q such that μ8(s)—μ8(t)^ U for any
s, t^R8 with p^s^q and p^t^q. Putting v0—a, vλ=p U (u Π q)y v2=Vj^ U α,

and ^3=^0^, we have z^eL with p^v^q. Since v^q^z for some z^R,
Lemma 7.1 implies the existence of an r,e^with v^r^z such that 7&(s)—
jz(Vi)^U for any ίeL with v^s^rf. Then, for ίl =5nr l G-Rδ we have
Vi^s^q and μs(si)—-μ(vi)^U. Hence p^v^s^q implies ~μ(vt)— ~μ(v0)^
μ8(Si)—μ8(sQ)+2Uc:3U. Since/), q^R8dS are such ύiztp^a^q, Lemma 5.1

and its dual imply A(u)=A(uΓ\q)=^(vl)=μ(v2)+μ(v3)— μ(v1)^-jz(v0)+9U=
~μ(a)-{-9U. Since U^ΊJ is arbitrary, we have A(u)=jz(a) proving that a^S0/\ /\ /\
for any a^R8. It is easy to see that the relations 50c7?δ and μQ=μ* follow
from Lemma 8.1.

9. Valuations on /-groups

Assumption 9.1. M is an l-group, R is a subgroup of My and μ is a
homomorphism .
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Proposition 9.1. Rσ+ and R*+ are subsemίgroups of M.

Proof. For any ξ, η^*Σj(R) we can define an element ξ+η of

(ζ +7ί)(i)= ?(0+^(0 Then the identity ξ-\-η=ξ-\-η and Lemma 1.4 imply the
proposition.

Lemma 9.1. Assume that R[R] is the set of all μ-inner[outer] regular elements

in R^W] (Example 7.1). Then ~

1) R=-R.
2) μ( — x)= — μ(x) for any x^R.

Proof. Let us consider the dual automorphism φ of the /-group M defined
SK SS

by φ(x)= — x. Then the set R is the inverse image φ~\R) of the set R of all
μoφ~ Dinner regular elements in φ(Rγ+=Rσ+. Since we can write μoφ~1=ψoμ

for the automorphism ψ of the topological group G defined by ψ(g)=—g, the

μoφ~ Dinner regularity coincides with the μ-inner regularity. Hence we have

R—R and this proves that R=φ~1(R)=—R. Further x^R implies μ(— x)=

Lemma 9.2. Assume that R is a ^-sublattice and that R is the set of all
μ-inner regular elements in Rσ+ . Then R is an r.i. sublattίce and subsemίgroup
of M and μ is a homomorphίsm.

Proof. To prove that R is a subsemigroup, let us put a=al-}-a2 for any
al9 a2^R. Since the relation a^Rσ+ follows from Proposition 9.1 we need only
show the μ,-inner regularity of a. For any U^V and for a V^V such that

2Fc C7, the μ-inner regularity of aiy for each /=!, 2, implies the existence of an
Xj^R with Xi^a{ such that μ(ί, ) — μ(x^)^V for any s^R with Xi^s^a^

Thus we have an element ^=^+^2^^ such that x^a. Let s^R be such that
Since s— x2^R and since a^RdR** we have elements s1=(s— x2) Γ\

and $2— s— $ι^R The inequality 00^5^^ being easily verified
2

we have μ(si)—μ(xi)^V for i=l, 2. Hence μ(s)—μ(x)= Σ {μfo)— μ(Xi)} e
» = i

2 Fez £7, which implies the μ-inner regularity of <z proving that Jf? is a subsemi-

group. Propositions 7.8 and 7.9 imply that R is an r.i. sublattice and μ is an
r.i. valuation, and hence Proposition 2.7 implies that μ is a homomorphism.

Now we can prove Theorem 2.

Proof of Theorem 2. It is obvious that Assumptions I, II, III, and VII
are satisfied and Assumption IV follows from Proposition 1.1. For the sets R

and R stated in Lemma 9.1, Assumptions V and V* are satisfied. Further
Assumptions VI and VI* hold for some L and L* (Example 7.3). We may
assume that R is non-empty and then follow Assumptions 7.1 and 7.2. Hence
Propositions 7.10 and 7.13 imply that the sublattice R and the valuation ~JL in
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section 7 satisfy the conditions in the theorem. If M is an r.c. lattice, then
Proposition 7.12 implies that R is an r.c. sublattice. Let us assume that M is
an /-group, that R is a subgroup of M, and that μ(0)=0. It has been verified
in section 7 that Assumptions 4.1 and 4.2 are satisfied. Since Assumption 9.1
follows from Proposition 2.7, we see that Assumption 4.3 follows from Lemmas

9.1 and 9.2. In fact, for any p, q^R with O^p^q we have q—p=°pq&R.
Hence Corollary to Proposition 4.7 proves that R is a subgroup. Finally the
above two lemmas and Proposition 4.8 imply that μ is a homomorphism.

REMARK. In the above arguments we see that Proposition 7.11 implies the
following: If μ is complete, in Theorem 2, then ~μ is complete.

Assumption 9.2. R and R are subsemίgroups of M.

EXAMPLE 9.1. If R=R*+ (Example 7.2) and if R=R*~, then Assumption
9.2 is satisfied (Proposition 9.1).

Proposition 9.2. μ is a homomorphism.

Proof. For each ak^R, k=l, 2, we can write ak=ak for some α*^ΣC^)
For the element aQ=aι+a2^^Σι(R) defined in the proof of Proposition 9.1, we

have an element a0=(X0=cZ1-\-a2—aι-i~a2^R Hence our proposition follows
from Assumption 9.1 and Corollary 1 to Proposition 7.1.

Assumption 9.3. L and L* are subsemigroups of M.

EXAMPLE 9.2. If L[L*] is the convex subset of M generated by R[R]
(Example 7.3), then Assumption 9.3 is satisfied.

We put T={a\a^L and μ(x+a)= μ(x)+-μ(a) for any x^L} and T*=
{a\a^L* and μ(χ+ά)= μ(x)+μ(ά) for any x^L*}. Further we denote by
μτ[μτ*] the restriction of -μ[μ] oήT[T*].

Then Proposition 5.4 implies

Proposition 9.3. T is a subsemigroup of M and μτ is a homomorphism.

Further Lemma 5.3 implies

Lemma 9.3. L Π Σ( T) c T.

Corollary. If T is a sublattice of M, then T is a δ+-sublattice.

Proposition 9.4. It holds that RdRdT.

Proof. First let us show that TdR or that -μ(a+x)^-μ(a)+μ(x)+2U for
any x^R, a^Ly and U^V. There exists ap^R with a^p such that μ(ή—
~μ(ά)£Ξ U for any s£ΞR with a^s^p. Likewise for some q^R with a-\-x^q it
holds that μ(t)—~μ(a-{-x)^U for any t^R with a-\-x^t^q. Since q—x^
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R+RdR we have an element s= p Γ) (q— x)^R such that a^s^p, which implies

that μ(s)—-μ(a)^U. Thus it follows from s+x^R and a+x^s+x^q that

μ(a+x)<=μ(s+x)+ U=μ(s)+μ(x)+ U C2μ(a)+ μ(x)+2U, which proves that

RdT. Hence Lemma 9.3 implies the proposition:

Lemma 9.4. An element a^L is contained in Tif: for any U^'V there
exist p^—R and q^R with p^a^q such that μ(x)^U for any x^R with

Proof. It is sufficient to show that μ(a)+-μ(b)— jz(a+b)^6U for any
and t/e'U. Suppose that p^—R and q^R satisfy the conditions in the

lemma. Then there exists a u^R with a^u^q and μ(u)— ~μ(ά)^ U. There

exists a w^R with a-\-b^w such that μ(w')— jz(a+b)^ U for any w'^R with
a-\-b^w' ^w. Further b=(a+b)—a^w—p^R implies the existence of a v^R

withb^v^w—p and μ(v)—-μ(b)^ U. Since s=u+v^R satisfies a+b^w Π s^w
we have μ(wΓls)—μ(a+b)<=U so that μ(a)+μ(b)—μ(a+b)^μ(u)+μ(v)—

Now it suffices to prove that μ(s)—μ(w Π s)^ 3 U. Let us put c= w U s— w.
Since z^w for some z^R we have O^c^wljs— z^R-\-RdL so that c^L.

Since t:=OU(w+^— ̂ )^OU(?— p)=q— p^R there is a ίe-β such that
c^t^q—p and μ(t)—μ(c)^ U. FurtherO^^ί implies the existence of an x^R
with O^x^t and μ(x)—μ(t)^U. Thus G^x^t^q—p implies μ(x)^U and

hence it follows from w^Rd T that μ(s)—μ(w Γl s)=μ(w U ί)— /2(

^(^)=^(c)e/^(ί)+ί7Cμ(Λ;)+2C7c3ί7, which proves the lemma.

Assumption 9.4. L— L*={α\α^M and x^a^yfor some x,

EXAMPLE 9.3. If R and R are the sets in Example 9.1 and if L and L* are
the sets in Example 9.2, then Assumption 9.4 is satisfied. Conversely, the fol-
lowing lemma shows that these conditions are necessary under the assumption.

Lemma 9.5. R=R*+ and R=R*~=-R.

Proof. Assumptions V and VI imply R8+C.RdRσ+ ΠLdR8+ and dually

we have Λ=Λδ"=

Proposition 9.5. L and T are subgroups of M.

Proof. This follows from Proposition 5.4.

REMARK. We can verify that TdS for the set S in section 7, or equi-

valently (Remark in section 5) that 7&(^0)~X^i)~~X^2)— 0 for any x0^L and for
XI=XO\JQ, X2=x0 HO. In fact, for any U^V there exists ap^R, for /= 0, 1, 2,
with Xi^pi such that μ(s^—-μ(x^^U for any s^R with x^s^p^ Putting
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sι=Pι Π (/>0U 0)> h=p2 Π (pQ Π 0), and Jo=*ι+ί2> we nave Xi^Si^Pi so that μ(xQ)—

Lemma 9.6. f^(^)=—Tz(—a)for any

Proof. For the dual automorphism φ of M and the automorphism ψ of G
considered in the proof of Lemma 9.1, the identity μoφ~1=ψoμ is easily verified

(see the proof of Lemma 9.1, 2)). Hence we have μ(α)=:(μ,-inner value of

a)= (μ,o<£>~ !-outer value of <p(<z))=(ψo/£-outer value of — ά)=ψ(μ-outer value of
-a)=-μ(-a).

Corollary 1. Γ= T* em/ μτ=μτ*.

Proof. Let a be any element of T. Then α^L* is obvious and for any
* it follows from — αeΓthat ^(^+a)=— -μ(— x— ά)= — μ(— x)— μ(— a)=

£(*)+£(*)• Thus we haveΓcT* and dually Γ*cΓ. Further αeT implies
μτ*(a)=μ(ά)=-μ(-a)=- μτ(-ά)=μτ(ά) SO that μτ=μτ*.

Corollary 2. μ(a)+μ(b)=μτ(a+b)for any a} b^L such that a+b^ T.

Proof. This follows from jz(b)=jz(— a-}-(a-}-b))=jz(— a)-\-jz(a+b)=
-μ(a)+μτ(a+b).

Lemma 9.7. For any a^T and for any U^V there exist p^R and

with p^a^q such that μ[s)—-μ(t)^ U for any s, t^L with p<*s^q an

Proof. It suffices to see that the element a^TdL=I satisfies the conditions

1) and 2) in Lemma 7.4 and this follows from the above two corollaries and
Proposition 9.4. In fact, for any r e (R U R) Π / we have re T= T* and a Π r+
alίr=a+r^Tso that μ(anr)+μ(a)Jr)=μτ(a+r)=μτ(a)+μτ(r)=^

Corollary. An element a^Mis contained in T if and only if: for any

there exist p^R and q&R with p^a^q such that μ(x)^ U for any x^R with

Proof. If tfeT, then for any t/eΐ? the elements p and q in the lemma
satisfy the conditions in the corollary as is easily verified by putting s=x+p
and t=p. The converse follows from Lemma 9.4.

Proposition 9.6. T is a 8-sublattice of M and μτ is a ^-convergent homo-
morphism.

Proof. First we show that a+=a\JO^T for any a^T. For any
we have the elements p^R and q^R stated in the above corollary. Then the
elements p+^R and q+dR satisfy p+^a+^q+ and for any x^R with

^q+—p+ it follows from Q^x^q+— p+=(q— p)— (qΓ\Q— pftty^q— p that
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μ(x)^ U. Thus the corollary implies a+^ T. This proves that the subgroup T
is an /-subgroup and hence Corollary to Lemma 9.3 and Proposition 2.9 imply

that T is a δ-sublattice. The δ-convergence of the homomorphism μτ follows

from Propositions 7.2 and 2.6.

Corollary. It holds that R\jRdR8c:T. The homomorphism μ is uniquely
extended to a ^-convergent map μ8 on R8 and μ8 is the restriction of μτ. Further
R8 is a subgroup of M and μ8 is a homomorphism.

Proof. The inclusion R8dT is a consequence of the proposition. The
uniqueness of μ8 follows from Corollary to Lemma 1.6. Finally Proposition
2.11 implies that R8 is a subgroup of M and thus the corollary holds.

For the homomorphism μ8 in the corollary we have
/x /\

Proposition 9.7. T=R8 and μτ coincides with the completion μ8 of μ8.
/\

Proof. Let us prove that a<=T for any a^R8. Foragiven t/e^Ujlet V^V

be such that 6Fc C7. Since a^R8 there are x, y^R8 with x^a^y such that
μ8(w)—μ8(w')^V for any w, w'^R8 with x^w^y and x^w'^y. Since
x^R8 cL* there exists ap^R wΊthp^x such that μ(u)— μ(x)^ Ffor any u^R

with p^u^x. Dually there exists a q^R with y^q such that μ(v)— ~p>(y)^. V
for any v^Rwithy^v^q. Thus we have p^R andq^R withp^x^a^y^q.
Hence, by Corollary to Lemma 9.7, it suffices to verify that μ(r)^ [/for any r^R

with 0 5̂  r ̂  q — p Suppose that an element sE^R8 satisfies the condition p^s^q.

Since p ̂  s |Ί x there exists au^R with p ̂  u ̂  s Π x and μ(u) — μ(s Π x) e V. Then
implies Aί-(w)— μ(x)^ V so that μδ(^)— μ\s (J x)= μ(

Dually, for any *<=#* with p^t^q we have μδ(*)—
Putting ί=f-f-/> and ί^^U^ we have s, t^R8 withp^s^t^q and hence μ*(s)—

μ\tΓ(y)={μ*(ή-μ*(s\Jx)} + {μ*(t)-μ8(tΓ(y)}(ΞW. Since ^^ίΠ^^j im-

plies μ*(tΓiy)— μ\x)<=V and since μ8(p)— μ*(x)=μ(p)— μ.MίΞFwehave At(r)=
~ /\

Atδ(ί)— μ8(p)^6Vc:U. Thus it is proved that αeΓ for any αeΛδ or that
/\ /\ /\
R8CZT. The converse TdR8 and the relation μτ=μ8 immediately follow from
Lemma 9.7 and thus the proposition is proved.

Proof of Theorem 1. We have seen that the uniqueness of μ8 follows

from Corollary to Lemma 1.6. In either case 1) or 2) we see that Assump-

tions I, II, III, IV, and VII are satisfied. Let us put R=R8+ and R=R8~, and
denote by L=L* the convex subset of M generated by R. Then Assumptions
V, V*, VI, and VI* are satisfied (Examples 7.2, 7.3, and 7.4). In case 1),
Assumption 8.1 is satisfied and hence Corollary to Proposition 8.1 and Pro-

position 2.10 imply the theorem. In case 2), all assumptions in section 9 are
satisfied so that Corollary to Proposition 9.6 implies the theorem. Thus the
proof is completed.
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REMARK. The following problems are unsolved:
1) Can the conditions 1) and 2) in Theorem 1 be unified in a general

form: 0) M is an r.i. lattice, R is an r.i. sublattice, and μ is an r.i. valuation?
2) In Theorem 2 can we say that R is an r.i. sublattice and ~μ is an r.i.

valuation ?
3) Does it hold that T=S under the assumptions in section 9?

4) Does the valuation μs in Proposition 8.1 become an extension of the

maximal extension, in the sense of Theorem 2, of μ* when the sublattices R

and L are chosen sufficiently large ?
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