THE FUNDAMENTAL SOLUTION FOR PSEUDO-DIFFERENTIAL OPERATORS OF PARABOLIC TYPE

Chisato IWASAKI (née TSUTSUMI)

(Received October 20, 1976)

Introduction

In this paper we shall construct the fundamental solution $E(t, s)$ for a degenerate pseudo-differential operator L of parabolic type only by symbol calculus and, as an application, we shall solve the Cauchy problem for L :

$$
\left\{\begin{align*}
L u(t) & =f(t) \quad \text { in } t>s, \tag{0.1}\\
u(s) & =u_{0} .
\end{align*}\right.
$$

Another application of the present fundamental solution will be done in [12] in order to construct left parametrices for degenerate operators studied by Grushin in [2].

Now let us consider the operator L of the form

$$
L=\frac{\partial}{\partial t}+p\left(t ; x, D_{x}\right),
$$

where $p\left(t ; x, D_{x}\right)$ is a pseudo-differential operator of class $S_{\lambda, \rho, \delta}^{m}$ with a parameter $t(\rho>\delta)($ See $\S 1)$. For the operator $p\left(t ; x, D_{x}\right)$ we set the following conditions:

$$
\begin{equation*}
\operatorname{Re} p(t ; x, \xi)+c_{0} \geqslant c_{1} \lambda(x, \xi)^{m^{\prime}} \tag{0.2}
\end{equation*}
$$

$$
\begin{equation*}
\left|p_{(\beta)}^{(\alpha)}(t ; x, \xi) /\left(\operatorname{Re} p(t ; x, \xi)+c_{0}\right)\right| \leqslant C_{\sigma, \beta} \lambda(x, \xi)^{-(\rho, \alpha)+(\delta, \beta)} \tag{0.3}
\end{equation*}
$$

where $m \geqslant m^{\prime} \geqslant 0$ and $\lambda=\lambda(x, \xi)$ is a basic weight function defined in $\S 1$. We note that $\lambda(x, \xi)$ in general varies cven in x and increases in polynomial order.

We call $E(t, s)$ a fundamental solution for L when $E(t, s)$ satisfies

$$
\left\{\begin{aligned}
L E(t, s) & =0 \quad \text { in } t>s \\
E(s, s) & =I .
\end{aligned}\right.
$$

The main theorem of this paper is stated as follows.
Main theorem. Under the conditions $(0,2)$ and $(0,3)$ we can construct the unique fundamental solution $E(t, s)$ for L as a pseudo-differential operator of
class $S_{\lambda, \rho, \delta}^{0}$ with parameters t and s (For the precise statement see Theorem 3.1).
Using the fundamental solution of this theorem the solution of the Cauchy problem (0.1) is given in the form

$$
u(t)=E(t, s) u_{0}+\int_{s}^{t} E(t, \sigma) f(\sigma) d \sigma
$$

We note that Greiner [1] constructed the fundamental solution for parabolic differential operators on a compact C^{∞}-manifold by using pseudo-differential operators. But his method is different from ours and not applicable to our non-compact case R^{n}. We reduce the construction of the fundamental solution to solving the integral equation

$$
\begin{equation*}
\Phi(t, s)+K(t, s)+\int_{s}^{t} K(t, \sigma) \Phi(\sigma, s) d \sigma=0 \tag{0.4}
\end{equation*}
$$

for a known operator $K(t, s) \in S_{\lambda, \rho, \delta}^{0}$.
To solve the equation (0.4) the product formula of pseudo-differential operators plays an essential role. We also note that by the same method we can construct the fundamental solution for degenerate operators which have been considered by Helffer [3] and Matsuzawa [7]. On the other hand Shinkai [9] constructed the fundamental solution $E(t, s)$ when $p(x, \xi)$ is a system of pseudodifferential operator by our method and applied it to the proof of hypoellipticity of L.

In Section 1 we define pseudo-differential operators with symbol $S_{\lambda, \rho, \delta}^{m}$. In Section 2 main properties of pseudo-differential operators defined in Section 1 will be given. In Section 3 we shall construct the fundamental solution $E(t, s)$ under the conditions (0.2) and (0.3), and in Section 4 we study the behavior of $E(t, s)$ for large $(t-s)$.

The results of the present paper have been announced partly in [10] and [11].
The author wishes to thank Professor H. Kumano-go for his helpful discussions and his encouragement.

1. Definitions and notations

Let R^{n} be the n-dimensional Euclidean space. $\mathcal{S}=\mathcal{S}\left(R^{n}\right)$ is the space of all rapidly decreasing functions with semi-norms

$$
|f|_{l, S}=\max _{|\alpha|+|\beta| \leqslant l} \sup _{x \in R^{n}}\left|x^{\alpha} \partial_{x}^{\beta} f(x)\right|
$$

where $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \beta=\left(\beta_{1}, \cdots, \beta_{n}\right), x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ and $\partial_{x}^{\beta}=\left(\partial / \partial x_{1}\right)^{\beta_{1}} \cdots\left(\partial / \partial x_{n}\right)^{\beta_{n}}$. \mathcal{S}^{\prime} is its dual space. $\hat{f}(\xi)=\mathscr{F}[f](\xi)$ denotes the Fourier transform of $f(x)$ which is defined by

$$
\hat{f}(\xi)=\int_{R^{n}} e^{-t x \cdot \xi} f(x) d x, \quad f \in \mathcal{S}
$$

For a pair of real vectors $a=\left(a_{1}, \cdots, a_{n}\right)$ and $b=\left(b_{1}, \cdots, b_{n}\right)$ we denote $a>b$, if $a_{j}>b_{j}$ for any j and $a \geqslant b$, if $a_{j} \geqslant b_{j}$ for any j.

Definition 1.1. We say that a C^{∞}-function $\lambda(x, \xi)$ defined in $R_{x}^{n} \times R_{\xi}^{n}$ is a basic weight function if there exists a pair of vectors $\tilde{\rho}=\left(\tilde{\rho}_{1}, \cdots, \tilde{\rho}_{n}\right)$ and $\delta=\left(\delta_{1}, \cdots, \delta_{n}\right)$ such that

$$
\left\{\begin{array}{l}
\text { (i) } \tilde{\rho}>\delta, \quad \tilde{\rho}_{j}>0 \quad 1 \leqslant j \leqslant n \tag{1.1}\\
\text { (ii) } \left.1 \leqslant \lambda(x+y, \xi) \leqslant A_{0}<y\right\rangle^{\tau} \lambda(x, \xi) \quad \tau \geqslant 0, A_{0} \geqslant 1 \\
\text { (iii) }\left|\lambda_{(\beta)}^{(\alpha)}(x, \xi)\right| \leqslant A_{\alpha, \beta}(x, \xi)^{1-(\tilde{\rho}, \alpha)+(\delta, \beta)}
\end{array}\right.
$$

where $\lambda_{(\beta)}^{(\alpha)}(x, \xi)=\left(\partial / \partial \xi_{1}\right)^{\alpha_{1}} \cdots\left(\partial / \partial \xi_{n}\right)^{\omega_{n}}\left(-i \partial / \partial x_{1}\right)^{\beta_{1}} \cdots\left(-i \partial / \partial x_{n}\right)^{\beta_{n}} \lambda(x, \xi),\langle y\rangle=$ $\left(1+|y|^{2}\right)^{1 / 2},(\tilde{\rho}, \alpha)=\sum_{j=1}^{n} \tilde{\rho}_{j} \alpha_{j}$ and A_{0} and $A_{\alpha, \beta}$ are constants.

For a basic weight function $\lambda(x, \xi)$ and a vector $\rho=\left(\rho_{1}, \cdots, \rho_{n}\right)$ such that $\tilde{\rho} \geqslant \rho \geqslant \delta$, we define symbol class $S_{\lambda, \rho, \delta}^{m}$ as follows.

Definition 1.2. $\quad S_{\lambda, \rho, \delta}^{m}$ is the set of all C^{∞}-functions $p(x, \xi)$ defined in $R_{x}^{n} \times R_{\xi}^{n}$ which satisfy for any α and β

$$
\left|p_{(\beta)}^{(\alpha)}(x, \xi)\right| \leqslant C_{\alpha, \beta} \lambda(x, \xi)^{m-(\rho, \alpha)+(\delta, \beta)}
$$

for some constant $C_{a, \beta}$. For $p \in S_{\lambda, \rho, \delta}^{m}$ we define semi-norms $|p|_{l}^{(m)}$ by

$$
|p|_{l}^{(m)}=\max _{|\alpha|+|\beta| \leqslant l} \sup _{(x, \xi) \in R^{n} \times R^{n}}\left\{\left|p_{(\beta)}^{(\alpha)}(x, \xi)\right| \lambda(x, \xi)^{-m+(\rho, \alpha)-(\delta, \beta)}\right\}
$$

Set $S_{\lambda, \rho, \delta}^{-\infty}=\bigcap_{m} S_{\lambda, \rho, \delta}^{m}$ and $S_{\lambda, \rho, \delta}^{\infty}=\bigcup_{m}^{\cup} S_{\lambda, \rho, \delta}^{m}$.
For $p(x, \xi) \in S_{\lambda, \rho, \delta}^{m}$ we define a pseudo-differential operator with the symbol $\sigma(P)=p(x, \xi)$ by

$$
P u(x)=O s-\iint e^{-t y \cdot \xi} p(x, \xi) u(x+y) d y d \xi
$$

for $u \in \mathcal{S}$, where $d \xi=(2 \pi)^{-n} d \xi$ and ' $O s-$ ' means the oscillatory integral defined in Definition 1.4 below.

Now let us mention the important properties about the oscillatory integral contained in [5].

Definition 1.3. We say that a C^{∞}-function $q(\eta, y)$ in $R_{\eta}^{n} \times R_{y}^{n}$ belongs to a class $\mathcal{A}_{\delta, \tau}^{m}\left(-\infty<m<\infty, \delta<1, \tau=\left(\tau_{1}, \cdots, \tau_{k}, \cdots\right), \tau_{k} \geqslant 0\right)$ if for any multiindex α and β there exists a constant $C_{\alpha, \beta}$ such that

$$
\left|\partial_{\eta}^{\alpha} \partial_{y}^{\beta} q(\eta, y)\right| \leqslant C_{a, \beta}\langle\eta\rangle^{m+\delta|\beta|}\langle y\rangle^{\tau} \mid \beta_{i} .
$$

We also define the semi-norms $|q|_{i^{(m)}}$ by

$$
\left.|q|\right|^{(m)}=\max _{\left|a_{i}^{\prime}+|\beta| \leqslant l\right.} \sup _{(\eta, y) \in R^{n} \times R^{n}}\left\{\left|\partial_{\eta}^{\alpha} \partial_{y}^{\beta} q(\eta, y)\right|\langle y\rangle^{\left.-\top|\beta|\langle\eta\rangle^{-m-\delta|\beta|}\right\} .}\right.
$$

Definition 1.4. For $q(\eta, y) \in \mathcal{A}_{\delta, \tau}^{m}$ we define

$$
\begin{aligned}
O s & -\left[e^{-i y \cdot \eta} q(\eta, y)\right]=O s-\iint e^{-i y \cdot n} q(\eta, y) d y d \eta \\
& =\lim _{\varepsilon \rightarrow 0} \iint e^{-i y \cdot n} \chi_{\mathrm{e}}(\eta, y) q(\eta, y) d y d \eta
\end{aligned}
$$

where $\chi_{\mathrm{e}}(\eta, y)=\chi(\varepsilon \eta, \varepsilon y)$ and $\chi(\eta, y)$ is a function such that $\chi \in \mathcal{S}\left(R^{2 n}\right)$ and $\chi(0,0)=1$.

Proposition 1.5. For $q(\eta, y) \in \mathcal{A}_{\delta, 7}^{m}$ we can write

$$
\begin{aligned}
O s & -\left[e^{-i y \cdot n} q(\eta, y)\right] \\
& =\iint e^{-i y \cdot n}\langle y\rangle^{-2 l^{\prime}}\left\langle D_{\eta}\right\rangle^{-2 l^{\prime}}\left\{\langle\eta\rangle^{-2 l}\left\langle D_{y}\right\rangle^{2 l} q(\eta, y)\right\} d y d \eta,
\end{aligned}
$$

where l and l^{\prime} are positive integers such that $-2 l(1-\delta)<-n$ and $-2 l^{\prime}+\tau_{2 l}<-n$.
Proposition 1.6. Let $\left\{q_{\mathrm{e}}\right\}_{0<\mathrm{e}<1}$ be a subset of $\mathcal{A}_{\delta, \tau}^{m}$ such that $\sup _{\mathrm{e}}\left|q_{\mathrm{z}}\right|_{i^{(m)} \leqslant M_{l}}$ for any l. If there exists $q_{0}(\eta, y) \in \mathcal{A}_{\delta, \tau}^{m}$ such that $q_{\mathrm{e}}(\eta, y) \rightarrow q_{0}(\eta, y)$ as $\varepsilon \rightarrow 0$ uniformly on any compact set of $R_{n}^{n} \times R_{y}^{n}$, then we have $\lim _{\varepsilon \rightarrow 0} O s-\left[e^{-i y \eta} q_{q}\right]=O s-\left[e^{-i y \cdot n} q_{0}\right]$.

Definition 1.7. Let F be a Frechet space. We define $\mathcal{E}_{t}^{l}(F)$ by $\mathcal{E}_{t}^{l}(F)=\{l$-times continuously differentiable F-valued function $u(t)$ in the interval I$\}$.

Definition $1.8([6])$. We say that $\left\{p_{\varepsilon}(x, \xi)\right\}_{0<e<1}$ converges to $p_{0}(x, \xi)$ weakly in $S_{\lambda, \rho, \delta}^{m}$ if $\left\{p_{\mathrm{e}}(x, \xi)\right\}_{0<\varepsilon<1}$ is a bounded set in $S_{\lambda, \rho, \delta}^{m}$ and if $p_{\mathrm{e}}(x, \xi)$ converges to $p_{0}(x, \xi)$ as $\varepsilon \rightarrow 0$ uniformly on any compact set of $R_{t}^{n} \times R_{\xi}^{n}$. We define $\omega-\mathcal{E}_{t, s}^{l}\left(S_{\lambda, \rho, \delta}^{m}\right)$ in $0 \leqslant s \leqslant t \leqslant T$ by
$m-\mathcal{E}_{t, s}^{l}\left(S_{\lambda, \rho, \delta}^{m}\right)=\left\{S_{\lambda, \rho, \delta}^{m}\right.$-valued functions $u(t, s)$ defined in $0 \leqslant s \leqslant t \leqslant T$ which are l-times continuously differentiable with respect to t and s in the weak topology of $\left.S_{\lambda, \rho, \delta}^{m}\right\}$.

2. Calculus of pseudo-differential operators in class $\mathbf{S}_{\lambda, \rho, \delta}^{m}$

The main theorem of this section is the following
Theorem 2.1. Let $P_{j} \in S_{\lambda}^{n_{j}, \rho, \delta}(j=1, \cdots, \nu)$. Then the product operator $P=P_{1} \cdots P_{\nu}$ belongs to $S_{\lambda, \rho, \delta}^{m_{0}}$, where $m_{0}=\sum_{j=1}^{\nu} m_{j}$. Moreover for any l there exists l_{0} such that

$$
\begin{equation*}
\left.|\sigma(P)|\right|^{\left(m_{0}\right)} \leqslant\left(C_{0}\right)^{v} \prod_{j=1}^{\nu}\left|p_{j}\right| \sum_{0}^{\left(m_{j}\right)} \tag{2.1}
\end{equation*}
$$

where l_{0} and C_{0} are constants depending on $\sum_{j=1}^{\nu}\left|m_{j}\right|$ but independent of ν.
Proof. We can write

$$
\begin{aligned}
& P u(x)=O s-\int \cdots \int \exp \left\{-i \sum_{j=1}^{\nu} y^{j} \cdot \xi^{j}\right\} p_{1}\left(x, \xi^{1}\right) p_{2}\left(x+y^{1}, \xi^{2}\right) \cdots \\
& \cdots p_{V}\left(x+\sum_{j=1}^{v-1} y^{j}, \xi^{\nu}\right) u\left(x+\sum_{j=1}^{\nu} y^{j}\right) d y^{1} d y^{2} \cdots d y^{\nu} d \xi^{1} d \xi^{2} \cdots d \xi^{\nu} .
\end{aligned}
$$

So the symbol of P is given by

$$
\begin{equation*}
p(x, \xi)=O s-\int \cdots \int \exp \left\{-i \sum_{j=1}^{v-1} y^{j} \cdot \eta^{j}\right\} \prod_{j=1}^{\nu} p_{j}\left(x+\sum_{k=0}^{j-1} y^{k}, \xi+\eta^{j}\right) d V, \tag{2.2}
\end{equation*}
$$ where $y^{0}=0, \eta^{\nu}=0$ and $d V=d y^{1} d y^{2} \cdots d y^{\nu-1} d \eta^{1} d \eta^{2} \cdots d \eta^{\nu-1}$.

By (2.2) it is sufficient to prove (2.1) for $l=0$.
For the proof we prepare the following
Lemma 2.2. Let $q\left(x^{1}, \xi^{1}, \cdots, x^{\nu}, \xi^{\nu}\right)$ be a C^{∞}-function on $R^{2 n \nu}$ such that

$$
\begin{align*}
& \left|\partial_{x^{1}}^{\beta^{1}} \hat{x}^{\beta^{2}} \cdots \partial_{x^{\nu}}^{\beta^{\nu} \nu} \partial_{\xi^{2}}^{\alpha^{1}} \partial_{\xi^{2}}^{\alpha^{2}} \cdots \partial_{\xi^{\nu}}^{\alpha^{\nu}} q^{1}\left(x^{1}, \xi^{1}, x^{2}, \xi^{2}, \cdots, x^{\nu}, \xi^{\nu}\right)\right| \tag{2.3}\\
& \quad \leqslant M_{\alpha^{1}, \alpha^{2}, \ldots, \alpha^{\nu}, \beta^{1}, \beta^{2}, \cdots, \beta^{\nu} \prod_{j=1}^{\nu} \lambda\left(x^{j}, \xi^{j}\right)^{m,-\left(\rho, \alpha^{j}\right)+\left(\delta, \beta^{j}\right)}}
\end{align*}
$$

for any sequence of multi-indices $\alpha^{1}, \alpha^{2}, \cdots, \alpha^{\nu}, \beta^{1}, \beta^{2}, \cdots, \beta^{\nu}$. Set

$$
\begin{align*}
& I_{\theta}=O s-\int \ldots \int \exp \left\{-i \sum_{j=1}^{\nu-1} y^{j} \cdot \eta^{j}\right\} \tag{2.4}\\
& \\
& \quad \times q\left(x, \xi+\theta \eta^{1}, x+y^{1}, \xi+\theta \eta^{2}, \cdots, \xi+\theta \eta^{\nu-1}, x+\sum_{j-1}^{\nu-1} y^{j}, \xi\right) d V \\
& \quad(0 \leqslant \theta \leqslant 1)
\end{align*}
$$

Then we can find l_{0} such that

$$
\begin{equation*}
\left|I_{\theta}\right| \leqslant\left(C_{0}\right)^{\nu} M_{l_{0}} \lambda(x, \xi)^{m_{0}}, \tag{2.5}
\end{equation*}
$$

 depending on $\sum_{j=1}^{\nu}\left|m_{j}\right|$ but independent of ν and θ.

Apply the above Lemma 2.2 to (2.2) setting $q\left(x^{1}, \xi^{1}, x^{2}, \xi^{2}, \cdots, x^{\nu}, \xi^{\nu}\right)$ $=\prod_{j=1}^{\nu} p_{j}\left(x^{j}, \xi^{j}\right)$ and $\theta=1$. Then we get

$$
|p| \delta^{\left(m_{0}\right)} \leqslant\left(C_{0}\right)^{\nu} \prod_{j=1}^{v}\left|p_{j}\right| \sum_{0}^{\left.m_{j}\right)} .
$$

Thus the proof is completed.

For the proof of Lemma 2.2 we prepare some propositions. For simplicity we may assume $\tilde{\rho},=\tilde{\rho}, \rho_{j}=\rho$ and $\delta_{j}=\delta$ for any j. Otherwise we have only to repeat the same argument for each variable.

Set

$$
F(x, \eta ; y)=\left(1+\lambda(x, \eta)^{2 \overline{8} n_{0}}|y|^{2 n_{0}}\right)^{-1}
$$

where $\delta=\max (\delta, 0)$ and $n_{0}=[n / 2]+1$. Then, by (1.1)-(iii) we have easily the following

Proposition 2.3. $F(x, \eta ; y)$ satisfies the inequality with constants $C_{\alpha, \beta, \gamma}$

$$
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} \partial_{\eta}^{\gamma} F(x, \eta ; y)\right| \leqslant C_{\alpha, \beta, \gamma} F(x, \eta ; y) \lambda(x, \eta)^{-\tilde{\rho}|\gamma|+\bar{\delta}|\alpha+\beta|}
$$

for all $\alpha \beta$, and γ.
Proof is omitted.
Proposition 2.4. If $r_{1} \geqslant 0$ and $r_{2}-2 \tau \delta n_{0} \geqslant 0$, then we get for some constant C

$$
\begin{aligned}
& \int F\left(z^{1}, \xi+\eta^{1} ; z^{1}-z^{0}\right) F\left(z^{2}, \xi+\eta^{2} ; z^{2}-z^{1}\right)\left\langle z^{0}-z^{1}\right\rangle-r_{1}\left\langle z^{2}-z^{1}\right\rangle^{-r_{2}} d z^{1} \\
& \leqslant \\
& \leqslant C\left\langle z^{2}-z^{0}\right\rangle^{-r_{2}}\left\{F\left(z^{2}, \xi+\eta^{2} ; z^{2}-z^{0}\right) \lambda\left(z^{2}, \xi+\eta^{1}\right)^{-n \bar{\delta}}\right. \\
& \left.\quad+F\left(z^{2}, \xi+\eta^{1} ; z^{2}-z^{0}\right) \lambda\left(z^{2}, \xi+\eta^{2}\right)^{-n \bar{\delta}}\right\} .
\end{aligned}
$$

where $r_{3}=\min \left(r_{1}, r_{2}-2 \tau \delta n_{0}\right)$.
Proof. We devide R^{n} into two parts $\Omega_{1}=\left\{z^{1} \in R^{n} ;\left|z^{1}-z^{2}\right| \geqslant\left|z^{0}-z^{2}\right| / 2\right\}$ and $\Omega_{2}=R^{n} \backslash \Omega_{1}$. For $z^{1} \in \Omega_{1}$ we have

$$
\begin{equation*}
F\left(z^{2}, \xi+\eta^{2} ; z^{2}-z^{1}\right) \leqslant 2^{2 n_{0}} F\left(z^{2}, \xi+\eta^{2} ; z^{2}-z^{0}\right) \quad \text { in } \Omega_{1} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle z^{1}-z^{2}\right\rangle^{-1} \leqslant 2\left\langle z^{2}-z^{0}\right\rangle^{-1} \quad \text { in } \Omega_{1} . \tag{2.7}
\end{equation*}
$$

For $z^{1} \in \Omega_{2}$, we get

$$
\begin{equation*}
F\left(z^{2}, \xi+\eta^{1} ; z^{1}-z^{0}\right) \leqslant 2^{2 n_{0}} F\left(z^{2}, \xi+\eta^{1} ; z^{2}-z^{0}\right) \quad \text { in } \Omega_{2} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle z^{1}-z^{0}\right\rangle^{-1} \leqslant 2\left\langle z^{2}-z^{0}\right\rangle^{-1} \quad \text { in } \Omega_{2} . \tag{2.9}
\end{equation*}
$$

Since $2 n_{0}>n$, it is clear that

$$
\begin{equation*}
\int_{R^{n}} F(x, \eta ; y) d y=c_{1} \lambda(x, \eta)^{-n \bar{\delta}} \tag{2.10}
\end{equation*}
$$

By (1.1)-(ii) we get

$$
\begin{equation*}
F\left(z^{1}, \xi+\eta^{1} ; z^{1}-z^{0}\right) \leqslant\left(A_{0}\right)^{2 \bar{\delta} n_{0}\left\langle z^{2}-z^{1}\right\rangle^{2 \bar{\delta} \bar{n}} 0 F\left(z^{2}, \xi+\eta^{1}: z^{1}-z^{0}\right) ~} \tag{2.11}
\end{equation*}
$$

Then by (2.6) $\sim(2.11)$ we get the assertion.
Q.E.D.

By (1.1) $\sim\left(\right.$ iii) there exists a constant $c_{0}>0$ such that

$$
|\lambda(x, \xi+\eta)-\lambda(x, \xi)| \leqslant \lambda(x, \xi) / 2
$$

if $|\eta| \leqslant c_{0} \lambda(x, \xi)^{\tilde{p}}$.
Proposition 2.5. Set

$$
\begin{aligned}
I(K)= & |\eta|^{-2 K} \lambda(x, \xi+\eta)^{m}\{\lambda(x, \xi+\eta)+\lambda(x, \xi)\}^{2 \bar{\delta}} \\
& \times\left\{\lambda(x, \xi+\eta)^{-n \bar{\delta}}+\frac{F(x, \xi+\eta ; y)}{F(x, \xi ; y)} \lambda(x, \xi)^{-n \bar{\delta}}\right\} \quad(K \geqslant 0)
\end{aligned}
$$

and set
and

$$
\begin{aligned}
& I_{1}=\left\{\eta ;|\eta| \leqslant c_{0} \lambda(x, \xi)^{\bar{\delta}}\right\} \\
& I_{2}=\left\{\eta ; c_{0} \lambda(x, \xi)^{\bar{\delta}} \leqslant|\eta| \leqslant c_{0} \lambda(x, \xi)^{\tilde{\beta}}\right\}
\end{aligned}
$$

Then we have for a constant c

$$
\begin{equation*}
\int_{I_{j}} I\left(K_{j}\right) d \eta \leqslant c \lambda(x, \xi)^{m} \quad(j=1,2,3) \tag{2.12}
\end{equation*}
$$

if $K_{1}=0, K_{2}>n / 2$ and $K_{3}>\left(|m|+2 \bar{\delta} n_{0}+n \tilde{\rho}\right) / 2(\tilde{\rho}-\delta)$.
Proof. If η belongs to I_{1} or I_{2}, then we have for some constant c_{2}

$$
I(K) \leqslant c_{2}|\eta|^{-2 K} \lambda(x, \xi)^{(2 K-n) \bar{\delta}+m}, \quad K \geqslant 0
$$

Hence (2.12) is proved for $j=1$ and 2. If η belongs to I_{3} we have

$$
\begin{equation*}
I(K) \leqslant c_{3}|\eta|^{-2 K+\left(\bar{m}+2 \bar{\delta} K+2 \bar{\delta} n_{0}\right) / \tilde{\rho}}, \quad \bar{m}=\max (m, 0) \tag{2.13}
\end{equation*}
$$

since it holds that

$$
\left\{\begin{array}{l}
\lambda(x, \xi+\eta) \leqslant c_{4}|\eta|^{1 / \tilde{\rho}}, \quad \eta \in I_{3}, \\
\left|\frac{F(x, \xi+\eta ; y)}{F(x, \xi ; y)} \lambda(x, \xi)^{-n \bar{\delta}}\right| \leqslant c_{4}|\eta|^{2 \bar{\delta} n_{0} / \tilde{\rho}}
\end{array}\right.
$$

for some constant c_{4}. By (2.13) we get (2.12) for $j=3$ if K_{3} is chosen as above.
Q.E.D.

Proposition 2.6. Set

$$
\begin{aligned}
J_{l}= & |\eta|^{-2 K_{l}}\left\{\lambda\left(z^{2}, \xi+\eta\right)+\lambda\left(z^{2}, \xi\right)\right\}^{2 \delta K_{l}} \lambda\left(z^{1}, \xi+\eta\right)^{m}\left\langle z^{1}-z^{0}\right\rangle^{-r_{1}} \\
& \times F\left(z^{1}, \xi+\eta^{1} ; z^{1}-z^{0}\right)\left\langle z^{2}-z^{1}\right\rangle^{-r_{2}} F\left(z^{2}, \xi ; z^{2}-z^{0}\right), \\
& (l=1,2,3) .
\end{aligned}
$$

Then we have for $l=1,2,3$

$$
\int_{I_{l}} \int_{R^{n}} J_{l} d z^{1} d \eta^{1} \leqslant B\left\langle z^{2}-z^{0}\right\rangle^{-r_{3}} \lambda\left(z^{2}, \xi\right)^{m} F\left(z^{2}, \xi ; z^{2}-z^{0}\right)
$$

with $B=C c\left(A_{0}\right)^{|m|}$ and $r_{3}=\min \left(r_{1}, r_{2}-2 \tau \delta n_{0}-\tau|m|\right)$ if K_{l} and I_{l} are defined as in Proposition 2.5 and $n_{0}=[n / 2]+1, r_{1} \geqslant 0$ and $r_{2}-2 \tau \delta n_{0}-\tau|m| \geqslant 0$.

Proof. By means of Proposition 2.4 for $\eta^{1}=\eta, \eta^{2}=0$ and (1.1)-(ii) we get

$$
\begin{align*}
\int_{R^{n}} & J_{l} d z^{1} \leqslant C\left(A_{0}\right)^{|m|}|\eta|^{-2 K_{l}}\left\{\lambda\left(z^{2}, \xi+\eta\right)+\lambda\left(z^{2}, \xi\right)\right\}^{2 \bar{\delta} K_{t}} \tag{2.14}\\
& \times\left\{\lambda\left(z^{2}, \xi+\eta\right)^{-\overline{\delta n} n}+\frac{F\left(z^{2}, \xi+\eta ; z^{2}-z^{0}\right)}{F\left(z^{2}, \xi, z^{2}-z^{0}\right)} \lambda\left(z^{2}, \xi\right)^{-\bar{\delta} n}\right\} \\
& \times\left\langle z^{2}-z^{0}\right\rangle^{-r_{3}} \lambda\left(z^{2}, \xi+\eta\right)^{m} F\left(z^{2}, \xi ; z^{2}-z^{0}\right), \quad l=1,2,3 .
\end{align*}
$$

Now by Proposition 2.5 and we get the assertion.
Q.E.D.

Proof of Lemma 2.2. Set $n_{0}=[n / 2]+1, M=\sum_{j=1}^{\nu}\left|m_{j}\right|, K=\left[M+2 \delta n_{0}+\right.$ $n \tilde{\rho} / 2(\tilde{\rho}-\delta)]+1, N=\left[\tau\left(3 \delta n_{0}+3 \delta K+2 M\right)\right]+1$ and functions $K_{j}=K_{j}\left(\eta^{j}, \eta^{j+1}, z^{j+1}\right)$ $(j=1, \cdots, \nu-1)$ as follow: $K_{j}=0$ on $I_{j, 1}, K_{j}=n_{0}$ on $I_{j, 2}$ and $K_{j}=K$ on $I_{j, 3}$, where

$$
\begin{aligned}
& I_{j, 1}=\left\{\eta^{j} \in R^{m} ;\left|\eta^{j}-\eta^{j+1}\right| \leqslant c_{0} \lambda\left(z^{j+1}, \xi+\theta \eta^{j+1}\right)^{\bar{\delta}}\right\}, \\
& I_{j, 2}=\left\{\eta^{j} \in R^{n} ; c_{0} \lambda\left(z^{j+1}, \xi+\theta \eta^{j+1}\right)^{\bar{\delta}}<\left|\eta^{j}-\eta^{j+1}\right| \leqslant c_{0} \lambda\left(z^{j+1}, \xi+\theta \eta^{j+1}\right)^{\tilde{\rho}}\right\}
\end{aligned}
$$

and

$$
I_{j, 3}=\left\{\eta^{j} \in R^{n} ;\left|\eta^{j}-\eta^{j+1}\right|>c_{0} \lambda\left(z^{j+1}, \xi+\theta \eta^{j+1}\right)^{\tilde{p}}\right\} \quad\left(z^{i}=x, \eta^{\nu}=0\right)
$$

By integration by parts we obtain

$$
\begin{aligned}
I_{\theta}= & O s-\int \cdots \int \exp \left\{-i \sum_{j=1}^{v=1} y^{j} \cdot \eta^{\prime}\right\} \prod_{j=1}^{\cdots-1}\left\langle y^{j}\right\rangle^{-2 N} \\
& \times\left\{1+\left(-\Delta_{\eta j}\right)^{n^{n}} \lambda\left(x+\sum_{k=0}^{j-1} y^{k}, \xi+\theta \eta^{j}\right)^{2 \bar{\delta} n_{0}}\right\}\left\{1+\lambda\left(x+\sum_{k=0}^{j-1} y^{k}, \xi+\theta \eta^{j}\right)^{2 \bar{\delta} n_{0}}\right. \\
& \left.\left.\times\left|y^{j}\right|^{2 n_{0}}\right\}\right\}^{-1}\left(-\Delta_{\eta j}\right)^{N} q\left(x, \xi+\theta \eta^{1}, \cdots, x+\sum_{k=1}^{j-1} y^{k}, \xi+\theta \eta^{j}, \cdots, x+\sum_{k=1}^{v-1} y^{k}, \xi\right) d V,
\end{aligned}
$$

where $y^{0}=0$. Then by change of variables $x+\sum_{k=1}^{j} y^{k}=z^{i}(j=1, \cdots, \nu-1)$ we get
where

$$
\begin{aligned}
r= & \prod_{j=1}^{\nu-1}\left\{1+\left(-\Delta_{\eta^{j}}\right)^{n_{0}} \cdot \lambda\left(z^{j-1}, \xi+\theta \eta^{j}\right)^{2 \bar{\delta} n_{0}}\right\} \prod_{j=1}^{\nu-1}\left\langle z^{j}-z^{j-1}\right\rangle^{-2 N} \\
& \times F\left(z^{j-1}, \xi+\theta \eta^{j} ; z^{j}-z^{\prime-1}\right)\left\langle\Delta_{\eta^{j}}\right\rangle^{N} q\left(z^{0}, \xi+\theta \eta^{1}, z^{1}, \cdots, \xi+\theta \eta^{\nu-1}, z^{\nu-1}, \xi\right), \\
z^{0}= & x \text { and } \eta^{\nu}=0 .
\end{aligned}
$$

Then from Proposition 2.3 and (2.3) we have with a constant C_{1}

$$
\begin{align*}
\mid \prod_{j=1}^{\nu-1}(& \left.\left.-\Delta_{z}\right)^{K_{j}} r \mid \leqslant\left(C_{1}\right)^{\nu} M_{2\left(K+N+n_{0}\right.}\right) \prod_{j=1}^{\nu-1}\left\langle z^{j}-z^{j-1}\right\rangle^{-2 N} \tag{2.15}\\
& \times\left\{\lambda\left(z^{j-1}, \xi+\theta \eta^{j}\right)+\lambda\left(z^{j}, \xi+\theta \eta_{0}^{j+1}\right)\right\}^{2 \bar{i} K_{j}} F\left(z^{j-1}, \xi+\theta \eta^{j} ; z^{j}-z^{j-1}\right) \\
& \times \prod_{j=1}^{\nu} \lambda\left(z^{j-1}, \xi+\theta \eta^{j}\right)^{m_{j}} \\
\leqslant & C_{2}^{\nu} M_{2\left(K+N+n_{0}\right)} \prod_{j=1}^{-1}\left\{\lambda\left(z^{j+1}, \xi+\theta \eta^{j}\right)+\lambda\left(z^{j+1}, \xi+\theta \eta^{j+1}\right)\right\}^{2 \overline{2} K_{j}} \\
& \times\left\langle z^{j}-z^{j-1}\right\rangle^{-2 M+R} F\left(z^{j}, \xi+\theta \eta^{j} ; z^{j}-z^{j-1}\right) \lambda\left(z^{j}, \xi+\theta \eta^{j}\right)^{m_{j}} \\
& \times\left\langle z^{\prime}-z^{\nu-1}\right\rangle^{R^{\prime}} \lambda\left(z^{\nu}, \xi\right)^{m_{\nu}},
\end{align*}
$$

where $z^{0}=z^{\nu}=x, \eta^{\nu}=0, R=\tau\left(2 \delta n_{0}+4 \delta K+M\right), R^{\prime}=\tau(2 \delta K+M)$ and $C_{2}=$ $C_{1}\left(2 A_{0}\right)^{M+2 \bar{\delta}\left(K+n_{0}\right)}$. We used (1.1)-(iii) and

$$
\begin{aligned}
&\left\{1+\lambda\left(z^{j}, \xi+\theta \eta^{j}\right)^{\bar{\delta}} \lambda\left(z^{j-1}, \xi+\eta^{j}\right)^{-\tilde{\rho}}\right\} \leqslant\left(2 A_{0}\right)^{\bar{\delta}}\left\langle z^{j}-z^{j-1}\right\rangle^{\bar{\delta}} \\
&(j=1, \cdots, \nu-1)
\end{aligned}
$$

in the last step. From (2.15) and Proposition 2.6 we get for $l=1,2,3$

$$
\begin{aligned}
& \left.\int_{I_{1, l}}\left|\eta^{1}-\eta^{2}\right|^{-2 K_{1}}\right|_{j=1} ^{\nu-1}\left(-\Delta_{z^{j}}\right)^{K_{i}} \boldsymbol{r} \mid d z^{1} d \eta^{1} \\
& \leqslant \\
& \leqslant\left(C_{2}\right)^{\nu-1} C_{3} M_{2\left(K+N+n_{0}\right)}^{\nu-1} \prod_{j=2}\left\{\lambda\left(z^{j+1}, \xi+\theta \eta^{j}\right)+\lambda\left(z^{j+1}, \xi+\theta \eta^{j+1}\right)\right\}^{\bar{\gamma} K_{j}} \\
& \quad \times \prod_{j=3}^{\nu-1} F\left(z^{j}, \xi+\theta \eta^{j} ; z^{j}-z^{j-1}\right)\left\langle z^{j}-z^{j-1}\right\rangle^{-2 N+R} \lambda\left(z^{j}, \xi+\theta \eta^{j}\right)^{m_{j}} \\
& \quad \times F\left(z^{2}, \xi+\theta \eta^{2} ; z^{2}-z^{0}\right)\left\langle z^{2}-z^{0}\right\rangle^{-2 N+R^{\prime \prime}} \lambda\left(z^{2}, \xi+\theta \eta^{2}\right)^{\tilde{m}_{2}} \\
& \quad \times\left\langle z^{\prime \prime}-z^{\nu-1}\right\rangle^{R^{\prime}} \lambda\left(z^{\nu}, \xi\right)^{m_{\nu}},
\end{aligned}
$$

where $C_{3}=C_{2} C c\left(A_{0}\right)^{M}, \tilde{m}_{2}=m_{1}+m_{2}$, and $R^{\prime \prime}=R+\tau\left(2 \delta n_{0}+M\right)$. Since $-2 N+R$ $+\tau\left(2 \bar{\delta} n_{0}+M\right) \leqslant 0$, we can repeat the same argument. Hence we obtain

$$
\begin{gathered}
\int \cdots \int_{j=1}^{\nu-1}\left|\eta^{j}-\eta^{j+1}\right|^{-2 K},\left(-\Delta_{z^{j}}\right)^{K} r d z^{1} d z^{2} \cdots d z^{\nu-2} d \eta^{1} d \eta^{2} \cdots d \eta^{\nu-2} \\
\leqslant\left(C_{2}\right)^{2}\left(C_{3}\right)^{\nu-1} M_{2\left(K+N+n_{0}\right.}\left|\eta^{\nu}-\eta^{\nu-1}\right|^{-2 K_{\nu-1}}\left\{\lambda\left(z^{\nu}, \xi+\theta \eta^{\nu-1}\right)\right. \\
\left.+\lambda\left(z^{\nu}, \xi+\theta \eta^{\nu}\right)\right\}^{2 \bar{z} \delta K_{\nu-1}} F\left(z^{\nu-1}, \xi+\theta \eta^{\nu-1} ; z^{\nu-1}-z^{0}\right) \\
\times\left\langle z^{\nu-1}-z^{0}\right\rangle-2 N+R^{\prime \prime} \lambda\left(z^{\nu-1}, \xi+\theta \eta^{\nu-1}\right)^{\tilde{m} \nu-1}\left\langle z^{\nu}-z^{\nu-1}\right\rangle^{R^{\prime}} \lambda\left(z^{\nu}, \xi\right)^{m_{\nu}} \\
\left(z^{0}=z^{\nu}=x, \eta^{\nu}=0\right),
\end{gathered}
$$

where $\tilde{m}_{\nu-1}=\sum_{j=1}^{\nu-1} m_{j}$. Noting $-2 N+R^{\prime \prime}+R^{\prime}+2 \tau \delta n_{0}+M=-2 N+\tau\left(6 \delta n_{0}+6 \delta K\right.$ $+4 M) \leqslant 0$, we get, by (1.1)-(ii), (2.10), (2.11) and Proposition 2.5,

$$
\int \cdots \int \prod_{j=1}^{\nu-1}\left|\eta^{j}-\eta^{j+1}\right|^{-2 K_{j}}\left|\left(-\Delta_{z^{\prime}}\right)^{K_{j}} \boldsymbol{r}\right| d V \leqslant C_{2}\left(C_{3}\right)^{i-1} M_{2\left(K+N+\eta_{0}\right)} \lambda(x, \xi)^{m_{0}} .
$$

Take $l_{0}=2\left(K+N+n_{0}\right)$ and $C_{0}=C_{3}$. Thus we get (2.5).
Q.E.D.

We denote the symbol $\sigma\left(P_{1} P_{2} \cdots P_{.,}\right)$by

$$
\sigma\left(P_{1} P_{2} \cdots P_{v}\right)=p_{1} \circ p_{2} \circ \cdots \circ p_{v}
$$

as used in [9].
Now for an operator $P=p\left(x, D_{x}\right) \in S_{\lambda, \rho, \delta}^{m}$ we define the adjoint operator P^{*} by the relation

$$
(P u, v)=\left(u, P^{*} v\right) \quad \text { for } u, v \in \mathcal{S} .
$$

Then we have

$$
\begin{aligned}
P^{*} u(x) & =\iint e^{i(x-y) \cdot \xi} p(y, \xi) u(y) d y d \xi \\
& =\int \cdots \int e^{-\left(y^{1} \cdot \xi^{1}+y^{2} \cdot \xi^{2}\right)} p\left(x+y^{1}, \xi^{1}\right) u\left(x+y^{1}+y^{2}\right) d y^{1} d \xi^{1} d y^{2} d \xi^{2}
\end{aligned}
$$

It is clear that P^{*} is also a pseudo-differential operator with symbol

$$
\sigma\left(P^{*}\right)(x, \xi)=O s-\iint e^{-i y \cdot \eta} p(x+y, \xi+\eta) d y d \eta
$$

Theorem 2.7. If P belongs to $S_{\lambda, \rho, \delta}^{m}$, then P^{*} belongs to $S_{\lambda, \rho, \delta}^{m}$. Moreover for any l there exists l^{\prime} such that

$$
\left.\left|\sigma\left(P^{*}\right)\right|\right\rangle^{(m)} \leqslant C|\sigma(P)| i^{(m)}
$$

with some constant C.
Proof. Set $n_{0}=[n / 2]+1$. By integration by parts we obtain

$$
\begin{aligned}
& \sigma\left(P^{*}\right)(x, \xi)=O s-\iint e^{-i y \cdot n}\langle y\rangle^{-2 N}\left\{1+\lambda(x, \xi)^{2 \bar{\delta} n_{0}}|y|^{2 n_{0}}\right\}^{-1} \\
& \quad \times\left\{1+\lambda(x, \xi)^{2 \bar{\delta}}\left(-\Delta_{\eta}\right)^{n_{0}}\right\}\left\langle-\Delta_{\eta}\right\rangle^{N} p(x+y, \xi+\eta) d y d \eta .
\end{aligned}
$$

Choose K as follows: $K=0$ on $I_{1}, K=n_{0}$ on I_{2} and $K=\left[\left(|m|+2 \bar{\delta} n_{0}+n \hat{\rho}\right) /\right.$ $2(\tilde{\rho}-\delta)]+1$ on I_{3}, where

$$
\begin{aligned}
& I_{1}=\left\{\eta \in R^{n} ;|\eta| \leqslant c_{0} \lambda(x, \xi)^{\bar{\delta}}\right\}, \\
& I_{2}=\left\{\eta \in R^{n} ; c_{0} \lambda(x, \xi)^{\bar{\delta}}<|\eta| \leqslant c_{0} \lambda(x, \xi)^{\tilde{}}\right\}
\end{aligned}
$$

and

$$
I_{3}=R^{n} \backslash\left(I_{1} \cup I_{2}\right)
$$

Then we have

$$
\sigma\left(P^{*}\right)(x, \xi)=\iint e^{-i y \cdot \eta}|\eta|^{-2 K}\left(-\Delta_{y}\right)^{K} r d y d \eta
$$

where r satisfies

$$
\begin{aligned}
& \left.\left|\left(-\Delta_{y}\right)^{K} r\right| \leqslant C|p|_{2(K)}^{(m)}+N+n_{0}\right)\langle y\rangle^{-2 N+\tau(|m|+2 \bar{\delta} K)} \\
& \quad \times \lambda(x, \xi+\eta)^{m+2 \bar{\delta} K}\left\{1+\lambda(x, \xi)^{2 \bar{\delta} n_{0}}|y|^{2 n_{0}}\right\}^{-1} .
\end{aligned}
$$

Choose $2 N \geqslant \tau(|m|+2 \delta K)$. Noting the above estimate, we get the assertion if we repeat the same argument as in the proof of Lemma 2.2.
Q.E.D.

From Theorems 2.1 and 2.7 we get the L^{2}-boundedness theorem by the same argument in [5].

Theorem 2.8. Let $P \in S_{\lambda, \rho, \delta}^{0}$. Then P is a bounded operator in $L^{2}\left(R^{n}\right)$ and there exist l_{0} and C such that

$$
\|P u\| \leqslant C|p| \ell_{0}^{0}\|u\|, \quad u \in L^{2}\left(R^{n}\right)
$$

For pseudo-differential operators of this class we get the following expansion theorem.

Theorem 2.9. If $p_{j}(x, \xi)$ belongs to $S_{\lambda, \rho, \delta}^{m_{j}}(j=1,2)$, we can write for any N

$$
\left(p_{1} \circ p_{2}\right)(x, \xi)=\sum_{|\alpha|<N} \frac{1}{\alpha!} p_{1}^{(\alpha)}(x, \xi) p_{2(\omega)}(x, \xi)+r_{N}(x, \xi)
$$

where $r_{N}(x, \xi)$ belongs to $S_{\lambda, \rho, \delta}^{m_{1}+m_{2}-\varepsilon_{0} N}$ and $\varepsilon_{0}=\min _{1 \leqslant j \leqslant n}\left(\rho_{j}-\delta_{j}\right)$.
Proof. By the Taylor expansion we can write

$$
\begin{aligned}
& \left(p_{1} \circ p_{2}\right)(x, \xi)=O s-\iint e^{-i y \cdot \eta} p_{1}(x, \xi+\eta) p_{2}(x+y, \xi) d y d \eta \\
& \quad=O s-\iint e^{-i y \cdot \eta} \sum_{i \alpha \mid<N} \frac{1}{\alpha!} p_{1}^{(\alpha)}(x, \xi) \eta^{\alpha} p_{2}(x+y, \xi) d y d \eta \\
& \quad+O s-\iint e^{-i y \cdot \eta} \sum_{|\gamma|=N} \frac{\eta^{\gamma}}{\gamma!} \int_{0}^{1}(1-\theta)^{N-1} p_{1}^{(\gamma)}(x, \xi+\theta \eta) d \theta p_{2}(x+y, \xi) d y d \eta \\
& \quad=\sum_{|\alpha|<N} \frac{1}{\alpha!} p_{1}^{(\alpha)}(x, \xi) p_{2(\omega)}(x, \xi)+r(x, \xi),
\end{aligned}
$$

where $r(x, \xi)=N \sum_{|\gamma|=N} \int_{0}^{1} \frac{(1-\theta)^{N-1}}{\gamma!}\left\{O s-\iint e^{-i y \cdot \eta} p_{1}^{(\gamma)}(x, \xi+\theta \eta)\right.$
$\left.\times p_{2(\gamma)}(x+y, \xi) d y d \eta\right\} d \theta$. Apply Lemma 2.2 for $r(x, \xi)$ setting $q\left(x^{1}, \xi^{1}, x^{2}, \xi^{2}\right)=$ $\sum_{|\gamma|=N} p_{1}^{(\gamma)}\left(x^{1}, \xi^{1}\right) p_{2(\gamma)}\left(x^{2}, \xi^{2}\right)$. Then it is clear that $r(x, \xi)$ belongs to $S_{\lambda, \rho, \delta}^{m_{1}+m_{2}-\varepsilon_{0} N}$.
Q.E.D.

In what follows we assume that $\varepsilon_{0}=\min _{1<j<n}\left(\rho,-\delta_{j}\right)$ is positive. Let $p(x, \xi) \in S_{\lambda, \rho, \delta}^{m}$ satisfy the following conditions (H.E)

$$
\text { (H.E) }\left\{\begin{array}{l}
|p(x, \xi)| \geqslant c \lambda(x, \xi)^{m^{\prime}} \quad m \geqslant m^{\prime} \geqslant 0, \tag{2.16}\\
\left|p_{(\beta)}^{(\alpha)}(x, \xi) / p(x, \xi)\right| \leqslant C_{\alpha, \beta} \lambda(x, \xi)^{-(\rho, \alpha)+(\delta, \beta)} \quad(\rho>\delta) .
\end{array}\right.
$$

Then we get the following theorems in the same way as in [6].
Theorem 2.10 (cf. [4], [6]). If $p(x, \xi)$ satisfies Condition (H.E), then $p\left(x, D_{x}\right)$ has a parametrix $q\left(x, D_{x}\right)$, which belongs to $S_{\lambda_{,}, \delta,}^{-m^{\prime}}$, in the sense $p\left(x, D_{x}\right) q\left(x, D_{x}\right) \equiv q\left(x, D_{x}\right) p\left(x, D_{x}\right) \equiv I\left(\bmod S_{\lambda, \rho, \delta}^{-\infty}\right)$.

Theorem 2.11 (cf. [6], [8]). If $p(x, \xi)$ satisfies (H.E) and arg $p(x, \xi)$ is well defined, then we can construct the complex power $\left\{p_{z}\left(x, D_{x}\right)\right\}_{z \in C}$ of $p\left(x, D_{x}\right)$ such that $P_{z_{1}} P_{z_{2}} \equiv P_{z_{1}+z_{2}}, P_{0}=I, P_{1} \equiv P, P_{z} \in S_{\lambda, \rho, \delta}^{m R e z}(\operatorname{Re} z \geqslant 0)$ and $P_{z} \in S_{\lambda, \rho, \delta}^{m} R(\operatorname{Rez} z<0)$.

Let $\Lambda\left(x, D_{x}\right)$ be a pseudo-differential operator with a symbol $\lambda(x, \xi)$. For any $s \geqslant 0$ we define $H_{s}=\left\{u \in L^{2}\left(R^{n}\right) ; \Lambda_{s}\left(x, D_{x}\right) u \in L^{2}\left(R^{m}\right)\right\}$ with the norm

$$
\|u\|_{s}^{2}=\left\|\Lambda_{s} u\right\|^{2}+\|u\|^{2}
$$

Let $0 \leqslant s_{1}<s_{2}$ and let $\lambda(x, \xi)$ satisfy that for any $\varepsilon>0$ there exists C_{ε} such that

$$
\begin{equation*}
\lambda(x, \xi)^{s_{1}} \leqslant \varepsilon \lambda(x, \xi)^{s_{2}}+C_{\mathrm{z}} \tag{2.17}
\end{equation*}
$$

Proposition 2.12. If $\lambda(x, \xi)$ satisfies (2.17), then we have for any $\varepsilon>0$

$$
\|u\|_{s_{1}} \leqslant \varepsilon\|u\|_{s_{2}}+C_{\mathbf{z}}\|u\|
$$

with a constant C_{E}.
Proposition 2.13. Let $p(x, \xi) \in S_{\lambda, \rho, \delta}^{m}$ satisfy (H.E) and let $q(x, \xi)$ satisfy

$$
\left|q_{(\beta)}^{(\alpha)}(x, \xi) / p(x, \xi)\right| \leqslant C_{a, \beta} \lambda(x, \xi)^{k-(\rho, \alpha)+(\delta, \beta)}
$$

with a constant k. Then there exists $r(x, \xi) \in S_{\lambda, \rho, 8}^{k}$ such that $q\left(x, D_{x}\right)=$ $r\left(x, D_{x}\right) p\left(x, D_{x}\right)+k\left(x, D_{x}\right)$, with $k(x, \xi) \in S_{\lambda_{,}, \rho, \delta}^{-\infty}$.

Proof. Let $r_{1}(x, \xi)=q(x, \xi) / p(x, \xi) \in S_{\lambda, \rho, \delta}^{k}$. Then we have for any N

$$
\left(r_{1} \circ p\right)(x, \xi)=q(x, \xi)+t_{N}(x, \xi)+k_{N}(x, \xi)
$$

where $t_{N}(x, \xi)=\sum_{|\alpha| \geqslant 1}^{N-1} \frac{1}{\alpha!} r_{1}^{(\alpha)}(x, \xi) p_{(\alpha)}(x, \xi)$ and $k_{N}(x, \xi) \in S_{\lambda, \rho, \delta}^{m+k-\varepsilon_{0} N}$. We note that

$$
\left|t_{N(\beta)}^{(\alpha)}(x, \xi)\right| p(x, \xi) \mid \leqslant C_{\alpha, \beta}^{\prime} \lambda(x, \xi)^{k-\varepsilon_{0}-(\rho, \alpha)+(\delta, \beta)} .
$$

Set $r_{2}(x, \xi)=t_{N}(x, \xi) / p(x, \xi)\left(\in S_{\lambda, \rho, \delta}^{k-\varepsilon_{0}}\right)$. Then we have

$$
\sigma\left(\sum_{j=1}^{2} r_{j}\left(x, D_{x}\right) p\left(x, D_{x}\right)\right)=q(x, \xi)+t_{N}^{\prime}(x, \xi)+k_{N}^{\prime}(x, \xi),
$$

where $t_{N}^{\prime}(x, \xi)=\sum_{|\alpha| \geqslant 1}^{N-2} \frac{1}{\alpha!} r_{2}^{(\alpha)}(x, \xi) p_{(\alpha)}(x, \xi)$ and $k_{N}^{\prime}(x, \xi) \in S_{\lambda, \rho, \delta}^{m+k-\varepsilon_{0} N}$. If we repeat the same calculus, we get the assertion.
Q.E.D.

Proposition 2.14. If $p_{\mathrm{g}}(x, \xi)$ converges to $p_{0}(x, \xi)$ weakly in $S_{\lambda, \rho, \delta}^{n}$ as $\varepsilon \rightarrow 0$, then $\left(p_{\mathrm{z}} \circ q\right)(x, \xi)$ converges to $\left(p_{0} \circ q\right)(x, \xi)$ weakly in $S_{\lambda, \rho, \delta}^{m+k}$ for any $q(x, \xi) \in S_{\lambda, \rho, \delta}^{k}$. Moreover $P_{z} u$ converges to $P_{0} u$ in H_{s-m} for $u \in H_{s}$.

Proof. For large l and l^{\prime} we can write

$$
\begin{aligned}
& \left(p_{\mathrm{z}} \circ q\right)(x, \xi) \\
& \quad=\int \cdots \int e^{-\imath y \cdot n}\langle y\rangle^{-2 l^{\prime}}\left\langle D_{\eta}\right\rangle^{2 l^{\prime}}\left\{\langle\eta\rangle^{-2 l}\left\langle D_{\eta}\right\rangle^{2 l} p_{\mathrm{z}}(x, \xi+\eta) q(x+y, \xi)\right\} d y d \eta .
\end{aligned}
$$

Then the first part of the Proposition is clear. Set $Q_{\mathrm{z}}=\Lambda_{-s-m} P_{\varepsilon} \Lambda_{s}$. Then Q_{ε} belongs to $S_{\lambda, \rho, \delta}^{0}$ and $q_{\mathrm{e}}(x, \xi)$ converges to $q(x, \xi)$ weakly in $S_{\lambda, \rho, \delta}^{0}$. It is sufficient to show that if $q_{\varepsilon}(x, \xi)$ converges to 0 weakly in $S_{\lambda, \rho, \delta}^{0}$, then $Q_{\varepsilon} u$ converges to 0 for $u \in L^{2}\left(R^{n}\right)$. Define $u_{\varepsilon}(x)=\varphi_{\varepsilon}(x) \varphi_{\varepsilon}\left(D_{x}\right) u$ where $\varphi_{\varepsilon}(x)=\varphi(\varepsilon x)$ and φ is a $C_{0}^{\infty}\left(R^{n}\right)$-function such that $\varphi(x)=1(|x| \leqslant 1)$ and $\varphi(x)=0(|x| \geqslant 2)$. We have

$$
\begin{aligned}
\left\|Q_{\mathrm{s}} u\right\| & \leqq\left\|Q_{\mathrm{z}}\left(u_{\mathrm{z}}-u\right)\right\|+\left\|Q_{\mathrm{z}} u_{\mathrm{s}}\right\| \\
& \leqq C\left\|u_{\mathrm{z}}-u\right\|+\left\|Q_{\mathrm{z}} u_{\mathrm{z}}\right\|,
\end{aligned}
$$

where we use Theorem 2.8. It is clear that $u_{\mathrm{\varepsilon}}$ converges to u in $L^{2}\left(R^{n}\right)$. We can write

$$
Q_{\varepsilon} u_{\varepsilon}=\tilde{q}_{\varepsilon}\left(x, D_{x}\right) u
$$

where

$$
\begin{gathered}
\tilde{q}_{\varepsilon}(x, \xi)=\iint_{|x+y| \leqslant 2 \varepsilon^{-1}} e^{-i y \cdot \eta}\langle y\rangle^{-2 l^{\prime}}\left\langle D_{\eta}\right\rangle^{2 l l^{\prime}}\left(\langle\eta\rangle^{-2 l} q(x, \xi+\eta)\right) \\
\times\left\langle D_{y}\right\rangle^{2 l} \varphi(\varepsilon(x+y)) \varphi(\varepsilon \xi) d y d \eta .
\end{gathered}
$$

Then $\widetilde{q}_{\varepsilon}(x, \xi)$ converges to 0 in $S_{\lambda, \rho, \delta}^{0}$. So we get $\lim _{\varepsilon \rightarrow 0}\left\|Q_{\varepsilon} u_{\varepsilon}\right\|=0$ by Theorem 2.8.
Q.E.D.
3. Fundamental solution of degenerate pseudo-differential operator of parabolic type and the Cauchy problem

In this section we consider the Cauchy problem for a pseudo-differential operator of parabolic type as follows.

$$
\left\{\begin{array}{l}
L u(t)=\left(\frac{d}{d t}+p\left(t ; x, D_{x}\right)\right) u(t)=f(t) \quad \text { in } 0<t<T \tag{3.1}\\
u(0)=u_{0}
\end{array}\right.
$$

where $p\left(t ; x, D_{x}\right)$ is an operator in the class $\mathcal{E}_{t}^{0}\left(S_{\lambda, \rho, \delta}^{m}\right)(\delta<\rho)$ on $[0, T]$ which satisfies the following conditions
(i) There exist constants $c_{1} \geqslant 0$ and $c_{0}>0$ such that

$$
\operatorname{Re} p(t ; x, \xi)+c_{1} \geqslant c_{0} \lambda(x, \xi)^{m^{\prime}} \text { in }[0, T] m \geqslant m^{\prime} \geqslant 0
$$

(ii) For any multi-index $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \cdots, \beta_{n}\right)$
there exists a constant $C_{a, \beta}$ such that

$$
\begin{array}{r}
\left|p_{(\beta)}^{(\alpha)}(t ; x, \xi) /\left(\operatorname{Re} p(t ; x, \xi)+c_{1}\right)\right| \leqslant C_{\alpha, \beta} \lambda(x, \xi)^{-(\rho, \alpha)+(\delta, \beta)} \tag{3.2}\\
\text { in }[0, T] .
\end{array}
$$

We call $E(t, s)$ the fundamental solution of L if $E(t, s)$ satisfies

$$
\left\{\begin{align*}
L E(t, s) & =0 \quad \text { in } 0 \leqslant s<t \leqslant T \tag{3.3}\\
E(s, s) & =I
\end{align*}\right.
$$

Theorem 3.1. Under the assumptions (3.2)-(i) and (3.2)-(ii) there exists a fundamental solution $E(t, s)$ in the class $m-\mathcal{E}_{t, s}^{0}\left(S_{\lambda, \rho, \delta}^{0}\right)$ in $0 \leqslant s \leqslant t \leqslant T$. Moreover for any N such that $m-\varepsilon_{0} N \leqslant 0\left(\varepsilon_{0}=\min _{1 \leqslant j \leqslant n}(\rho,-\delta),\right) E(t, s)$ has the following ex-
pansion pansion

$$
e(t, s)=\sum_{j=0}^{N-1} e_{\jmath}(t, s)+f_{N}(t, s)
$$

where

Proof. We may assume (3.2) for $c_{1}=0$. In fact let $E_{c_{1}}(t, s)$ be the fundamental solution for $L+c_{1}$. Then $E(t, s)=e^{c_{1}(t-s)} E_{c_{1}}(t, s)$ is the fundamental solution for L.

As in [10], [11] we construct $e_{,}(t, s ; x, \xi)(0 \leqslant s \leqslant t \leqslant T)$ as the serics of solutions of the following equations

$$
\left\{\begin{array}{l}
\left(\frac{d}{d t}+p(t ; x, \xi)\right) e_{0}(t, s ; x, \xi)=0 \quad \text { in } t>s \tag{3.5}\\
e_{0}(s, s ; x, \xi)=1
\end{array}\right.
$$

and for $j \geqslant 1$

$$
\left\{\begin{array}{l}
\left(\frac{d}{d t}+p(t ; x, \xi)\right) e_{,}(t, s ; x, \xi)=-q_{j}(t, s ; x, \xi) \quad \text { in } t>s \tag{3.6}\\
e_{,}(s, s ; x, \xi)=0
\end{array}\right.
$$

where $q_{,}(t, s ; x, \xi)$ is defined by

$$
\begin{equation*}
q_{j}(t, s ; x, \xi)=\sum_{k=0}^{\prime-1} \sum_{|\alpha|+k=j} \frac{1}{\alpha!} p^{(\alpha)}(t ; x, \xi) e_{k(\omega)}(t, s ; x, \xi) . \tag{3.7}
\end{equation*}
$$

Set

$$
\begin{equation*}
b_{ر, \alpha, \beta}(t, s ; x, \xi)=q_{ر(\beta)}^{(\alpha)}(t, s ; x, \xi) / e_{0}(t, s ; x, \xi) \quad j \geqslant 1 . \tag{3.8}
\end{equation*}
$$

Then, by (3.5) ~(3.7) and (3.2)-(ii) we have the following proposition, which derives (3.4)-(i) $\sim(3.4)$-(iv).

Proposition 3.2. For any α and β there exists a constant $C_{j, \alpha, \beta}$ such that
(3.9), $\quad\left|a_{J, \alpha, \beta}(t, s ; x, \xi)\right| \leqslant C_{ر, \alpha, \beta} \lambda(x, \xi)^{-\xi_{0} J-(\rho, \alpha)+(\delta, \beta)} \omega_{\rho, \alpha, \beta} \quad(j \geqslant 0)$,
$(3.10)_{j}\left|b_{j, \alpha, \beta}(t, s ; x, \xi)\right| \leqslant C_{,, \alpha, \beta} \operatorname{Re} p(t ; x, \xi) \lambda(x, \xi)^{\left.-\varepsilon_{0}\right)^{-(\rho, \alpha)+(\delta, \beta)} \omega_{j, \alpha, \beta}^{\prime}}$

$$
(j \geqslant 1)
$$

where $\omega_{,, \alpha, \beta}$ and $\omega_{\jmath, \alpha, \beta}^{\prime}$ are defined by

$$
\begin{array}{lll}
\omega_{0,0,0}=1, \quad \omega_{0, \alpha, \beta}=\max \left\{\omega, \omega^{|\alpha|+|\beta|}\right\} & |\alpha|+|\beta| \neq 0 \\
\omega_{j, \alpha, \beta}=\max \left\{\omega^{2}, \omega^{2+|\alpha|+|\beta|}\right\} & (j \geqslant 1), & \\
\omega_{,, \alpha, \beta}^{\prime}=\max \left\{\omega, \omega^{2 j-1+\left|\omega^{\prime}\right|+|\beta|}\right\} & (j \geqslant 1) \\
\text { and } \omega=\int_{s}^{t} \operatorname{Re} p(\sigma ; x, \xi) d \sigma . &
\end{array}
$$

Proof. By (3.7) we have
with some positive constants $C_{\gamma, \alpha, \beta}$. Then it follows that

From (3.6) we can write

$$
e_{\jmath}(t, s ; x, \xi)=\int_{s}^{t}-e_{0}(t, \sigma ; x, \xi) q_{j}(\sigma, s ; x, \xi) d \sigma
$$

Thus we have for any $\alpha \beta$, and $j \geqslant 1$

$$
\begin{equation*}
a_{j, \alpha, \beta}(t, s)=-\sum_{\substack{\alpha_{1}+\alpha \alpha_{2}=\alpha \\ \beta_{1}+\beta_{2}=\beta}} \alpha!\beta!/\left(\alpha_{1}!\alpha_{2}!\beta_{1}!\beta_{2}!\right) \int_{s}^{t} a_{0, \alpha_{1}, \beta_{1}}(t, \sigma) b_{j, \alpha_{2}, \beta_{2}}(\sigma, s) d \sigma . \tag{3.12}
\end{equation*}
$$

We shall prove (3.9) ${ }_{j}$ and (3.10) $)_{j}$ inductively. By (3.5) we get

$$
\begin{equation*}
e_{0}(t, s ; x, \xi)=\exp \left(-\int_{s}^{t} p(\sigma ; x, \xi) d \sigma\right) \tag{3.13}
\end{equation*}
$$

Then $a_{0, \alpha, \beta}(t, s)$ is a linear summation of

$$
\int_{s}^{t} p_{\left(\beta_{1}\right)}^{(\alpha)}(\sigma ; x, \xi) d \sigma \cdots \int_{s}^{t} p_{\left(\beta_{l}\right)}^{(\alpha)}(\sigma ; x, \xi) d \sigma
$$

with $\alpha_{1}+\cdots+\alpha_{l}=\alpha, \beta_{l}+\cdots+\beta_{l}=\beta$. Hence we get (3.9) ${ }_{0}$ from the assumption (3.2)-(ii). By (3.11), (3.9) $)_{0}$ and (3.2)-(ii) we get (3.10) ${ }_{1}$. Now assume (3.9) ${ }_{j}$ for $j \leqslant k-1$ and $(3.10)_{j}$ for $j \leqslant k$. Then we get $(3.9)_{k}$ and $(3.10)_{k+1}$ in the following way. From $(3.9)_{0},(3.10)_{k}$ and (3.12) it follows that

$$
\begin{aligned}
\left|a_{k, \alpha, \beta}(t, s)\right| & \leqslant C_{k, \alpha, \beta}^{\prime} \lambda^{-s_{0} k-(\rho, \alpha)+(\delta, \beta)} \omega_{\substack{\alpha_{2} \\
\beta_{2}+\alpha_{2}=\alpha}} \sum_{\beta_{2}=\alpha} \omega_{k, \alpha_{1}, \beta_{1}}^{\prime} \omega_{0, \alpha_{2}, \beta_{2}} \\
& \leqslant C_{k, \alpha, \beta} \lambda^{-\varepsilon_{0} k-(\rho, \alpha)+(\delta, \beta)} \omega_{k, \alpha, \beta} .
\end{aligned}
$$

By (3.11) and (3.9) ${ }_{j}$ for $j \leqslant k$, it is clear that

$$
\left|b_{k+1, \alpha, \beta}(t, s)\right| \leqslant C_{k, \alpha, \beta}^{\prime} \lambda^{-\varepsilon_{0}(k+1)-(\rho, \alpha)+(\delta, \beta)} \operatorname{Re} p(t) \sum_{j=0}^{k} \sum_{\substack{|\gamma|+j}} \sum_{\substack{k+1}}^{\sum_{\substack{\alpha<\alpha \\ \beta_{j}<\beta}} \omega_{j, \alpha_{j}, \beta_{j}+\gamma}}
$$

with some constant $C_{k, \alpha, \beta}^{\prime}$. Also it is easy to show

$$
\max _{\substack{\alpha^{\prime} \leqslant \alpha, \beta^{\prime} \leqslant \beta \\ 0 \in j \in \beta \\: \gamma \mid<j=k+1}} \omega_{j, \alpha^{\prime}, \beta^{\prime}+\gamma \leqslant} \leqslant \omega_{k+1, \alpha, \beta}^{\prime} .
$$

Then (3.10) ${ }_{k+1}$ is proved.
Q.E.D.

Now by Theorem 2.9, we can write for any $N \geqslant 1$

$$
\begin{align*}
& \sigma\left(P(t) E_{j}\left(t, s ; x, D_{x}\right)\right)(x, \xi)=p(t ; x, \xi) e_{j}(t, s ; x, \xi) \tag{3.14}\\
& \quad+\sum_{0<|\alpha|<N-,-1} \frac{1}{\alpha!} p^{(\omega)}(t ; x, \xi) e_{j(v)}(t, s ; x, \xi)+r_{N,}(t, s ; x, \xi)
\end{align*}
$$

Taking a summation in j, it is clear by (3.5) $\sim(3.7)$ that

$$
\begin{align*}
& \left(\frac{d}{d t}+P(t)\right)\left(\sum_{j=0}^{N-1} E_{j}(t, s)\right)=\sum_{j=0}^{N-1}\left(\left(\frac{d}{d t}+p(t)\right) e_{j}\right)\left(t, s ; x, D_{x}\right) \tag{3.15}\\
& \quad+\sum_{j=1}^{N-1} q_{j}\left(t, s ; x, D_{v}\right)+\sum_{j=0}^{N-1} r_{N, j}\left(t, s ; x, D_{x}\right)=\sum_{j=0}^{N-1} r_{N, j}\left(t, s ; x, D_{x}\right) .
\end{align*}
$$

Proposition 3.3. We have $r_{N, j}(t, s ; x, \xi) \in m-\mathcal{E}_{t, s}^{0}\left(S_{\lambda, \rho, \delta}^{m-\varepsilon_{0} N}\right)$ and for any α, β

$$
\begin{equation*}
\left|r_{N, j}{ }_{j(\boldsymbol{\alpha})}^{(\alpha)}(t, s ; x, \xi)\right| \leqslant C_{\alpha, \beta}(t-s)^{k} \lambda(x, \xi)^{(k+1) m-\varepsilon_{0} N-(\rho, \alpha)+(\delta, \beta)}, \quad k=0,1 \tag{3.16}
\end{equation*}
$$

Proof. From (3.4)-(i) and (3.14) we have $r_{N, j}(t, s ; x, \xi) \in m-\mathcal{E}_{t, s}^{0}\left(S_{\lambda, \rho, \delta}^{m-\varepsilon_{0} N}\right)$. From (3.9) ${ }_{j}$ and $\omega \leqslant C(t-s) \lambda(x, \xi)^{m}$, we get (3.16).
Q.E.D.
$\operatorname{Put} \sum_{j=0}^{N} r_{N, j}(t, s ; x, \xi)=r_{N}(t, s ; x, \xi)$ and $\sum_{j=0}^{N} e_{j}(t, s ; x, \xi)=k_{N}(t, s ; x, \xi)$. Then we can write by (3.15)

$$
\left\{\begin{array}{l}
L K_{N}(t, s)=R_{N}(t, s) \quad \text { in } t>s(0 \leqslant s<t \leqslant T) \tag{3.17}\\
K_{N}(s, s)=I
\end{array}\right.
$$

Now we construct $e(t, s ; x, \xi)$ in the form

$$
e\left(t, s ; x, D_{x}\right)=k_{N}\left(t, s ; x, D_{x}\right)+\int_{s}^{t} k_{N}\left(t, \sigma ; x, D_{x}\right) \varphi\left(\sigma, s ; x, D_{x}\right) d \sigma
$$

Then $\varphi\left(t, s ; x, D_{x}\right)=\Phi(t, s)$ must satisfy a Volterra's integral equation

$$
\begin{equation*}
R_{N}(t, s)+\Phi(t, s)+\int_{s}^{t} R_{N}(t, \sigma) \Phi(\sigma, s) d \sigma=0 \tag{3.18}
\end{equation*}
$$

Set $\Phi_{1}(t, s)=-R_{N}(t, s)$ and define $\Phi_{j}(t, s)$ for $j \geqslant 2$

$$
\begin{align*}
\Phi_{j}(t, s) & =\int_{s}^{t} \Phi_{1}(t, \sigma) \Phi_{j-1}(\sigma, s) d \sigma \tag{3.19}\\
& =\int_{s}^{t} \int_{s}^{s_{1}} \cdots \int_{s}^{s_{j-2}} \Phi_{1}\left(t, s_{1}\right) \Phi_{1}\left(s_{1}, s_{2}\right) \cdots \Phi_{1}\left(s_{j-1}, s\right) d s_{j-1} \cdots d s_{1}
\end{align*}
$$

Then we have

$$
\begin{align*}
\sum_{j=1}^{t} \Phi_{j}(t, s) & =\Phi_{1}(t, s)+\sum_{j=2}^{t} \Phi_{j}(t, s) \tag{3.20}\\
& =-R_{N}(t, s)-\int_{s}^{t} R_{N}(t, \sigma) \sum_{j=1}^{t-1} \Phi_{j}(\sigma, s) d \sigma .
\end{align*}
$$

For $\sigma\left(\Phi_{j}(t, s)\right)=\varphi_{j}(t, s ; x, \xi)$ we have the following estimates.
Proposition 3.4. We have some constants $B_{\alpha, \beta}$ and $B_{\alpha, \beta}^{\prime}$ independent of j such that

$$
\begin{align*}
& \left|\varphi_{,}{ }_{(\beta)}^{(\alpha)}(t, s ; x, \xi)\right| \leqslant\left(B_{\alpha, \beta}\right)^{j} \frac{(t-s)^{j-1}}{(j-1)!} \lambda(x, \xi)^{m-\varepsilon_{0} N-(\rho, \alpha)+(\delta, \beta)} \tag{3.21}\\
& \left|\varphi_{,}^{(\alpha)}(t, s ; x, \xi)\right| \leqslant\left(B_{\alpha, \beta}^{\prime}\right)^{j} \frac{(t-s)^{j-1}}{j!}(t-s) \lambda(x, \xi)^{2 m-\varepsilon_{0} N-(\rho, \alpha)+(\delta, \beta)} \tag{3.22}
\end{align*}
$$

Proof. Note that $r(t, s ; x, \xi)=-\varphi_{1}(t, s ; x, \xi)$ satisfies (3.16). Take N
such that $m-\varepsilon_{0} N \leqslant 0$. Then we can apply Theorem 2.1 to $\Phi_{1}\left(s_{j-1}, s_{j}\right)$. For any l, α and β there exists l_{0} such that

$$
\begin{aligned}
& \left|\varphi_{j}{ }^{(\alpha)}(\boldsymbol{\beta})(t, s ; x, \xi)\right| l^{\left(m-\varepsilon_{0} N\right)} \\
\leqslant & \left.\left.C^{\prime}\left|\varphi_{1}\right|\right|_{0} ^{\left.m-\varepsilon_{0} N\right)}\left(\left|\varphi_{1}\right|\right\rangle_{0}^{(0)}\right)^{j-1} \int_{s}^{t} \cdots \int_{s}^{s_{j-2}} d s_{j-1} \cdots d s_{1} \\
\leqslant & \left(B_{\alpha, \beta}\right)^{\prime} \frac{(t-s)^{j-1}}{(j-1)!}
\end{aligned}
$$

If we use (3.16) for $k=1$ instead of (3.16) for $k=0$, we get

$$
\begin{aligned}
& \left.\left|\varphi_{j}{ }_{j}^{(\alpha)}(\beta)(t, s ; x, \xi)\right|\right|^{\left.2 m-\varepsilon_{0} N\right)} \\
\leqslant & \left.C^{j}\left|\varphi_{1}\right|\right|_{l_{0}} ^{\left(2 m-\varepsilon_{0} N\right)}\left(\left|\varphi_{1}\right| \sum_{0}^{(0)}\right)^{,-1} \int_{s}^{t} \cdots \int_{s}^{s_{j-2}}\left(s_{j-1}-s\right) d s_{j-1} \cdots d s_{1} \\
\leqslant & \left(B_{\alpha, \beta}^{\prime}\right)^{j} \frac{(t-s)^{j}}{j!} \quad \text { Q.E.D. }
\end{aligned}
$$

Set $\varphi(t, s ; x, \xi)=\sum_{j=1}^{\infty} \varphi_{,}(t, s ; x, \xi)$. In view of (3.21) $\varphi(t, s ; x, \xi)$ belongs to $m-\mathcal{E}_{t, s}^{0}\left(S_{\lambda, \rho, \delta}^{m-\varepsilon_{0} N}\right)$ and satisfies (3.18) and

$$
\begin{equation*}
\left|\varphi_{(\beta)}^{(\alpha)}(t, s ; x, \xi)\right| \leqslant \lambda(x, \xi)^{(k+1) m-\varepsilon_{0} N-(\rho,(\alpha)+(\delta, \beta)} \exp \left\{B_{\alpha, \beta}(t-s)\right\} \quad(k=0,1) \tag{3.23}
\end{equation*}
$$

Note that $K_{N}(t, s)$ belongs to $m-\mathcal{E}_{t, s}^{0}\left(S_{\lambda, \rho, \delta}^{0}\right)$. Then by (3.23) we get (3.4)-(v).
Q.E.D.

Remark. 1. By the same method we can construct the fundamental solution for $L=\frac{\partial}{\partial t}+p\left(t ; x, D_{x}\right)+q\left(t ; x, D_{x}\right)$ under the following conditions:
(i) $p(t ; x, \xi)$ satisfies (3.2).
(ii) There exist $\varepsilon_{1}>0$ and $k \geqslant 0$ such that

$$
\left|\int_{s}^{t} q_{(\beta)}^{(\alpha)}(\sigma ; x, \xi) d \sigma\right| \leqslant C_{\alpha, \beta}^{\prime} \lambda(x, \xi)^{-\varepsilon_{1}-(\rho, \alpha)+(\delta, \beta)}\left\{\int_{s}^{t}|p(\sigma ; x, \xi)| d \sigma\right\}^{k}
$$

In this case $e_{0}(t, s ; x, \xi)$ is defined by (3.5) and $e_{\jmath}(t, s ; x, \xi)$ is defined by (3.6) setting

$$
q_{j}(t, s ; x, \xi)=\sum_{k=0}^{j-1} \sum_{|\alpha|+k=j} \frac{1}{\alpha!} p^{(\alpha)}(t ; x, \xi) e_{k(\alpha)}(t, s ; x, \xi)+q(t ; x, \xi) e_{j-1}(t, s ; x, \xi)
$$

Remark. 2. If $p(t ; x, \xi)$ belongs to $\mathcal{E}_{t}^{\infty}\left(S_{\lambda, \rho, \delta}^{m}\right)$, the fundamental solution $e(t, s ; x, \xi)$ belongs to $\bigcap_{l=0}^{\infty} \mathcal{E}_{t}^{l}\left(S_{\lambda, \rho, \delta}^{m l}\right)$.

We note that $P^{*}(t)$ also satisfies the assumptions of Theorem 3.1. So we can construct $V(t, s) \in m-\mathcal{E}_{t, s}^{0}\left(S_{\lambda, \rho, \delta}^{0}\right)$ which satisfies

$$
\left\{\begin{array}{l}
-\frac{\partial}{\partial s} V(t, s)+p^{*}\left(s ; x, D_{x}\right) V(t, s)=0 \quad 0 \leqslant s<t \leqslant T \tag{3.24}\\
V(t, t)=I
\end{array}\right.
$$

Theorem 3.5. Let $V(t, s)$ and $E(t, s)$ satisfy (3.24) and (3.3) respectively. Then we get

$$
\begin{equation*}
E^{*}(t, s)=V(t, s) \quad 0 \leqslant s \leqslant t \leqslant T \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
-\frac{\partial}{\partial s} E(t, s)+E(t, s) p\left(s ; x, D_{x}\right)=0 . \tag{3.26}
\end{equation*}
$$

Proof. Let f and g be any function of $\mathcal{S}\left(R^{n}\right)$. For any r such that $s<r<t$ it is easy to see that

$$
\begin{aligned}
& \frac{\partial}{\partial r}(E(r, s) f, V(t, r) g) \\
= & -(P(r) E(r, s) f, V(t, r) g)+\left(E(r, s) f, P^{*}(r) V(t, r) g\right) \\
= & 0
\end{aligned}
$$

If we use that $E(t, s) \rightarrow I, V(t, s) \rightarrow I$ in $L^{2}\left(R^{n}\right)$ as $t \rightarrow s$, we get (3.25). Considering the adjoint of (3.24), we get (3.26) if we use (3.25).
Q.E.D.

Corollary. If $p\left(t ; x, D_{x}\right)$ is independent of t and self-adjoint then $E(t, s)=$ $E(t-s)$ is also self-adjoint.

Theorem 3.6. Under the condition (3.2) the fundamental solution $E(t, s)$ is uniquely determined in the class m- $\mathcal{E}_{t, s}^{0}\left(S_{\lambda, \rho, \delta}^{\infty}\right)$.

In order to prove the above theorem we prepare the following
Proposition 3.7. Under the condition (3.2) there exists a constant $c>0$ such that

$$
\operatorname{Re}\left(p\left(t ; x, D_{x}\right) u, u\right)+c(u, u) \geqslant 0 \quad u \in \mathcal{S}\left(R^{n}\right)
$$

Proof of Theorem 3.6. Let $E(t, s)\left(\in m-\mathcal{E}_{t, s}^{0}\left(S_{\lambda, \rho, \delta}^{\infty}\right)\right)$ satisfy $L E(t, s)=0$ in $t>s$ and $E(s, s)=0$. Then $e^{-c t} E(t, s)=E_{c}(t, s)$ satisfies

$$
\left\{\begin{array}{l}
(L+c) E_{c}(t, s)=0 \quad \text { in } t>s \tag{3.27}\\
E_{c}(s, s)=0
\end{array}\right.
$$

For any $u \in S\left(R^{n}\right)$ we get by the above proposition

$$
\frac{d}{d t}\left(E_{c}(t, s) u, E_{c}(t, s) u\right)
$$

$$
\begin{aligned}
& =2 \operatorname{Re}\left(\frac{d}{d t} E_{c}(t, s) u, E_{c}(t, s) u\right) \\
& =-2 \operatorname{Re}\left((P(t)+c) E_{c}(t, s) u, E_{c}(t, s) u\right) \leqslant 0 .
\end{aligned}
$$

Then we have

$$
\left\|E_{c}(t, s) u\right\| \leqslant\left\|E_{c}(s, s) u\right\|=0 .
$$

This means for any $x \in R^{n}$ and $\xi \in R^{n}$

$$
e_{c}(t, s ; x, \xi)=0 \quad \text { in } t \geqslant s .
$$

Hence we get $e(t, s ; x, \xi)=0$.
Q.E.D.

Theorem 3.8. Let $p(t ; x, \xi)$ belong to $\mathcal{E}_{t}^{\infty}\left(S_{\lambda, \rho, \delta,}^{m}\right)$ and satisfy (3.2). Then for any $f(t) \in \mathcal{E}_{t}^{0}\left(H_{s}\right)$ and $u_{0} \in H_{s}$ the solution $u(t) \in \mathcal{E}_{t}^{k}\left(H_{s-k m}\right)$ of (3.1) is given by

$$
\begin{equation*}
u(t)=E(t, 0) u_{0}+\int_{0}^{t} E(t, s) f(s) d s \tag{3.28}
\end{equation*}
$$

This is the unique solution of (3.1) and $u(t) \rightarrow u_{0}$ in H_{s} as $t \rightarrow 0$. Moreover we get

$$
\begin{equation*}
\left\|\frac{d^{k}}{d t^{k}} u(t)\right\|_{s-k m} \leqslant C\left\|u_{0}\right\|_{s}+\int_{0}^{t}\|f(\sigma)\|_{s} d \sigma . \tag{3.29}
\end{equation*}
$$

Proof. It is easy to show that $u(t)$ given by (3.28) is a solution of (3.1). Let $u(t)$ satisfy (3.1). Then

$$
E(t, s) P(s) u(s)=E(t, s)\left(-\frac{\partial}{\partial s}\right) u(s)+E(t, s) f(s)
$$

Integrating with respect to s, we get

$$
\int_{0}^{t} E(t, s) P(s) u(s) d s=\int_{0}^{t} E(t, s) f(s) d s+\int_{0}^{t} \frac{d}{d s} E(t, s) u(s) d s-[E(t, s) u(s)]_{0}^{t} .
$$

By (3.28) we have

$$
u(t)=\int_{0}^{t} E(t, s) f(s) d s+E(t, 0) u(0)
$$

The inequality (3.29) is clear if we note that $E(t, s)$ belongs to $m-\mathcal{E}_{t, s}^{l}\left(S_{\lambda, \rho, \delta}^{m l}\right)$ $(l=1,2, \cdots$,$) .$

Proof of Proposition 3.7. Set $Q(t)=\left(P(t)+P^{*}(t)\right) / 2$. Then $q(t ; x, \xi)$ satisfies

$$
\begin{aligned}
& \operatorname{Re} q(t ; x, \xi)+c_{1} \geqslant c_{0} \lambda(x, \xi)^{m^{\prime}} \\
& \left|q_{(\beta)}^{(\alpha)}(t ; x, \xi) /\left(\operatorname{Re} q(t ; x, \xi)+c_{1}\right)\right| \leqslant C_{\alpha, \beta} \lambda(x, \xi)^{-(\rho, \alpha)+(\delta, \beta)}
\end{aligned}
$$

with constants c_{0} and c_{1}. Apply Theorem 2.11. Then we can construct the complex power $\left\{\widetilde{Q}_{2}(t)\right\}$ for $Q(t)+c_{1}$. Note that $Q(t)$ is self-adjoint. Then we have $\widetilde{Q}_{s}^{*}(t) \equiv \widetilde{Q}_{s}(t)$ for real s (See Lemma 4.2 in [6]). We obtain

$$
\operatorname{Re}\left(\left(P(t)+c_{1}\right) u, u\right)=(\widetilde{Q}(t) u, u)=\left(\widetilde{Q}_{1 / 2}(t) u, \widetilde{Q}_{1 / 2}(t) u\right)+(K(t) u, u)
$$

for some $K(t) \in \mathcal{E}_{t}^{0}\left(S_{\lambda, \rho, \delta}^{-\infty}\right)$. Then we have

$$
\operatorname{Re}\left(\left(P(t)+c_{1}\right) u, u\right) \geqslant\left\|\widetilde{Q}_{1 / 2} u\right\|^{2}-c_{2}\|u\|^{2}
$$

Take $C=c_{1}+c_{2}$. Then we get the assertion.
Q.E.D.

4. Behavior of $E(t, s)$ as $(t-s) \rightarrow \infty$

In this section we assume for the basic weight function $\lambda(x, \xi)$ to satisfy

$$
\begin{equation*}
\lambda(x, \xi) \geqslant A_{0}(1+|x|+|\xi|)^{\sigma} \tag{4.1}
\end{equation*}
$$

with a positive constant σ and for $p(t ; x, \xi) \in \mathcal{E}_{t}^{\infty}\left(S_{\lambda, \rho, \delta}^{m}\right)$ to satisfy (3.2) with a positive constant m^{\prime} and assume that there exist a positive constant c_{2} and $t_{0} \geqslant 0$ such that

$$
\begin{equation*}
\operatorname{Re}(P(t) u, u) \geqslant c_{2}\|u\|^{2} \quad t_{0}<t<\infty \tag{4.2}
\end{equation*}
$$

for $u \in \mathcal{S}\left(R^{n}\right)$.
Theorem 4.1. Let $u(t) \in \mathcal{E}_{t}^{\infty}\left(\mathcal{S}\left(R^{n}\right)\right)$ satisfy $L u(t)=g(t)$ in $t>t_{0}$. Then for $b \geqslant 0$ and any $c_{3}<c_{2}$ there exists a constant B independent of t such that

$$
\|u(t)\|_{b} \leqslant B\left(e^{-c_{3}\left(t-t_{0}\right)}\left\|u\left(t_{0}\right)\right\|_{b}+\int_{t_{0}}^{t} e^{-c_{3}(t-s)}\|g(s)\|_{b} d s\right)
$$

For the proof of the above theorem we prepare the following
Lemma 4.2. Let v and w belong to $\mathcal{S}\left(R^{n}\right)$. Then we have with a constant C

$$
\begin{align*}
& |(A v, B w)| \leqslant C\|v\|\|w\| \quad \text { if } A \in S_{\lambda, \rho, \delta}^{-m} \text { and } B \in S_{\lambda, \rho, \delta}^{m}, \tag{4.3}\\
& \left|(A v, B w)-\left(A_{1} v, B_{1} w\right)\right| \leqslant C\|v\|\|w\| \tag{4.4}\\
& \text { if } A, A_{1}, B, B_{1} \in S_{\lambda, \rho, \delta}^{\infty}, A \equiv A_{1} \text { and } B \equiv B_{1}, \\
& \operatorname{Re}\left(P(t) \Lambda_{s} v, \Lambda_{s} v\right) \geqslant 1 / 2\left\|Q_{1 / 2} \Lambda_{s} v\right\|^{2}-C\|v\|^{2} \tag{4.5}
\end{align*}
$$

and

$$
\begin{equation*}
\left|\left(\left[\Lambda_{s}, P(t)\right] v, \Lambda_{s} v\right)\right| \leqslant \varepsilon\left\|Q_{1 / 2} \Lambda_{s} v\right\|^{2}+C_{\varepsilon}\|v\|^{2} \quad \text { for any } \varepsilon>0 \tag{4.6}
\end{equation*}
$$

where $\left\{Q_{2}(t)\right\}$ is the complex power of $Q(t)=\left(P(t)+P^{*}(t)\right) / 2+c_{1}$
Proof. Set $R=\left(\Lambda+\Lambda^{*}\right) / 2+d$ for large number d such that $\sigma(R)$ satisfies (H.E) (see (2.16)). Let $\left\{R_{z}\right\}$ be the complex power for R constructed in $\S 2$. We can write $R_{-m} R_{m}+K_{1}=I$, where K_{1} belongs to $S_{\lambda, \rho, \delta}^{-\infty}$. Then we have

$$
\begin{aligned}
(A v, B w) & =\left(R_{m} A v, R_{-m} B w\right)+\left(K_{1} A v, B w\right) \\
& =\left(R_{m} A v, R_{-m} B w\right)+\left(R_{m} K_{1} A v, R_{-m} B w\right)+\left(K_{1} A v, K_{1}^{*} B w\right) .
\end{aligned}
$$

Noting that $R_{m} A, R_{-m} B, R_{m} K_{1} A, K_{1} A$ and $K_{1}^{*} B$ belong to $S_{\lambda, \rho, \delta}^{0}$, we get (4.3). The estimate (4.4) is clear by (4.3).
For (4.5) we write
$\operatorname{Re}\left(P(t) \Lambda_{s} v, \Lambda_{s} v\right)=\left(Q_{1 / 2}(t) \Lambda_{s} v, Q_{1 / 2}(t) \Lambda_{s} v\right)+\left(K_{2}(t) \Lambda_{s} \tau, \Lambda_{s} v\right)-c_{1}\left(\Lambda_{s} v, \Lambda_{s} v\right)$,
where

$$
\begin{equation*}
Q_{1 / 2}^{*}(t) Q_{1 / 2}(t)+K_{2}(t)=Q(t), \quad K_{2} \in \mathcal{E}_{t}^{\infty}\left(S_{\lambda, \rho, \delta}^{-\infty}\right) \tag{4.7}
\end{equation*}
$$

We can write by Proposition $2.13 c_{1} \equiv G_{1}(t) Q_{1_{1 / 2}}(t)$ where $G_{1}(t)$ belongs to $\mathcal{E}_{t}^{\infty}\left(S_{\lambda, \rho, \delta}^{-m^{\prime}, \delta^{2}}\right)$. Then we get

$$
\operatorname{Re}\left(P(t) \Lambda_{s} v, \Lambda_{s} v\right) \geqslant\left\|Q_{1 / 2}(t) \Lambda_{s} v\right\|^{2}-\left\|G_{1}(t) Q_{1 / 2}(t) \Lambda_{s} v\right\|^{2}-C^{\prime}\|v\|^{2} .
$$

by (4.4). Now applying Proposition 2.12, we get

$$
\operatorname{Re}\left(P(t) \Lambda_{s} v, \Lambda_{s} v\right) \geqslant 1 / 2\left\|Q_{1 / 2}(t) \Lambda_{s} v\right\|^{2}-C^{\prime \prime}\|v\|^{2} .
$$

By Proposition 2.13 we can write $\left[\Lambda_{s}, P(t)\right] \equiv G_{2} Q(t)$, where $G_{2}(t) \in \mathcal{E}_{t}^{\infty}\left(S_{\lambda, \rho, \delta}^{-\varepsilon_{0}}\right)$. By (4.7) and $Q_{1 / 2} G_{2}^{*} \equiv G_{3} Q_{1 / 2}$ with $G_{3} \in \mathcal{E}_{t}^{\infty}\left(S_{\lambda, \rho, \delta}^{-\varepsilon_{0}}\right)$ we get for any $\varepsilon>0$ the estimate (4.6).
Q.E.D.

Proof of Theorem 4.1. Note that $\Lambda_{b} u(t)$ satisfies

$$
\left(\frac{\partial}{\partial t}+P(t)\right) \Lambda_{b} u(t)=\Lambda_{b} g(t)-\left[\Lambda_{b}, P(t)\right] u(t) \quad \text { for } b \geqslant 0
$$

Then we have

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\Lambda_{b} u(t), \Lambda_{b} u(t)\right)=-2 \operatorname{Re}\left(P(t) \Lambda_{b} u(t), \Lambda_{b} u(t)\right) \\
& \quad+2 \operatorname{Re}\left(\Lambda_{b} g(t), \Lambda_{b} u(t)\right)+2 \operatorname{Re}\left(\left[\Lambda_{b}, P(t)\right] u(t), \Lambda_{b} u(t)\right)
\end{aligned}
$$

By Lemma 4.2 and (4.2) we get for any $c_{3}<c_{2}$

$$
\begin{equation*}
\frac{d}{d t}\left\|\Lambda_{b} u(t)\right\|^{2} \leqslant-2 c_{3}\left\|\Lambda_{b} u(t)\right\|^{2}+2\left\|\Lambda_{b} g(t)\right\|\left\|\Lambda_{b} u(t)\right\|+C\|u(t)\|^{2} \tag{4.9}
\end{equation*}
$$

with some constant C. Integrating (4.9) from t_{0} to t, we get

$$
\begin{equation*}
\left\|\Lambda_{b} u(t)\right\| \leqslant e^{-c_{3}\left(t-t_{0}\right)}\left\|\Lambda_{b} u\left(t_{0}\right)\right\|+\int_{t_{0}}^{t} e^{-c_{3}(t-s)}\left\{\left\|\Lambda_{b} g(s)\right\|+C\|u(s)\|\right\} d s \tag{4.10}
\end{equation*}
$$

On the other hand it is clear that

$$
\begin{equation*}
\|u(t)\| \leqslant e^{-c_{2}\left(t-t_{0}\right)}\left\|u\left(t_{0}\right)\right\|+\int_{t_{0}}^{t} e^{-c_{2}(t-s)}\|g(s)\| d s \tag{4.11}
\end{equation*}
$$

Then from (4.10) and (4.11) we get the assertion.
Q.E.D.

Lemma 4.3. For any b such that $\sigma b-(n+1) / 2 \geqslant 0$ we have

$$
C_{b}^{-1}|u|_{b_{1}, S} \leqslant\|u\|_{b} \leqslant C_{b}|u|_{b_{2}, \mathcal{S}}, \quad b_{1}=[\sigma b-(n+1) / 2], \quad b_{2}=\widetilde{\tau}(b+1)+(n+1) / 2
$$ for $u \in S\left(R^{n}\right)$, where $\tilde{\tau}=\max \left(1 / \tilde{\rho}_{j}, \tau\right)$.

Proof. For $l \geqslant 0$ we have

$$
|u|_{l, S} \leqslant C_{l}\|u\|_{k}, \quad k=l / \sigma+(n+1) / 2 \sigma .
$$

Note that $\lambda(x, \xi) \leqslant(|x|+|\xi|+1)^{\tilde{\tau}}$. Then we get Lemma 4.4.
Q.E.D.

Theorem 4.4. Let $E(t, s)$ be the fundamental solution which is constructed in §3. Then for any fixed $t_{0}>s_{0} \geqslant 0$ and any integers $l_{j}(j=1,2,3)$ there exists a constant C independent of t such that

$$
\left.\left|\partial_{t}^{l} r e\left(t, s_{0}\right)\right|\right|_{3} ^{\left(-l_{2}\right)} \leqslant C \exp \left\{-c_{3}\left(t-t_{0}\right)\right\} \quad t \geqslant t_{0}
$$

where c_{3} is any constant such that $c_{3}<c_{2}$.
Proof. Let $f(t, s ; x, \xi)=e^{i x \cdot \xi} e(t, s ; x, \xi)$. Then we get

$$
\sigma(P(t) E(t, s))(x, \xi)=e^{-i x \cdot \xi} p\left(t ; x, D_{x}\right) f(t, s ; x, \xi)
$$

From the above equation we get the following equations for t

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} f(t, s ; x, \xi)+p\left(t ; x, D_{x}\right) f(t, s ; x, \xi)=0 \quad \text { in } t>s \tag{4.12}\\
f(s, s ; x, \xi)=e^{2 x \cdot \xi} .
\end{array}\right.
$$

Then $f(t, s ; x, \xi)$ is a solution of (0.1) with the intial data $e^{i x \cdot \xi}$. We see that $f\left(t, s_{0} ; x, \xi\right)$ for $t>s_{0}$ belongs to $S\left(R_{x, \xi}^{2 n}\right)$ from Theorem 3.1 and the assumption (4.1) for $\lambda(x, \xi)$. Apply Theorem 4.1 for $g=0$ and $u=f$. Then we get

$$
\left\|f\left(t, s_{0} ; \cdot ; \xi\right)\right\|_{b} \leqslant B e^{-c_{3}\left(t-t_{0}\right)}\left\|f\left(t_{0}, s_{0} ; \cdot, \xi\right)\right\|_{b}
$$

Lemma 4.3 means that for any l there exists l^{\prime} such that

$$
\left|f\left(t, s_{0} ; \cdot, \xi\right)\right|_{l, \mathcal{S}} \leqslant B^{\prime} e^{-c_{3}\left(t-t_{0}\right)}|f(t, s ; \cdot, \xi)|_{l^{\prime}, \mathcal{S}} .
$$

From (4.12) we get

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t}\left(\frac{\partial f}{\partial \xi_{j}}\right)(t, s ; x, \xi)+p\left(t ; x, D_{x}\right) \frac{\partial}{\partial \xi_{j}} f(t, s ; x, \xi)=0 \\
\frac{\partial}{\partial \xi} f(s, s ; x, \xi)=i x_{j} e^{i x \cdot \xi} . \quad j=1,2, \cdots, n
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\frac{\partial^{2}}{\partial t^{2}} f(t, s ; x, \xi)+p\left(t ; x, D_{x}\right) \frac{\partial}{\partial t} f(t, s ; x, \xi)=-\frac{\partial}{\partial t} p\left(t ; x, D_{x}\right) f(t, s ; x, \xi) \\
\frac{\partial}{\partial t} f(s, s ; x, \xi)=-p\left(s ; x, D_{x}\right) e^{i x \cdot \xi}
\end{array}\right.
$$

By the same argument we get

$$
\left|\frac{\partial}{\partial \xi_{j}} f\left(t, s_{0} ; \cdot, \xi\right)\right|_{l, S} \leqslant B^{\prime} e^{-c_{3}\left(t-t_{0}\right)}\left|\frac{\partial}{\partial \xi_{j}} f\left(t_{0}, s_{0} ; \cdot, \xi\right)\right|_{l^{\prime}, \mathcal{S}}
$$

and

$$
\left|\frac{\partial}{\partial t} f\left(t, s_{0} ; \cdot, \xi\right)\right|_{l, \mathcal{S}} \leqslant B^{\prime} e^{-c_{3}\left(t-t_{0}\right)}\left|\frac{\partial}{\partial t} f\left(t_{0}, s_{0} ; \cdot, \xi\right)\right|_{l^{\prime} \mathcal{S}}
$$

$\partial_{t^{1}}^{l_{1}} e\left(t_{0}, s_{0} ; x, \xi\right) \in S_{\lambda_{, \rho, \delta}, \infty}^{-\infty}$ for $t_{0}>s_{0}$ means that $\partial_{t^{1}}^{l_{1}} f\left(t_{0}, s_{0} ; x, \xi\right)$ belongs to $\mathcal{S}\left(R_{x}^{n} \times R_{\xi}^{n}\right)$ for $t_{0}>s_{0}$ by the assumption (4.1) for $\lambda(x, \xi)$. Hence we get the assertion.
Q.E.D.

Osaka University

References

[1] P. Greiner: An asymptotic expansion for the heat equation, Arch. Rational Mach. Anal. 41 (1971), 163-218.
[2] V.V. Grushin: Hypoelliptic differential equations and pseudo-differential operators with operator-valued symbols, Mat. Sb. 88 (1972), 504-521.
[3] B. Helffer: Une class d'operateurs hypoelliptiques, C.R. Acad. Sci. Paris 277 (1973), 531-533.
[4] L. Hörmander: Pseudo-differential operators and hypoelliptic equations, Proc. Symposium on Singular Integrals, Amer. Math. Soc. 10 (1967), 138-183.
[5] H. Kumano-go: Pseudo-differential operators of multiple symbol and the Cal-derón-Vaillancourt theorem, J. Math. Soc. Japan 27 (1975), 113-120.
[6] H. Kumano-go and C. Tsutsumi: Complex powers of hypoelliptic pseudo-differential operators with applications, Osaka J. Math. 10 (1973), 147-174.
[7] T. Matsuzawa: Some degenerate parabolic equation II, Nagoya Math. J. 52 (1973), 61-84.
[8] M. Nagase and K. Shinkai: Complex powers of non-elliptic operators, Proc. Japan Acad. 46 (1970), 779-783.
[9] K. Shinkai: The symbol calculus for the fundamental solution of a degenerate parabolic system with applications, Osaka J. Math. 14 (1977), 55-84.
[10] C. Tsutsumi: The fundamental solution for a degenerate parabolic pseudo-dierential operator, Proc. Japan Acad. 50 (1974), 11-15.
[11] C. Tsutsumi: The fundamental solution for a parabolic pseudo-differential operator and parametrices for degenerate operators, Proc. Japan Acad. 51 (1975), 103-108.
[12] C. Iwasaki: Parametrices for degenerate operators of Grushin's type (in preparation).

