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Introduction

For a partition n=n,+n,++--+mn, of an integer =, let
W = W(n, -, n,) = Un)[Um,) X -+ X U(n,)

be the complex (generalized) flag manifold. For example W(k, n—k)=G, ,_, is
the complex Grassmann manifold and W(1, 1, -+, 1)=F(n) is the (usual) flag
manifold U(n)/T" where T" is a maximal torus in U(n). Then we have the
natural bundle projection z: F(n)—W and the induced map

z*: K(W) nd K(F(n)) = Z['yl’ V2 ***» ')’”]/I+

is a monomorphism (see §2). We write M CR" the existence of an embedding
and M CR" the existence of an immersion of the differentiable manifold M in
the Euclidean space R".

The purpose of this paper is to prove the following non-immersion and
non-embedding theorem for the complex flag manifolds.

Theorem 4.1. Let 2m=dim W=n?—(ni+---+n?). For a positive inetger
k, if the element

m N [ 1V -
2 U,I]._)IEA{l"f‘('Yi '7,-);( 7) ('Yi+'7j) 1}
of K(F(n)) is not divisible by 2***, then
(i) WaER™*, (i) WERm-2-1,

For the definition of the set A, see (3.1).

As an application of Theorem 4.1, we also prove the following non-existence
theorem of immersions and embeddings for some complex Grassmann manifolds
G, .-, for odd integers n.



118 T.Sucawara

Theorem 6.1.* For each integer u=0, we put 3(u)=20a(u)—v,(u+1)+1.
(For the definition of (%) and v,(u+1), see p. 128) Then we have

(i) G2,2ﬂ+1¢R8(2u+1)—28(u), (ii) G2’2u+1$R8(2u+1)—Zﬂ(u)—l .
We give the first few examples of non-embeddabilities:

G2,1¢R8_2, G2,3¢RZ4_4, Gz,sd: R%7S, Gz,'IC‘:RS‘;_6 ’
G2’9¢R7Z”5, G2,11¢R88'8, Gy 13 ER™ S, G, s R28,

Problems of immersions and embeddings for flag manifolds have been
investigated by many topologists. Hoggar [10] showed that G, ,_,¢ R* and
that G, ,_,&R*"! where 2m=dimy G, ,_,=4(n—2). He made use of the geo-
metrical dimensions introduced by Atiyah [1]. Our results claim stronger
facts that G,, ,&R*" % and that G,,_,ER*" %1 because B/m—0 as n—oo.
Our method relies on a theorem of Nakaoka [13] which seems much close to the
Atiyah-Hirzebruch’s integrality theorem [3]. Tornehave [15] investigated the
existence of immersion of flag manifolds W(n,, ---, n, CR"*~") using the theory
of Lie algebras and Hirsch’s theorem [7]. Kee Yuen Lam [12] also proved the
same result making use of his new functor u?. Connell [6] discussed on the
existence and the non-existence of immersions of some low dimensional flag
manifolds. Among his results, there are

(1) G,,<R", (ii) G,,%R"?,
(iii) G,;SR®, (iv) G,3%ER®.

The last statement (iv) agrees with a consequence of our result.

This paper is arranged as follows. In §1, we recall the immersion and
embedding theorem of Nakaoka [13]. The structure of K-rings and tangent
bundles of W and F(n) are discussed in §§2-3. §4 is devoted to the proof of the
main theorem (Theorem 4.1). Here we make use of Atiyah’s v-operations and
the fact that the tangent bundle 7(W¥) has its splitting on F(n). §5 is on some
preliminaries for §6, where we discuss non-immersion and non-embedding
of some complex Grassmann manifolds G, ,_,. Calculations used here are quite
elementry although a little bit complicated.

I should like to express my gratitude to Professors Tatsuji Kudo (my
thesis advisor), Hiroshi Toda and Minoru Nakaoka for their kind advices and
criticism. I am indebted to K. Shibata who read the manuscript. I am also
indebted to T. Kobayashi, M. Kamata and H. Minami for their valuable dis-
cussions and suggestions.

1. Immersion and embedding of almost complex manifolds
For a complex vector bundle £ over a finite CW-complex X, let v/(§)eK(X)

* More complete results are obtained in [18].
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denote the Atiyah class of & [2]. The map v,: Vecty(X)—1+K(X)[t]*
defined by v,(8)= X} ¥(§)# is multiplicative: v (EPn)=7,E)v«(n). We define
i=0

the dual Atiyah class ¥(£)eK(X) by #°(&)=1 and 2_;%(5)7«5):0 for £>0.

Then 7,(§)= 2)¥(€) t' is the inverse element of 7,(£) in the multiplicative
i=0

group 14+K(X)[t]*.

If M is an almost complex manifold of 2m-dimension, that is, its tangent
bundle 7(M) has a structure of m-dimensional complex vector bundle, then we
write v{(M) (resp. ¥(M)) for ¥i(r(M)—m) (resp. ¥(7(M)—m)). We see that
¥(M)=0 if i>m. The following theorem due to Nakaoka [13, Theorem 8]
is the starting point of our investigations.

Theorem 1.1. Let M be a closed almost complex manifold of real dimension
2m such that K(M) has no elements of finite order. Then if M can be embedded

(resp. immersed) in R*™~%*, the element zm] 2y (M)e K(M) is divisible by 2t
i=o
(resp. 2F).

Note that the element in Theorem 1.1 is rewritten as
12 = 2 S ) L) = 27m(i)
where 7,,(M) is regarded as the element of K(M)®Z[4]. If N is another
almost complex manifold of dimension 2z, it holds that
27 (M X N) = 279, ,(M)Q2"7,,(N)

The following theorem is a generalization of Theorem 9 of Nakaoka [13]
and the proof relies on Sanderson-Schwarzenberger [14, Theorem 1].

Theorem 1.2. Let M be the same as in Theorem 1.1. For a positive integer
k, if the element g 2m~i§ (M) is not divisible by 2**', then
(i) MR, (i) MERm-2#-1,
Before we prove Theorem 1.2, we put a remark on the exponent of 2 in the
binomial coefficient < Zl ) Let v,(n) denote the exponent of 2 in # and a(n) the

number of 1’s in the diadic expansion of #n. Since the equality v,(n!)=n—a(n)
holds by the elementary number theory, we have the following

Lemma 1.3. yz(( “ )) — a(b)+a(a—b)—a(a).

Proof of Theorem 1.2. (i) Straightfoward from Theorem 1.1. (ii) Suppose
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McRm-2%-1 We fix an integer s=2'>m. By James [11] it holds that
CP*CR*"! and therefore by Sandeson-Schwarzenberger [14, Lemma] it holds
that M x CPsC R»+4~%-2 Thus by Theorem 1.1 the element

2709y (M X CP°) = 279,,(M)®2°9,/,(CP*)

is divisible by 2¥*!.  On the other hand, the isomorphism 7(CP*)PH1.=(s+1)7
implies v, (CP*)=(1+tx)**! and §,(CP°)=(1+4tx)"*"! where 7 is the canonical
line bundle over CP* and x=7—1,€K(CP?). Therefore we have

29(CP') = 2(1+%2) (mod a) = 33 (—1)(* T jorie'

Since (‘j ")zs-f (0<i<s) are divisible by 4 and (2;) is divisible by 2 but not

by 4 (see Lemma 1.3), 2°¥,,(CP’) is divisible by 2 but not by 4. Hence 274, ,(M)
must be divisible by 2**!.  This leads to a contradiction.

2. K-ring of flag manifolds

Let (n,, n,, --+, n,) be a partition of an interg n: n=n,+n,++--+mn, and let
W = W(n, my, -+, n,) = U(n)[U(m;) X U(ny) X -+- X U(m,)

be a complex flag manifold. For example for (1, 1, -+, 1) we have the usual flag
manifold F(n)="U(n)/T* where T" is a maximal torus of U(n). For (k, n—k)
we have the complex Grassamann manifold G, ,_, of all k-planes in C” and for
(1, n—1), W is just the complex projective space CP*"%.

In this paragraph, we determine the ring structure of K(F(n)) and K(W)
explicitly. Generally for a compact Lie group G and its closed subgroup H,
the ring homomorphism «: R(H)—K(G/H) is constructed by Atiyah-Hirzebruch
[4] as follows. For an isomorphism class x=[V]€ R(H) of an H-vector space
V, a(x) is the isomorphism class of vector bundle V—G X ;V—G|H associated
with the natural principal H-bundle over G/H. If V is moreover a G-vector
space, that is, x is in the image of 7*: R(G)—R(H), the bundle map a: GX ,V—
G/Hx V difined by a(gX zv)=(gH, gv) is an isomorphism and hence a(x)=
(dim V)1,. Therefore « is factored through the natural projection p :

R(H) < > K(G/H)

FAN /@

RH) Qre) Z

The following theorem is due to Hodgkin [9, Corollary of Lemma 9.2].

Theorem 2.1. Let G be a compact connected Lie group with m\(G) free and
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let H be a closed connected subgroup of G with maximal rank. Then the ring
homomorphism a: R(H)Q z)Z—>K(G/H) is an isomorphism.

We use these facts for G=U(n) and H=T" or I U(n;). First we will in-
i

vestigate the case F(n) and then the general case W(n,, n,, -+, m,). As is well
known we have

R(T") = Z[ah arl’ [247) aZ_I, ttty Oy a;l]
R(U(n)) = Z[>"1’ Az o0y 7\'”) 7\4;1]

and \; is mapped on the i-th elementary symmetric polynomial of oy, o, *+*, &,
by the monomorphism #*: R(U(n))—R(T"). Let &; be the image of a; by the
ring homomorpism a: R(T")—>K(F(n)), then &®PE,P---PE, is the vector
bundle associated with the principal 7" bundle T"—U(n)—F(n). Let
o*(%,, %y, +++, x,) denote the k-th elementary symmetric polynomial in variables

. . n
Xy Xy +++, %,. The element o*(a;, @y, **+, ,) has the same dimension as ( k )lc

and they coincide with each other in @ R(U(n,)) ®zww Z. Therefore

k(& &y -+, E”):( Z) holds in K(F(n)). In particuler ££,.--£,=1 holds and
we have £7'= T[] &,. Therefore the ring K(F(n)) is isomorphic to the quotient
=3

ring of Z[§,, &,, -+, £,] factored by the ideal generated by

o6 & E)—( 7 ) B0 .

For the convenience of the later use we adopt the generators v,=§;,—1.
Then we can choose the elements

{o* (v Yo ++5 Va), >0}
as a new generator system of the ideal. Hence we have the following
Proposition 2.2.
K(Em) = Z[71; Yo+ VallIT
where I is the ideal generated by {a*(7vy, 7, , **, ¥,); B>0}.

We repeat the same procedure for W=W(n,, n,, ---,n,). For a partition
(my, ny, -+, m,) of n, we define a sequence of integers (m,, m,, -+, m,) inductively
as follows:

my=0, m=m,_+n, (1=i<r).

For the representation ring of I U(rn;) we have
i
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R(I] U(n)) = ®R(U(n ) = @ ZIA, NP, s N, AP, (M)

and 7*: R(H U(n,))—R(T") maps \§” on the p-th fundamental symmetric poly-

nomial in varlables {a;:m,_,<i<m}. We denote o for the image of A by
the map a: R(I] U(n;)) —K(W). Since the element
J

2 7\‘(1)7“2) 7\,(;")6 éR(U(nj))
i=1

AR

has the same dimension as (Z) 1;, they conicide with each other in

® R(U(n,)) @ rwin Z. Therefore IR ( ) holds in K ().

j=1 + 5T =k

In particular o052+ 0’ =1 holdsland we obtain (a"’)‘ II o. Therefore
k¥j

the ring K(W) is isomorphic to the quotient ring of
® Z[o$, o, -+, o
j=1

factored by the ideal generated by the elements

(3 ota@o—(} )i k>0}.

Again we change the generators as follows. The homomorphism

7*: K(W)—K(F(n)) induced by the projection of the fibre bundle II F(r;)—

F(n)—W is a monomorphism. In fact, since the odd dimensional parts of the
cohomology groups H**(F(n), Z) and H**Y(W, Z) vanish (Bott [16; Theorem
A]), the induced homomorphism z*: H*(W, Z)—H*(F(n), Z) is monic because
the Serre spectral sequence of the above fibre bundle collapses (Serre [17]).
Moreover, the Atiyah-Hirzebruch spectral sequence of W also collapses and
hence the Chern character ch: K(W)—H*(W, Q) is monic [4]. Therefore, the
commutative diagram

K(W) —— K(F(n))
ch l ”* ch

H¥(W, Q) ——H*(F(n), Q)

leads that the homomorphism z*: K(W)—K(F(n)) is monic. We define the
element c§” such that z*(c{”’) is the p-th elementary symmetric polynomial in
{vi;m <z<m} Then o§” and ¢§” differ in Z[v,, ¥ ***, 7,] only by an
element of the submodule generated by {c{”; k<p} or, the same, by {o§”; k<p}.
Hence we can adopt ¢§” as ring generators of K(W).
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Proposition 2.3.
K(W)= @ Z[¢5?, ¢, -+, P[]

where J* is the ideal generated by

1) (2 .
{ 2 eDc®e”; k>0 .
iyt =k

3. Tangent bundles of F(r) and W

The tangent bundles of F(n) and W=W(n,, n,, ---, n,) are investigated by
such authors as Hirzebruch [8, §13] and Kee Yuen Lam [12] as follows:

Proposition 3.1.
(1) Let £E,P---PE, be the vector bundle associated with the principal bundle
T"—U(n)—F(n), then we have
o(F(n) = T ERE/*

(2) Let 5D PBL, be the vector bundle associated with the principal bundle
U(n,)) X +-- X U(n,)—U(n)—W, then we have

(W) = T .ot

With a partition (7, n,, --+, n,) of an integer n, we associate an increasing
sequence (my, m,, -+, m,) defined as follows:

my=0, m;=m;_,+n; (0<i=<r).

Let 7: F(n)—W be the natural projection. Since z*: K(W)—K(F(n)) is a
monomorphism and it holds that z*({,)= 2} &, we have the splitting

Mma-1<i<mg

(3.1 (W) = 3] E@ES
where B= U {(i, j); Ma_1<j<i<m,} and A={(i, j); 1<j<i<n}—B.
a=1

4. Immersion and embedding of flag manifolds

As we saw in §l, for the probrem of immersion and embedding of flag
manifolds, we have to know ¥,,(W). Note that the following three procedures
are commutative with each other.

(a) To get v, of a vector bundle from 7, of its splitting line bundles.

(b) To get 7,(&) from (&)

(c) Substituting tz% .
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Therefore we have the following “commutative diagram” of three procedures:

£ ®) 7(E)

(a) 'Yt( ) / Ve
%(L)/ N 7AL) Y
\ \

V1(E)
) o N\

r)’1/2(‘[‘) (b I) ‘71/2(L) (a )

> T E)

So let us take the path (a)! (¢') (¢) (@) instead of the path (b) (¢). Recall that
the projection z: F(n)—W induces the monomorphism #*: K(W)—K(F(n))
(see §2) and n*T(W)z(_ZJ}AE,-@ET (see §3). Hence

PHW) = WO (W)—m) = 7 3 (EQEF—1))
= 1II 'Yt(fi@‘f;!‘_I) .

G,j)ed

Recall that for a line bundle %, we have Y{(n—1)=1+(n—1)t [2]. As we have
put 7;=&;—1, the equality £,Q£*=1 implies g¥=1/(141;). Therefore

')’t(&@f?"b = 1"‘(&'@5?"1”
1+, Yi—Y;
= 1+(l+v,_1)’ = 1+(1+fyj)t'

Substituting tzé and taking its inverse element:

il 1 - 1 /
'71/2(5;‘@7;!‘_1) = {1+;Y+')"): (7)} l - H%ﬁ;’}

1
?(ryi_')',‘)

= 1—.~T__
1"‘“‘2‘(7;‘,‘7,)

= 14+(7i—7)) g (-—é—)l('mw,-)"l .

Therefore we have
oo !
7*( V(W) = . ;)Ied{1+('ye—'yj) = (—%) (vit,)"1}.
Combining this result with Theorem 1.2 we obtain the following

Theorem 4.1. Let 2m—dim W=n*—(ni+--+n?).
For a positive integer k, if the element
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m . . ___L ' . -1
2 I {4 0m) (=) ot )
of K(F(n)) is not divisible by 2**', then we have
( l ) Wq: R4m-2k, (ii) W$R4m-2k—l .

It does not seem easy to find from this theorem the dimension of Euclidean
space in which W(n,, m, ---,n,) cannot be embedded or immersed. In the
following paragraph, we will discuss non-immersion and non-embedding for
only the case W(2, n—2)=G,,_, for odd integer n.

5. Preliminaries

In §2, we have determined the ring structure of K-ring of F(n) and
W=W(n, n, -, n,) as follows:

K(F(n)) = Z[71, Yoy Val [
K(W) = ® Z[c(lj): céj)) R Cﬁlj;')]/]"- .

For the next paragraph, we observe some algebraic properties of these
rings. Although K-ring has no geometrical grading, giving degv,=1 and
deg ¢i>=i, we regard K(F(n)) and K(W) as graded algebras. It is possible
because the ideals I* and J* are generated by homogeneous elements. (see §2).

First in K(F(n)), it holds that

(5.1) vi=0 ((=1,2-,n).

In fact let z;: F(n)—>CP" ! be such natural projection that the induced
homomorphism z¥: K(CP* ")=Z[x]/(x*)—K(F(n)) satisfies z¥(x)=7;. Then
x"=0 implies y?=0.

Next, as far as the applications discussed in §6 are concerned, it is suffi-
cient to observe the case W=G, ,_,. In this case, we have

K(Gy\op) = Z[cyy Coy o5 €1y €1y &y +o0y Eni] [T
and J* is generated by
(5.2) {e:itci6/+ - Feciitc¢, 1=5i<k(n—k)} .
Of course we understand that ¢;=0 if j>k and ¢/=0 if j>n—k.

Proposition 5.1. In the ring K(G, ,-;), we have

(5.3) cl’znzlzm(_l)m(' | -)cilc;2~--cik

Uy By oy U/ 2
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where |I|= 3 i, and |I||= iji,for I=(iy, i3, > 3y).
j=1 j=1

Proof. By (5.2) it is sufficient to check

o 3 (— 1)1n<zl M| i,)cl} -0

t+j= um =j KR

The left hand side is rewritten as

5 |11 |1 ) 1
¢=20 1|1n2=s S 1) (11, T A e

Put J,=(,, -+, ({,+1), -+, 4;) for 1<¢t=<Fk then we have
i I s _yra-yf Vel =1
m%:‘( h (’1, CAEIIN ’k)c + :Z;um:zs—r( DM (ln Lty ’k>0t
(WU Ny, 1= .}7=0
III;-’( 1) {<]l’]2’ "')]k) g (]1’ R (]t_l)’ "')]I;) ¢

by the formula for the multinomial coefficients and thus Proposition 5.1 is proved.

By Proposition 5.1, we see that all monomials in K(G,,-,) is written only
by ¢, ¢, =-.  Moreover, it seems that K(G, ,-,) is the free module over Z with
a base consisting of the monomials {c;c;, ¢, : ji++j,<n—k} but the
author has succeeded only to prove Proposition 5.3. Before that, we prove the
following

Lemma 5.2. Let n and k be two integers with 0 <k=n, then we have

(7)) =1

Proof. Putting {n} E( 1) ( )(n _2;), we show that {Z}:l by
induction on 7 and k. Evidently we have { g }=< 8 ) ( 8 >=1 and { Z }=
(8)( Z )=1. Next it is easy to see that

n n—1 n—1 n—2
(i) =Gttt
holds and by the hypothesis of induction, { Z }= 1+1—1=1. q.e.d.

In what follows, we consider the case k=2 and we put r=n—2.

Proposition 5.3. In K(G,,)=Z[c,, ¢;, ¢/, ¢/, +++,¢,'][]J" it holds that the 2r-
dimensional part is generated by c; and other monomials of 2r-dimension is written

“ aie= = {(F)-(;%,)} «
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Proof. In Proposition 5.1, the convention ¢/=0 (r<I<2r) leads to the
relations

(5.4) 3 (iR )b =0 (r<i=2r).
i) +2ip=
Multiplying ¢3*~! and rewriting é,=7—j and i,+#,=I—r+j, we have the relations

in homogeneous 2r-dimensions:
R )da =0 o<tz

Therefore it is sufficient to solve the following homogeneous linear equations
in r+1 variables x,, x;, **-, x,.

A,,,+1=z:(—1)f(1+1> _
Ay =3 (— 1)1(2+J

(5.5)

< 1),<

We fix integers j, k and 7 with r=k-+j. Comparing the coefficients of
9”77 in the expansion of the equality

(L) (1= (L9) ) = P (A9) ™,

(I owe this equality to K. Shibata) we obtain the relation
. o B\(r—s+j (r—k—l— j
ZH“”(J( —J > r—k~1)

- k
sgo (— l)s( s >Ar,2r—s = Ar—k,z(r—k) 1§k<7 .

Hence we have

This means that (5.5) is equivalent to the following homogeneous equations

AIZ_Z( 1)]<1+j>x =0
A“—Zl( 1)’(2—'_]) ;=0

B = 5T, =0

(5.6)

This is rewritten as
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N (=1(1H)x, = —a

-

..................

(=1, =

>0

(5.7)

and the matrix is a triangular one with the diagonal consisting of 1 and —1
alternatively. Hence the matrix is unimodular and the solution is unique. It
is therefore sufficient to show that

= o= (3)-(2)

is the solution. In Lemma 5.2 putting n—i=I/4j and i=I/—j, we have
n—2i=2j. Moreover putting (i} k—i=j and (ii) k—i=j—1, we have

@) 2E(NE) =y 1sis,

) Sy (H)(;E) = o1si=r,

and hence g (—1) 5i§){<§]> (}Ej )}:0, 1<I<r. This means that (5.8)
is just the solution of (5.6) and hence of (5.5).
6. Non-immersion and non-embedding of Grassmann manifolds

For an application of Theorem 4.1, we investigate the dimension of Eucli-
dean spaces in which Grassmann manifolds G,,-, cannot be immersed or
embedded. Only the case k=2 and 7 is odd was succeeded. First we show
the results. «a(n) denotes the number of I’s in the diadic expansion of an integer
n and v,(n) denotes the exponent of a prime p in 7.

Theorem 6.1. For each integer u=0 we put B(u)=2c(u)—v,(u+1)-+1.
Then we have

(1) G T RCHDBW (i) G 4y, EPEHD-BOL,

Remark 1. It might be interesting to compare these results with the
Atiyah-Hirzebruch’s results [3] that (i) CP"d R*"~2%™ and (ii) CP™ ¢z Rtm-2%(m -1,

ReMARK 2. Connell [6] also proved that G, ;< R".

Proof. By the results in §3 we have
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(6‘1) K(GZ,n—Z) = Z[cl: G2 cl,s czl: "',C;—z]/.rr
(6.2) K(F(?l)) = Z['Yly Y2y **y (Yn]/l_'-

Let #z: F(n)—G,,-, be the projection of the fibre bundle with the fibre
F(2)x F(n—2), then =*: K(G,,_,)—K(F(n)) is a monomorphism and =z*(c;)
(resp. #*(¢/)) is the i-th symmetric polynomial in 7, ¥, (resp. ¥s, Y4 =, Vy)-
In Proposition 5.1 we have shown that ¢;~2 generates the 2(z—2)-dimensional
part of the graded module K(G,,-,) and we will show in Lemma 6.4 that the

m P .
coefficient a of ¢372 in 2} 2"~ '%(G,,,_,) is
i=0

0 n: even
(6.3) = {

__ 22u+3) (2:>2 n=2u+3

(2u—1)(u+1)

Therefore unfortunately we get no informations if # is even. When # is odd,

note that u2(<2uu>)=a(u) holds by Lemma 1.3. Then we have

(64) vi(a) = ) = 2a)—vifut 1) +1.

Since Em:,‘ 2m=i§Y(G,,,-;) cannot be devided by 2*(9*!, Theorem 6.1 follows from
i=0

Theorem 1.2. q.e.d.

It is left to get the coefficient a of ¢372% in

(6.5) 2n I A{1+(vi—7)) ﬁ( »)l(%+ 7))

1=j=s2

_1
2

which will be done in Lemmas 6.2, 6.3 and 6.4. In Lemma 6.2 we work in the
case G, ,_, for arbitraly %, but in Lemmas 6.3 and 6.4 we restrict ourselves to
the case k=2.

Lemma 6.2.

(a) For fixed j, we can put
L o) B (1) @ty
3 1Y 5 » * 1-p
- :=Zo (_E) Z%(—l) €n,1-p,p7 (€)Y

(b) €n,1-pp= 'ﬁ (— 1)'<n7k><l—l;ir>‘
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Proof. #,,(§;@E¥—1) = 1+ i <—L)l(7i_’yj‘)('yi+')/j)1_l

—1+Z‘(~—) Z‘.(l e 1)(% v vt

=1+§<_7){2<5 11)) Pyl ‘_?(l_P 1)')'1")’5 P}.

In order to introduce a new function, we recall some properties of binomial

coefficient ( # ). Putting (8):1 and (§)=0 if b=0, (Z) is defined by

(Z):(a—l)—l)—{—(b i) for each pair (a, b) of integers. Then (Z)=0 if 5<0
or if 0<a<b. (0 )=1 for each a and (Z )———1 if a=0. We define a new func-

tion [Z:I for each pair (a, b) of intergers by

a a a
(6-6) [5]=(5)-(2)
Then, we have I:Z:|=O if 5<0 or if 0<a+1<5b, [8]:1 for each @ and

[a-T- I]Z—l if a=0. Using these the above equations are contineued as

AN G110
=5 (—5) glisp
Therefore

1T 5@ 1)
LB () AL

5;=0

follows:

_L)I ; ' [li—‘l] ¢ 2\ yl-p
( 2 l,,+1+2+1,.=u§0 {p,,ﬂ 2+p,. pi I;IH Li—p; i};];d{Yt}'YJ

_1Ys ' [li—l] T o2 gl
0( 7) pgo {pk+1+2+p,.=»1k++~2~+1,.=1i=1;[+1 li’_P; ,*=I:1x% }'Y,

bi<i;

I
Me iMs .'l;:1=

-
I

We first show that > fI B‘:_Il’] .depends only on p but does not

Ipgy oo *ig=li=k+1
depend on the partition (p,+y, ***, p,) of p and moreover it is equal to

(6.7) €n1-p,p = IZ?; (_1),(n-r—k> l—l;i) )

For that we set up a relation of the function ':Z] Comparing the
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coefficient of x' in the expansion of the equality

f[ (4x)"% = (142), (s = s+-+s,),
< /s;+t—1 s+t—1
h .
we have 23 ,.131< t; ) ( t )

From this we easily see that

(69) LI = B9,

In fact
I (G B Al

SR MIDICES ARy

o+t Fag=t IS

where J runs through all of the subsets of I={1, 2, :-+, ¢} and r is the number
of elements in /. Moreover

s/ =85+1 and t/=1t—1 if ie]
s; ; and t/ =1t if ie].

r—§

Hence the above equation is continued as

SCEVNDI | KRS

skt =T =1

-5 (- 1)(s+t_) S0

IDJ
Replace /; for s;+¢; and [,—p,; for ¢; in (6.9). Since py,+ -+p,=p is
constant, the condition #,----4¢,=t is replaced by /,,,+-:-+/,=I and hence
we have

(6.10) P L] - E e (5

as required.

Next we show that in K(F(n)) it holds that
(6.11) wre,=(—1p 31 TT o4,

Ppiyt b= p i=h+1

In fact,
lé];ng(l-F')’,A)Mlé'[ié”(l4—9'.-) = lé1;”(1-%')’;) =1

implies

”*(; L‘p) - 1sl;£k(1+ry’.) - k+1g5n(1+7i)_l
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= I S(—wypr=2(-1y 3 Tk

k+1Si<# ;=0 =0 pk+1+~'~+Dn=Pi=k+l

Hence we have (6.11) and Lemma 6.2 is proved.
For the calculations in Lemma 6.4, we restrict ourselves to the case k=2
and determine the values of some e, ,_, ,’s more explicitly. We put

(6.12) e,'j = (_l)je”'”_,"j .

Lemma 6.3.
(1) When n is even, putting n—2=2u, we have

bi; = zr+s=22u+2—.‘(_1) +J( ;l><]+s l) if ]+lgl
— prsrif 2u—1+j+1\/i—j—1 e .
e = ZY+S=EM_‘(_1)++:< i )( ) ) if j+1<i.
2) When n is Odd_, utti n——2=2u+1’ we ha-ve
putting
_ rrif 2u+1\ (j+1—1 e .
;= .2, (=D +:( )(J ] ) if 1.
i B YY) s

Proof. Comparing the coefficients of ¥” in the expansion of

(A—2)F(1+x)~*  if 1=k
A—2)(1—x)~'  if I<k

m—l)( )(l k) if 1>k

é( 1)(k)(mir): 2’+gs=m(_1)=+r<r)(ks‘l) if ISk

(1=f1-+ay = |

we have

Applying this to Lemma 6.2 (b) with k=2, we have Lemma 6.3. q.e.d.

We give the list of some e; 4 (1=:<5, 0=<7=<2) which we will use in Lemma
6.4.
(1) When =z is even, putting n—2=2u, we have

ey=0 en = (— 1)u+l(2u> bz = (_1):42(2:)
en = (—1)* <2u 1) oy — (*1)u+1(2uu) ep = (_1)u<2uu>
= 102(27)  a=(2))  w=o

e = (% )+ 13(%5)
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en = (—1)" <2u 2) (= 1),,+,<2uu:22 o = (—1) 1<2u 1)
G . A LY GV e
ey — (— l),‘3<2u 3>+( l)uﬂ 2u— 3> b = (_1),,_12(21414_—22>

(2) When # is odd, putting n—2=2u-1, we have
2u+1
€ = (—1)"“( u;— ) en = (— 1)u<2u 1) e, =10
€0 = (—1)”1(2:) en =10 €n = (—1)'(2“;'—1)

e =20 ey = (__1)u+1(2;> oy = (_1),,(2u;|— 1)

eo = (132 1y ()

eo= (2% T)  eo=(—10(,2)
e (B2 ()
oo = (1) <2u 2) e 1),,+13(2u 22)
e = (—1)*" l(21:4 11)+( 1y <2u 1)

Lemma 6.4. In K(G,,.,), the coefficient a of ¢} in 2"y (G, ,_,) is

jO n: even
a—

22ut3) (2u B
| "= 1)(u—|—1)< ) n=2u+3

Proof. Combining (6.5), (a) of Lemma 6.2 and (6.12), we have

n+_71 :1 n-— z
2" '71/2(G2 n—z) = 2’”{2 2 ( ) € i1 Cii V1 }

;=1 j =0

()

=1 jp

(6.13)

The term of degree m=2(n—2) in this equation is

(6.14) . Z ; €;5,€iz o€ 11"‘1271 Thyg

iy 12—11+ 2+4
and as jj, ,=<2, it must hold that 4<7,47,<8. So we can list up all terms which
appear in (6.14) as follows:
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5.3.

(1]

(21
(3]

(4]
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€ ;Cinjo €, i heys e
€202 ViTETr =t
€100 (VY)Y = —e57?
€331 x5 aM+7)viti i =3t
3,851 exe5 Y =5t
€363 iy = 5
eeqteney 01(')’?"‘ VIVt = —c5?
exptenty (Vi)Y st = —c5?
ey i)yt =0

e318p1€ney (N7 vi st = 572
€ny YTty = 5
€105, 12650 52(')’%4"')’3)')’1’—573_5 =0

€1:65 Cf('ﬁ‘l")’%)’)”l’_s')’g—s = —c37?
€551 €xes 5152(’)’?‘!_')’3)')'?_5’)’3—5 = —c57?
exts ViVt = —e37?

et 126
€266

€12672

ac(Yi+R)rivi e =0
S(Vi+r)riTvEi =0
S+ =0

a = €y — €103 €x€a 1 €nC31 €30€ntE€ney
+e3185— €108 — €184 — € — eyt es6n

+egeyntepen— 1165 — €565 — €565 — 565,

Note that the relations on the right hand side is obtained from Proposition
Therefore the coeflicient a of ¢572 in (6.2) is obtained as follows:

Applying the list given bellow Lemma 6.3 to this equation, we have (6.13).
q.e.d.

KyusHu UNIVERSITY

References

M.F. Atiyah: Immersions and embeddings of manifolds, Topology 1 (1962), 125—
132.

M.F. Atiyah: K-theory. Benjamin, 1967.

M.F. Atiyah-F. Hirzebruch: Quelque théorémes de non-plongement pour les var-
1étés diff érentiables, Bull. Soc. Math. France 87 (1959), 383-396.

M.F. Atiyah-F. Hirzebruch: Vector bundles and homogeneous spaces, Proc.
Symp. Pure Math. 3, Differential geometry, (1961), 7-38.



(31
(61
(71
(8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
(17}

[18]

IMMERSION AND EMBEDDING PROBLEMS 135

A. Borel-F. Hirzebruch: Characteristic classes and homogeneous spaces, 1. Amer.
J. Math., 80 (1958), 458-538.

F.J. Connell: Nonimmersions of low dimensional flag manifolds, Proc. Amer. Math.
Soc. 44 (1974), 474-478.

M.W. Hirsch: Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242—
276.

F. Hirzebruch: Topological methods in algebraic geometry, 3rd ed., Springer-
Verlag, Berlin, 1966.

L.H. Hodgkin-V.P. Snaith: Topics in K-theory, Lecture Note in Math. 496
Springer 1975.

S.G. Hoggar: A nonembedding results for complex Grassmann manifolds, Proc.
Edinburgh Math. Soc. 17 (1970-1971), 149-153.

I.M. James: Some embeddings of projective spaces, Proc. Cambridge Philos. Soc.
55 (1959), 294-298.

Kee Yuen Lam: A formula for tangent bundle of flag manifolds and related mani-
folds, Trans. Amer. Math. Soc. 213 (1975), 305-314.

M. Nakaoka: Characteristic classes with values in complex cobordism, Osaka J.
Math. 10 (1973), 521-543.

B.J. Sanderson-R.L.E. Schwarzenberger: Non-immersion theorems for differen-
tiable manifolds, Proc. Cambridge Philos. Soc. 59 (1963), 319-322.
J.Tornehave: Immersions of complex flagmanifolds, Math. Scand. 23 (1968), 22—
26.

R. Bott: An application of the Morse theory to the topology of Lie groups, Bull.
Soc. Math. France 84 (1956), 251-281.

J.-P. Serre: Homologie singuliére des espaces fibrés. applications, Ann. of Math.
54 (1951), 425-505.

T. Sugawara: Non-immersion and non-embedding of complex Grassmann manifolds,
to appear.








