ON RINGS WITH SELF-INJECTIVE DIMENSION $\leqq I$

Yasuo IWANAGA

(Received August 9, 1976)
(Revised July 16, 1977)

Let R be a ring with an identity and, for a left R-module ${ }_{R} M, p d(M)$ and $i d(M)$ denote the projective and injective dimension of ${ }_{R} M$, respectively. A (left and right) noether ring R is called n-Gorenstein if $i d\left({ }_{R} R\right) \leqq n$ and $i d\left(R_{R}\right) \leqq n$ for $n \geqq 0$, and Gorenstein means n-Gorenstein for some n. This is slightly different from the well known definition in the commutative case unless a ring is local (see Bass [5]) and, as a generalization to the non-commutative case, there is another one by Auslander [1]. However, when we want to consider many interesting properties about a quasi-Frobenius ring and an hereditary ring in more general situation, we cannot conclude yet which definition is best. So, in this paper, we follow the above definition of a Gorenstein ring and try to generalize some interesting properties for a quasi-Frobenius ring. On the other hand, for a 1 -Gorenstein ring, a few papers have appeared, for instance, Jans [12], Bass [4] and recently Sumioka [18], Sato [17] and, for a Gorenstein ring with squarezero radical, Zaks [19].

As the typical examples of 1-Gorenstein rings which are neither hereditary nor quasi-Forbenius, we have

1) Gorenstein orders, especially the group ring $\boldsymbol{Z}[G]$ where \boldsymbol{Z} the ring of rational integers, G a finite group. (See Drozd-Kiricenko-Roiter [7], Roggenkamp [16] and Eilenberg-Nakayama [8].)
2) Triangular matrix rings over non-semisimple quasi-Frobenius rings. (See Sumioka [18] and Zaks [19].)

In $\S 1$, we shall show that for a 1-Gorenstein ring $R, E\left({ }_{R} R\right) \oplus E\left({ }_{R} R\right) / R$ is an injective cogenerator (Theorem 1) and as this corollary, an artin 1-Gorenstein ring which is $Q F-1$ must be quasi-Frobenius (Corollary 3). This should compare with that for a quasi-Frobenius ring $R,{ }_{R} R$ itself is an injective cogenerator. Next, as a generalization of "projectivity =injectivity" for modules over a quasiFrobenius ring, we obtain that over a certain n-Gorenstein ring, finiteness of the projective dimension, projective dimension $\leqq n$, finiteness of the injective dimension and injective dimension $\leqq n$ for modules are all equivalent (Theorem 5).

In §2, first we attend to Nakayama's theorem [15] that a ring R is uniserial if and only if any homomorphic image of R is quasi-Frobenius, and replace
"quasi-Frobenius" with "1-Gorenstein." Then we have three classes of rings, i.e. a uniserial ring, an hereditary ring with square-zero radical and a quasiFrobenius ring with square-zero radical (Theorem 10). Moreover, as an application, we can classify a semiprimary ring whose proper homomorphic images are artin 1-Gorenstein (Theorem 12) and generalize [11, Theorem 1]. Also, in prime noether case, it will be shown that a restricted Gorenstein ring in the sense of Zaks [20] is equivalent to a restricted uniserial ring under certain hypothesis which always holds for commutative rings (Proposition 11).

Finally, Kaplansky's book [13] is suitable for looking at the recent development of commutative Gorenstein rings. In the present study about noncommutative Gorenstein rings, we should generalize the results described in [13] to the non-commutative case in appropriate form.

Notations. For a ring R and an R-module M, we denote
$n(R)=$ the number of non-isomorphic simple left R-modules,
Rad $R=$ the radical of R,
$\operatorname{Soc}\left({ }_{R} R\right)=$ the left socle of R,
$E(M)=$ the injective hull of ${ }_{R} M$,
$|M|=$ the composition length of ${ }_{R} M$.
A noether (artin) ring stands for left and right noetherian (artinian) and an ideal means twosided. Further, we say a non-zero ideal twosided simple if it contains no non-trivial ideal.

1. An injective cogenerator over a Gorenstein ring

In this section, first we consider which module is an injective cogenerator over a 1 -Gorenstein ring, and next show the equivalence of the finiteness of projective dimension and injective dimension for modules over an n-Gorenstein ring which has a cogenerator with projective dimension $\leqq n$. These are well known for quasi-Frobenius rings, i.e. $n=0$.

Theorem 1. Let R be a 1-Gorenstein ring, then $E\left({ }_{R} R\right) \oplus E\left({ }_{R} R\right) / R$ is an injective cogenerator.

Proof. It is enough to show that any simple left R-module is monomorphic to $E\left({ }_{R} R\right) \oplus E\left({ }_{R} R\right) / R$. Otherwise, and suppose a simple left module S is not monomorphic to it, then

$$
\operatorname{Hom}_{R}(S, R)=0=\operatorname{Ext}_{R}^{1}(S, R)
$$

Now represent S as

$$
0 \rightarrow{ }_{R} M \xrightarrow{i}{ }_{R} R \rightarrow{ }_{R} S \rightarrow 0
$$

where M is a maximal left ideal and i is an inclusion map. If we denote $X^{*}=$
$\operatorname{Hom}_{R}(X, R)$ for an R-module X, we obtain an exact sequence:

$$
S_{R}^{*} \rightarrow R_{R}^{*} \xrightarrow{i^{*}} M_{R}^{*} \rightarrow \operatorname{Ext}_{R}^{1}(S, R)
$$

and so, by the assumption,

$$
i^{*}: R_{R}^{*} \rightarrow M_{R}^{*} \text { with } i^{*}\left(r^{*}\right)=(m \rightarrow m r) \quad \text { for } \quad r \in R, m \in M
$$

is an isomorphism. Hence

$$
i^{* *}:_{R} M^{* *} \rightarrow{ }_{R} R^{* *} \simeq{ }_{R} R \text { with } i^{* *}(f)=f i^{*}(1) \quad \text { for } f \in M^{* *}
$$

is an isomorphism, too. On the other hand, by Jans [12],

$$
\sigma:{ }_{R} M \rightarrow{ }_{R} M^{* *} \text { with } \sigma(m)=(f \rightarrow f(m)) \quad \text { for } \quad m \in M, f \in M^{*}
$$

is also an isomorphism and therefore so is

$$
i^{* *} \sigma:_{R} M \rightarrow{ }_{R} R
$$

However $i^{* *} \sigma$ is an inclusion which contradicts $M \neq R$.
Remark. In the theorem above, the assumption for R noetherian is necessary. For instance, let $R=\Pi_{\omega} K_{a}$ be a direct product of infinitely many fields K_{a}, then R is self-injective but ${ }_{R} R$ is not a cogenerator.

Next, we shall examine when only $E\left({ }_{R} R\right)$ or $E\left({ }_{R} R\right) / R$ is an injective cogenerator. A ring R is called a right S-ring if $E\left({ }_{R} R\right)$ is a cogenerator and see Bass [3] or Morita [14] for details. In the latter case, we have the next result.

Corollary 2. Let R be a 1-Gorenstein ring, then $E\left({ }_{R} R\right) / R$ is a cogenerator if and only if $\operatorname{Soc}\left({ }_{R} R\right)=0$.

Proof. "Only if": Suppose a simple left module S is monomorphic to ${ }_{R} R$, then from the exact sequence

$$
0 \rightarrow{ }_{R} S \rightarrow{ }_{R} R \rightarrow{ }_{R} C \rightarrow 0,
$$

we have an exact sequence

$$
\operatorname{Ext}_{R}^{1}(R, R) \rightarrow \operatorname{Ext}_{R}^{1}(S, R) \rightarrow \operatorname{Ext}_{R}^{2}(C, R)
$$

Here, $\operatorname{Ext}_{R}^{1}(R, R)=0$ and $\operatorname{Ext}_{R}^{2}(C, R)=0$ since $i d\left({ }_{R} R\right) \leqq 1$, so $\operatorname{Ext}_{R}^{1}(S, R)=0$ which contradicts that $E\left({ }_{R} R\right) / R$ is a cogenerator.
"If": Since $E_{R}(R) \oplus E\left({ }_{R} R\right) / R$ is a cogenerator, for any simple left module ${ }_{R} S, S$ is either monomorphic to $E\left({ }_{R} R\right)$ or $E\left({ }_{R} R\right) / R$. However, from $\operatorname{Soc}\left({ }_{R} R\right)=0$, ${ }_{R} S$ must be monomorphic to $E\left({ }_{R} R\right) / R$.

As an example of a ring R such that $E\left({ }_{R} R\right) / R$ is a cogenerator, we obtain
the following: Let R be an indecomposable semiprime 1-Gorenstein ring, then $E\left({ }_{R} R\right) / R$ is a cogenerator unless R is artinian. More concretely, $R=\boldsymbol{Z}[G]$ is an example satisfying above assumption. Therefore Theorem 1 and Corollary 2 generalize Sato [17, Corollaries 3.3, 3.4 and Proposition 3.5].

As a second corollary of Theorem 1, we obtain a result about $Q F-1$ rings. We recall a ring R is left $Q F-1$ if every faithful R-module has the double centralizer property.
 left quotient ring, R is quasi-Frobenius. Hence an artin 1-Gorenstein ring which is left $Q F-1$ is quasi-Frobenius.

Proof. Since R is its own maximal left quotient ring, $E\left({ }_{R} R\right) / R$ is monomorphic to a direct product of copies of $E\left({ }_{R} R\right)$ and so $E\left({ }_{R} R\right)$ is a cogenerator and, for any simple left module ${ }_{R} S$, we have an exact sequence:

$$
0 \rightarrow{ }_{R} S \rightarrow{ }_{R} R \rightarrow{ }_{R} C \rightarrow 0,
$$

which induces $\operatorname{Ext}_{R}^{1}(S, R)=0$ similarly to the proof of Corollary 2. Therefore ${ }_{R} R$ is injective, i.e. R is quasi-Frobenius.

If R is left $Q F-1, E\left({ }_{R} R\right)$ has the double centralizer property and hence R is its own maximal left quotient by Lambek's result.

Remark. Now, we have a further investigation about $Q F-1$ rings, that is, we consider hereditary $Q F-1$ rings. We have the following: "A left nonsingular left $Q F-1$ ring is semisimple (artinian)." In fact, if R is left non-singular, its maximal left quotient ring Q is semiprimitive. Furthermore, if R is left $Q F-1, Q \simeq R$ by Lambek's result and hence R is semisimple by Camillo [6, Proposition 5].

As a consequence, for a ring R the following are equivalent:
(1) R is left hereditary left $Q F-1$,
(2) R is right hereditary right $Q F-1$,
(3) R is semisimple (artinian).

To investigate the latter problem in the beginning of this section, we require the next lemma.

Lemma 4. For an exact sequence of modules over a ring R :

$$
0 \rightarrow{ }_{R} A \rightarrow{ }_{R} B \rightarrow{ }_{R} C \rightarrow 0,
$$

(1) $\quad i d(A), i d(B) \leqq n$ implies $i d(C) \leqq n$;
(2) $p d(B), p d(C) \leqq n$ implies $p d(A) \leqq n$.

Proof. (1) For any R-module ${ }_{R} X$, we have

$$
\operatorname{Ext}_{R}^{n+1}(X, B) \rightarrow \operatorname{Ext}_{R}^{n+1}(X, C) \rightarrow \operatorname{Ext}_{R}^{n+2}(X, A) \text { (exact). }
$$

Now, $\operatorname{Ext}_{R}^{n+1}(X, B)=\operatorname{Ext}_{R}^{n+2}(X, A)$ by the assumption, so $\operatorname{Ext}_{R}^{n+1}(X, C)=0$, i.e. $i d(C) \leqq n$.
(2) is dual to (1)

Theorem 5. Let R be an artin n-Gorenstein ring and suppose there exists a cogenerator ${ }_{R} W$ with $p d(W) \leqq n$. Then the following are equivalent for a left R-module ${ }_{R} M$:
(1) $p d(M)<\infty$,
(2) $p d(M) \leqq n$,
(3) $i d(M)<\infty$,
(4) $i d(M) \leqq n$.

Proof. (1) $\rightarrow(2)$: Say $p d(M)=m<\infty$, there is a left module ${ }_{R} X$ such that $\operatorname{Ext}_{R}^{m}(M, X) \neq 0$. Represent X as

$$
0 \rightarrow{ }_{R} K \rightarrow{ }_{R} F \rightarrow{ }_{R} X \rightarrow 0 \text { (exact), }{ }_{R} F \text { free }
$$

then this induces

$$
\operatorname{Ext}_{R}^{m}(M, F) \rightarrow \operatorname{Ext}_{R}^{m}(M, X) \rightarrow \operatorname{Ext}_{R}^{m+1}(M, K) \text { (exact) } .
$$

Hence, $\operatorname{Ext}_{R}^{m+1}(M, R)=0$ implies $\operatorname{Ext}_{R}^{m}(M, F) \neq 0$, from which we have $i d(F) \geqq m$. Now, $i d(F)=i d(R) \leqq n$ and hence $p d(M)=m \leqq n$.
(2) \rightarrow (3): Let

$$
0 \rightarrow P_{n} \xrightarrow{f_{n}} P_{n-1} \rightarrow \cdots \rightarrow P_{1} \xrightarrow{f_{1}} P_{0} \xrightarrow{f_{0}} M \rightarrow 0
$$

be a projective resolution of M and $K_{i}=\operatorname{Ker}\left(f_{i}\right) 0 \leqq i \leqq n-1, K_{-1}=M$, then first in an exact sequence:

$$
0 \rightarrow P_{n} \rightarrow P_{n-1} \rightarrow K_{n-2} \rightarrow 0,
$$

$i d\left(P_{n}\right), i d\left(P_{n-1}\right) \leqq i d\left({ }_{R} R\right) \leqq n$ implies $i d\left(K_{n-2}\right) \leqq n$ by Lemma 4 (1). For general i, in an exact sequence:

$$
0 \rightarrow K_{i} \rightarrow P_{i} \rightarrow K_{i-1} \rightarrow 0,
$$

if $i d\left(K_{i}\right) \leqq n$, then $i d\left(K_{i-1}\right) \leqq n$ again by Lemma 4 (1). Therefore by the induction, $i d(M)=i d\left(K_{-1}\right) \leqq n$.
(3) \rightarrow (4): Say $i d(M)=m<\infty$, then there is a left module ${ }_{R} X$ such that $\operatorname{Ext}_{R}^{m}(X, M) \neq 0$. Let

$$
0 \rightarrow{ }_{R} X \rightarrow{ }_{R} E \rightarrow{ }_{R} C \rightarrow 0 \text { with }{ }_{R} E \text { injective }
$$

be an injective presentation of X, then we have $\operatorname{Ext}_{R}^{m}(E, M) \neq 0$ from an exact sequence;

$$
\operatorname{Ext}_{R}^{m}(M, E) \rightarrow \operatorname{Ext}_{R}^{m}(X, M) \rightarrow \operatorname{Ext}_{R}^{m+1}(C, M)
$$

and so $p d(E) \geqq m$. On the one hand, as E is isomorphic to a direct summand of a direct product ΠW of copies of ${ }_{R} W$, $p d(E) \leqq p d(\Pi W)=p d(W) \leqq n$ whence $i d(M)=m \leqq n$.
$(4) \rightarrow(1):$ Let

$$
0 \rightarrow M \xrightarrow{f_{0}} E_{0} \xrightarrow{f_{1}} E_{1} \rightarrow \cdots \rightarrow E_{n-1} \xrightarrow{f_{n}} E_{n} \rightarrow 0
$$

be an injective resolution of ${ }_{R} M$ and $C_{i}=\operatorname{Cok}\left(f_{i}\right) 0 \leqq i \leqq n-1, C_{-1}=M$, then an exact sequence:

$$
0 \rightarrow C_{n-2} \rightarrow E_{n-1} \rightarrow E_{n} \rightarrow 0
$$

and $p d\left(E_{n-1}\right), p d\left(E_{n}\right) \leqq p d(W) \leqq n$ imply $p d\left(C_{n-2}\right) \leqq n$ by Lemma 4 (2). By the same discussion as the proof (2) $\rightarrow(3)$, we obtain $p d(M) \leqq n$.

As a corollary of Theorems 1 and 5 we have the following where we recall a ring R is left $Q F-3$ if $E\left({ }_{R} R\right)$ is projective.

Corollary 6. Let R be a 1 -Gorenstein ring which is left $Q F-3$, then the following are equivalent for a left R-module M :
(1) $p d(M)<\infty, \quad$ (2) $p d(M) \leqq 1, \quad$ (3) $i d(M)<\infty, \quad$ (4) $i d(M) \leqq 1$.

Proof. By Theorem 1, ${ }_{R} W=E\left({ }_{R} R\right) \oplus E\left({ }_{R} R\right) / R$ is a cogenerator with $p d(W) \leqq 1$ because

$$
0 \rightarrow{ }_{R} R \xrightarrow{j} E\left({ }_{R} R\right) \oplus E\left({ }_{R} R\right) \rightarrow{ }_{R} W \rightarrow 0
$$

with $j(x)=(0, x)$ for $x \in R$ is a projective resolution of ${ }_{R} W$. Further, it is well known a noetherian left $Q F-3$ ring is artinian, so we may apply Theorem 5 in case $n=1$.

Remark. (1) For any $n>0$, there exists a non-quasi-Frobenius ring satisfying the hypothesis in Theorem 5. For instance, let R be a serial (=generalized uniserial) ring with admissible sequence: $1,2, \cdots, 2$ (2 are n times), then $i d\left({ }_{R} R\right)=i d\left(R_{R}\right)=g l . \operatorname{dim} R=n$ and ${ }_{R} W=\amalg_{i=0}^{n} E_{i}$ is an injective cogenerator with $p d(W)=n$ where $0 \rightarrow{ }_{R} R \rightarrow E_{0} \rightarrow E_{1} \rightarrow \cdots \rightarrow E_{n} \rightarrow 0$ is the minimal injective resolution of ${ }_{R} R$. (See [10] for details of serial rings.)

More generally, an n-Gorenstein ring R with $\operatorname{dom} . \operatorname{dim} R \geqq n$ has an injective cogeneartor ${ }_{R} W=\coprod_{i=0}^{n} E_{i}$ with $p d(W) \leqq n$ where $0 \rightarrow{ }_{R} R \rightarrow\left\{E_{i} ; 0 \leqq i \leqq n\right\}$ is the minimal injective resolution.
(2) We may construct an n-Gorenstein ring R_{n} with $g l \cdot \operatorname{dim} R_{n}=\infty$ for any $n \geqq 0$ in the following way. Let R_{0} be a non-semisimple quasi-Frobenius ring, and for any $n>0, R_{n}$ the triangular matrix ring over R_{n-1}, i.e. $R_{n}=\left(\begin{array}{ll}R_{n-1} & 0 \\ R_{n-1} & R_{n-1}\end{array}\right)$.

2. Rings whose homomorphic images are Gorenstein

In [19, §2], Zaks showed that, for a semiprimary ring R with square-zero radical, $i d\left({ }_{R} R\right) \leqq 1$ if and only if R is a direct product of a quasi-Frobenius ring and an hereditary ring, and hence $\operatorname{id}\left({ }_{R} R\right) \leqq 1$ is equivalent to $i d\left(R_{R}\right) \leqq 1$. Such a decomposition theorem no longer holds unless the square of its radical is zero. For example, let Q be a local quasi-Frobenius ring with $(\operatorname{Rad} Q)^{2}=0$ and R the triangular matrix ring over Q, then R is artin 1-Gorenstein and indecomposable but is neither quasi-Frobenius nor hereditary.

Now, for a serial ring, we have a decomposition theorem as above.
Proposition 7. Let R be a serial ring, then the following are equivalent:
(1) $i d\left(R_{R}\right) \leqq 1$,
(2) $i d\left({ }_{R} R\right) \leqq 1$,
(3) R is a direct product of a quasi-Frobenius ring and a hereditary ring.

Proof. Without loss of generality, we may assume that R is self-basic (twosided) indecomposable, and decompose ${ }_{R} R$ as $R=R e_{1} \oplus \cdots \oplus R e_{n}$ such that $\left\{e_{1}, \cdots, e_{n}\right\}$ is the Kupisch series. If R is not quasi-Frobenius, $R e_{i}$ is non-injective for some $i(1 \leqq i \leqq n)$ and then, from $\left|R e_{j+1}\right| \leqq\left|R e_{j}\right|+1$ for $1 \leqq j<n$, we obtain that if $i<n,\left|R e_{i+1}\right|=\left|R e_{i}\right|+1, R e_{i}$ is monomorphic to $R e_{i+1}$ and $E\left(R e_{i}\right)$ $\simeq R e_{j}$ for some $j(i<j \leqq n)$ by [10,1.1]. Now, let the number i be the smallest one with $R e_{i}$ non-injective and $R e_{i+1}$ injective. Here, we may suppose $i<n$ because, in case of $N e_{1}=0, R e_{1}$ is monomorphic to $R e_{2}$ and if $N e_{1} \neq 0$, by permuting $\{1, \cdots, n\}$, it is possible for $R e_{1}$ to be non-injective and $R e_{2}$ injective. Therefore we have

$$
E\left(R e_{i}\right) \simeq R e_{i+1} \quad \text { and } \quad\left|R e_{i}\right|+1=\left|R e_{i+1}\right|
$$

So, saying $N=\operatorname{Rad} R$,

$$
E\left(R e_{i}\right) / R e_{i} \simeq R e_{i+1} / N e_{i+1}
$$

is simple injective and from that $R e_{i+1}$ is epimorphic to $N e_{i+2}$ if $i+1<n$,

$$
R e_{i+1} / N e_{i+1} \simeq N e_{i+2} / N^{2} e_{i+2} \subsetneq R e_{i+2} / N^{2} e_{i+2}
$$

induces $N e_{i+2}=0$ since $R e_{i+2} / N^{2} e_{i+2}$ is indecomposable. This contradicts $\left|R e_{j}\right| \geqq 2$ for $j=2, \cdots, n$ and so $i+1=n$ and $\left|R e_{i+1}\right|=\left|R e_{i}\right|+1$ for $1 \leqq i \leqq n$. Hence $R e_{2} \simeq N e_{i+1}$ for $1 \leqq i \leqq n-1$, i.e. $N e_{i}(i=2, \cdots, n)$ are projective and R is hereditary.

Applying this proposition we classify the rings all of which homomorphic images are artin 1 -Gorenstein. Before proceeding, we need two lemmas.

Lemma 8 (Bass [3]). For a right perfect, right S-ring R, id $\left({ }_{R} R\right)$ is finite if and only if ${ }_{R} R$ is injective.

Proof. Say, $i d(R)=n<\infty$, then there exists a simple left module ${ }_{R} S$ with $\operatorname{Ext}_{R}^{n}(S, R) \neq 0$. Now, since R is a right S-ring, we have an exact sequence:

$$
0 \rightarrow{ }_{R} S \rightarrow{ }_{R} R \rightarrow{ }_{R} C \rightarrow 0
$$

which induces

$$
\operatorname{Ext}_{R}^{n}(R, R) \rightarrow \operatorname{Ext}_{R}^{n}(S, R) \rightarrow \operatorname{Ext}_{R}^{n+1}(C, R) \text { (exact) }
$$

Here, $\operatorname{Ext}_{R}^{n+1}(C, R)=0$ from $i d\left(_{R} R\right)=n$, so $\operatorname{Ext}_{R}^{n}(R, R) \neq 0$ and $n=0$, i.e. ${ }_{R} R$ is injective.

Lemma 9. Let I be a (twosided) ideal in any ring R and R / I^{n} a left hereditary ring for some $n>1$. Then $I^{n}=I^{n+1}$. Hence, if we assume ${ }_{R} N=\operatorname{Rad} R$ is finitely generated (or nilpotent) and R / N^{n} is left hereditary for $n>1$, then $N^{n}=0$ and so R itself left hereditary.

Proof. Since I^{n-1} / I^{n} is an ideal in R / I^{n}, it is R / I^{n}-projective and the exact sequence of R / I^{n}-modules:

$$
0 \rightarrow I^{n} / I^{n+1} \rightarrow I^{n-1} / I^{n+1} \rightarrow I^{n-1} / I^{n} \rightarrow 0
$$

splits, i.e.

$$
I^{n-1} / I^{n+1} \simeq I^{n-1} / I^{n} \oplus I^{n} / I^{n+1}
$$

as R / I^{n}-modules. However, $I \cdot\left(I^{n-1} / I^{n} \oplus I^{n} / I^{n+1}\right)=0$, so $I \cdot\left(I^{n-1} / I^{n+1}\right)=0$, i.e. $I^{n}=I^{n+1}$.

Theorem 10. For an indecomposable semiprimary ring R, the following are equivalent:
(1) For any homomorphic image T of $R, \operatorname{id}\left({ }_{T} T\right) \leqq 1$,
(2) For any homomorphic image T of R, id $\left(T_{T}\right) \leqq 1$,
(3) R is one of the following;
(i) R is uniserial,
(ii) R is hereditary with $(\operatorname{Rad} R)^{2}=0$,
(iii) R is quasi-Frobenius with $(\operatorname{Rad} R)^{2}=0$ and $n(R)=2$.

Proof. (3) is left-right symmetry, so we prove only the equivalence of (1) and (3).
(1) \rightarrow (3): Say, $N=\operatorname{Rad} R$, since R / N^{2} is also indecomposable, R / N^{2} is either hereditary or quasi-Frobenius by Zaks [19]. In case of hereditary, $N^{2}=0$ by Lemma 9 and hence R is of type (ii). In another case, R / N^{2} is a serial ring, so R is artinian and serial, too whence R is either hereditary or quasiFrobenius by Proposition 7. If R is hereditary, gl. $\operatorname{dim} R / N^{2}<\infty$ by Eilenberg-Nagao-Nakayama [9, Theorem 8] and hence by Bass [4, Proposition 4.3], $\operatorname{gl.dim} R / N^{2}=i d\left({ }_{R / N^{2}}^{2} R / N^{2}\right) \leqq 1$, i.e. R / N^{2} is hereditary, so $N^{2}=0$ and R is hereditary again by Lemma 9 .

Thus, let R be serial quasi-Frobenius and $n(R)=n\left(R / N^{2}\right)=n$. Further, $\bar{R}=R / N^{2}$ also satisfies (1) and since (1) is Morita-invariant, we may assume \bar{R} is self-basic and decompose \bar{R} as $\bar{R}=\bar{R} e_{1} \oplus \cdots \oplus \bar{R} e_{n}$ with $\left\{e_{1}, \cdots, e_{n}\right\}$ Kupisch series. If $n>2, J e_{1}=e_{n} J e_{1}(J=\operatorname{Rad} \bar{R})$ is an ideal of \bar{R} and the ring:

$$
T=\bar{R} / J e_{1}=T \bar{e}_{1} \oplus \cdots \oplus T \bar{e}_{n} \quad \text { where } \quad \bar{e}_{i}=e_{i}+J e_{1} \in T
$$

satisfies $i d\left({ }_{T} T\right) \leqq 1$. Hence, from $J e_{2} \simeq R e_{1} / J e_{1}$,

$$
E\left(T \bar{e}_{1}\right) / T \bar{e}_{1} \simeq T \bar{e}_{2} / J \overline{\mathrm{e}}_{2} \quad(\bar{J}=\operatorname{Rad} T)
$$

is T-injective. However, $\bar{e}_{2} \bar{J}_{3} \neq 0$, i.e. $T \bar{e}_{2} / \bar{J} \bar{e}_{2} \simeq \bar{J}_{\bar{e}_{3}} \subseteq T \bar{e}_{3}$ which contradicts the indecomposability of $T \bar{e}_{3}$, so $n \leqq 2$. Then, since R is uniserial if $n=1$, let $n=2$, i.e. we may represent $R=R e_{1} \oplus R e_{2}$ with $\left\{e_{1}, e_{2}\right\}$ Kupisch series because R is self-basic, too. Furthermore, if $N^{2} \neq 0$, then $N^{2} e_{1}$ and $N^{2} e_{2} \neq 0$ as R is quasiFrobenius and the homomorphic image $T=R /\left(N^{3} e_{1} \oplus N^{2} e_{2}\right)=T \bar{e}_{1} \oplus T \bar{e}_{2}$ where $\bar{e}_{i}=e_{i}+\left(N^{3} e_{1} \oplus N^{2} e_{2}\right) \in T$ satisfies $i d\left({ }_{T} T\right) \leqq 1$. Now, from $E\left(T \bar{e}_{2}\right) \simeq T \bar{e}_{1}$,

$$
E\left(T \bar{e}_{2}\right) / T \bar{e}_{2} \simeq T \bar{e}_{1} / J \bar{e}_{1} \quad(J=\operatorname{Rad} T)
$$

is T-injective. However,

$$
J^{2} \bar{e}_{1} \simeq N^{2} e_{1} / N^{3} e_{1} \simeq R e_{1} / N e_{1} \simeq T \bar{e}_{1} / J \bar{e}_{1}
$$

is T-injective which contradicts that ${ }_{T} T \bar{e}_{1}$ is indecomposable. Hence $N^{2}=0$.
(3) \rightarrow (1): In any case of (i)-(iii), R may be assumed self-basic. It is well known that a uniserial ring is characterized as a ring all of which homomorphic images are quasi-Frobenius.

Let R be of type (ii). For any ideal I contained in N, since ${ }_{R} I$ is a direct summand of ${ }_{R} N, R / I$ is also hereditary by Eilenberg-Nagao-Nakayama [9 , Proposition 9]. If I is not contained in N, I contains a primitive idempotent e_{1} with $I=R e_{1} \oplus\left(I \cap R\left(1-e_{1}\right)\right)$ and further, if $I \cap R\left(1-e_{1}\right) \varsubsetneqq N$, choose a primitive idempotent e_{2} orthogonal to e_{1} in $I \cap R\left(1-e_{1}\right)$. By repeating this method, we have

$$
I=R e_{1} \oplus \cdots \oplus R e_{n} \oplus I^{\prime}
$$

where $e_{i}^{2}=e_{i}$ is primitive and $I^{\prime}=I \cap R\left(1-\sum_{i=1}^{n} e_{i}\right) \subseteq N$. Then, let $e=1-\left(e_{1}+\right.$ $\cdots+e_{n}$, from $I^{\prime}, e R(1-e) \cong N$,

$$
I^{\prime} R=I^{\prime} e R e+I^{\prime} e R(1-e) \subseteq I \cap R e=I^{\prime}
$$

i.e. I^{\prime} is an ideal. Hence $T^{\prime}=R / I^{\prime}$ is an hereditary ring with

$$
{ }_{T^{\prime}} \operatorname{Rad} T^{\prime}=N / I^{\prime} \simeq{ }_{T^{\prime}} N e \oplus_{T^{\prime}} N(1-e) / I^{\prime}
$$

and so $N(1-e) / I^{\prime}$ is T^{\prime}-projective. On the other hand,

$$
T=R / I \simeq R(1-e) / I^{\prime}
$$

implies $\operatorname{Rad} T=N(1-e) / I^{\prime}$ and, as T^{\prime} is epimorphic to $T, N(1-e) / I^{\prime}$ is T projective, i.e. T is hereditary.

Let R be of type (iii) and $R=R e_{1} \oplus R e_{2}$ where $\left\{e_{1}, e_{2}\right\}$ Kupisch series. For any ideal I contained in N, I is a direct summand and, as $N=N e_{1} \oplus N e_{2}$ with $N e_{i}$ simple, ${ }_{R} I$ is isomorphic to $N e_{1}$ or $N e_{2}$ provided $I \neq 0, N$. If $I \simeq N e_{1}$,

$$
{ }_{R} I \simeq{ }_{R} N e_{1}=e_{2} N e_{1} \simeq e_{2} I
$$

implies $I=e_{2} I$ and so, saying $N=I \oplus K$,

$$
e_{2} I \oplus e_{2} K=e_{2}(I \oplus K)=e_{2} N=e_{2} N e_{1} .
$$

Hence

$$
I=e_{2} I=e_{2} N e_{1}=e_{2} N=N e_{1}
$$

and

$$
{ }_{T} T=R / I \simeq{ }_{T} R e_{1} / N e_{1} \oplus_{T} R e_{2}
$$

which induces ${ }_{r} R e_{1} / N e_{1}$ projective. Now, let $J=\operatorname{Rad} T$,

$$
{ }_{T} R e_{1} / N e_{1} \simeq{ }_{T} N e_{2} \simeq{ }_{T} J\left(e_{2}+I\right)=J,
$$

so ${ }_{T} J$ is projective and T is hereditary. In case of $I \simeq N e_{2}$, we have the same discussion. Next, let $e_{1} \in I$, then

$$
2=\left|R e_{1}\right| \leqq\left|{ }_{R} I\right| \leqq\left.\right|_{R} R \mid=4
$$

However, $\left.\right|_{R} I \mid=2$ implies $I=R e_{1}$ and $N e_{2} \subseteq R e_{1} R \subseteq R e_{1}$ which is a contradiction. Therefore, we may take $\left.\right|_{R} I \mid=3$ and then $\left.\right|_{R} R / I \mid=1$, i.e. R / I is a division ring. This completes the proof.

Finally, we investigate a ring whose proper homomorphic images are artin 1-Gorenstein, and here consider in two cases of a prime noether ring and a semiprimary ring.

For a prime noether case, we have a generalization of Zaks [20, Theorem 3]. Here an ideal I is said to have the Artin-Rees property if for every left ideal L, there is an n with $I^{n} \cap L \cong I L$.

Proposition 11. Let R be a prime noether ring and assume every maximal ideal in R has the Artin-Rees property. Then any proper homomorphic image of R is artin Gorenstein if and only if R is restricted uniserial.

Proof. "Only if": For any maximal ideal M in $R, M=0$ implies R a simple ring, so we may suppose $M \neq 0$. Then R / M^{2} is primary Gorenstein and hence quasi-Frobenius (in this case, uniserial) by Lemma 8. Thus let
$n>2, T=R / M^{n}$ and $J=\operatorname{Rad} T$, then $T / J^{2} \simeq R / M^{2}$ is uniserial which implies $T=R / M^{n}(n>2)$ uniserial.

Next, for any nonzero ideal I in R, there exist maximal ideals M_{1}, \cdots, M_{n} in R with $M_{1}, \cdots, M_{n} \subseteq I$. Since M_{1}, \cdots, M_{n} have the Artin-Rees property, there are integers k_{1}, \cdots, k_{n} such that

$$
M_{1}^{k_{1}} \cap \cdots \cap M_{n}^{k_{n} \subseteq M_{1} \cdots M_{n} \subseteq I .}
$$

Hence, we may suppose all M_{1}, \cdots, M_{n} are distinct and, by the Chinese Remainder Theorem,

$$
R /\left(M_{1}{ }_{1}{ }_{1} \cap \cdots \cap M_{n}^{{ }^{k}}\right) \simeq R / M_{1}{ }^{k_{1}} \oplus \cdots \oplus R / M_{n}{ }^{k_{n}}
$$

is uniserial. On the other hand, $R /\left(M_{1}{ }^{k_{1}} \cap \cdots \cap M_{n}{ }^{k_{n}}\right)$ is epimorphic to R / I, so R / I is uniserial too.

Now, we state the last theorem which is of a semiprimary case.
Theorem 12. Let R be an indecomposable semiprimary ring and R_{0} the basic subring of R with $N=$ Rad R_{0}. Then any proper homomorphic image of R is 1 -Gorenstein if and only if R is one of the following :
(1) R is uniserial;
(2) R is serial with admissible sequence 3,2 ;
(3) R is hereditary with square-zero radical;
(4) $n(R) \leqq 2,(\operatorname{Rad} R)^{2}=0$ and for any primitive idempotent e in R_{0}, (a) $e N e=0$ provided $e \neq 1$, (b) If Ne contains a nonzero ideal properly, it is a maximal left and right subideal in $N e$ and $N(1-e)$ is a simple left and right ideal of R_{0};
(5) $n(R)=2,(\operatorname{Rad} R)^{2}=0$ and R_{0} has a primitive idempotent e such that (a) $e N e$ is simple left and right ideal of R_{0}, (b) Either $(1-e) N e=0$ or $N(1-e)=0$, (c) Each of $(1-e) N e$ and $N(1-e)$ is twosided simple unless it is zero and $N(1-e)=$ $e N(1-e)$;
(6) R is triangular with $n(R)=3,(\text { Rad } R)^{2}=0$ and Ne is twosided simple for a primitive idempotent e in R_{0} provided $N e \neq 0$.

Proof. Throughout the proof, we may assume R self-basic and then $N=\operatorname{Rad} R$.
"Only if." If $N^{3} \neq 0, R / N^{3}$ is uniserial by Theorem 10 and so is R by [15].
Let $N^{3}=0$ but $N^{2} \neq 0$, then R / N^{2} is quasi-Frobenius with $n\left(R / N^{2}\right)=2$ again by Theorem 10 and Lemma 9 and hence R is serial with $n(R)=2$. Thus, let $\left\{e_{1}, e_{2}\right\}$ be a Kupisch series, then $N e_{1} \neq 0$. For, $N e_{1}=0$ implies $N^{2}=0$ (contradiction) because $R e_{1}$ is epimorphic to $N e_{2}$. So $N e_{1} \neq 0$ and $R e_{2}$ is epimorphic to $N e_{1}$. If both $N^{2} e_{1}$ and $N^{2} e_{2}$ are nonzero, $R / N^{2} e_{1}$ is neither hereditary since $N e_{1} / N^{2} e_{1}$ is not projective nor quasi-Frobenius since $R / N^{2} e_{1}$ has non-constant admissible sequence 2,3 . Therefore

$$
N^{2} e_{1} \neq 0, \quad N^{2} e_{2}=0 \quad \text { or } \quad N^{2} e_{1}=0, \quad N^{2} e_{2} \neq 0
$$

In either case, R has the admissible sequence 2 , 3 ; i.e. R is of type (2).
In the following, we may assume $N^{2}=0, N \neq 0$ and R not hereditary because otherwise R is of type (3). Here, we remark that for a semiprimary ring R with square-zero radical N, R is hereditary if and only if any primitive idempotent e in R satisfies either $e N=0$ or $N e=0$. Now, if $n(R)=1$, i.e. R is local and N contains a nonzero ideal $I \neq N, R / I$ must be quasi-Frobenius. Hence ${ }_{R} N / I, N / I_{R}$ are simple and R is of type (4).

Therefore, now suppose $n(R)=2$, then there exists a primitive idempotent e with $e N \neq 0, N e \neq 0$ and $1-e$ is primitive too. In case of $e N e \neq 0, I=(1-e) N e \oplus$ $N(1-e) \neq 0$ since R is indecomposable and $R / I \simeq e R e \oplus(1-e) R(1-e)$ as rings implies that $e R e$ is quasi-Frobenius, so ${ }_{R} e N e, e N e_{R}$ are simple. Next, if both $(1-e) N e$ and $N(1-e)$ were nonzero, $R / N(1-e)$ is indecomposable but neither hereditary nor quasi-Frobenius. Hence either $(1-e) N e=0$ or $N(1-e)=0$ and each of them is twosided simple unless it is zero. Further, $N(1-e)=e N(1-e)$ because R is indecomposable. These show that R is of type (5) in case of $e N e \neq 0$. So we assume $e N e=0$, in which case $e N(1-e) \neq 0$ as e was chosen with $e N \neq 0$. Then $R / e N(1-e)$ must be hereditary and $(1-e) N(1-e)=0$. Here, if $N e$ contains properly a nonzero ideal $I, R / I$ has to be quasi-Frobenius whence both ${ }_{R} N(1-e)=e N(1-e)$ and ${ }_{R} N e / I$ are simple. These also hold for a right side. On the one hand, if $N(1-e)$ contains properly a nonzero ideal I, by exchanging the idempotent e with $1-e$, the same argument as above holds. Hence R becomes of type (4).

Finally, suppose $n(R) \geqq 3$. As ${ }_{R} N$ is not projective, there are primitive idempotents e, f with $f N e \neq 0$ and $N f \neq 0$. Now, assume $(1-e) N e=0$, then $e N e$ is a nonzero ideal, $n(R / e N e)=n(R) \geqq 3$ and $R / e N e$ is indecomposable, so $R / e N e$ must be hereditary by Theorem 10 . Therefore there exists a primitive idempotent $e^{\prime} \neq e$ with $e N e^{\prime} \neq 0$ by an indecomposability of R and then $I=$ $(1-e) N e^{\prime}+N\left(1-e-e^{\prime}\right)$ is a nonzero ideal since R is indecomposable and $n(R) \geqq 3$. If we put $\bar{R}=R / I, \bar{e}=e+I$ and $\bar{e}^{\prime}=e^{\prime}+I, \bar{R} \bar{e} \oplus \bar{R} \bar{e}^{\prime}$ is a block of R and not any of the ring stated in Theorem 10 (contradiction). Thus ($1-e$) $N e \neq 0$, i.e. $f \neq e$ and, by setting $e_{1}=e, e_{2}=f, R$ is expressible as $R=R e_{1} \oplus R e_{2} \oplus \cdots \oplus R e_{n}$ where $n=n(R) \geqq 3, e_{i}(1 \leqq i \leqq n)$ are primitive idempotents and either $e_{2} N e_{3} \neq 0$ or $e_{3} N e_{2} \neq 0$. If an ideal $I=\left(1-e_{2}\right) N e_{1}+\left(1-e_{1}-e_{3}\right) N e_{2}+\left(1-e_{2}\right) N e_{3}+\sum_{j>3} R e_{j}$ is nonzero, then R / I must be hereditary by Theorem 10 as R / I is indecomposable and $n(R / I)=3$, and so we obtain that $N e_{1}=e_{2} N e_{1}+I e_{1}, e_{1} N e_{2}=0=e_{3} N e_{2}$ and $N e_{3}=e_{2} N e_{3}+I e_{3} \neq 0$. In this case $R / \sum_{j \geq 3} N e_{j}$ has to be quasi-Frobenius, which contradicts $e_{1} N e_{2}=0$. Hence $I=0$ implies $n=3, N e_{1}=e_{2} N e_{1} \neq 0, N e_{2}=e_{1} N e_{2}+$ $e_{3} N e_{2} \neq 0$ and $N e_{3}=e_{2} N e_{3}$. Moreover, if $N e_{3} \neq 0, e_{1} N e_{2}=0=e_{3} N e_{2}$ for $R / N e_{1}$ or $R / N e_{3}$ is indecomposable but neither hereditary nor quasi-Frobenius according
to $e_{1} N e_{2} \neq 0$ or $e_{3} N e_{2} \neq 0$, but it contradicts $N e_{2} \neq 0$. Therefore $N e_{3}=0$ and $e_{3} N e_{2} \neq 0$ induces $e_{1} N e_{2}=0$ since gl. $\operatorname{dim} R / e_{1} N e_{2}=2$, i.e. R is of type (6).
"If." Case (1): By Nakayama [15], R is uniserial if and only if any homomorphic image of R is quasi-Frobenius.

Case (2): Let $R=R e_{1} \oplus R e_{2}$ where e_{1}, e_{2} are primitive idempotents and $\left|R e_{1}\right|=3,\left|R e_{2}\right|=2$. Then, for any nonzero proper ideal I in R,

$$
0 \neq I \cap \operatorname{Soc}\left({ }_{R} R\right)=I \cap\left(N^{2} e_{1} \oplus N e_{2}\right)=\left(I \cap N^{2} e_{1}\right) \oplus\left(I \cap N e_{2}\right)
$$

implies either $I \cap N^{2} e_{1} \neq 0$ or $I \cap N e_{2} \neq 0$. In either case, we obtain $N^{2} e_{1} \subseteq I$. Now, suppose $N^{2} e_{1}=I$, then R / I is quasi-Frobenius with the admissible sequence 2,2. Next, if $N^{2} e_{1} \neq I, R / I$ is a proper homomorphic image of $R / N^{2} e_{1}$ and hence has the admissible sequence $\{1,2\},\{1,1\}$ or $\{1\}$. In all cases, R / I is hereditary.

Case (3): Any homomorphic image of R is hereditary by [9, Proposition 9].

Case (4): For any nonzero ideal I of R, if $I \cong N, I=I e \oplus I(1-e)$ with $I e$, $I(1-e)$ ideals for a primitive idempotent e and $R / I \simeq R e / I e \oplus R(1-e) / I(1-e)$ is either hereditary or quasi-Frobenius by the property (b). If $I \leftrightarrows N, I$ contains a primitive idempotent e and so R / I is isomorphic to $(1-e) R(1-e)$ or 0 .

Case (5): For 'any nonzero ideal I of R, if $I \subseteq N, I=e I e \oplus(1-e) I e \oplus$ $I(1-e)$ and these summands are all ideals. By the property (b), in case of $(1-e) N e=0, R / I \simeq R e / e I e \oplus R(1-e) / I(1-e)$ implies that R / I is hereditary or quasi-Frobenius according to $e I e \neq 0$ or $I(1-e) \neq 0$. In case of $N(1-e)=0$, $R / I \simeq R e / I \oplus R(1-e)$ shows that R / I is quasi-Frobenius (resp. hereditary) provided $(1-e) I e \neq 0$ (resp. eIe $\neq 0$). Next, if I is not contained in N, e or $1-e$ belongs to I and so $I=\operatorname{Re} \oplus(I \cap R(1-e))$ or $I=(I \cap R e) \oplus R(1-e)$ respectively. In the former case, we may assume $I \cap R(1-e) \subseteq N$ and hence $R / I \simeq$ $(1-e) R(1-e) /(1-e) N(1-e)$ is a division ring. Also, in the latter case, we have the same conclusion.

Case (6): R has a complete set e_{1}, e_{2}, e_{3} of mutually orthogonal primitive idempotents satisfying $e_{i} N e_{j}=0$ if $i \leqq j$. Hence, for any nonzero ideal I of R, if $I \subseteq N, I=I e_{1} \oplus I e_{2}$ with $I e_{1}, I e_{2}$ ideals and $R / I \simeq R e_{1} / I e_{1} \oplus R e_{2} / I e_{2} \oplus R e_{3}$ is hereditary since $I e_{i}=N e_{i}$ or $0(i=1,2)$. If $I \leftrightarrows N$, some e_{i} for $i=1,2,3$ is contained in I and we may show similarly that R / I is hereditary.

Remark. In [20], Zaks showed that, for a commutative noether ring R, any (proper) homomorphic image of R is Gorenstein if and only if any (proper) homomorphic image of R is quasi-Frobenius. For a non-commutative case, however, we see it no longer holds by Theorems 10 and 12. In prime noether case (see Proposition 11), we don't know whether the hypothesis of the ArtinRess property is superfluous or not.

Acknowledgement. The author wishes to thank the referee for his advices and improvements of the proof of Theorem 12.

The University of Tsukuba

References

[1] M. Auslander and M. Bridger: Stable module theory, Mem. Amer. Math. Soc. 94 (1969).
[2] M. Auslander and I. Reiten: On a generalized version of the Nakayama conjecture, Proc. Amer. Math. Soc. 52 (1975), 69-74.
[3] H. Bass: Finitistic homological dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.
[4] H. Bass: Injective dimension in Noetherian rings, Trans. Amer. Math. Soc. 102 (1962), 18-29.
[5] H. Bass: On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28.
[6] V.P. Camillo: Balanced rings and a problem of Thrall, Trans. Amer. Math. Soc. 149 (1970), 143-153.
[7] Ju.A. Drozd, V.V. Kiricenko and A.V. Roiter: On hereditary and Bass orders, Izv. Akad. Nauk SSSR 31 (1967).
[8] S. Eilenberg and T. Nakayama: On the dimension of modules and algebras. II, Nagoya Math. J. 9 (1955), 1-16.
[9] S. Eilenberg, H. Nagao and T. Nakayama: On the dimension of modules and algebras. IV, Nagoya Math. J. 10 (1956), 87-95.
[10] K.R. Fuller: Generalized uniserial rings and their Kupisch series, Math. Z. 106 (1968), 248-260.
[11] Y. Iwanaga: Rings whose proper homomorphic images are $Q F-3$ rings, Sci. Rep. Tokyo Kyoiku Daigaku 12 (1974), 111-118.
[12] J.P. Jans: Duality in Noetherian rings, Proc. Amer. Math. Soc. 12 (1961), 829835.
[13] I. Kaplansky: Commutative rings, Allyn and Bacon, Boston, 1970.
[14] K. Morita: On S-rings in the sense of F. Kasch, Nagoya Math. J. 27 (1966), 687-695.
[15] T. Nakayama: Note on uniserial and generalized uniserial rings, Proc. Imp. Acad. Tokyo 16 (1940), 285-289.
[16] K.W. Roggenkamp: Injective modules for group rings and Gorenstein orders, J. Algebra 24 (1973), 465-472.
[17] H. Sato: Duality of torsion modules over a $Q F-3$ one-dimensional Gorenstein rings, Sci. Rep. Tokyo Kyoiku Daigaku 13 (1975), 28-36.
[18] T. Sumioka: A characterization of the triangular matrix rings over $Q F$ rings, Osaka J. Math. 12 (1975), 449-456.
[19] A. Zaks: Injective dimension of semiprimary rings, J. Algebra 13 (1969), 73-86.
[20] A. Zaks: Restricted Gorenstein rings, Illinois J. Math. 13 (1969), 796-803.

