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Introduction. Let R be a commutative ring and S'a commutative R-algebra
which is a finitely generated faithful projective R-module. An R-Azumaya
algebra A4 is called an S/R-Azumaya algebra if A contains S as a maximal com-
mutative subalgebra and is left S-projective. S-S-bimodule structure (for
which we shall call S @z S-module structure) of S/R-Azumaya algebras is
determined in [5] when S/R is a separable Galois extension and in [8] when
S/R is a Hopf Galois extension, both are connected with one which is so called
seven terms exact sequence due to Chase, Harrison and Rosenberg [3].

In this paper we shall investigate the S ®;S-module structure of S/R-
Azumaya algebras assuming only that S is a finitely generated faithful pro-
jective R-module. So S/R-Azumaya algebras are not necessarily S ® S-pro-
jective (c.f. [8] Th. 2.1). But in §1 we shall show for any S/R-Azumaya al-
gebra A, there exists a unique finitely generated projective S ®, S-module P
of rank one with certain cohomological properties such that 4 is S ® ; S-isomor-
phic to PQsg,s Endg(S). In §2, we shall investigate S/R-Azumaya algebras
resulting from Amitsur’s 2-cocycles. Finally we shall deal with the seven
terms exact sequence in §3.

Throughout R will be a fixed commutative ring with unit, a commutative
R-algebra S is a finitely generated faithful projective as R-module, each Q, End,
etc. is taken over R unless otherwise stated. Repeated tensor products of S
are denoted by exponents, S'=S®:-+® S with g-factors. We shall consider
S? as an S-algebra on first term. To indicate module structure, we write if
necessary, S,® S, instead of S’=S® S, s Mj, instead of S?°=S,® S,-module
M etc.. HY(S|R, U) and H'(S/R, Pic) denote the g-th Amitsur’s cohomology
groups of the extension S/R with respect to the unit functor U and Picard group
functor Pic respectively.

1. S/R-Azumaya algebras and H'(S/R, Pic)
First we prove the following, which clarify the S%module structure of
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split S/R-Azumaya algebras.

Lemma 1.1. Let M be a finitely generated projective S-module of rank one,
then End (M) is isomorphic to (M ® S) R (S ® M*) ® 2 End (S) as S?modules,
where M*=Homg (M, S).

Proof. We define ¥: (M® S)R2(SQ®M*) Qs End(S)— End(M) as
follows;

Y((m @ 5) Q (1R f) @g)(n) = tg(f(sn))m

mneM,s,teS, fEeM*, g=End(S). Then+risawell-defined S2-homomorphism
and by localization we get +Jr is an isomorphism.

REMARK. By 4, the multiplication of (M ® S)®R(S R M*) ¢ End (S)
is given by the formula

(mR)Q(1R )R8 (nR®u)R(vRP)®9)
= (MU (ARP)Bg-f(n)-s-vq.

Now let 4 be an S/R-Azumaya algebra then A is split by S. Hence there
exists a finitely generated faithful projective S-module M such that S® 4 is
isomorphic to Endg(M) as S-algebras. Asiswell known, i inherits the S?-module
structure and is S?-projective of rank one. By Lemma 1.1, S® A= Ends(M)==
(M ®5S5%) ®(S? QsM*) ® s* End (S8?) = (5, M5, @S3) ® 5*(5,M*5,R ;) ®s* Endg
(8%, M*=Homg (M, S?). If we put P=((MQsS*)Qs3(S?QRsM*)) QsS?=
((s Ms,® S3) Qs*(s,M*5,® S,)) R 52 S*=((M Q2S1) @ S5) ® 2 s,M*s,, where we
ragard S? (resp. S) as an S¥(resp. S%)-module by p®1:.53—S5% (resp. w: S?—.S),
w is the multiplication of S, then 4=P ® > End(S) as S%-modules. Define the
S?-algebra isomorphism ®: Endg?(M ® S)=End; gs,(5,Ms,® S;)—>Ends2(S® M)
=End;,e5,(5:1® 5,Ms,) by the composite of the isomorphisms End;s gs,(s,M5,QS,)
=S5, QAR S,=51QS,QA=Ends gs,(S:Q 5,Ms,), where the middle isomorphism
is the one induced from the twisting homomorphism 4®QS,—S,® 4 (aRs—sRa)
and the others are induced from S®A4=Ends(M). Then from Morita theory
there exists a finitely generated projective S?module Q of rank one such
that (5,M5,®.5,)®s,@s, 5,05, S1Q 5,Ms, as End2(S,®s,Ms,)-modules, hence as
S%modules. Tensoring with S? over S% (regarding S? as an S*module by 1®
p: §3—>S?%, we get an S%*isomorphism M ®s es,s,0s,=S1Q (M ®s2.S,).
Therefore,

SQP=(SQMQRsS5)QRS) Vs (SQM*)
= (MR:0)R S)R:(S® M*)
=(MQ®S)Rs(0RS) (SR M*)
= (MQ S)Rs*(S*QsM*)
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= (MQS)R((M*R:S) ® S?) R(S*Q :M*) Rs* (M R 52S)
R S?)

=(MQS)R((M*RsS)R® S?) Qs (S*QM*) Rs*(S*Q s(M
®s25)Q S)

= (P*Q S) ®(S*QsP), P* = Homg(P, S?).

This means P is a 1-cocycle of the extension S/R with respect to the functor
Pic (we call simply 1-cocycle). Since P*=((M*Q®:S)® S)®2M, Endg(P*)
=Endg(/M) as S-algebras.

If S® A=Endy(N) for another N, then Endy(M)=End4(NN) as S-algebras. So
there exists a finitely generated projective S-module Q’ of rank one such that
s, Ms,®s5,0’=N as S?modules. Easy calculation shows that the 1-cocycles
obtained from M and N are S*-isomorphic.

To prove the uniqueness of 1-cocycle P, we prepare the following

Lemma 1.2. Let T be a commutative R-algebra, which is a finitely genreated
faithful projective R-module. And let P, Q be finitely generated projective T-
modules of rank one. Then

Hom;e,(P® Q, O ® P)=Hom;e,(End(P), End(Q))
Especially, 1s0,6:(P® O, O @ P) corresponds to 1so,e,(End (P, Ecd(Q)).

Proof. For any T-module M;, N;(i=1, 2), we have the following isomor-
phism p: Homgg (M, QM,, Hom(N,, N,)) = Hom,g,(M,QN,, Hom(M,, N,))
given by (p(@)(m,Q n,)) (my) = (p(m,Q my)) (ny), m; € M;, n,EN,;, p EHomye (M,
®M,, Hom(N,, N})), ([6] 1.4.2). Put M,=P, M,=N,=Q, N,=Hom(P,R), then
we get easily. Further assertion follows easily by localization.

Let P, P’ be 1-cocycles such that P® 2End(S)=P’'®:End(S)=4 as S?-
modules. Then Endg(P*)=Endy(P’*) as S*modules by Lemma 1.1 and the
cocycle condition of P, P’. From Lemma 1.2 we get an S3-isomorphism P*®
P*=(5,P*5,Q S5) Q@ *(5,P*5,Q Sp) = P*Q sP* = (5, P"*5,Q:S3) R (5,P*5,8:5%).
Thus (5,P*s5,@53) @s¥(5,P5,Q52) =(5,P*s5,R53) Qs*(5,F5,R:S:), the left side is
isomorphic to S;®s,Ps, and the right side is isomorphic to S;®,P’s, by the
cocycle condition of P, P’. 'Tensoring with S? over S® (regarding S? as an S*-
module by p®1: §*—S5?%), we get P=P’.

Summing up we get

Theorem 1.3. Let A be an S|R-Azumaya algebra, then there exists a
unique 1-cocycle P such that A is isomorphic to PQ ¢End(S) as S?-modules and
S QA is isomorphic to Ends(P*) as S-algebras, where P*—=Homg:(P, S?).

ReEMARK. In proving the above theorem, we used the S-algebra isomorphism
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S ® A=EndyM). If we assume this isomorphism is only an S3*-module iso-
morphism, then by using Lemma 1.2 in suitable situations we shall get Theorem
1.3 only replaceing “S-algebras” to ‘‘S%modules” in the last statement. So
Theorem 1.3 does not fully characterize S/R-Azumaya algebras.

Proposition 1.4. Let A, B be S/R-Azumaya algebras, P, Q be 1-cocycles
obtained from A,B respectively. Then the 1-cocycle obtained from A-B=End g5

(SR (AQB)) is PQg: Q.

Proof. S® A=Endy(P*)and .S Q B=Endy(0*), so SQ(4A-B)=(S® 4)-
(S ® B)=Endy(P*®s0%), (c.f. [3] 2.13.). Thus the 1-cocycle obtained from
A-B equals to PQg0.

Next we shall start from a 1-cocycle P and an S*isomorphism ¢: S?Q P*=
5,P*5,Q 8,=(8:1Q 5,P*s,) ®*(5,P*5,® S3)=(S Q@ P¥*) @s*(P*® S). Define the
S*-isomorphisms ¢, ¢,, p3 as follows;

& = 1Q¢: S:Q4,P*5,05:2(5,Q5,RQs,P*s,) Ds4(5:1Q,P*5,RS,),

identity on S,

b2 : SIP*S4®S2®S3:—‘—:(S1®S2®s3P*s4)®s‘(slp*ss®sz®s4)»
identity on S,
o : SIP*S4®S2®S3%(S1®32P*s,,®S3)®s‘(slp*sz®83®s4)»

identity on S;.

Further we define #(¢) EEndg¢ (s P*;,®S,®.S;) by the composite

(P*s, @S0, (8,05,@5,P*5 ) @5 (5,P*+,@S,D5)
1@s(pR1
Qs (d)———))(S1®S2®53P*S4) ®S4(S1®52P*33®S4)®54
15 41
(5, P @8,05) 25 (5,04,P4, @)@, P48 5®S)

-1

—> s P*,®5,835; .

Then we may think u(¢) is a unit of S* by homothety. As easily checked,
u(ap)=38(a ")u(¢p) for a unit ¢ €S% where 8 is the coboundary operator in
Amitsur’s complex with respect to the unit functor U.

Lemma 1.5. u(¢) is a 3-cocycle.
Proof. By localization it follows readily.

Theorem 1.6. Let P be a 1-cocycle with a S*-isomorphism ¢: s P* @S,
($:1®5,P*s,) ®s3(5,P*5,@8;5). Then A=PQgEnd(S) has an S|R-Azumaya
algebra structure, if and only if, u($) is a coboundary. If u(p)=35(B) where B is a
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unit of S3, then (B¢p)* induces a S-algebra isomorphism S Q@ A=Endy(P*), where
(Bo)* is the isomorphism S Q@ P=(P*QS)®s(sPs,®:S,) induced from B¢.

Proof. First we assume A=P®sEnd(S) is an S/R-Azumaya algebra,
then S®A=Endy(P*) as S-algebras from the uniqueness of 1-cocycle. Define
the S%-algebra isomorphism

®: End; gs,(s P*5,05) = S,QARS, > S,05,0A4 = Endses,
(S1®82P *Ss)

by the twisting homomorphism A®S,—S,QA4. @ is a descent homomorphism,
that is if we put ®,=1Q®: S;® Endy(P*) ®S —S5,Q.S ® Endg(P*) identity on
S;, @,: Endy(P*)® 85,08 -85 ®S,® Endy(P*) identity on S,, ®;=PQ1: End;
(P*)RS ®S;—S @ Endy(P*)®S; identity on S;, then ©,=®,-P,. Since P is
an S%-algebra isomorphism, there exists a finitely generated projective S*-module
O of rank one such that 3 P*;®S, is isomorphic to (S,®s,P*s)®s,es, 5,05,=
(81Q5,P*5,) R 5*(5,05,8 ;) as S*-modules and @ is induced by this isomorphism
¢’. From the cocycle condition of P, Q is isomorphic to P*. From the definition
of @,, ®,, @;, the following diagram is commutative for any f €End; es,es,
(s P*s,R5,®S)).

Dy (f)R 41 R 1
($:88:Q5,P*s )R HS:®5,P*5,Q8,) Q s4(5,P*5,Q 53R.S,) Z(f___>) $ 578
(8:R8:Q5:P*5,) D 5,(S1® 5,P*5, @ S) @ 55, P*5,@ 5@ S,)

1@:(¢'®1) [[teoss e
(Sl®S2®SSP*S4)®s‘(slP*53®S2®S4)(D2-(—0—>®S‘1(S1®S2®53P*s‘)®sc(slP*sa®SZ®S4)
& Tl
oP*s, ® S @ S, 7, oP*s, ® S, ® Sy
o e
D4(f)Rs1

(81Q5,P*5,Q8) Q45 P*5, @850 8) = (85:®5,P*5,Q83)®s(5,P*5,05:R )

d)l/l ®541 (blll ®S‘1
D, D X ‘1® 41
(S1®S2®53P*S4)®s‘(Sl®szP*sa®S4)®sc(slP*sz®Sa®S4) 1 3(f) s___i_>

(Sl®S2®33P*s4)®s‘(S1®SZP*sa®S4)®s‘(slP*sz®Ss®S4)

Thus (1Qs(d'®@1))-ds [+ s+ (1 QP TR 1)) = (1 R 1) ps- f b5 +(p1 7!
®s1). Hence f-u(@)=u(¢)-f for any f€ Endseses(sP*s,@S:@S).
Therefore 3-cocycle u(¢’) is contained in the center of End; gs,es,(s,P*s, Q5@
S3), which is S;®S,®S;. Easily we get u(¢’) is a coboundary. Thus u(¢p)=
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u(a~'¢p’)=38(a)u(¢’) is a coboundary.

Conversely let u(¢) be a coboundary then we may assume #(¢)=1Q1R1Q1.
Let ¢* be the isomorphism S ®@P=(P*®QS)®s(sPs,®S:) induced from ¢
by duality pairing. We consider S ®4=(S Q P)Q s, Endy(S?) equals Endg(P*)
=(P*®S)®s*(5,Ps5,@5,) X s*Ends(S?) by ¢*®s1. Thus S®A has an S-
algebra structure. Define ®: SQARXS=SRSRA by the twisting homomor-
phism ARQS—>SRA. Clearly ®,=®,-®,. From. the theory of faithfully
flat descent, if @ isan S?-algebra isomorphism, then the descented module 4 has
an R-algebra structure (necessarily an S/R-Azumaya algebra structure) such
that the induced S-algebra structure of S®A coincides the original one of
S®A. Therefore all is settled if we show @ is an S%algebra homomorphism.
So we may assume R is a local ring. Thus P=S% A=End (S) and ¢* is the
homothety by 31x,®,y;®%;. Since #(¢p)=1Q101Q1, D »Qy:Q=; is a

2-cocycle. The multiplication in SQEnd(S)®Sis given by (sQ f ®1)* (4R gR2)
=(‘Z %,Qy:;Q2,Q1)7 (2 xx 5uRy; f2,y,8%,Qt0), sQ f Qt, uQ gRQvESKEnd

(S)®S, which is equal to 3>} su®x; fy;g2:Qtv since 23 x,® y;,Q=%; is a 2-cocycle.

The multiplication in S® S® End(S) is given similarly. As easily checked, ®
is an S%-algebra homomorphism. This completes the proof.

Proposition 1.7. If P is a 1-coboundary then u(p) is a 3-coboundary.

Proof. Since P=(0RS)®s>(SQRQ*) for some finitely generated pro-
jective S-module Q of rank one, Q*=Homy(Q, S), 4=P @ End(S)=End(Q)
has an algebra structure. Hence u(¢) is a coboundary by Theorem 1.6.

Let Br(S/R) denotes the Brauer group of R-Azumaya algebras split by S.
For an element of Br(.S/R), we can choose an .S/R-Azumaya algebra as its represen-
tative, and this representative is uniquely determined modulo {End (Q)|Q is a
finitely generated projective S-module of rank one} (c.f. [3] 2.13).
Thus summing up the results of this section, we get

Corollary 1.8.  The following sequence is exact
0 6
Br(S|R) —> H'(S|R, Pic) —— HS|R, U)

where 05 is the homomorphism induced from the one which carries S|R-Azumaya
algebras to 1-cocycles determined by Theorem 1.3, 0 is the one induced by Lemma
1.5.

2. S/R-Azumaya algebras and H*(S/R, U)
Let o=>1x,®y,®2; be an Amitsur’s 2-cocycle (of the extension S/R

€6 "

with respect to the unit functor U). We shall define a new multiplication ““*
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on End(S) by setting

(fx8) (5) = 2 x:f(1ig(2:5))
for all f,g€End(S), s€S. Then Sweedler [7] proved this algebra A(c) is

isomorphic to the Rosenberg Zelinsky central separable algebra coming from
the 2-cocycle o™,

We shall call that a 2-cocycle o is normal if 3}x,y,®@2,=>1x,Qy2=1Q1.

As can be easily proved, every 2-cocycle o is cohomologeous to a normal 2-
cocycle ¢’ and A(s)==A(c’). For a normal 2-cocycle ¢/, the S/R-Azumaya
algebra A(o’) is isomorphic to End(S) as S?modules. The following asserts
the converse is true.

Proposition 2.1. An S/R-Azumaya algebra A is obtained from a normal
2-cocycle, if and only if, A is isomorphic to End(S) as S*-modules.

Proof. If A is isomorphic to End(S), then the 1-cocycle P obtained from
A is isomorphic to S% The method of the proof of the well-known fact that
“H*S|R, U)=Br(S|R) if Pic(S®S)=0" can be applied in this case (c.f. [6]
V.2.1).

0 0 .
Corollary 2.2. The sequence H¥(S|R, U)—> Br(S|R) —> H'(S|R, Pic),
where 0, is induced from the homomorphism which carries a 2-cocycle o to A(c),
is exact.

Lemma 2.3. The homomorphisms p: S® End(S)—Endg(End(S)), p’:
S®S®End(S) - Homy(End(S)® sEnd(S), End(S)) defined by setting (p(sQ f))
@)=sg-f, (P’ (:QtQ f)) (¢Q@h)=sg-th- f, f, g, hLEEnd(S), s, tES, are isomor-
phisms.

Proof. o is nothing else the well-known isomorphism S End(S)’=
Endy(End(S)). The composite of the isomorphisms S® S End(S)=S®
Endy(End(S))=Homy(End(S), S ® End(S))=Homg(End(S), Ends(End(S))==
Homy(End (S) ® sEnd(S), End(S)) is p’.

Poroposition 2.4. Let 0=3]x,Q0y,®z;, 7=2¥/Qy!Q=z! be normal 2-

cocycles, then A(c)=A(7) as S|R-Azumaya algebras (that is isomorphic as R-
algebras and compatible with the maximal commutative imbeddings of S), if and
only only if, o is cohomologeous to 7.

Proof. “If part” is trivial. Let W: A(c)=2A(7) be the given isomorphism,
then by Lemma 1.2 with T=P=Q=S, ¥ corresponds to the homothety by the
unit >3 u,Qv, €S
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V(f) (5) = Duf(vs), f EEnd(S) = 4(0), sES..

Since W is an algebra isomorphism,

W(fxg) (5) = Rui(f*g) (vs) = 23w, f(7,8(3,05))
= (YU)*¥(g)) () = 2 uwif (viyin;8(v;245))
for all f, g€End(S)=4(s), s€S. Hence by Lemma 2.3
,}_,1] ux,Qy,Q3v; = ’_;kuix,’e@v,-ujy,’,@vjzi .
Thus o is cohomologeous to 7.

Now let P be a finitely generated projective S-module of rank one with
the S%isomorphism ¢: SQP=P®S, (this means that P is a 0-cocycle with
respect to the functor Pic). Define S*isomorphisms &), &, &3 as follows;

OH=1Q¢: S\QSRXP=S,QPRS identity on S,
& : SRS,QP=PRS,RS identity on S,
E=(R1: SQPRS;~PRSRX.S, identity on S;.

Define the S%-automorphism of SQSQP by {7'-{;-¢; then {7'-838; is the
homothety by the unit v(¢{)ES% By localization we can easily check that
9({) is a 2-cocycle.

Proposition 2.5. Let o be a normal 2-cocycle and assume that A(c)=0
in Br(S|R). Then there exists a finitely generated projective S-module P such that

S ®PiP®S, and o is cohomologeous to v({) or equivalently A(c)==A(v({)).

Proof. Since A(c)=0 in Br(S/R), A(s)==End(P) for some finitely
generated faithful projective R-module P. P inherits the S-module structure
and S-projective of rank one. End(P)=(PRS)R:2(SQP*)RQsEnd(S) as
S2-modules and (PQS)R(SQP*) is a 1-cocycle. From the uniqueness of
I-cocycle (Theorem 1.3), there exists an S%*isomorphism §: SQP=PQS.
We may assume o({) is a normal 2-cocycle. Therefore by Proposition 2.4,
all is settled if we prove A(v({))=End(P). Define ¥: A(v({))=End(S)—
End(P) by the following commutative diagram

P— S®P£<P®S
[wo) Ry,

cont.
P <—— SQP=PRS
where “cont.”’ is the contraction homomorphism, f& 4(v(¢))=End(S). By
localization technique, we get that ¥ is an S/R-algebra isomorphism.
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0 0
Corollary 2.6. The sequence H'(S|R, Pic) — H¥S|R, U) —Br(S|R), where
0, is induced from the homomorphism which carries a 0-cocycle P, {: SQP=PQS,
to v(¥) is exact.

Proof. The only thing that we must show is that ¢, is a homomorphism.
But it follows readily.
3. The seven terms exact sequence
Let p=3"x;Qy;ES? be a 1-cocycle of the extension S/R with respect to
|
the unit functor U. From the cocycle condition of p, 33 x;y,=1. We make

a new End (S)-module ,S as follows;
oS=S8 as S-modules, f-s=2>)x;f(y:5), fEEnd(S), s€S. By the cocycle

condition of p, ,S is in fact an End(S)-module. From Morita theory
Hompayo(S) 5S) @ S ==,S.

And Homg, (S, ,S) is a finitely generated projective R-module of rank one.
If p is a coboundary (that is p=x®x~!, x&S), then the homomorphism
Homg,45) (S, »8) = Homg,q¢5) (S, S) (=2R) which carries g & Homg,q5) (S, »S) to
x'gEHomg, 5 (S, S) is an isomorphism. For another 1-cocycle p’, we have
a canonical isomorphism Homg, s (S, ,S)Q@Homgqs) (S, )= Homguqs) (S,
o/S). Hence the homomorphism which carries the 1-cocycle p to Homg,qcs
(S, »S) induces the homomorphism 6,: H'(S/R, U)— Pic(R).

Lemma 3.1. 6, is a monomorphism.
Proof. Let p=3},®2y; be a 1-cocycle and assume that Homg,q(s)(S, »S)

is a free R-module of rank one with a free base g. If we put g(1g)=x then x
is a unit of S since Homg,q(5)(S, ,S)®S==,S=S as S-modules. The condition
g€ Homg,4(5)(S, ,S) claims

8(f(5)) = fls)x = f+(g(s)) = 23 %, (yis)
for all fEEnd(S),s€S. By Lemma 2.3, we get p=21x;Qy,=xQ@x"'. Thus
p is a coboundary.

Next we define 6,: Pic(R)— H°(S/R, Pic) as the homomorphism induced
by tensoring with S over R.

Lemma 3.2. The sequence

1 6, . 10, o .
HY(S|R, U) —> Pic(R) —— H(S|R, Pic)
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is exact.

Proof. 6,:0,=0 since Homg 45 (S, ,S)® S=,S for a 1Il-cocycle p.
Conversely, let P be a finitely generated projective R-module of rank one and
assume that SQP is isomorphic to .S as S-modules. From the theory of faith-
fully flat descent, there exists an S*isomorphism 7: S®S=SQ.S with pro-
perty m,=nm, and P is characterized as {s€S|sQ@1=7(1Qs) in SQS},
where 7;, i=1,2, 3, is defined similarly as ¢; in §2. Since % is a homothety,
we may put 7=>1x;QY; %;,y,ES. Then 7 is a l-cocycle by the relation

v .
7,=ny,. Define the homomorphisms' ¥, ¥/, P ‘(E’Z’ Homg,4(s) (S, »S), by setting

w(p) (s)=sp, ¥'(g)=g(1s), pEP, s€S, geHomgy5)(S, ,S). By Lemma 2.3
and the characterization of P={s&S|sQ1=7(1Qs)}, ¥ and ¥’ are well-
defined homomorphisms and are inverse to each other. This completes the
proof.

Lemma 3.3. The sequence

) ]
Pic(R)— H(S|R, Pic)— H¥S|R, U)

is exact, where 0, is the homomorphism induced by the one which carries a 0-cocycle

P,t: SQP=PQS to v(¢).

Proof. 6,-60,=0 as easily proved. Let P be a finitely generated projective

S-module of rank one such that S ®PiP®S. Further assume that o({)=

£7'%s¢, is a 2-coboundary. Then we may assume 2({)=1Q1®1. Thus ¢

is a descent homomorphism. Hence there exists a finitely generated projective

R-module P’ of rank one such that P=~P’®.S. This completes the proof.
Summing up Corollary 1.8, 2.2, 2.6, Lemma 3.1, 3.2, 3.3 we get

Theorem 3.4. The sequence
0 — HY(SIR, U) ﬁ Pic(R) ﬂi H(S|R, Pic gﬁ HYS|R, U)
ﬁ Br(S|R) ﬁi H'(S|R, Pic) ‘—9§ H3(SIR, U)
is an exact sequence of abelian groups.
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