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Let R be a ring with an identity and, for a left Λ-module RM, pd(M) and
ίd(M) denote the projective and injective dimension of RM, respectively. A

(left and right) noether ring R is called n-Gorenstein if id(RR)<Ln and id(RR)<Ln
for w^O, and Gorenstein means w-Gorenstein for some n. This is slightly
different from the well known definition in the commutative case unless a ring
is local (see Bass [5]) and, as a generalization to the non-commutative case,
there is another one by Auslander [1]. However, when we want to consider
many interesting properties about a quasi-Frobenius ring and an hereditary

ring in more general situation, we cannot conclude yet which definition is best.
So, in this paper, we follow the above definition of a Gorenstein ring and try to
generalize some interesting properties for a quasi-Frobenius ring. On the
other hand, for a 1-Gorenstein ring, a few papers have appeared, for instance,
Jans [12], Bass [4] and recently Sumioka [18], Sato [17] and, for a Gorenstein
ring with squarezero radical, Zaks [19].

As the typical examples of 1-Gorenstein rings which are neither hereditary
nor quasi-Forbenius, we have

1) Gorenstein orders, especially the group ring Z[G] where Z the ring of

rational integers, G a finite group. (See Drozd-Kiricenko-Roiter [7], Roggenkamp
[16] and Eilenberg-Nakayama [8].)

2) Triangular matrix rings over non-semisimple quasi-Frobenius rings.
(See Sumioka [18] and Zaks [19].)

In §1, we shall show that for a 1-Gorenstein ring R, E(RR)ξ&E(RR)/R is an
injective cogenerator (Theorem 1) and as this corollary, an artin 1-Gorenstein
ring which is QF — l must be quasi-Frobenius (Corollary 3). This should com-
pare with that for a quasi-Frobenius ring jR, RR itself is an injective cogenerator.
Next, as a generalization of "projectivity—injectivity" for modules over a quasi-
Frobenius ring, we obtain that over a certain n-Gorenstein ring, finiteness of the
projective dimension, projective dimension^n, finiteness of the injective dimen-
sion and injective dimension^n for modules are all equivalent (Theorem 5).

In §2, first we attend to Nakayama's theorem [15] that a ring R is uniserial
if and only if any homomorphic image of R is quasi-Frobenius, and replace
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"quasi-Frobenius" with "1-Gorenstein." Then we have three classes of rings,

i.e. a uniserial ring, an hereditary ring with square-zero radical and a quasi-
Frobenius ring with square-zero radical (Theorem 10). Moreover, as an
application, we can classify a semiprimary ring whose proper homomorphic
images are artin 1-Gorenstein (Theorem 12) and generalize [11, Theorem 1].
Also, in prime noether case, it will be shown that a restricted Gorenstein ring

in the sense of Zaks [20] is equivalent to a restricted uniserial ring under certain
hypothesis which always holds for commutative rings (Proposition 11).

Finally, Kaplansky's book [13] is suitable for looking at the recent develop-
ment of commutative Gorenstein rings. In the present study about non-
commutative Gorenstein rings, we should generalize the results described in

[13] to the non-commutative case in appropriate form.

NOTATIONS. For a ring R and an Λ-module M, we denote

n(R)=the number of non-isomorphic simple left jR-modules,

Rad R=the radical of R,

Soc(RR)=the left socle of R,
E(M)=the injective hull of RM,
\M I =the composition length of RM.

A noether (artin) ring stands for left and right noetherian (artinian) and
an ideal means twosided. Further, we say a non-zero ideal twosίded simple if it
contains no non- trivial ideal.

1. An injective cogenerator over a Gorenstein ring

In this section, first we consider which module is an injective cogenerator
over a 1 -Gorenstein ring, and next show the equivalence of the finiteness of
projective dimension and injective dimension for modules over an w-Gorenstein
ring which has a cogenerator with projective dimension ̂ n. These are well
known for quasi-Frobenius rings, i.e. n=0.

Theorem 1. Let R be a \-Gorenstein ring, then E(RR)($E(RR)/R is an
injective cogenerator.

Proof. It is enough to show that any simple left ί?-module is monomor-
phic to E(RR)Q)E(RR)/R. Otherwise, and suppose a simple left module S is not
monomorphic to it, then

HomR(S, R) = 0 = Ext^S, R) .

Now represent S as

where M is a maximal left ideal and / is an inclusion map. If we denote X*=
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HomR(X, R) for an Λ-module X, we obtain an exact sequence:

S* -#* ̂  M* -- ExtXS, Λ)

and so, by the assumption,

/*: Rί -> Mf with ί*(r*) = (m -> mr) for rζΞR,m<=M

is an isomorphism. Hence

ί** : RM** ->RR**~ RR with ***(/) = fi*(l) for /<=M**

is an isomorphism, too. On the other hand, by Jans [12],

σ: RM -> *M** with σ(nί) = (/->/(«)) for

is also an isomorphism and therefore so is

i**σ: RM-+ RR.

However ί**σ is an inclusion which contradicts

REMARK. In the theorem above, the assumption for R noetherian is neces-

sary. For instance, let R=ΐ[cύKa be a direct product of infinitely many fields

Kay then R is self-injective but RR is not a cogenerator.

Next, we shall examine when only E(RR) or E(RR)/R is an injective
cogenerator. A ring R is called a right 5-ring if E(RR) is a cogenerator and

see Bass [3] or Morita [14] for details. In the latter case, we have the next

result.

Corollary 2. Let R be a l-Gorenstein ring, then E(RR)/R is a cogenerator if

and only if Soc(RR)=0.

Proof. "Only if": Suppose a simple left module S is monomorphic to

RR, then from the exact sequence

we have an exact sequence

Exti(Λ, R) - Extiφ R) -> Ext|(C, R) .

Here, Extl

R(R, R)=Q and Ext|(C, R) = Q since id(RR)^\, so Exti(S, R) = ϋ

which contradicts that E(RR)/R is a cogenerator.

"If": Since ER(R)($E(RR)IR is a cogenerator, for any simple left module

RS, S is either monomorphic to E(RR) or E(RR)/R. However, from Soc(RR)=Q,

RS must be monomorphic to E(RR)/R.

As an example of a ring R such that E(RR)jR is a cogenerator, we obtain
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the following: Let R be an indecomposable semiprime 1-Gorenstein ring, then
E(RR)jR is a cogenerator unless jR is artinian. More concretely, R=Z[G] is
an example satisfying above assumption. Therefore Theorem 1 and Corollary

2 generalize Sato [17, Corollaries 3.3, 3.4 and Proposition 3.5].
As a second corollary of Theorem 1, we obtain a result about QF— 1 rings.

We recall a ring R is left QF—l if every faithful J?-module has the double

centralizer property.

Corollary 3. Let R be an artin \-Gorenstein ring. If R is its own maximal
left quotient ring, R is quasi-Frobenίus. Hence an artin \-Gorenstein ring which
is left QF—l is quasί-Frobenius.

Proof. Since R is its own maximal left quotient ring, E(RR)/R is monomor-
phic to a direct product of copies of E(RR) and so E(RR) is a cogenerator and,

for any simple left module RSy we have an exact sequence:

0 -> RS -> RR - RC - 0 ,

which induces Exί̂ S, R)=0 similarly to the proof of Corollary 2. Therefore

RR is injective, i.e. R is quasi-Frobenius.
If R is left QF— 1, E(RR) has the double centralizer property and hence R

is its own maximal left quotient by Lambek's result.

REMARK. Now, we have a further investigation about QF—l rings, that
is, we consider hereditary QF— 1 rings. We have the following: "A left non-

singular left QF— 1 ring is semίsίmple (artiniari)." In fact, if R is left non-singular,
its maximal left quotient ring Q is semiprimitive. Furthermore, if R is left
QF— 1, Q — R by Lambek's result and hence R is semisimple by Camillo [6,
Proposition 5].

As a consequence, for a ring R the following are equivalent :
(1) R is left hereditary left QF-l,
(2) R is right hereditary right QF-l,

(3) R is semisimple (artinian).

To investigate the latter problem in the beginning of this section, we
require the next lemma.

Lemma 4. For an exact sequence of modules over a ring R :

( 1 ) id(A), id(B) ̂  n implies id(C) ̂  n
(2) pd(B), pd(C)^n implies

Proof. (1) For any 72-module RX, we have
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Extl+1(-Y, B) -> Extl+1(JSΓ, C) -* Extw/2(^, yί) (exact).

Now, Exti+1(J5r, B)=Έxt¥2(X, A) by the assumption, so Exti+1(J5Γ, C)=0, i.e.

id(C)^n.
(2) is dual to (1)

Theorem 5. Let R be an artίn n-Gorensteίn ring and suppose there exists

a cogenerator RW with pd(W)^n. Then the following are equivalent for a left

R-module RM:

(1) pd(M)<°° , (2) pd(M)^n , (3) ιd(M)<oo , (4) id(M)^n.

Proof. (l)->(2): Szypd(M)=m<°o, there is a left module RX such that

ExtS(Λf , X) Φ 0. Represent JΓ as

0 -> ̂  -> ̂  -> RX -> 0 (exact), ΛJF free

then this induces

Ext?(M, F) -> Ext^(M, JiΓ) -> ExtS+1(M, ΛΓ) (exact) .

Hence, Ext?+1(M, Λ)-=0 implies ExtJ(M, F)ΦO, from which we have id(F)^m.
Now, id(F)=id(R)^n and hence pd(M)=m<^n.

(2)->(3):Let

be a projective resolution of M and Ki=Ker(fi) O^i^n— 1, K,l=M, then first

in an exact sequence:

/ί/(Pw), id(Pn-.1)^id(RR)^n implies ιd(Kn.2)^n by Lemma 4 (1). For general i,

in an exact sequence:

if id(Kf)^ny then id(Ki^ ^n again by Lemma 4 (1). Therefore by the in-
duction, id(M)=id(K.1)^n.

(3) ->(4): Say id(M)= m<oo ) then there is a left module ̂  such that

ExtS(JSΓ, M)ΦO. Let

0 -> gX -> ΛJF -> j?C -> 0 with Λ£" injective

be an injective presentation of X, then we have Ext?(.E, M)ΦO from an exact

sequence

ExtS(M, E) -> Ext?(^Γ, M) -> Ext^+1(C, M)
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and so pd(E)^m. On the one hand, as E is isomorphic to a direct summand of
a direct product ΐ[W of copies of RW, pd(E)^pd($\W)=pd(W)^n whence

Let

be an injective resolution of RM and Cί=Cok(/ί) Q^i^n— 1, C^=M9 then an
exact sequence :

0 - Cw_2 -> £„_! -> En - 0

and pd(En^)9 pd(En)^pd(W)^n imply pd(Cn,2)^n by Lemma 4 (2). By the
same discussion as the proof (2)— >(3), we obtain pd(M)^n.

As a corollary of Theorems 1 and 5 we have the following where we recall
a ring R is left QF — 3 if E(RR) is projective.

Corollary 6. Let R be a \-Gorenstein ring which is left QF — 3, then the
following are equivalent for a left R-module M :

(1) pd(M)<oo , (2) pd(M)^l , (3) id(M)<oo , (4) id(M)^l .

Proof. By Theorem 1, RW=E(RR)®E(RR)IR is a cogenerator with
^\ because

0 ̂  ̂  Λ E(RR)®E(RR) ->RW^Q

=(0, Λ:) for #eί? is a projective resolution of RW. Further, it is well
known a noetherian left QF — 3 ring is artinian, so we may apply Theorem 5
in case n=l.

REMARK. (1) For any w>0, there exists a non-quasi-Frobenius ring
satisfying the hypothesis in Theorem 5. For instance, let R be a serial (= gener-
alized uniserial) ring with admissible sequence: 1,2, •••, 2 (2 are n times), then
id(RR)=id(RR]=gl.dim R=n and RW= Π?=o£'t is an injective cogenerator with
pd(W)=n where 0-^RR~^E0-^El-^ ---- >En->0 is the minimal injective resolu-
tion of RR. (See [10] for details of serial rings.)

More generally, an w-Gorenstein ring R with dom.dίm R^n has an injective

cogeneartor ^^=117-0 ,̂- with pd(W)^n where 0 -> ΛJR -» {Z?( O^i^n} is the
minimal injective resolution.

(2) We may construct an τz-Gorenstein ring Rn with gl dim Rn= °° for any

n^O in the following way. Let 7?0 be a non-semisimple quasi-Frobenius ring,

and for any n>0, Rn the triangular matrix ring over Rn-ι, i.e. Rn={ nn~l D ).
\ *^n — 1 *^»-l/
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2. Rings whose homomorphic images are Gorenstein

In [19, §2], Zaks showed that, for a semiprimary ring R with square-zero

radical, id(RR) ̂  1 if and only if R is a direct product of a quasi-Frobenius ring

and an hereditary ring, and hence ίd(RR}^l is equivalent to ίd(RR)^\. Such
a decomposition theorem no longer holds unless the square of its radical is zero.

For example, let Q be a local quasi-Frobenius ring with (Rad 02=0 and R
the triangular matrix ring over Q, then R is artin 1 -Gorenstein and indecomposa-
ble but is neither quasi-Frobenius nor hereditary.

Now, for a serial ring, we have a decomposition theorem as above.

Proposition 7. Let R be a serial ring, then the following are equivalent :

(1) id(Rs)£l,
(2) id(RR)^l,
(3) R is a direct product of a quasi-Frobenius ring and a hereditary ring.

Proof. Without loss of generality, we may assume that R is self-basic

(twosided) indecomposable, and decompose RR as R=Rβι(B •••£&&» such that

{^ι» ••*> en} is tne Kupisch series. If R is not quasi-Frobenius, Ref is non-injec-
tive for some / (l^i^n) and then, from \Rej+l\ 5* |ife ; |+l for l^j<n, we
obtain that if i<ny \Rei+1 \ — \Re{ | +1, Re{ is monomorphic to Rei+1 and E(Rei)

— Jfo;. for somey (i<j^n) by [10, 1.1]. Now, let the number ί be the smallest
one with Re{ non-injective and Rei+1 injective. Here, we may suppose i<n
because, in case of Neλ= 0, Re1 is monomorphic to Re2 and if Λ^ΦO, by permut-

ing {1, ••-,#}, it is possible for Rel to be non-injective and Re2 injective.
Therefore we have

t) ̂  Rei+1 and | Re, \ + 1 = | Rei

So, saying N=Rad R,

E(Rei)/Rei^Rei+1/Nei+1

is simple injective and from that Rei+l is epimorphic to Nei+2 if i

Rei+l/Nei+1 ^ Nei+2I

induces Nei+2=0 since Rei+2/N2ei+2 is indecomposable. This contradicts

\Re.\^2 for j=2y ,n and so i+l=n and \Rei+1\ =• \Ret f | +1 for l^i^n.
Hence Re2 — Nei+l for l^i^n— 1, i.e. Ne{ (i=2y " >ri) are projective and R

is hereditary.
Applying this proposition we classify the rings all of which homomorphic

images are artin 1-Gorenstein. Before proceeding, we need two lemmas.

Lemma 8 (Bass [3]). For a right perfect, right S-rίng R, id (RR) is finite if
and only if RR is injective.
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Proof. Say, id(R)=n<°°, then there exists a simple left module RS with

Extn

R(S, Λ)ΦO. Now, since I? is a right S-ring, we have an exact sequence:

which induces

Extn

R(R, R) -> Extn

R(S, R) -> ExtJ+ \C, R) (exact) .

Here, Exft+1(C, R)=0 from id(RR)=n, so Extn

R(R, #)ΦO and n=0, i.e. *# is

inject ive.

Lemma 9. L^ / fe a (twosided) ideal in any ring R and R/In a left hereditary

ring for some n>\. Then I"=In+1. Hence, if we assume RN=RadR is finitely

generated (or nilpotenί) and R/Nn is left hereditary for n> 1, then Nn=Q and so R
itself left hereditary.

Proof. Since ln~l\In is an ideal in R/Iny it is ί?//w-projective and the exact
sequence of ^//"-modules :

0 -* I*IIH+1 -> /«-ι//«+ι -> /«-!//« _> o

splits, i.e.
jn-ljjn+l _ /«-l// 0/»//«+l

as #//"-modules. However, I (I«-lII«@I*II«+l) = Q, so /-(/W-V/M+1) = 0, i.e.
/n_/M+1

Theorem 10. For an indecomposable semiprimary ring R, the following are

equivalent :
(1) For any homomorphίc image T of Ry

(2) For any homomorphίc image T of R,

(3) R is one of the following
(i) R is uniserial,

(ii) R is hereditary with (Rad R)2=Q,
(iii) R is quasί'Frobenius with (RadR)2=0 and n(R)=2.

Proof. (3) is left-right symmetry, so we prove only the equivalence of

(1) and (3).
(l)->(3): Say, JV=Rad Λ, since R/N2 is also indecomposable, R/N2 is

either hereditary or quasi-Frobenius by Zaks [19]. In case of hereditary,
N2=0 by Lemma 9 and hence R is of type (ii). In another case, R/N2 is a serial
ring, so R is artinian and serial, too whence R is either hereditary or quasi-

Frobenius by Proposition 7. If R is hereditary, gl.dim R/N2<^ by Eilenberg-
Nagao-Nakayama [9, Theorem 8] and hence by Bass [4, Proposition 4.3],

gl.dim R/N2 = id(R/N2RIN2)^ly i.e. R/N2 is hereditary, so 7V2 = 0 and R is
hereditary again by Lemma 9.
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Thus, let R be serial quasi-Frobenius and n(R)=n(RIN2)=n. Further,
R=R/N2 also satisfies (1) and since (1) is Morita-invariant, we may assume R
is self-basic and decompose R as R=Rel® ®Ren with {̂ , ••*,£„} Kupisch
series. If n>2, Je1=enje1 (J=Rad R) is an ideal of R and the ring:

T = RIJeλ = T^φ - 0 Ten where e{ = eί+Je1 e T

satisfies id(TT) fg 1 . Hence, from Je2 — ReJJe^

E(Te^\Te, ̂  Te2/fe2 (/= Rad T)

is T-injective. However, e2Je33=Q, i.e. Te2IJe2—Je^ Tez which contradicts the
indecomposability of Te3, so #5^2. Then, since R is uniserial if n=l, let n=2,
i.e. we may represent R=Rel®Re2 with {̂ , £2} Kupisch series because Λ is
self-basic, too. Furthermore, if Λf 2Φθ, then N2eλ and JV^ΦO as R is quasi-
Frobenius and the homomorphic image T=RI(N3e1®Nze2)=Ts1®Tδ2 where

^T satisfies ιW(ΓΓ)^l. Now, from E(Te2) — Tely

E(Te2)ITe2 ^ TeJJe, (J = Rad T)

is Γ-injective. However,

is T-injecth^e which contradicts that jTe^ is indecomposable. Hence N2=0.
(3)->(l): In any case of (i) — (iii), R may be assumed self-basic. It is

well known that a uniserial ring is characterized as a ring all of which homomor-
phic images are quasi-Frobenius.

Let R be of type (ii). For any ideal / contained in JV, since RI is a direct
summand of RN, R/I is also hereditary by Eilenberg-Nagao-Nakayama [9,
Proposition 9]. If / is not contained in N, I contains a primitive idempotent el

with 7=1?̂  0(70^(1—^)) and further, if 7 Π-R(1— ̂ )SC JV, choose a primitive
idempotent e2 orthogonal to eλ in 7n^(l— #1). By repeating this method, we
have

where e?= t̂ is primitive and 7/=7 f\R(\— 2?-ι e^N. Then, let e=l— (
— +^), from 77,

77Λ - ΓeRe+ΓeR(l-e)^I ft Re = Γ ,

i.e. 7r is an ideal. Hence T'—R/I' is an hereditary ring with

r'Rad T' = N/I' — τ>Ne®τ'N(\-e)\Γ

and so N(\—e)\Ir is J^-projective. On the other hand,
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implies Rad T=N(l-e)/I' and, as T' is epimorphic to Γ, N(\-e)IΓ is T-

projective, i.e. T is hereditary.

Let R be of type (iii) and R=Rel®Re2 where {ely e2} Kupisch series. For

any ideal / contained in Ny I is a direct summand and, as N=NelQ)Ne2 with

Nβi simple, RI is isomorphic to Nel or Ne2 provided 7ΦO, N. If I~Nel9

RI — ΛΛtei = ^Λtei — e2I

implies I—e2I and so, saying N=IQ)K,

e2I®e2K = έ?2(/0jR:) = *2ΛΓ =

Hence

/ = e2I = e2Neλ = e2N = Nel

and

which induces TReljNel projective. Now, let 7==Rad Γ,

— TNe2 ̂  TJ(e2+I) = J ,

so TJ is projective and T is hereditary. In case of I~Ne2, we have the same

discussion. Next, let e1^I, then

However, | RI \ =2 implies I=Re1 and Ne2^RelR
(^Rel which is a contradiction.

Therefore, we may take | Λ / |=3 and then 1^/71=1, i.e. R/I is a division

ring. This completes the proof.

Finally, we investigate a ring whose proper homomorphic images are artin

1-Gorenstein, and here consider in two cases of a prime noether ring and a

semiprimary ring.

For a prime noether case, we have a generalization of Zaks [20, Theorem

3]. Here an ideal / is said to have the Artin-Rees property if for every left ideal

L, there is an n with In

Proposition 11. Let R be a prime noether ring and assume every maximal

ideal in R has the Artin-Rees property. Then any proper homomorphic image of

R is artin Gorenstein if and only if R is restricted unίserial.

Proof. 'Only if": For any maximal ideal M in R, M=Q implies R a

simple ring, so we may suppose MΦO. Then R/M2 is primary Gorenstein

and hence quasi-Frobenius (in this case, uniserial) by Lemma 8. Thus let
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n>2, T=R/Mn and /=Rad Γ, then T\]2 — R\M2 is uniserial which implies
T=R/Mn (n>2) uniserial.

Next, for any nonzero ideal / in R, there exist maximal ideals Mly •••, Mn in

R with Aft, •••, MMC7. Since M1? •••, Mn have the Artin-Rees property, there
are integers kl9 •••, kn such that

M/i Π - ΠΛC CMi-M.C/ .

Hence, we may suppose all Mj, •• ,Mn are distinct and, by the Chinese

Remainder Theorem,

RKMΪ* n n M» = Λ/M^Θ Θ#/M>

is uniserial. On the other hand, Rj(M^^[ ••• Γ\Mn

k») is epimorphic to R/I, so
JR/7 is uniserial too.

Now, we state the last theorem which is of a semiprimary case.

Theorem 12. Let R be an indecomposable semiprimary ring and RQ the
basic subrίng of R with N=Rad R0. Then any proper homomorphic image of R

is \-Gorenstein if and only if R is one of the following :

(1) R is uniserial;
(2) R is serial with admissible sequence 3, 2;

(3) R is hereditary with square-zero radical;

(4) n(R) 5g 2, (Ra d R)2 = 0 and for any primitive ίdempotent e in R0,
(a) eNe—Q provided £Φ1, (b) If Ne contains a nonzero ideal properly, it is a

maximal left and right subίdeal in Ne and N(\—e) is a simple left and right ideal

(5) n(R)=2, (Rad R)2=0 and R0 has a primitive idempotent e such that (a)

eNe is simple left and right ideal of R0, (b) Either (l—e)Ne=Q or N(l—e)=Q,

(c) Each of (I— e)Ne and N(l—e) is twosίded simple unless it is zero and N(l—e)=

eN(\-e)\
(6) R is triangular with n(R)=3, (Rad R)2=Q and Ne is twosίded simple for

a primitive ίdempotent e in R0 provided

Proof. Throughout the proof, we may assume R self-basic and then

N=Rad R.
"Only if." If JV3ΦO, RjN3 is uniserial by Theorem 10 and so is R by [15].
Let N3=Q but 7V2ΦO, then R/N2 is quasi-Frobenius with n(RIN2)=2

again by Theorem 10 and Lemma 9 and hence R is serial with n(R)=2. Thus,

let {el9 e2} be a Kupisch series, then JV^ΦO. For, Ne^Q implies N2=Q (con-

tradiction) because Re1 is epimorphic to Ne2. So ΛfejφO and Re2 is epimorphic
to Neλ. If both N2el and N2e2 are nonzero, R/N^ is neither hereditary since

Ne1/N2e1 is not projective nor quasi-Frobenius since R/N^ has non-constant

admissible sequence 2, 3. Therefore
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ΛΓ^ΦO, N2e2 = 0 or N2el = 09 Λ

In either case, R has the admissible sequence 2, 3; i.e. R is of type (2).

In the following, we may assume N2=Q, TV Φθ and jR not hereditary because

otherwise R is of type (3). Here, we remark that for a semiprimary ring R with

square-zero radical N, R is hereditary if and only if any primitive idempotent e

in R satisfies either eN=0 or Ne=0. Now, if n(R)=l> i.e. R is local and N

contains a nonzero ideal 7Φ./V, R/I must be quasi-Frobenius. Hence RN/I, N/IR

are simple and R is of type (4).

Therefore, now suppose n(R)=2, then there exists a primitive idempotent

e with £/VΦθ, ΛfeΦO and 1 — e is primitive too. In case of eΛfeφO, /=(! —e)Neφ

Λf(l—e)Φθ since Λ is indecomposable and R/I—eRe(&(l—e)R(l—e) as rings

implies that e/fe is quasi-Frobenius, so ReNe, eNeR are simple. Next, if both

(\—e)Ne and JV(1 — e) were nonzero, R/N(l—e) is indecomposable but neither

hereditary nor quasi-Frobenius. Hence either (1— e)Ne=0 or N(l— e)=0 and

each of them is twosided simple unless it is zero. Further, N(l — e)=eN(\ —e)

because R is indecomposable. These show that R is of type (5) in case of

tfΛfeΦO. So we assume eNe=Q, in which case eN(\ — #)ΦO as e was chosen with

eNΦO. Then R/eN(l-e) must be hereditary and (l-e)N(l -e)=Q. Here, if

Ne contains properly a nonzero ideal /, R/I has to be quasi-Frobenius whence

both RN(l—e)=eN(l—e) and gNe/I are simple. These also hold for a right

side. On the one hand, if N(l— e) contains properly a nonzero ideal /, by

exchanging the idempotent e with l—e, the same argument as above holds.

Hence R becomes of type (4).

Finally, suppose n(R)^3. As RN is not projective, there are primitive

idempotents e, f with /ΛfeΦO and JV/'ΦO. Now, assume (l—e)Ne=Q, then

eNe is a nonzero ideal, n(R/eNe)=n(R)^3 and R/eNe is indecomposable, so

R/eNe must be hereditary by Theorem 10. Therefore there exists a primitive

idempotent e'^e with gΛfe'ΦO by an indecomposability of JR and then /—

(l—e)Ne'-\-N(l—e—e') is a nonzero ideal since 7? is indecomposable and n(R)^3.

If we put R=R/I, e=e+I and e'=e'+I, Re®Ref is a block of R and not any

of the ring stated in Theorem 10 (contradiction). Thus (l—e)Ne3=Q9 i.e./Φe

and, by setting e1=e, e2=f, R is expressible as R=Re1ξ&Re2ξB (ϊ)ReH where

n=n(R)^3, e^l^i^ri) are primitive idempotents and either £2Λfe3φO or

e37Ve2φO. If an ideal I=(l—e2)Nei+(l—e1—e3)Ne2+(l—e2)Ne3+^j>3Re. is

nonzero, then Rfl must be hereditary by Theorem 10 as R/I is indecomposable

and n(R/I)—3, and so we obtain that Ne1 = e2Nel-{-Ie1, e1Ne2=Q=e3Ne2 and

Ne3=e2Ne3-{-Ie3^Q. In this case RI^^Ne. has to be quasi-Frobenius, which

contradicts ^^2=0. Hence 7=0 implies τx=3, Ne1=e2Ne1^Oy Ne2=elNe2-{-

e3Ne2^0 and Ne3=e2Ne3. Moreover, if JV^ΦO, elNe2=Q=e3Ne2 for jR/Λ^! or

R/Ne3 is indecomposable but neither hereditary nor quasi-Frobenius according
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to βjNez^O or e3Ne2 ΦO, but it contradicts Λfe2Φθ. Therefore Ne3=0 and
£3Λfe2Φθ induces e1Ne2=0 since gl. dim R/elNe2=2y i.e. R is of type (6).

"If." Case (1): By Nakayama [15], jR is uniserial if and only if any homo-

morphic image of R is quasi-Frobenius.

Case (2): Let R=Rel®Re2 where elt e2 are primitive idempotents and

\Re1\=3y \Re2\=2. Then, for any nonzero proper ideal / in R,

implies either /ΠΛ/^ΦO or /ΠΛfe 2Φθ. In either case, we obtain

Now, suppose 7V2^=7, then R/I is quasi-Frobenius with the admissible
sequence 2,2. Next, if ΛP^φ/, Rjl is a proper homomorphic image of RIN2eλ

and hence has the admissible sequence {1, 2}, {1, 1} or {!}. In all cases, R/I

is hereditary.

Case (3): Any homomorphic image of R is hereditary by [9, Proposi-
tion 9].

Case (4): For any nonzero ideal / of R, if /CJV, I=Ieξ&I(l — e) with le,
1(1— e) ideals for a primitive idempotent e and R/I~Re/Ie(&R(l—e)/I(l—e) is

either hereditary or quasi-Frobenius by the property (b). If I^Ny I contains

a primitive idempotent e and so R/I is isomorphic to (\—e)R(\—e) or 0.
Case (5): For fany nonzero ideal / of R, if 7&ZV, /= ele®(\-e)le©

1(1— e) and these summands are all ideals. By the property (b), in case of
(l-e)Ne=Q, R/I—Re/eIe®R(l-e)/I(l-e) implies that R/I is hereditary or

quasi-Frobenius according to e/βΦO or 1(1— e)Φθ. In case of N(l— e)= 0,
R/I— Re/I (&R(l—e) shows that R/I is quasi-Frobenius (resp. hereditary) pro-

vided (1— £)/£φO (resp. ele^pϋ). Next, if / is not contained in TV, e or \—e

belongs to / and so I=Re®(I Π#(l— e)) or I=(I {}Re)®R(\— e) respectively.

In the former case, we may assume /Γl7?(l— £)CΛT and hence R/I—
(1 — e)R(l —e)l(\ —e)N(\ —e) is a division ring. Also, in the latter case, we have
the same conclusion.

Case (6): R has a complete set el9 e2, e3 of mutually orthogonal primitive
idempotents satisfying e^Ne^ 0 if i^j. Hence, for any nonzero ideal / of Λ,
if /CΛf, /= /^©/^2 with 7έ?!, Ie2 ideals and R/I—Re1/Ie1ξ&Re2/Ie2®Re3 is here-

ditary since Iei=Nei or 0 (/=!, 2). If I^Ny some 0,. for /=!, 2, 3 is contained
in / and we may show similarly that R/I is hereditary.

REMARK. In [20], Zaks showed that, for a commutative noether ring R,
any (proper) homomorphic image of R is Gorenstein if and only if any (proper)

homomorphic image of R is quasi-Frobenius. For a non-commutative case,

however, we see it no longer holds by Theorems 10 and 12. In prime noether

case (see Proposition 11), we don't know whether the hypothesis of the Artin-

Ress property is superfluous or not.
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