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In [9] we defined the concept of non commutative Krull prime rings from
the point of view of localizations and we mainly investigated the ideal theory
in bounded Krull prime rings (cf. [9], [10]).

The purpose of this paper is to prove the following:

Theorem. Let R be a prime Goldίe ring with two-sided quotient ring Q.
Then R is a bounded Krull prime ring if and only if it satisfies the following con-
ditions

(1) R is a regular maximal order in Q (in the sense of Asanό).
(2) R satisfies the maximum condition for integral right and left v-ίdeals.

(3) R/P is a prime Goldie ring for any minimal prime ideal P of R.

As corollary we have

Corollary. Let Rbea noetherian prime ring. If R is a regular maximal order
in Q, then it is a bounded Krull prime ring.

In case R is a commutative domain, the theorem is well known and its proof
is easy (cf. [11]). We shall prove the theorem by using properties of one-sided
τ -ideals and torsion theories.

Throughout this paper let R be a prime Goldie ring, not artinian ring,

having identity element 1, and let Q be the two-sided quotient ring of R\Q is
a simple and artinian ring. We say that -R is an order in Q. If R1 and R2 are

orders in Q, then they are called equivalent (in symbol: R^Rz) if there exist
regular elements al9 bly a2y b2 of Q such that alRlbl^R2, a2R2b2ζ^Rl. An order
in Q is said to be maximal if it is a maximal element in the set of orders which are
equivalent to R. A right Λ-submodule / of Q is called a right R-ίdeal provided
/ contains a regular element of Q and there is a regular element b of Q such that
bISiR. I is called integral if /CΛ. Left 72-ideals are defined in a similar way.
If / is a right (left) JR-ideal of Q, then O,(/)= {x<=Q\xI<^I} is an order in Q
and is equivalent to R. Similary Or(I)= {x^Q |/#C/} is an order in Q and is
equivalent to R. They are called a left order and a right order of / respectively.
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We define the inverse of / to be 7'1— {q^Q\/#/C/}. Evidently I~l= {q^Q\
/ίSO7(/)} = {?e ρ I ϊ/£Or(/)}. Following [2], we define 7*=(/-1)-1. If /=

/*, then it is said to be a right (left) v-ideal. If R is a maximal order, then I~1=
2~ι-ι-ι anc[ SQ /-i is a ιeft (right) τ -ideal, and the concept of right (left) τ -ideals

coincides with one of right (left) z -ideals defined in [9]. So the mapping:

/->/* of the set of all right (left) Λ-ideals into the set of all right (left) z -ideals is

a *-operation in the sense of [9].

Lemma 1. Let R be a maximal order in Q and let S be any order equivalent

to R. Then S is a maximal order if and only if 8=0^1) for some right v-ideal I of

Q
Proof. If S=Of(I) for some right ^-ideal / of Q, then it is a maximal order

by Satz 1.3 of [1]. Conversely assume that S is a maximal order, then there are

regular elements c, d in R such that cSd^R. So SdR is a right Λ-ideal and is

a left iS-module. Hence (SdR)'1 is a left .R-ideal and is a right S-module. Simi-
larly I=(SdR)~1~1 is a right τ -ideal and is a left S-module so that 0^1)^8.

Hence S=Oj(I).

Lemma 2. Let R, S be maximal orders in Q such that R~S, and let {/,},
/ be right R-ίdeals. Then

(1) // Π // is a right R-ideal, then Π ,-/?=( Π ,-/?)*•

(2) // Σί Ii is a right R-ideal, then (Σ /,-)*=(Σ /?)*•

(3) /// is a left R and right S-ίdeal, then (//)*=(/*7)*=(//*)*=(/*/*)*
(4) (/-1/*)*-Λ and (7*/-1)*=Γ, where Γ-O;(7*).

Proof. The proofs of (1) and (2) are similar to ones of the corresponding

results for commutative rings (cf. Proposition 26.2 of [4]).
To prove (3) assume that T/C^S, where c is a unit in Q. Then we have

(I*J)S:CS and (//*)Cc5f, because
'CcS, and c-lΓC/-1^-1/*

Hence (//)* contains (//*)* and

(/*/)* by Proposition 4.1 of [9]. The converse inclusions are clear. Therefore

we have (7/)*=(/*y)*=(//*)*. From these it is clear that (//)*=(/V*)*
To prove (4), assume that I~lI*^=cRy where c is a unit in Q. Then we have

£-ι/-ι£/-ι so that c"1SO/(/"1)=/Z and thus ΛS^Λ. Hence (/-1/*)*2Λ by

Proposition 4.1 of [9]. The converse inclusion is clear. Therefore (/~1/*)*=

R. Similarly (I*Γγ=T.

Let R be a maximal order in Q. We denote by F*(R) (Ff(R)) the set of
right (left) ^-ideals and let F*(R)=F*(R) Π Ff (Λ). It is clear that F*(Λ) becomes

a lattice by the definition; if I,J<=F*(R), then /U*/=(^+7)*» and the meet

4 < Π " is the set-theoretic intersection. Similarly Ff(R) and F*(R) also become
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lattices. For any IεΞF*(R) and L<=ΞF?(R), we define the product "o" of / and

L by I°L=(IL)*. It is clear that /oLeFf(S)nFf(Γ), where S=O,(/) and
T=Or(L). In particular, the semi-group F*(R) becomes an abelian group

(cf. Theorem 4.2 of [2]). For convenience we write F'r(R) for the sublattice
of F*(R) consisting of all integral right s -ideals. Similarly we write FΊ(R)

and F'(R) for the corresponding sublattices of Ff(R) and F*(R) respectively.
Let M and N be subsets of Q. Then we use the following notations: (M: N)r

= {x<=R\Nx^M}, (M: N)t= {x^R\xNZM}. When N is a single element
q of ρ, then we denote by q~lM the set (M: N)r.

Lemma 3. Let R be a maximal order in Q. Then

(1) // IϊΞF*(R) and q^Qy then q'U^I^q+R)'1 and so q-lI<=F'r(R).
(2) // I^F*(R) and J is a right R-ideal, then (I:J)r£ΞF'(R) or 0.

(3) IfI&F*(R) andjEΞFf(R), then (I»J)-l=J-l°I-1.
(4) // I, JeF*(R) and L ϊ Ξ F f ( R ) , then (I U *J)oL=IoL U *J<>L.

Proof. (1) Since (I~lq+R)q-lI^R, we get (I^q+RJ-^q-1!. Let x be
any element of (I^q+R)-1. Then (I~lq+R)x^R so that x<=R and I'lqx^R.
Let S=Of(I). Then it is a maximal order equivalent to R by Lemma 1.

It is evident that Sqx+I is a left S-ideal and that //"1(5fjΛ?+/)S7. Thus, by
Lemma 2, we have

qxGS(Sqx+I)^(Π-ί)*o(Sqx+I)*=(Π'\Sqx+I))*GlL Hence xf=q~ll
and so q^I^I^q+R)-1. It is clear that q^I^F^R) by Corollary 4.2 of [9].

(2) If (/: AΦO, then it is an Λ-ideal of Q and /(/:/),£/. So /((/:/),)*

C(/(/:Λ)*C/. Hence ((/:/),)*£ (/:/), so that ((I:J\}*=(I:J)r.
(3) It is clear that O7(/o/) 2 (>,(/) and so Ol(IoJ)=Ol(I) by Lemma 1.

Since (IoJ)o(J^oI^)=S, where 5=0^), we get (/o/)-1^/"^/-1. Let Λ: be
any element of (/o/)'1. Then IJx^(IoJ)χ^S. Let T=Or(J}. Then ΓΛ:+
/-1/'1 is a left Γ-ideal and IJ(Tx+J-lI~l)^S. Hence loJo^x+J-^-γ
C/S by Lemma 2. By multiplying /"W"1 to the both side of the inequality
we have #e(Γ*+/~1/~1)*C/~W~1. Therefore we get (I°jyι=J-l°I-\

(4) From Lemma 2, we have: (/U */)°^=[(^+/)*^]*=[(/+/)L]*=
(IL+JL)*=[(IL)*+(JLy]*=I°L U */°^

Let Λ be a maximal order. We consider the following condition:

(A):F'r(R) and F/(.R) both satisfy the maximum condition.
If Λ is a maximal order satisfying the condition (A)y then F*(R) is a direct pro-

duct of infinite cyclic groups with prime ^-ideals as their generators by Theorem
4.2 of [2]. It is evident that an element P in F'(R) is a prime element in the
lattice if and only if it is a prime ideal of R.

Following [1], R is said to be regular if every integral one-sided .R-ideal conta-

ins a non-zero Λ-ideal.
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Lemma 4. Let R be a regular maximal order satisfying the condition (A) and
let P be a non-zero prime ideal of R. Then P is a minimal prime ideal of R if and
only if it is a prime v-ίdeaL

Proof. Assume that P is a minimal prime ideal. Let c be any regular
element in P. Then since (cR)*=cR and R is regular, we get P2e/ZΞ2(Pϊι)*o
°(P?*)*, where P{ is a prime ί -ideal. Hence P 2Pt for some i and so P=P,. Con-
versely assume that PSPoΦO, where P0 is a prime ideal. Then since P^P^Po)
=(P^P^)PQ^RP,=P, and P^PoSCPo, we have Pf £P0 and thus Pjf=P0. It
follows that PO is a maximal element in F'(R) by [2, p. 11], a contradiction.
Hence P is a minimal prime ideal of R.

REMARK. Let P be a maximal order satisfying the condition (A). Then
it is evident from the proof of the lemma that prime ^-ideals are minimal prime
ideals of R.

Let / be any right ideal of R. Then we denote by Vϊ the set U {(s~lI:R)r

\s$Ξl, s^R}. Following [3], if V7 is an ideal of P, then we say that / is primal

and that Vl is the adjoint ideal of it. A right ideal / of R is called primary if
y^ίC/and JSil implies that An^I for some positive integer ny where J is a
right ideal of R and A is an ideal of R. We shall apply these concepts for
integral right ^-ideals.

Lemma 5. Let R be a maximal order satisfying the condition (A) and let I

be a meet-irreducible element in F'r(R). Then I is primal, and Vl is a minimal

prime ideal of R or 0, and \/I=(χ~1I: R)rfor some x&I.

Proof. If \//=0, then the assertion is evident. Assume that Λ/7ΦO. By
Lemma 3, (s'1!: R)r is a e -ideal or 0. Hence the set S= {(s~ll: R)r \ s&I, s&R} has
a maximal element. Assume that (s~lI:R)r and (t~lI:R)r are maximal elements
in S. Then (sR+I) (r1/:/?),£/ implies that (s#+/)*(*-1/:P)rC/ by Lemma
2 and so (ί~1/:l?)r£(/:(ί/?+/)*)r. The converse inclusion is clear. Thus we
have (s-17:#)r-(7:(*P+7)*)r. Similarly (rlI:R)r=(I:(tR+I)*)r. Since / is
irreducible in F'r(R), we have /£(*#+/)* n (tR+I)*=J. Let x be any element
in J but not in /. Then it follows that (x^IiR^^s^IiR)^ (r1/:Λ)r so that

N/7=(Λ?-1/:l?)r=(ί-1/:jR)r, which is a ϋ-ideal. Hence / is primal. If AB^VT

and A fVJ, where A and B are ideals of R, then xAB^I and xAfl. Let y

be any element in xA but not in 7. Then yB^I and so -B£(<y~1/:/?)rCv//.

Thus \// is a prime ideal of R. It follows that \/7 is minimal from the remark
to Lemma 4.

A right ideal of R is said to be bounded if it contains a non-zero ideal of R.
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Lemma 6. Let R be a maximal order satisfying the condition (A) and let

I be an irreducible element in F'r(R). If I is bounded, then it is primary and ( \/7jn

£/ for some positive integer n.

Proof. Since l£=;F'r(R) and is bounded, (I'.R)r is non-zero and is a τ -ideal.
Write (/:Jf?)r=(Pii)*o...o(p^)*? where Pt are prime z -ideals. For any / (l^ί

^ft), we let J5ί.-(P^*o...o(PJLιO*Kp?W)*° °(P^)*. Then £,£/ and

)r^I, because F*(R) is an abelian group. Thus P?ί£VTand so

^^&) by Lemma 5. Therefore (v/7)ni+'"+ll*£/. It is evident

that / is primary.
If A is an ideal of R, then we denote by C(A) those elements of R which are

regular mod

Lemma 7. Let R be a maximal order satisfying the condition (A). Let
P be a prime v-ίdeal. Then

(1) C(P)=C((PW)*) for every positive integer n.

(2) C(P)CC(0).

Proof. (1) We shall prove by the induction on n (>1). Assume that
C(P)=C((PW-1)*). If cxt=(P*)*, where c^C(P) and x<=R, then cx(P~ιγ-1^
(P*)*(P-ιy~lS>P by Lemma 2. Since o^P*'1)*, we get ^(P"'1)* and so
x(P~γ-1^R. Hence x(P~ιy-l^P. Then we have (xR+Pn) (p-γ

so that #<Ξ(PM)* by Lemma 2. Conversely suppose that cx<=P, £

x^R. Then cxP*~lSi(P*)* and so ΛrP '̂ ίP")*. Since (xP+Pn)Pn~ \P-iy-1

S(PM)*(P-1)M-1CP, we get x<=P by Lemma 2. Therefore C(P)=C((PM)*).

(2) If OΦ ΠM(PW)*, then it is a ϋ-ideal by Lemma 2. Write nn(PM)*-=
(P5fι)*o...o(P£*)*, where Px are prime ^-ideals. This is a contradiction, because

F*(R) is an abelian group and P, Pr are minimal prime ideals of R. Hence

0= fΊw(Py. Therefore (2) follows from (1).

If P is a prime ideal of a ring S, then the family TP= {I: right ideal \s~U
(ΊC(P)φφ for any s(=S} is a right additive topology (cf. Ex. 4 of [12, p. 18]).

The following lemma is due to Lambek and Michler if S is right noetherian.
However, only trivial modifications to their proof are needed to establish the
more general result.

Lemma 8. Let P be a prime ideal of S and let S=S/P be a right prime

Goldίe ring. Then the torsion theory determined by the S-ίnjectίve hull E(S) of
S coincides with one determined by the right additive topology TPy that is, a right

ideal I of S is an element in TP if and only if Homs(SII,E(S))=Q (Corollary 3.10
of [8]).

Lemma 9. Let R be a maximal order satisfying the condition (A) and let P
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be a prime v-ίdeal such that R=R/P is a prime Goldie ring. If I is any element in

F'r(R) such that R^I^P, then /ΠC(P)=φ.

Proof. It is enough to prove the lemma when / is a maximal element
F'r(R). Since Γ^R, P°Γl[\R^P. If Po/-inΛ=P, then p-^Po/-1)-1

U*Λ, because the mapping: J-^J'1 is an inverse lattice isomorphism between
F*(R) and FΪ(R). By Lemma 3, p-WoP"1 u *R. On the other hand PC/
implies that jRC/op"1. Hence P~l=I°P~l and so R=I, a contradiction.

Thus we have Po/"1 n R SP. Let α be any element in Pol'1 η Λ but not in P.
Then aI^(PoΓl)I^PoI-^oI=P so that I^a'Ψ^R. Since_a~lP is a right

z -ideal by Lemma 3, we get I=a~1P. Then Hom(J2//, £"(^?))ΦO, because

R/I=R/a-1P^(aR+P)/P^ R. Now assume that / Π C(P) Φ φ and let c be any
element in /nC(P). Then cR+P^TP by Lemma 3.1 of [6]. Hence 7<ΞTP

and thus Hom(Λ//, E(R))—Q by Lemma 8. This is a contradiction and so

/ΠC(P)=φ.

For convenience, we write M(p) for the family of minimal prime ideals of
JR. If R is a regular maximal order satisfying the condition (A\ then we know

from Lemma 4 that a prime ideal P is an element in M(p) if and only if it is a

prime element in F'(R).

Lemma 10. Let R be a regular maximal order satisfying the condition (A),

P<=M(p) and let I^F'r(R). If R=R/P is a prime Goldie ring, then I U *P=R
if and only if I contains an ideal B such that B<£P.

Proof. Assume that I^By where B is an ideal not contained in P.
Then 7^£* and B* U *P=#, because P is a maximal element in F'(R) (cf.
[2, p. 11]). Therefore /U*P=#. Conversely assume that the family S=

{/eί l;(Λ)|/U*P=/2,/ΦΛ and I^B for any ideal B not contained in P} is
not empty and let / be a maximal element in S. If / is irreducible in Fί(R)9

then there exists P' in M(p) such that I^P'n by Lemmas 5 and 6. Since JeS,
we have P==P/. If n=l, then jR=/U *P=/, a contradiction. We may assume
that /^P"-1 and n>\. Then (P«-1)*=(/U *P)o(P»-1)*=/o(P«-i)* U *(PW)*

C/*— / by Lemmas 2 and 3. This is a contradition. If / is reducible, then

/=/1n/2> where I^F^R) and /^/z (/— 1,2). There are non zero ideals
BΪ ( fl P) such that /,- 3B,-. Thus / contains the ideal BλB2 not contained in P, a
contradiction. Hence S=φ. This implies that if / U *P=R, then / contains an
ideal not contained in P.

Let P be a prime ideal of a ring S. If S satisfies the Ore condition with
respect to C(P), then we denote by SP the quotient ring with respect to C(P).

Lemma 11. Let R be a regular maximal order satisfying the condition (A)
and let P be an element in M(p) such that R=R/P is a prime Goldie ring. Then
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(1) R satisfies the Ore condition with respect to C(P).

(2) Rp=lim B~l, where B ranges over all non zero ideals not contained in P.

(3) Rp is a noetherian 3 local and Asano order.

Proof. (1) It is clear that T= lim B~l(B(mP): ideal) is an overring of R.

Let c be any element in C(P). Then c is regular by Lemma 7 and so cR^F'r(R).

Since (cR U *P) Π C(P)φcf>, we have cR U *P= P by Lemma 9 and so cR contains
an ideal not contained in P by Lemma 10. Hence c~1^T. So for any r^R,

ceC(P), there exists an ideal B (SP) such that c~lrB^R. It is evident that

B n C(P)Φφ. Let d be any element in B Π C(P). Then we have c~lrd=s for

some s in Ry that is, rd=cs. This implies that Λ satisfies the right Ore condition
with respect to C(P). The other Ore condition is shown to hold by a symmetric
proof.

(2) is evident from (1).

(3) We let P'=PRP. _ Then clearly P'=RPP and_P=P'n#. So we
may assume that R=R/PS RP=RP/P' as rings. By (1), RP is the quotient ring

of R. Since R is a prime Goldie ring, RP is the simple artinian ring. Hence

P' is a maximal ideal of RP. Let Vf be any maximal right ideal of RP. Suppose

that F'$P'. Then V'+Pf=RP. Write l=v+pc"\ where v&V, ptΞP and

£<ΞC(P). Then c=vc+p and so w=c— p^C(P) Π ί7'. This implies that
V'^Rp, a contradiction and so F'ϋP'. Hence P' is the Jacobson radical of

RP. The ideal P~1P properly contains P so that C(P)nP"1PΦφ. It follows
that P'1PRp=Rp. Similarly RPPP~1=RP. Hence P7 is an invertible ideal of
RP. Therefore RP/P/n is an artinian ring for any n, because RP is an artinian

ring. Let /' be any essential right ideal of RP. It is clear that /'=(/' f\R)RP.

Let c be any regular element of Γ Π P. Then, since cR^F'r(R) and R is regular,
cP contains a non zero τ -ideal (Pw)*o(Pϊι)*0...o(P^)*, where P^M(p). So we

get I'Ξ2RPP
n=P'n. Therefore essential right ideals of RP satisfies the maximum

condition. Since RP is finite dimensional in the sense of Goldie, RP is right
noetherian. Similarly RP is left noetherian. Hence RP is a noetherian, local

and Asano order by Proposition 1.3 of [7].

After all these preparations we now prove the following theorem which is

the purpose of this paper :

Theorem. A prime Goldie ring R is a bounded Krull prime ring if and only

if it satisfies the following conditions :

(1) R is a regular maximal order,

(2) R satisfies the maximum condition for integral right and left v-ideals,

(3) R/P is a prime Goldie ring for any P(=M(p).

Proof. Assume that R= n ,PZ (i^I) is a bounded Krull prime ring, where
; is a noetherian, local and Asano order with unique maximal ideal P, . (1) is
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clear from Corollary 1.4 and Lemma 1.6 of [10]. Let / be any right (left) R-

ideal. Then /*= n/Λf(== Π/?,-/) by Proposition 1.10 of [10]. Since Rf is

noetherian, (2) follows from the condition (K3) in the definition of Krull rings.

Let Pf=P{ ΓΊ R. It follows that {Pt \ ίe/} =M(p) by Proposition 1.7 of [10] so

that (3) is evident from Proposition 1.1 of [9].

It remains to prove that the conditions (1), (2) and (3) are sufficient. Let

P be any element in M(p). Then R satisfies the Ore condidion with respect to

C(P) and RP is a noetherian, local and Asano order by Lemma 11. Hence RP

is an essential overring of R. It is clear that R^T= ΓlRp, where P^M(p).

To prove the converse inclusion let x be any element of T. Then there is an

ideal BP(&P) such that xBP^R by Lemma 11. Let B be the sum of all ideals

BP. If 5* is different from R, then 5* is contained in some P in M(p). But

so that B*=R. Hence we have x<=(xR+R)S;(xR+R)*oB*=(xB+B)*

Thus we get R= Γ\Rp> Let c be any regular element in R. Then cR

contains a ϋ-ideal (Pϊι)*° °(P**)*, where P^M(p). It follows that cRP=RP

for every P e M(p) different to Pf (1 ̂  / ̂  k) by Lemma 11. Hence Pisa bounded

Krull prime ring. This completes the proof of the theorem.

Corollary. Let R be a regular, noetherian and prime ring. If R is a maximal

order, then it is a bounded Krull prime ring.
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