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1. Introduction

In this paper we shall study the admissibility of representations for a re-

ductive group defined over a global field k of characteristic ^>ΦO. For the

concept of admissible representations in the sense used here and their con-

nection with the Siegel Formula for number fields see [7]. and [11].

We obtain a necessary and sufficient condition for the convergence of the

integral /P(Φ) associated with the reprresentation p. This criterion of con-

vergence involves the weights and their multiplicities in p and is analogous to

WeiPs result for number fields [9 p. 20]. We see that although representa-

tions need no longer be completely reducible, the admissibility of the triple

(G, X, p) depends only on the composition factors of p.

As a corollary, for G connected and reductive over Λ, we see that GA/Gk has

finite volume if and only if the centre of G has no Λ-split torus. In particular

this implies that for G to have any non-trivial absolutely admissibly represen-

tation over A, G is necessarily semi-simple. Further, we sec that for given G

only finitely many different composition series can occur as the composition

series of admissible representations.

For G a simply connected, simple and Λ-split group we obtain a list of com-

position series that can occur in admissible representations. The list includes

all the representations that occur for number fields, as well as many new ones,

depending on the characteristic of k. For p=characteristic of k sufficiently

large we show the list to be complete. However, for p small we cannot con-

clude that the list is exhaustive. The difficulty is that for small p it is an unsolved
problems as to what the weights and multiplicities of a given irreducible re-
presentation ρλ are when the highest weight λ is given.

We further show how to obtain the admissible representations when G is

a simple group.

The author wishes to thank Professor Igusa for suggesting this investigation

of the function field case, as an extension of his results for number fields.

* This work was partially supported by the National Science Foundation.
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INDEX OF NOTATIONS

Z,Q,R

GA

the integers, the rationals, the real numbers (respectively)

the finite field with q elements
the multiplicative group of the universal domain

the algebraic closure of the field k
For an algebraic group G defined over k,

identity component of G
the subgroup of G of points rational over k
the adelization of G
the algebraic group defined over k obtained by restricting the
field of definition from K to k.

^Γ(G)=Hom (G, Gm) : the module of rational characters of G
Xk(G) : the module of A-rational characters of G
\x\A : the idele norm of an element x^GA.
<S(XA) : the Schwartz-Bruhat space of XAJ when X is a finite dimen-

sional vector space defined over k.

2. Criterion of convergence

Let k be a function field of transcendence degree one over its finite prime
field, Fp. Choose q so that Fq is the exact constant field in k. Let p:G->
Aut(^Q be a finite dimensional representation of a reductive group G, all defined
over k. The triple (G, X, p) is called admissible over k if the integral

of the theta series associated to p is absolutely convergent for all ΦEϊ<S(XA).
We say (G, X, p) is absolutely admissible over k if the corresponding integral is
absolutely convergent for all finite extensions Kuk. Igusa [7], has introduced
this concept for number fields. In this section we derive a necessary and
sufficient condition for p to be admissible over &, in terms of the weights of
p. We use Harder's reduction theory [5].

Let GO denote the connected component of the identity of G. Then

GA/(G0)A is compact since the proof [2 p. 9] works also for function fields. Hence
p is admissible over k if and only if the restriction of p to G0 is admissible
over k. Thus to study admissibility, we may assume that G is connected.

Let P denote a fixed minimal A-parabolic subgroup of G, with T a maximal
torus of P, defined over k and SdT a maximal k-split torus of G. Then
P=Z(S) U9 a semi-direct product of the centralizer of S (in G) with the uni-
potent radical of P. Further, U= Π P<», where the PΛ are the 1-parameter

Λ\S<Ό

subgroups of G associated to the roots of G (with respect to T) and the order-
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ing is the one implicit in our choice of P. Let Δ/>/ be the algebraic module of

P, that is, the module of the inner automorphism of P on U. Then

Δ?1|s = Π Cί = product of the positive roots with multiplicities
Λ\S<0

(with respect to S).

Let {#!, •••, ar} be the simple roots with respect to this ordering and for each

/, l<i<r, let Pi be the maximal proper parabolic subgroup of G containing

P, with corresponds to the subset of {#ι, •••,#,} with α, omitted. Write Δ,
for the restriction of the module ΔP. to P. Then we have #,-= 2 c^Δj for

(where we regard each character in X(S)®zQ). Define \cti(y)\A=

Π I Δj(y) I AίJ for y^^A and note that this makes sense even though αt(jy) need

not be defined. For c>0, set PA(c)={y^PA\ \ai(y)\A<c for l<i<r}.
The main result of Harder's reduction theory can now be stated as: there

exists c>0 such that GA=FPA(c)Gk, for a suitable compact set F whose exact
description is unnecessary for our purpose (it involves translates of a given

standard open-compact subgroup.)
To obtain our criterion of convergence, we need to refine this result of

reduction theory in terms of the maximal Λ-split torus S.

Choose a generator x e k such that extension k Z) Fq(x) is finite separable. For

w I v, an extension of a valuation v (on Fq(x)) to w on k, let ew denote the ramifica-

tion index, thus if jde**1' generates the value group v(Fί(x)v), then the value
group w(kx

w) is generated by ^desΛt>/βr. Choose w such that (degπv/ew) is the

smallest possible, say s0, as v and w vary over all valuations and fix zQ^kx

w

such that \z0\w=qso. Then embedding kx

wc:k0

A as usual, we have kx

A=θ(kx

A)°,
with θ the subgroup of kx

A generated by #0 and (kx

A)
Q the ideles of norm 1. So

Θ^Z and notice how this differs from the standard splitting used for number

fields. Hence the isomorphism S~(Gm)s of the Λ-split torus S, gives

SA= Θ(S)SA with Θ(S)^ZS (this isomorphism depending on the original

S^(Gm)s) and S*A={xeSA\\X(x)\A=l for all XeX(5)}. Now, since
y we can choose a basis {Xj, •••, %s} for Xk(P) and defining

we have X(P^) Z) %(*Sf

4̂) with the latter a subgroup of finite index (since for k

a function field the |%/(#)L are integral powers of q for x^SA). So choosing

coset representatives we have PA= U piSAPA, with t finite and PA={y^PA\

\X(y)\A=\ for all X^Xk(P)}. Thus P^— U piθ(S)PQ

A and so
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Px(c)c U PidCi(S)P°A , where
ί = l

and

θ£i(S)=~{θ(Ξθ(S)\ |α

Further P*A=Z(S)°A UA and since Z(5) is Λ-anisotropic, we have Z(S)°AIZ(S)k

compact [5], whence PA=MPk for M on compact set. Moreover, if £>1,
is finite so enlarging the compact sets if need be, we obtain,

Proposition 1. (Reduction theory for reductive groups over a fuction field)
There exist compact subsets F19 F2 of GA such that

GA = (F1θ+F2)Gk, where

\\aj(θ)\A^l for l<j<r}

,.<0 for \<i<r}

under the isomorphism S^(Gm)s.

Lemma 2. For every £>0 and every compact subset Fc:PA, the set
U ΘFΘ'1 is contained in a compact subset F' of PA. Moreover, if FdPA, then

βeβcOS)

F' can be chosen in PA.

Proof. PA=Z(SA) UA, a semi-direct product and writing Fs= project ion
of F on Z(S)A, FM=projection of F on UA, we have ΘFSΘ~1=FS, while by
the structure theory of reductive groups, θrΛ(χ)θ~1 = rΰ6(a(θ)x) where the TΛ

are the morphisms defining the 1 -parameter subgroups PΛ of G. Hence if
\x\A bounded, so is \a(θ)x\A for θ(Ξθc(S) and α>0, hence U ΘFuθ'lc:a

compact set.
By the definition of PA, \ΔP\A takes the value 1 there, hence PA is uni-

modular. Let dθ, dp0 denote Haar measures on Θ(S), P°A (respectively), so as

usual I ΔP(Θ) 1 11 dθdpQ is a right invariant Haar measure on Θ(S)PA. We derive
now the analogue of Weil's Lemma 4 [9] for function fields.

Lemma 3. Let G be a connected reductive group over k, with dg a Haar
measure on GA. There exists a compact subset C0dGA such that: given any measur-
able function F:GA/Gk-*C and a measurable function F0: Θ+^C such that

we

\F(gθ)\<F0(θ) for all

have { \ F(g) \ dg < constant { F0(θ) \ Δp(θ) \ Άldθ .
JGA/Gk JΘ +

Proof. We have GA^)PA^)Θ(S)PA> with each quotient compact. For a
suitable scalar multiple
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dg I β<s)pi = I AP(0) I Aldθdp0, as each is right invariant.

By Proposition 1, GA=F1θ+F2Gk with F2<^P°Ay hence

TO ^constant ( \F(g)\dg
JClθ+C2

But by lemma 2, U flί
Θ<ΞΘ+

for suitable compact F3, whence θ+F2dF3θ+. Choose CQ^F^ to be any
compact subset of GA. This will be the set whose existence we are asserting.

Thus, since \F(gθ)\ <F0(θ) for £€ΞC0,, 0GΞ0+, we see

GA/Gk

I F(g) I ̂ constant ( | F(g) \ dg
*Coθ +

<constant ̂  F0(0) \ ΔP(Θ) \ Άldθ .

Let now p: G^Aut(^Γ) be a representation, defined over k and choose
a basis for X so that p restricted to S, the chosen maximal Λ-split torus of G, is
diagonal. Then the characters of S that occur are called the weights of p and
let P(p) denote the set of weights of p. Recall that G is a connected reductive
group defined over k.

Theorem 4 (Criterion for convergence). The integral /P(Φ) is absolutely
convergent for all Φ^S(XA) if and only if

-I. π suP(i,

where mλ=the multiplicity of the weight λ in p.

If this condition for convergence is satisfied, then in fact the convergence of
7P(Φ) is uniform on all compact subsets of S(XA). In this case 7P defines a
positive tempered measure on XA.

Proof. (I) sufficiency of Cp < °o .

Let C0 be the compact subset of lemma 3. For given Φ^S(XA), the
family of functions "x-^Φ(p(g)x)" (g^C0ί x^XA), being parametrized by a

compact set C0 forms a compact subset of S(XA), hence there exists Φ0

such that \Φ(p(g)x)\ <Φ0( *0 for all^eC0. Thus, by lemma 3,

= i t
J

,
GA/Gk ξ^Xk

<constant( 'ΣΦ<>(p(θ)ξ)\AP(θ)\71dθ ...... (1)
Je+feXt
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But Xk= 0 Xλ where p(s)xλ=\(s)xλ for s^S, xλ^Xλ with mλ=dimension of
\

*λ
Let {aλ>i} be a basis for JΓλ over k so that then X9=Xk ®kkv for every valua-

tion v and use this basis to define X%, the o^-rational points of Xv. Then
XA=XU®X', where w is the valuation singled out by our splitting SA=Θ(S)SA
We may choose Φ0=ΦW®Φ', with each factor locally constant and of compact
support, say support Φw=a~1X°w , support Φ/=b~1 Π Xυ for suitable a, b.

Then Xw=Xk®kkw and X.B^ΣfλΛί, with fλf ίe*w. Then

In particular, if ξ&Xk, the coefficients ξλtί^k and for given

if and only if j p(0)α£ eJΓ° and

e -

But

so Φ0(p(0)£)Φθ if and only if for each

λ, /

Now , for fixed λ, / \(θ)aξλi^ow if and only if

ordw(\(θ))+ordw(ξλti)>nw

and ...... ( 2)

ov all

Similarly need ordv(ξvλi)>nn (all

where nwί nv depend on a, b. Let b0 be the divisor

b0 = 2 — nυv and put bλ(^) for the divisor
all«

bλ(β) = \+ordw(\(θ))w.

Hence (2) is satisfied if and only if, for each λ, i

£λi<e{fe*|<fc;H-bλ(0)>0}

in the usual notation. By the Riemann-Roch theorem,

l(θ) = dimF? L(bλ(β)) = deg(ϊ>λ(θ))+l-S+l(

where ̂ =the genus of k and K is the canonical divisor. Notice that l(κ — bλ(0))=0
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if deg(bλ(θ))>2g-2. We have deg(bλ(θ))=deg b0+ofγ/.(λ(0)), so writing

N0=max{2g—l—deg b0, 0}, we can estimate /(#), as follows:

(a) if ordw(\(θ))>N0, l(θ)=constant+(ordw(λ(θ)—N0)ί the constant being

deg^Q+l—g+NQy hence independent of θ, or

(b) if ordw<N0, we write the divisor

Hence l(^-^

and so l(θ) =

< deg b04-l — £+/(b)+7V0, a constant independent of θ\

Noting that \\(θ)\A=q~s°ordw(λw\ we obtain that the number of ξλ>i which

satisfy (2)

is ίc,\\(θ)\71 if \\(θ)\ϊ>qN»>l

λ if

<ί
~

which can be rewritten to be <cλ sup(l,

Thus cardinality {ξ e Xk \ Φ0(p(θ) ξ) Φ 0}

< constant Π sup (1, | \(θ) \ A"*)

and we have majorized /P(Φ) by Cp, from (1).

We have further that, since all the functions in any compact subset of

have a common bound by a function also in <5(̂ ), the convergence of /P(Φ)

for every Φ, automatically implies the statement of uniform convergence,

whence by Lemma 2 [9], /p defines a positive tempered measure on XA.

(II) necessity of Cp < °o :

The subset θ+ is closed in GA and we have 0+γίΊ0+Φφ for γeG* only if

7=lι since Gk is diagonally embedded, while θ+Clk*. Hence dg\θ+=

I ~Aldθ relates the measures. Choosing

φ>o, oo>f
J

Now, if further Φ= Π Φw where each Φv is the characteristic function of J?J, we

see as before that for £eJTΛ, Φ(ρ(ί)?)=Φll,(p(β)?)Φ/(|)Φθ

if and only if for all λ, i [ orda(ξι>;)>0
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Put £(λ(0)) = {ξ<Ξk\div ξ+ordw(\(θ)) w>0}

with /(λ(0)) = dimFL(\(θ)), then Σ Φ(p(#)i) = Π
ξ^X £ λ

By Riemann-Roch, have

(i) if \\(Θ)\Ϊ<1, j b x'M M^l = sup (1,

(ϋ) if

Hence Σ Φ(p(0)f)>constant. Π sup (1, (λ(6»))lwλ)
ξex^ λ

i.e. oo >/P(Φ)> constant. Cp with a non-zero constant.

Corollary 5. Let G be a connected reductive group over k. Then GA/Gk has

finite volume if and only if the centre of G has no non-trivial k-splίt torus.

Proof. Consider the trivial representation of G on X = {0} .

Then /(Φ)=φ(0) vol(G^/GA) < oo if and only if

Θ+

Now ΔP(0)= Π a(θ)= Π <*i(θ)\ with ^.>0, integers. Further, ( ή Ker αf )0=
cύ\S<0 i = l i = l

(S Π Z(G)\, is the maximal &-split torus of Z(G), whence by the duality between

tori and their character group, {a^ •••, ar} generate a subgroup of finite index

in Xk(S)=X(S) if and only if Z(G) has no (non-trivial) β-split torus. We had

θ+={(xl9 •• ,Λ;je^s|Λ:ί.<0 for !</<r, thus

έ/0 = Σ Π (qSQ)ni where the summation is over rct <0 for
i.j i = j

\<i<r and Zs~r. Thus, volume (GA/Gk)<°° if and only if s=r, that is,

Z(G) has no non-trivial Λ-split torus.

REMARKS (1) This the analogue for function fields of Borel's result

[2, p. 21].
(2) A reductive group G that has an absolutely admissible representation

over k, is necessarily semi-simple since it always has the trivial orbit {0} , whence

vol(GAIGk) is finite for every finite algebraic extension Kuk, so by the previous

corollary, must have zero radical.
The criterion for convergence allows us to make the following simplifications

in the study of admissible representations, exactly as is the case for number

fields.

Suppose G*->G is an isogeny defined over k, write p* for the composition
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of this isogeny with the representation p of G, then since p and p* have the
same weights, our criterion implies that p* is admissible over k if and only if

p is admissible over k. Further, if ρ=ίpι * \, then p admissible over k implies
VO pj

that PJ, p2 are both admissible over k. A partial converse is also true, namely

if either pj or p2 is the trivial representation of G repeated a finite number of

times (where by trivial representation we mean that every element of G is mapped

to 1), then admissibility of either pl or p2 over A, implies admissibility for p,

since the factor ΠS UP(1> \^>(θ)\AWχ) is the same. Moreover, if p is a repre-

sentation of G over k and Kl)k is a finite algebraic extension, then p admissible

over K implies that p is admissible over k since both the integrand and the
domain of integration become smaller for k. Conversely, if G is Λ-split, then

clearly an admissible representation over k is absolutely admissible.

While an arbitrary representation p need not be completely reducible, our

criterion of convergence says that admissibility depends only on the composition

factors of p.

Thus, to classify the absolutely admissible representations of G, we are led
to considering a Λ-split form of G, which if it is to have any admissibles at all

must be semi-simple. Further, we may take a simply connected covering of

G. The objective of this paper is to list the composition series that can occur in

admissible representations of semi-simple Chevalley groups.

3. Admissibility for a Chevalley group

From here on, G will stand for a connected semi-simple, simply connected

Chevalley group over Λ. The finite dimensional irreducible representations for
G are determined by their highest weight. Since we are endeavoring to list the

composition series of admissible representations, for economy of expression we
may suppose that the representations occuring are all completely reducible.

As before let {a\y •••, ar} denote the simple roots of G with respect to our
choice of minimal parabolic subgroups (now a Borel subgroup, since G is

Λ-split) and choice of maximal A-split torus S (now a maximal tours of G).

Let further Λt, pt denote the corresponding fundamental weights and represen-

tations of G. Thus the mapping

x —> (ΛJ(Λ:), •••, Ar(x)) gives the ^-isomorphism S —> Gr

m .

Let ^ij=~/—~—\~ be the entries in the Cartan matrix of G, where ( , ) is any
\Oίji Oίj)

positive, non-degenerate scalar product in X(S) ®ZQ> invariant under the Weyl

group. For (b^) the inverse matrix, one has έί;>0. This is important for us,

so lacking any convenient references to cite, we give a proof in the following:
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Lemma 6. it>>0/or all i,j\for (b^) the inverse Cartan matrix for G.

Proof. Λ f y<0 if ί=t=;, while αt =2. For fixed i, let

while

From A, = Σ ^ ,<*,•> we obtain
' 3

Σ £, /tfy, a*) - (A,-, α*)— .Σ *, , K >

Thus if &e /, we have Σ bi{a-) α*)>0, or multiplying by bik and summing over
yej ; ;

/, we obtain

( Σ bijaj , Σ δ, *α*) < 0, whence Σ bijaj = 0 .
J J 7 J

But since the αt are linearly independent we have iί;=0 for all^e T, as required.

Since any admissible representation can always be extended by any (finite)
number of trivial representations and still be admissible, we shall suppose

always that the representations under discussion are free from the trivial repre-
sentation.

Proposition 7. For given Gy the number of different composition series that
can arise as the composition series of some admissible representation is finite.

REMARK. This is precisely the same as for number fields [7], with the
proofs identical. For emphasis we departed from the earlier convention of

considering only completely reducible representations. We give a proof only to
indicate how our choice of section in k^=θ(k^f affects the number field argument
and to justify later appeals to the number field situation, where we shall omit
the details.

Proof. Set | A,.(i) | A=(f«)Λtx) for x£Ξ SA. Then the identification S~-*Gr

m

given by x^A^x), , Λr(#)) gives

θ(s) ^ Zr

UJ UJ

Since #i = Σ ai A, > Λ, = Σ ^ ,-#,•> we have
3 3

θ+= {(ΛI, — ,έzr)eZΓ |Σ«, f « f <0 for \<ί<r}
j = l J J

= {(bly -,ir)eZr|*i^O for \<ί<r} ,

under the change of coordinates b~ Σ aipj* Moreover, since
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= ΣΛ t = |Σα, we have
*>° r t

for

Thus

Cp - constant Σ Π sup (1, | λ(0) \ ?"*

where the constant comes from the change of variables (since
Now, for any irreducible representation in p of highest weight λ^ with

the multiplicity of λ being mλ in p, this irreducible factor occurs at most τtoλ in p

as a composition factor. Writing

r

λ = Σ £ίΛ, , with £,>(), we have

Π sup(l,

+. Hence

00 >CP> constant. Π

so

Hence we obtain the bound:

(B) m*&s<Mι Σ «Ay <2 Σ δ,vJ , = ι ; i = ι 3

for each y, from which our finiteness claim follows.

The existence of the estimate (B) has another important implication. It
allows the classification of admissibles to be reduced to the case when G is a

simple group. For number fields Igusa could see this directly, since the list

of admissibles was shown to be exhaustive, whereas in characteristic ^>ΦO, we

can only do this for p large. Nevertheless, the estimate (B) suffices in all but

one case.

Proposition 8. Let G be a simple group. Then for every admissible, irredu-

cible representation p of G we have that : (the degree of p) > (the multiplicity of

p in any admissible representation of G), except perhaps for the case when G is of

type Ar and p=pι

The proof consists of a case by case examination of the simple groups.
For p=pλ, irreducible representation with highest weight λ, one has

(degree ρλ)>|ίF λ|, the cardinality of the orbit of λ under the Weyl group.
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Let Wλ denote the stabilizer of λ in W, then | WVλ |— .| W: Wλ\ and Chevalley's
theorem [10, volume I, p. 14] gives the generators of Wλ, in terms of λ. For

n

example, if G is of type Bn and \= 2 ̂ Λ,-, with £,ΦO for a given i> 1, we have
i = l

WλdW(Aί_1)χW(Bn_i) if iφn or

ι if i = n

Here W(-4f ) denotes the Weyl group of the group of type Ah etc. Since

Λ, = Σ bijOtj, we have b{j= ^' Λ^ so (B) can be reinterpreted:
' (#A> °ίk)

2(Λ,,Λ,)
0*λ*A , = ^λ^i ~7 - \λ ' " , «

(2δ, Λ.)
whence wλ<-τ-r — π- for eachy, if -̂

** Λ

Bourbaki [4] lists Λt, W and for the exceptional groups (δίy), whence mλ<
degree pλ for all G, except G of type Ar with λ=Λ1. For this case, we obtain
only mλ<2r while degree pι>r+l. In the appendix we tabulate the bounds

obtained in this manner. They are the numbers

From our classification of irreducible admissible representations we shall
see that in fact, Proposition 8 does not have any exceptions.

If characteristic k=p, for any representation p defined over &, we have
also pFr, where one replaces the coefficients that occur in the matrix representing
ρ(g) by their p-th power [3], hence P(pFr)=ρP(p) is the relationship between

the weights. Moreover, in C f v , the product Π sup (1, \μ(θ)\Am^) is
β<ΞP(pFΊ

precisely Π sup (1, |λ(0) | Apm*)> whence Cpfr>Cp.
/lePcp)

Further, if p is irreducible with highest weight λ, ρFr is again irreducible,
with highest weight p\. This leads to admissible representations which did not
occur for number fields and these occur or do not occur depending on p.
However, they can only occur if p is small.

To fix the ideas involved, let QC be the Lie algebra over C corresponding
to G. Fix a Chevalley basis and denote by cjz the ^-span of this basis. Then,
we have Q=Qz®k for the Lie algebra of G. Let Vκ be an irreducible of
gc-module with highest weight λ and let v0^V be a maximal vector. For
Mc the universal enveloping algebra of gc, let uz be a ^-form of Mc obtained
from the Chevalley basis. Then nzvQ is an admissible lattice, containing v0 and
stable under uz. Tensoring nzv0 with k yields a restricted cj-module Fλ,
which is then also a module for the simply connected Chevalley group G and has

vQ®\^Vx as a maximal vector with weight λ. We say a weight \= 2 e tΛ t
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is restricted if 0<ei<p=chr(k). Let 9Jί be the collection of restricted weights
for G, with Mλ a restricted irreducible G-module with highest weight λ, for
each λe3Jt. Then {Mλ|λe9K| exhaust the isomorphism classes of restricted
irreducible G-modules and all irreducible G-modules are obtained by Stein-
berg's method [3] as tensor products from these. Further, the Mλ are homo-
morphic but not necessarily isomorphic images of Pλ.

Since in characteristic zero, the weights of the irreducible representation
with highest weight λ are precisely the weights that occur in Fλ, we see that in
characteristic p, the weights in Mλ are a subset of those in characteristic zero,
for the same highest weight. Hence any representation, described in terms of

the highest weights and their multiplicities which is admissible in characteristic
zero, will still be admissible in the function field case.

Moreover, if p is sufficiently large in relation to λ, we have Fλ irreducible,
as given by the following result of Ballard [1],

Proposition 9. Let G be a simple Chevalley group, over k with root system
r

Φ. Let \= Σ ei^i be a dominant weight and write δ= 2 Λ, . Also, let β0 be

the highest short root of Φ (where if β= 2 Λ fα f w # root, height (β)= Σ ai) Then,

a
(i) p>the Coxeter number of Φ and

fin 2(λ, β.)< 2(δ,/80)
V ' (A), A) (A» &,)

Fλ is irreducible and

REMARKS, (a) Condition (ii) implies that λ is a restricted weight for G,
since for every simple G, βQ= Σ a{a{ with α, >l, as can be seen in the table

given by Humphreys [6, p. 66].
(b) For G of type Ar and λ=Λ1, one also has Fλ-^M for every/), since the

Weyl group operates transitively on the weights of Fλ. Hence mpl is admis-
sible (for k a function field) if and only if mp1 is admissible (for k a number
field). Hence, by Igusa [7, p. 72] mpj admissible if and only if τw<r, and
Proposition 8 is valid for every simple group G and every irreducible admissible
representation.

This reduces the problem of classifying the absolutely admissible repre-
sentations of a given connected and simply connected semi-simple group G,
over k to the case when G is absolutely simple. To see this recall that G, defined
over k contains only a finite number of connected simple normal subgroups
and the Galois group of k/k operates on the set of these subgroups, dividing the
set into orbits. If Gly G2, are a complete set of representatives of these
orbits with K^ K2, ••• the smallest field of definition of G19 G2, ••• then
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G=RKι/k(G1)xRK2/k(G2)x . [8, p. 6]. The RKi/k(G) are the ^-simple factors
of G. Further, as for number fields we have

Lemma 10. Let Gly G2, ••• denote not necessarily distinct Chevalley groups
over k and let G be their product. Then every irreducible admissible non-trivial

representation p of G is a product of an irreducible admissible non-trivial representa-
tion of Gifor a uniquely determined index i and the canonical projection G^G,.

Proof, by Proposition 8 and [7, p. 92].

The discussion on p. 93 [7] is relevant for function fields also, so for G absolu-
tely simple over A, if G0 is a Chevalley group over k which is &-isomorphic to G,
then G is a A-form of G0 and the problem of determining which representations
of G are absolutely admissible over k, becomes one of determining which ones

are fe-equίvalent to an admissible representation of G0. We shall now obtain a
list of admissible representations for a simple, simply connected Chevalley group.

4. Admissible representations for simple Chevalley groups

Let G now denote a simple, simply connected Chevalley group over k,
with root system Φ. Then Φ is irreducible and as before we let {α ,̂ •••, ar}
be a set of simple roots, with (Λj, •••, Λr} the fundamental dominant weights.

For p an irreducible representation of G with highest weight λ, we write ρ=ρλ

and even p, to stand for pΛ.. Also, let mp denote the representation with

composition factors all equal to p and repeated m times.

Set

where we omit any terms that have (Λt , Λ;.)=0. These are listed in the appen-
dix for each group G.

Finally, put N(Φ)=2 Σ (JV. (Φ)+1) ^A>'' ̂  . An easy check shows that N(Φ)
(PO> βo)

is greater than the Coxeter number of Φ in every case.
For each type G we list admissible representations. The proof that they

are admissible follows from Igusa's work [7], together with the remarks preced-
ing Propositions 7 and 9. For p>N(Φ), the list is exhaustive. This is the
content of Proposition 9. For p<N(Φ) we cannot prove the list to be exhau-

stive. The result that P(pλ+λ/)=P(λλ/)+P(pλ'), ignoring multiplicities, which

was so powerful for number fields, is false if p<N(Φ) (for example P(pFr)=

pP(ρ)). A description of the weights and their multiplicities for pλ when
\^JM is an unsolved problem of modular representation theory. Our results

have reduced the question of admissibility in characteristic/), when p<N(Φ),
to this unsolved question.
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The following theorems now follow from the earlier remarks. Note that

Theorem 10-Ar(r>l). Admissible representations are a

Pl + P2> Pl+Pr-l> P2+Pr> Pr-l+ Pr, P2> Pr-l> aP P

mA, + bp pnAf (apM + bpn <r). TkβSβ

are the only ones ifp> — r(r+l).

Theorem 10-Br(r>2). apλ (a<r— 1), appmAι (apm<r—l) are admissible
representations in general, also Pι+ρr, 2pr, Pi far r=2, 3; 2p1+/or, Pι + pr, ρr

for r=4; ps for r=S. Further if ch. k=2, we have in addition p2Λr (r=2y 3),

4 (r= 4) If ch k> — r(3r+l), these are the only admissible representations.
Ll

Theorem 10-Cr (r>3). aρl (a<r)y pι+p2> p2> app*^ (apm<r) in general and
ρ3for r=3 are admissible representations. These are the only ones if p>3r2— 3r— 5.

Theorem 10-Dr(r>4). The following are admissible representations

Pi (a<r— 2), appmAι (apm<r—2) in genral and also Pι+ρ3+p4,

Pi+Pa, Pι+p4> P3+P4, 2p3, p3, 2p4, p4 for r = 4;

2pι+p2, Pι+P4, P4> 2p!+p5, PJ+PS, ρ5 for r = 5;

Pi+Ps, Ps, Pι+Pθ> P6 for r=6. Further, if k=2y also have p2Λ3, p2*4farr=4;

PΛi+P4, P2A!+P5/or r=5. When p>3r2— 9r-\-2 these are all the only admissible
representations.

Theorem 10-E6. Pι+p5, 2pl9 ρly 2p5, p5 are admissible in general and also

p2A , p2A5f
or chr k = 2. When p> 121 these the only admissible representations.

Theorem 10 -E7. ρl is an admissible represensation and it is the only one if

P>217.

Theorem 10 -E8. There are no admissible representations when p>464 .

Theorem 10-F4. 2pl9 ρλ in general and also p2Λl ifchr k=2, are admissible
representations. If p> 94 these are the only ones.

Theorem 10-G2. 2p1? ρ1 in general and also p2Λι if chr k=2 are admissible.

If p>24 these are the only admissible representations.

In the above list, recall our convention of treating representations as being

completely reducible. Hence what we have given are in fact the composition

factors of admissible representations. In a subsequent work we shall address

the question of completely determining the admissible representations.
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5. Appendix
r

Condition (B): mλei<Ni(Φ), where λ= Σ ei^i *s tne highest weight of an
' = 1

irreducible admissible representation pλ.

Type of G N^Φ) N(Φ)

Ar 2r+l-i,l<i<r %r
Br 2r-\-iί \<ί<r-\

2r i=r
Cr 2r+ί-i 3r2-3r-5
Όr 2r—l—i,l<i<r—2 3r2—9r+2

2r—2ίί=r—l,r
E6 12, 12, 10, 9, 8, 12 121

E7 17, 14, 11, 8, 10, 13, 17 217

E8 23, 17, 13, 10, 11, 14, 19, 29 464

F4 10, 5, 7, 11 94

G2 5, 3 24
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